
APPLICATION DEVELOPMENT FOR IMPROVING
WEB SITE USABILITY BY WEB MINING

METHODS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Merve Ceren TÜKER

June 2018
İZMİR

We approve the thesis of Merve Ceren TÜKER

Examining Committee Members:

Prof. Dr. Oğuz DİKENELLİ
Department of Computer Engineering, Ege University

Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU
Department of Computer Engineering, Izmir Institute of Technology

Dr. Tuğkan TUĞLULAR
Department of Computer Engineering, Izmir Institute of Technology

28 June 2018

Assoc. Prof. Dr. Belgin ERGENÇ BOSTANOĞLU
Supervisor’s Department
Izmir Institute of Technology

Assoc. Prof. Dr. Yusuf Murat ERTEN Prof. Dr. Aysun SOFUOĞLU
Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences

ACKNOWLEDGMENTS

I would first like to thank my advisor Assoc. Prof. Dr. Belgin Ergenç Bostanoğlu

of the Department of Computer Engineering at Izmir Institute of Technology. She con-

sistently steered me in the right direction while allowing this study to be my own work.

Without her invaluable participation and input, this accomplishment would not have been

possible.

Finally, I would like to express my profound gratitude to my family and my partner

for providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis.

ABSTRACT

APPLICATION DEVELOPMENT FOR IMPROVING WEB SITE USABILITY BY

WEB MINING METHODS

The explosive growth in website traffics and website usage data has resulted in the

amount of valuable information contained to have a similar uptrend in web usage logs.

With the increasing competition between websites, mining web usage logs to discover

meaningful information is needed more than ever. Web usage mining is the procedure of

using data mining methods to discover insightful patterns in web usage logs. The discov-

ered information helps understand how users behave on the website and their needs. One

of the most popular algorithmic approaches of pattern mining on web usage data is the

Fp-growth algorithm. For larger volumes of data, the algorithm is generally applied to

execute in parallel. Measuring and comparing performances of applications is difficult,

because the algorithm performs different on usage logs with different characteristics. The

characteristics of usage logs are highly related with the type of the website. In this paper,

we have investigated how different characteristics of web usage logs effect the perfor-

mance of the parallel Fp-growth algorithm. Five datasets with varying log characteristics

were used in order to represent different business models. The results suggest that the

performance is highly correlated with the number of items, number of frequent items,

transaction length, similarity between frequent patterns, minimum support value and size

of the log file.

iv

ÖZET

WEB SİTESİ KULLANILABİLİRLİĞİNİ İYİLEŞTİRMEK İÇİN WEB

MADENCİLİĞİ YÖNTEMLERİ İLE UYGULAMA GELİŞTİRİLMESİ

Web sitesi trafik ve kullanımındaki hızlı artış, web sitesi kullanımına ilişkin

değerli bilgiler içeren kayıtlarda da benzer bir yükselişe sebebiyet vermiştir. Web siteleri

arasındaki artan rekabetle beraber, kullanım verilerine veri madenciliği metodolojileri

uygulayarak anlamlı bilgileri keşfetmek her zamankinden önemli bir hal almıştır. Web

kullanımı madenciliği (web usage mining), veri madenciliği tekniklerini kullanım veri-

leri içerisinde mevcut olan desenleri keşfetmek üzere uygular. Bu desenler web temelli

uygulamaları ihtiyaçlarını daha iyi anlayarak web sitesi kullanılabilirliğini geliştirebilmek

üzere kullanılabilecek değerli bilgiler içermektedir. Web kullanımı verisi üzerinde de-

senleri keşfetmede en sıklıkla kullanılan algoritmalardan biri Fp-growth algoritmasıdır.

Büyük hacimde veriler için algoritma genellikle paralel çalışacak şekilde uygulanır. Uygu-

lanan algoritmanın performansı kullanılan verinin karakteristik yapısıyla yakın ilişkili

olduğundan, gerçekleştirilen farklı uygulamaların performansını karşılaştırmak güç ol-

maktadır. Verinin karakteristik özellikleri de web sitesinin türü ve amacına göre değişken-

lik göstermektedir. Bu çalışmada, web kullanımına ilişkin kayıtların farklı karakteristik

yapılarının paralel Fp-growth algoritmasının performansına olan etkileri incelenmiştir.

Uygulama çeşitli iş modellerini temsil etmek üzere farklı karakteristiklere sahip beş farklı

veri seti üzerinde çalıştırılarak performans analizi yapılmıştır. Sonuçlar algoritma perfor-

mansının veri setindeki toplam eleman sayısı, özgün eleman sayısı, sıklık ölçümünde alt

eşik (minimum support threshold) değeri, alt eşiğin üzerinde kalan ’sık’ eleman sayısı,

sık görülen desenler arasındaki benzerlik oranı, tek bir işlemin (transaction) uzunluğu ve

veri setinin boyutu gibi özelliklerle yakından ilişkili olduğunu göstermektedir.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF LISTINGS . xi

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. BACKGROUND . 4

2.1. Knowledge Discovery in Databases . 5

2.2. Data Mining . 6

2.3. Functions and Application Fields of Data Mining 7

2.4. Frequent Pattern Mining . 10

2.4.1. Join Based Algorithms . 12

2.4.2. Vertical Mining Algorithms. 14

2.4.3. Tree Based Approaches . 14

2.4.4. Maximal and Closed Frequent Itemset Mining Algorithms 19

2.4.5. Parallel Fp-tree Based Algorithms . 19

2.5. Web Data and Web Mining . 24

2.6. Taxonomy of Web Mining . 26

2.7. Web Usage Mining . 28

2.7.1. Association Rules in Web Usage Mining . 31

2.7.2. Sources of Data for Web Usage Mining. 32

CHAPTER 3. RELATED WORK . 35

3.1. Serial Fp-growth based Web Usage Mining Algorithms 35

3.2. Parallel Fp-growth based Web Usage Mining Algorithms 36

CHAPTER 4. PARALLEL FP-GROWTH IMPLEMENTATION FOR WEB US-

AGE MINING . 44

4.1. FP-Growth . 44

4.2. Parallel FP Growth Using Apache Spark . 48

4.2.1. Preparation. 51

vi

4.2.2. Parallel Fp-growth. 51

4.2.3. Aggregation . 53

CHAPTER 5. EMPRICAL STUDY . 55

5.1. Simulation Environment . 55

5.2. Datasets . 55

5.2.1. NASA Weblogs. 56

5.2.2. Synthetic Datasets . 57

5.3. Experiments . 59

5.3.1. NASA Weblog Results . 59

5.3.2. Synthetic Dataset Results . 64

5.4. Discussion . 68

CHAPTER 6. CONCLUSION . 70

REFERENCES . 73

vii

LIST OF FIGURES

Figure Page

Figure 2.1. Phases of knowledge discovery​……………………………….……...…​ 5

Figure 2.2. Simple linear partitioning on loan dataset ​……………………………… 7

Figure 2.3. Simple linear regression where total debt is a linear function of income. 8

Figure 2.4. An example clustering visualization over loan dataset ​……….………... 9

Figure 2.5. Fp Tree structure​…………………………………………….…………. 17

Figure 2.6. Pattern growth​………………………………………………………..… 18

Figure 2.7. Prefix paths ending with "e" and "de"​…………………….…………… 18

Figure 2.8. The overall PFP framework​………………...………………………….. 21

Figure 2.9. An Fp-Tree​………………………………………………………...…… 23

Figure 2.10. Repartition function of DFPS​………………………………………… 2​4

Figure 2.11. Web mining taxonomy ​……………………………….…………..…… 25

Figure 2.12. Web content mining subtypes ​………………………………………… 26

Figure 2.13. Web usage mining steps ​ ​………………………….…………………... 29

Figure 3.1. Sessionization phase of MIP-PFP​……………………………………… 37

Figure 3.2. Deducting MIPS elements from transactions​………….……..………… 38

Figure 3.3. Removal of non-MIPS and 1-item elements ​…………………………… 39

Figure 3.4. Scalability of S-FPG compared to PFP​………………………………… 44

Figure 4.1. A sample db ordering process​………………………………………..… 46

Figure 4.2. Fp-tree structure for sample db ​………………………………………… 47

Figure 4.3. Spark architecture ​……………………………………………………… 49

Figure 4.4. Parallel Fp-growth phases​……………………………………………… 50

Figure 4.5. Parallel Fp-growth algorithm ​………………………...………………… 52

Figure 4.6. Aggregation​……………………………………………..……………… 53

Figure 5.1. Execution time with support change (0.01-0.09) ​………………….…… 61

Figure 5.2. Log file sizes for different transaction volumes ​…………………..….… 61

Figure 5.3. Execution time with transaction volume change ​………………….….…​ 62

Figure 5.4. Execution time with file size change ​………………………..…….….…​ 63

Figure 5.5. Execution time with file size and executor number change ​…….………​ 64

viii

Figure 5.6. Relative execution time with executor number change ​…………..….… 64

Figure 5.7. Execution time with support change (0.01-0.06) ​……….……………… 65

Figure 5.8. Log file sizes for different transaction volumes ​…………….………..… 66

Figure 5.9. Execution time with transaction volume change ​…….…….….…...……​ 67

Figure 5.10. Execution time with file size change ​…….……….…………...…….… 68

ix

LIST OF TABLES

Table Page

Table 2.1. Frequent pattern mining algorithms…………………………….… ​.​….… 11

Table 2.2. Transaction database ​………………………………….….………………​ 16

Table ​3.1. Statistical details of NASA dataset logs……………………….…..….… 39

Table ​3.2. Statistical information computed of ​ NASA dataset logs after

 preprocession​……………………………………….……….…….……. ​ 40

Table 4.1. Conditional Fp-trees for sample db ​…………………………….…​.​….… 48

Table 5.1. Number of frequent itemsets for each minimum support ​………………​. 57

Table 5.2. Characteristics of the logs from different platforms ​……………………​. 57

Table 5.3. Characteristics of synthetic web usage logs ​………………………….… 58

Table 5.4. Number of frequent itemsets for each minimum support ​……...…….…. 60

x

 LIST OF LISTINGS

Listing Page

Listing ​2.1. A web server log…………...…………...…...…………………………​ 32

xi

CHAPTER 1

INTRODUCTION

The available sources, volume, availability and variety of data has grown exponen-

tially in the last decade. This growth has resulted in World Wide Web being used more

than ever, causing an explosive growth in website traffics and the amount of information

consisting user activities in and between pages. The popularity of www has caused a

competition between websites with similar content or goals, making becoming the pre-

ferred website among alternatives and gaining user attraction a primary concern. The

competition between websites has resulted in more emphasis upon the design of the web

pages. Each website offers users with a form of navigation among available contents, and

an interface to interact with the website. The design decisions used to be made implicitly

by the person that actually implements the functionalities. When design decisions are

made without concerning how users actually perceive and interact with a page, the results

are rarely optimal and the risk of losing precious user attention arises. It is stated that an

average human attention span has shown a significant drop from 12 seconds to 8 seconds

between years 2000 and 2013 (Canada, 2015). This dramatic drop is mainly caused by

the fact that connected consumers have gotten better at doing more with less time via

shorter bursts of high focus. This shrink in attention spans of users, and all other tenden-

cies mentioned above, result in an increased demand of a user-friendly, easy to navigate

and understandable website structure to increase efficiency in all user operations. Data

that is obtained beforehand, such as web server logs, could be inspected to detect possible

weaknesses in design, helping to propose better solutions to improve user experience.

Since the volume of web server log data is enormous, the proposed approach

should require as little manual interference as possible so that the process can be auto-

mated. Automation is advantageous both for reusability and for obtaining realistic results.

For this purpose, we have investigated some of the previous approaches for frequent pat-

tern mining, and propose a solution that is based on Fp-growth algorithm, which is a

scalable and efficient approach (Han et al., 2000). Fp-growth algorithm represents data

with the help of a prefix tree and a header table. The algorithm first performs a scan of

the database to acquire support values of all frequent items. This information is then used

to order items within each transaction accordingly. The ordered set of transactions are

then used for creating the tree structure. For the creation of the tree, it performs a sec-

1

ond scan of the db and incorporates an item header table during generation phase. This

header table enables knowing the frequency of items without doing any further db scans

and results in a faster mining phase once the tree is generated. The algorithm then per-

forms depth first traversal for mining frequent patterns over the tree based compact data

structure. The compact tree structure reduces space consumption: the Fp-tree provides

a compressed version of the db at hand. Finally, using a header table structure reduces

the costs for finding and counting items. This header table structure is used for accessing

the frequency of items without doing any other db scans and results in better performing

mining phase once the tree is generated. Overall, with the removal of the candidate gen-

eration, candidate testing and repetitive db scans, Fp-growth algorithm performs better

than its ancestors. The Fp-growth algorithm offers a divide and conquer based approach,

making it easy to parallelize and the parallel execution offers better scalability. To ex-

ecute Fp-growth algorithm in a parallel manner, the db is sharded into sub pieces using

conditional sub-trees to execute independently.

After processing sub-trees, the results are aggregated to acquire a final mining

result. Since web usage data tends to be huge, we have implemented the solution to

execute in parallel to be able to process higher volumes of data with less time consumption

(Wang et al., 2008). For managing the parallel execution, we have used the most popular

cluster computing framework, Apache Spark(TM).

By applying the Fp-growth algorithm to the domain of web usage mining, it is

expected to discover meaningful insights about website usage. This information is to

be used for achieving a better website structure, utilization of resources and a drop in

maintenance costs. Another primary goal is to eventually enhance user engagement and

user experience. There has been many studies using Fp-growth for the task of web us-

age mining. However, it is hard to evaluate the performance of an application since the

relationship between the characteristics of data at hand and success of the mining pro-

cess have not been inspected. For this purpose, we applied the algorithm on five different

datasets with varying characteristics. We used one real dataset and generated four syn-

thetic datasets, each designed to represent a different business model. The algorithm is

applied and results have been observed in accordance with the dataset’s characteristics.

The experiments suggest that the performance of the algorithm depends on the number of

items, number of frequent items, length of transactions correlation between patterns, min-

imum support value and file size. The same principles can be applied to evaluate different

business models.

The remaining of the thesis is organized as follows. Chapter 2 provides a back-

2

ground; describing data mining, its functions and application fields, web mining and web

data; web usage mining and it’s data sources. Chapter 2 also explains various algorithms

used for frequent pattern mining. Chapter 3 discusses the existing efforts in Web Usage

mining and parallelizing Fp-growth algorithm. Chapter 4 presents the implementation

of parallel Fp-growth algorithm. Chapter 5 provides a performance study. Chapter 6

presents a final overall statement of our study and discusses some of the future research

directions.

3

CHAPTER 2

BACKGROUND

Throughout the years, many approaches to the problem of discovering unknown,

interesting information from larger sets of data have been proposed. This process is re-

ferred to as knowledge discovery. Knowledge discovery uses data mining methodologies

to extract unknown information. Knowledge discovery in databases is examined under

section 2.1. Data mining is a sub field of computer science that consists the discovery

of interesting and useful patterns and relationships within large datasets that uses data

analysis algorithms. Data mining combines tools from various fields such as artificial

intelligence, statistics and database management. Data mining can be briefly described

as having six main functions: Classification, Regression, Clustering, Summarization, De-

pendency Modeling and Change/Deviation Detection (Fayyad et al., 1997). Data mining

is examined under section 2.2, the application fields of data mining are examined under

section 2.3. Pattern mining is an important sub field of data mining which utilizes data

mining methods for the purpose of discovering interesting, unexpected and useful patterns

that provide new insights regarding the dataset of interest. Pattern mining methods can be

focusing on various different types of patterns based on the goal of implementation such

as discovering frequent patterns, rare patterns, patterns with high confidence, top patterns,

meaningful unknown associations, general tendencies, outliers or exceptions, sequences

of patterns and so on. One of the most popular approaches is to discover frequent pat-

terns by specifying a minimum threshold. Frequent patterns are especially meaningful

for the domain of web usage because of the high volume of website traffics. Frequent

pattern mining is essential for mining associations, correlations, causality, sequential pat-

terns and many other tasks. These approaches are briefly described under section 2.4. A

comparative discussion consisting various algorithmic approaches are also given under

section 2.4, briefly categorized as join based algorithms, vertical mining algorithms, tree

based approaches, maximal and closed frequent itemset mining algorithms. Data min-

ing is an interdisciplinary field that has many application domains, one of which is web

data. Applying data mining techniques on web data is called web mining. Web mining

is discussed under section 2.5. It has three sub fields based on which type of web data

is examined: website content, website structure or web usage data. A brief taxonomy

consisting these sub fields is given in section 2.6. Mining web usage patterns consists

4

the most beneficial information for enhancing the website-user interactions, so web usage

mining is discussed in detail and a general terminology of the application field is intro-

duced under section 2.7. Additionally, the concept of association rules in the domain of

web usage mining and sources of data for web usage mining are given in this section.

2.1. Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD) is the general process that aims to

reveal previously unknown, valuable information hidden within large databases. It can

also be briefly defined as a "higher level" specific application of data mining that utilizes

some of its methods. Discovery of interesting knowledge is performed by making use

of preprocessing data, transforming the data at hand, and by specifying thresholds and

parameters. KDD combines a diverse range of domains, like data mining, such as database

management, statistic, data visualization, artificial intelligence, pattern discovery and data

visualisation.

Figure 2.1 Phases of knowledge discovery

(Source: Fayyad et al., 1997)

Figure 2.1 shows the general steps of knowledge discovery (Fayyad et al., 1997)

that follow the selection of a discovery goal can be briefly listed as:

• Selection: Selecting relevant data based on the scope of the discovery goal at hand.

• Preprocessing: Combining separate data sources if there are any, and removing

noisy and inconsistent data.

• Transformation: Transforming data into a suitable form to perform mining and

evaluation tasks.

5

• Data mining: Choosing a suitable data mining algorithm and applying it on the

working space. The terms data mining and knowledge discovery are closely related

and often used instead of one another: data mining is one of the most important

processes of knowledge discovery.

• Interpretation/Evaluation: Interpreting the patterns into domain knowledge and trans-

lating the extracted patterns into human understandable, relevant terms.

2.2. Data Mining

Data mining is the core process of knowledge discovery. It consists the extraction

of interesting and insightful patterns from large data sets using data analysis and dis-

covery algorithms. The procedure is expected to discover a particular subset of patterns

within given data. Since in most domains the space of patterns is infinite, the operation

highly depends on declaring limitations. These limitations could be incorporated either

by working on a sub-space of information (e.g. only studying on relationships between

particular columns of a table, on a specific set of tables within a DB, etc.) or by declaring

some sort of threshold to degrade the work space at hand. Data mining aims to describe

data in novel ways and can also be used for predicting future trends in data. Description

aims to find new structures or patterns within data that approach to it in a way that has

not been yet expressed, which enables approaching the data from fresh angles. Prediction

focuses on using fields that exist within a database to predict future or unknown values

of variables of interest. Since these two goals complement each other, most models use

a combination of them; meaning some of the descriptive models also offer prediction to

a degree, and some of the predictive models also present an understandable description

of the data. The distinction and balance between two approaches, however, is important

when setting a discovery goal. After setting a discovery goal, it is possible to adopt from

a variety of different methods in order to achieve it. The selected discovery goal highly

depends on the scope and the application field.

Data mining is an interdisciplinary field that is closely coupled with statistics,

natural language processing, database systems, big data, machine learning and artificial

intelligence. It is considered a key phase of knowledge discovery (Fayyad et al., 1997),

the overall process of deducting (enumerating) useful patterns and models from data at

hand. Some of the main application areas of knowledge discovery includes marketing,

telecommunications, finance, fraud detection, internet agents and manufacturing. Various

6

application approaches using Data Mining methodologies will be inspected under section

2.3 in detail.

2.3. Functions and Application Fields of Data Mining

Mining data allows the exploration of the dataset from different angles, enabling

new categorizations, summarizations, descriptions and predictions of data sets and re-

lationships between them (Han and Kamber, 2006). Data mining is described to have

six main functions: "Classification, Regression, Clustering, Summarization, Dependency

Modeling and Change/Deviation Detection". (Fayyad et al., 1997).

Figure 2.2 Simple linear partitioning on loan dataset

(Source: Fayyad et al., 1997)

Classification is the phase that classifies (maps) a certain item into one of the prede-

fined classes (Weiss and Kulikowski, 1991). Financial market trend analysis (Apte

and Hong, 1996) and automatic detection of objects of interest within a large im-

age database (Fayyad et al., 1996) can be listed as examples that use classification

techniques as part of a larger knowledge discovery application. Figure 2.2 shows a

simple linear partitioning on a loan dataset.

Regression is the process of mapping an item from the dataset to an item with a real value

or a representation of another value. Some examples of regression applications are

prediction of the amount of bio-mass using remotely sensed microwave measure-

ments, estimating the probability of survival for a patient given his/her diagnostic

results or predicting customer demand for a new product. Figure 2.3 shows a simple

7

linear regression where total debt is a linear function of income. Fit is poor because

of the weak correlation between the two variables of choice.

Figure 2.3 Simple linear regression where total debt is a linear function of income

(Source: Fayyad et al., 1997)

Clustering can be briefly described as identifying sets of groups, also referred to as clus-

ters, within a given set of data. It is a common descriptive task in data mining (Jain

et al., 1988) (Titterington et al., 1985). A sample representation of data cluster-

ing over the loan dataset can be seen in Figure 2.4. Some examples of clustering

usages within knowledge discovery applications are: discovering sub-populations

of customers within a marketing dataset and identifying subcategories of spectra

from infrared sky measurements (Cheeseman and Stutz, 1996). Another task that

is closely related to clustering is the task of probability density estimation, which

is used for describing techniques for estimation of the joint multivariate probability

density function of all the variables or fields within a database (Silverman, 1986).

Probability densitiy estimation will not be discussed in detail here, since it is not

within the scope of this paper.

Summarization is the process of representing given data within a compact expression.

An example of summarization process is tabulating the standard and mean devi-

ations for all fields within a given data set. More sophisticated methods include

deriving some summary rules, multivariate visualization techniques and the discov-

ery of functional relationships between variables (Zembowicz and Zytkow, 1996).

These techniques are often used in coordination with the fields of exploratory data

analysis and automated report generation.

8

Figure 2.4 An example clustering visualization over loan dataset

(Source: Fayyad et al., 1997)

Dependency Modeling process aims to finding a description that shows dependencies

between variables. The compositions that represent dependencies are also called

dependency models. These models can be listed under two different levels. The

structure level: variables are locally dependent on one another and are usually rep-

resented in a graphical form. The quantitative level: also specifies how coupled

dependencies are, using numerical values. Probabilistic dependency networks use

conditional independence to specify the model and the correlations in a structural

way to specify how strong each dependency is (Glymour et al., 1987). Probabilis-

tic dependency networks often find applications such as development of medical

expert systems that borrow probabilistic analysis approaches, information retrieval,

and modeling of the human genome.

Change/deviation detection is the subtask that aims to detect the most significant changes

from previously measured normal values for the given dataset. Detection of anoma-

lies has various application areas such as security, medical applications, statistic

analysis systems etc.

The categories might or might not be mutually exclusive. They can also contain a richer

form of representing data, such as a hierarchical structure or overlapping sub categories.

All of the categories given above are intended to decompose interesting patterns from

uninteresting ones. Which patterns are ’interesting’, however, can be defined differently

from various perspectives. Some approaches consider rare patterns, some approaches

consider items that appear frequently, some consider items with a high confidence, some

consider top patterns as interesting. One of the most popular approach is to consider items

9

that appear above a certain threshold as frequent, thus interesting. This concept is also

called "frequent pattern mining", which will be examined in detail within section 2.4.

2.4. Frequent Pattern Mining

Frequent patterns are sets of items or structures that have a high frequency of

occurrence. A threshold specified by the user is generally used in order to determine

whether an itemset is frequent or not. This limit is generally referred to as a minimum

support threshold. The itemsets that have a higher frequency or support value are called

"frequent itemsets". Similarly, patterns that have a high frequency are referred to as fre-

quent patterns. The term "frequent pattern mining" was initially used for analyzing and

discovering rules within market basket dataset. (Agrawal et al., 1993)

The very first approach to tackle the problem of frequent pattern mining was pro-

posed in 1994 (Agrawal and Srikant, 1994), a join-based algorithm called Apriori. The

Apriori algorithm performed breadth-first search over a horizontal hash tree. It took ad-

vantage of the "downward closure property". Downward closure property states that sub-

sets of a frequent itemset are all frequent themselves. The algorithm makes use of this

property for pruning the itemset lattice. This was also known as Apriori-pruning. The

algorithm generated candidate sets and performed multiple db scans to check the validity

of candidates. Following Apriori, another join based approach was proposed to enhance

the previous design. The new algorithm, called eclat, used a vertical layout to represent

data (Zaki et al., 1997). Eclat algorithm used TID lists instead of calculating support val-

ues and intersections instead of joining. This approach required less space than Apriori

and was faster if datasets were small. It also offered very fast support count, but had the

risk of intermediate TID-lists getting too large for memory. The main bottleneck of this

design was that the longer TID-lists got, the more costly it was to calculate frequencies.

Another algorithm that offered a vertical layout based approach was Viper (Shenoy et al.,

2000). Viper algorithm associates each transaction with a column and denotes values for

each item based on whether it exists within a dataset or not.

To further reduce the repetitive calculation cost of support values and the cost of

generation of candidate itemsets, tree projection based algorithms were offered. These

approaches traded memory cost with calculation time and acquired faster results. The

structure of the generated enumaration tree was used to avoid re-doing calculations. A

prefix tree based approach, Fp-growth algorithm was proposed (Han et al., 2000). The

algorithm performed depth first traversal for mining frequent patterns over the tree based

10

compact data structure. First it scanned the database, to acquire all frequent items and

order each transaction accordingly. Then it created the tree using this data at had. For

the creation of the tree it performed a second scan of the db and incorporated an item

header table during generation phase. This header table enabled knowing the frequency

of items without doing any other db scans and resulted in a much faster mining phase

once the tree is generated. This algorithm offered a divide and conquer approach, and

with the removal of the candidate generation, candidate testing and repetitive db scans;

resulted in better performance than its ancestors. Other advantages were that the structure

at hand was compact, it provided node-link property caused by the structure’s nature (all

transactions containing a certain frequent item could easily be acquired with minimum

cost). The greatest bottleneck of this approach was that it depended on memory. If the db

at hand was too large for the tree to fit in memory, optimizations were a must.

Table 2.1 Frequent pattern mining algorithms

Following Tree Projection based approaches, algorithms that focus on closed or

maximal itemsets were proposed. Following tree based approaches, algorithms that used

compact representations of frequent patterns such as closed and maximal frequent item-

sets were proposed. A vertical layout and depth first traversal based approach called

Mafia was proposed in 2001 (Burdick et al., 2001). The Mafia algorithm focused on find-

ing maximal frequent itemsets. This algorithm used intersections over vertical bitmap

structure instead of joins to detect itemsets, and used bitwise operations upon the vertical

11

representation to calculate the supports. This approach was able to work efficiently for

larger databases and longer itemsets (as long as the entire data was able to fit in memory),

but did not perform as good for short itemsets. The algorithm used Apriori principle to

prune data to increase efficiency. Other maximal frequent itemset mining algorithms were

proposed, such as the MaxMiner algorithm. Algorithms such as Charm and Closet were

proposed for finding closed itemsets.

Mining frequent patterns is still the most studied phase of data mining. It is imple-

mented in many different applications used for mining associations (Agrawal and Srikant,

1994) (Klemettinen et al., 1994), causality (Silverstein et al., 1998), correlations (Brin

et al., 1997), sequential patterns (Agrawal and Srikant, 1995).

The general characteristics of algorithms used for mining frequent patterns that

are mentioned within this section, as seen in Table 2.1, such as join based, vertical lay-

out based, tree structure based and maximal or closed pattern based algorithms will be

discussed in detail in following sections.

2.4.1. Join Based Algorithms

Join-based algorithms use join operations in order to generate (n + 1)-candidates

from n-patterns at hand that are known to be frequent. Following the generation phase,

the frequency of the new candidates are checked by using the transaction database. This

approach has two major costs: the generation of many candidates can cause an explo-

sive growth at the data at hand. Second, validating each set of candidates by hitting the

transaction database repeatedly is a huge overhead.

Apriori Algorithm is one of the earliest solutions to the problem of mining fre-

quent patterns. Apriori algorithm uses join operations to generate new candidates from

frequent patterns at hand. The initial studies are mostly formed based on Apriori algo-

rithm (Agrawal and Srikant, 1994). Apriori method is the simplest form of join-based

algorithms. The algorithm approaches data from a level-wise perspective, where all fre-

quent itemsets of length (n + 1) are generated by using previously generated length n

itemsets. Apriori algorithm takes advantage of the "downward closure property", which

denotes that "subsets of frequent patterns are also frequent". Pairs of frequent n-patterns

that have at least n-1 common items are needed in order to perform the join operation to

generate new candidates. Consider two patterns of 3, {i1, i2, i3} and {i1, i2, i4} are fre-

quent. Since both of them are frequent and they have n− 1 = 2 common items, they will

be joined while discovering patterns with length 4. After a join operation on these two

12

patterns, a candidate pattern of length 4, {i1, i2, i3, i4}, can be obtained. The reason that

the generated pattern is called a "candidate" is that it is not yet validated to be frequent.

The frequency is checked by using the transaction database to count the support value

of the pattern. Since support count is repeated for every candidate, the efficiency of this

phase directly effects the efficiency of the overall algorithm. Additionally, it is possible

to obtain the same candidate from join operations of different n − 1 patterns. Since this

causes an increase in redundancy, a rule is imposed, stating that items in itemsets should

be stored based on a lexicographic order, and that two itemsets are only to be joined when

their first (n − 1) items are the same and have the same order. Finally, it is possible to

implement the Apriori algorithm recursively to work for each level of candidates. The

Apriori algorithm executes as follows: Firstly, the candidate patterns are generated by

using join operations on patterns from the previous level. Secondly, the generated candi-

dates are pruned by making use of the downward closure property. Finally, the support

values of candidates at hand are checked to see if they are frequent or not. The algorithm

repeats the three steps until there are no more frequent candidates to be generated. The

main idea behind the design of the Apriori algorithm is to make use of an anti-monotone

heuristic: "none of the super patterns of a non-frequent pattern can be frequent". Since

the performance is mostly hindered by managing sets of candidates, this idea reduces the

size of valid candidate sets, in order to enhance the performance. This approach suffers

from edge cases such as a very large number of unique items, very long patterns, very

small support thresholds. Additionally, an algorithm based on Apriori is prone to suffer

from handling candidates and managing support counts. It is computationally intensive

to manage candidate sets that could be huge, and repetitive db scans still need to be per-

formed at each step. Optimizations that are proposed for the Apriori algorithm tend to

address these bottlenecks.

DHP Algorithm This method, "direct hashing and pruning", was proposed fol-

lowing the Apriori algorithm. It proposes enhancements to the bottlenecks of Apriori

algorithm. One of the optimizations is to apply a pruning mechanism to the candidates at

each step in order to reduce the size of the candidate sets that need to be managed. The al-

gorithm proposes using a hash table to manage the support values of subsets. The support

values are tracked and stored in the hash table during the counting phase of the previ-

ous set of candidates. Another optimization is implemented by trimming the transactions

again in order to increase the efficiency of managing the support values of candidates.

This optimization makes use of the fact that if at least n-frequent itemsets do not con-

tain an item, then the item will not appear in any of the frequent itemsets of the next

13

level (n+1). Therefore, items that do no exist in n-frequent itemsets, for instance, can be

trimmed. This optimization results with reduced width to increase performance. Note

that this algorithm comes with an overhead from the additional data structures, causing

the efficiency to drop for longer patterns.

2.4.2. Vertical Mining Algorithms

These approaches represent the transactions vertically in order to increase the effi-

ciency of counting items. Vertical representation generally means expressing the database

in an inverted list. These lists are also called tidlists. With this method, transactions that

contain a particular item can be seen rather than a transaction-based representation. An-

other key optimization that comes with this approach is that while counting supports,

instead of computing the support of an n-itemset, an n-way intersection of the respective

lists of the items within the set is performed. Secondly, for computing the support of

an n-itemset, an intersection between the corresponding lists of two n-1 itemsets can be

performed. Some of the well known algorithms that are based on vertical pattern mining

approach could be listed as : Monet, partition, Eclat, VIPER algorithms which will be

examined below.

Eclat Algorithm Eclat algorithm partitions candidate sets into disjoint groups and

approaches lattice partitions in a breadth-first manner. The candidate partitioning ap-

proach that is used is similar to the primitive versions of parallel Apriori algorithm im-

plementations. The Eclat (Kumar and K.V.Rukmani, 2010) algorithm uses enumeration

trees and uses various different strategies. The novelty that Eclat introduces is to propose

many efcient variants of recursive intersection of tid lists.

Viper Algorithm This algorithm (Agrawal et al., 1993) uses vertical representa-

tion. The main concept behind the VIPER algorithm is representing the transactions as

bit vectors, also called "snakes". These compact structures are used for counting support

values of frequent patterns efficiently. The snakes offer a compressed representation of

tidlists. For the counting phase, VIPER algorithm operates similar to Eclat algorithm.

The main difference between the two approaches is the form of the data structure being

used.

14

2.4.3. Tree Based Approaches

Tree-based algorithms provide new approaches for enumerating sets. The can-

didates are traversed by using subgraphs that represent the itemset lattices. The most

important rule that is made use of by tree-based algorithms is the introduction of a certain

order of exploration. This is necessary in order to prevent redundancy and to set enu-

meration without repetition. The structures used within these algorithms are also called

enumeration or lexicographic trees. These trees are generated and explorated with the

lexicographic order in mind. This representational approach transforms the problem of

generating frequent itemset to the problem of constructing lexicographic trees. The tree

structures can be generated and traversed in a breadth or depth first manner. Some al-

gorithms introduce pruning methods in order to increase efficiency by reducing the size

of the tree. Pruning mechanisms can be very beneficial for tree based algorithmic ap-

proaches since the performance of tree based algorithms are prone to suffering from size

of the structure.

AIS Algorithm This algorithm generates the tree with a breadth-first approach.

The support values are counted at each level by using the transaction database. No other

additional enhancements have been proposed in order to increase the efficiency of the

counting, causing this approach to stay computationally limited.

There are variants of tree based algorithms that introduce recursive approaches .

Being able to make use of recursive execution enables reusing the previous calculations of

support values to eliminate redundant counting phases. One weakness of these algorithms

is that they consume and depend on memory.

TreeProjection Tree projection is a tree based approach to database projection.

Tree projection approaches are based on how they construct and explore the tree struc-

ture. This could either be implemented in a breadth first or a depth first approach, or a

combination of the two. Breadth first and depth first approaches have different advan-

tages. For breadth first approaches, introducing pruning by level is possible. Depth first

approaches are better for when transactions are longer. Discovering maximal patterns is

more efficient when traversing the patterns depth first, since the portion (branch) of the

tree under consideration is smaller. The main difference between discovering depth or

breadth first lies not in the size of the actual candidate space, but how the candidates are

divided and handled for managing space and memory. Tree projection algorithms can also

be implemented either in a recursive or a non-recursive way. Depth-first variations gen-

erally adapt recursive methods for increased efficiency when growing a particular branch

15

of the tree. For these adaptations, the recursion tree has the same size as the enumeration

tree. The adaptations that do not introduce recursion store the projections of transactions

directly as nodes of the enumeration tree.

Most tree based frequent pattern mining algorithms make us of an ordering rule.

This rule could be in the form of lexicographic order, applied to sets of items as either

suffix-based or prefix-based. Algorithms that are based on suffix method provide a dif-

ferent convention when it comes to how the sufxes of frequent patterns are extended.

With these approaches, itemsets are extended with a backwards fashion, from their suf-

fixes. The database of transactions that conform to the suffix based rule is called condi-

tional transaction database. By using conditional transaction datasets, dataset at hand can

be divided based on the current suffix under consideration. This approach traverses the

database once to determine frequencies of all elements. Following a single preprocessing

pass, all infrequent items are eliminated The conditional databases need only to contain

frequent items. Since all items at hand are frequent, patterns can be directly generated for

each. Following this step, the projected transaction database is recursively handled for

each of the items at hand. This process results in the transactions being recursively pro-

jected to build up the suffix item by item. The recursive and suffix based approach enables

managing the datasets efficiently. Fp- growth is one of the most well known algorithms

that uses suffix based pattern exploration. Since this approach eliminates infrequent items

in preprocessing phase, it has higher efficiency than the previous TreeProjection methods

which count itemsets in each recursive call. Additionally, Fp- growth introduces a struc-

ture called Fp-tree to compress the dataset at hand, further enhancing manageability of

the algorithm. The Fp-tree structure compresses data by making use of the ordering rules

and prefix/suffix structures.

Table 2.2 Transaction database

16

Fp-growth Algorithm has been proposed to avoid the two bottlenecks of Apriori-like al-

gorithms, generating and managing large numbers of candidates (Han et al., 2000). It

provides a novel structure, called an Fp-Tree, which is an extended prefix-tree that stores

only the crucial, quantitative information of frequent patterns. The algorithm has a pre-

processing phase, in which all items are counted and infrequent ones are eliminated. Next,

the nodes are arranged based on their frequencies before generating the the tree structure,

as seen in Table 2.2. For each itemset within the table, items are ordered by their frequen-

cies. For example, a is more frequent than b; b is more frequent than c; and so on. The

generation of the tree structure follows this phase. The initial tree only consists a null

’root’. This root is grown by inspecting the transactions one by one and inserting them in

their respective branches within the tree structure. The final tree structure for the transac-

tion database in Table 2.2 can be seen as in Figure 2.5. The ordering mechanism based

on frequencies results in an increased chance of locating the most frequent nodes closer

to the root of the tree; causing a higher compression in data. Within the following phase

of the algorithm, a novel fp-tree based pattern growth approach is proposed, which starts

from a frequent length-1 pattern, continues by examining only the respective conditional

pattern base (a sub-database consisting of a set of frequent items that co-occur with the

suffix pattern at hand).

Figure 2.5 Fp Tree structure

The algorithm then constructs the respective (conditional) Fp-tree, and performs mining

recursively with the use of the constructed sub-trees. The pattern growth is achieved by

concatenating the suffix pattern with the new generated nodes using the conditional sub-

tree. The pattern concatenation logic is executed as seen in Figure 2.6. The prefix paths

after the task of dividing the fp tree into suffix pattern structure trees can be seen in Figure

17

2.7, applied for prefix paths ending with "e" and "de" for the complete tree shown in 2.5.

the process is repeated until all paths are examined.

Figure 2.6 Pattern growth

This approach is highly suitable for the divide and conquer strategy and is usually im-

plemented either recursive or parallel for optimum results. Since all frequent itemsets

are encoded into the tree, this approach ensures the completeness of the result and pro-

vides a compact structure resulting from the common prefixes (shared nodes on the tree).

The redundant process of generating infrequent candidates in removed from the process,

causing efficiency and reduced space consumption.

Figure 2.7 Prefix paths ending with "e" and "de"

Additionally, the employed search technique transforms into a partitioning-based divide-

and-conquer method rather than the bottom-up generation of frequent itemset combina-

tions used within Apriori-based approaches. This improvement results in a major reduc-

tion of the size of conditional pattern base, as well as the size of corresponding conditional

18

Fp-trees. Moreover, it transforms the problem of finding long frequent patterns into the

problem of searching for shorter patterns and concatenating the suffixes. Since the least

frequent items are stored as suffix within the Fp-tree, the structure offers a good overall

manageability of the patterns. All these improvements result in a substantial reduction in

the search costs.

2.4.4. Maximal and Closed Frequent Itemset Mining Algorithms

One of the greatest source consumption of frequent itemset mining is the redun-

dant phase of counting itemsets that are actually subsets of eachother. In order to eliminate

this redundancy is to discover and handle a smaller set of itemsets that are mathematically

able to represent the rest of the frequent itemsets. The representations should be in such

a way that they represent all frequent itemsets in a compressed way, and help eliminat-

ing the phases of discovering and storage of duplicate sets. The compact representation

saves both computational time and memory consumption. There are two different ap-

proaches when it comes to how the representations reflect the itemsets at hand completely

or partially. Examples of algorithms that mine closed itemsets can be listed as Closet and

Charm, whereas algorithms that mine maximal itemsets can be listed as MaxMiner and

Mafia.

Mafia Algorithm was proposed in 2001 (Burdick et al., 2001). It was based on

vertical layout structure and it proposed a depth first traversal approach. The algorithm

focused on finding maximal frequent itemsets with the assumption that the entire data at

hand is able to fix into the memory. The algorithm represented data in a vertical bitmap

structure, allocating a set of bits to each itemset so that each bit would represent it’s

existence within a transaction in the db. The algorithm used intersections instead of joins

to detect itemsets, and used bitwise operations upon the vertical representation to calculate

the supports. This approach was able to work efficiently for larger databases and longer

itemsets, but did not perform as good for short itemsets. Mafia algorithm used Apriori

principle to prune the structure at hand to increase efficiency and execution time.

Charm Algorithm used a vertical representation of the db at hand and mined

closed frequent itemsets over this structure. Closet offered closed itemset mining over

an Fp-tree structure, incorporating the pruning mechanism for efficiency. In conclusion,

mining frequent closed itemsets can increase efficiency while eliminating redundant ele-

ments from mining frequent sets of items.

19

2.4.5. Parallel Fp-tree Based Algorithms

Mining frequent items, itemsets, subsequences, or other substructures is usually

among the first and most popular steps for analyzing large-scale datasets, which has been

an active research topic in data mining for years. Frequent pattern mining approaches

can be applied on various types of data such as retail market basket data, transaction data

for retail, bibliographic data, medical and health related data, biological data, geographic

data, traffic accident data, sports related data, data on housing and population, social net-

work data, synthetic data, website structure data, web traversal(clickstream) data, website

visitor data and so on. Since we will be discussing the studies that focus mining web

usage data in Chapter 3, studies that have applied frequent pattern mining principles in a

parallel manner on other types of datasets have been observed within this section, as they

are highly related to our study.

PFP Algorithm The first proposal for parallelizing Fp-growth algorithm using a

map reduce (Dean and Ghemawat, 2004) based approach is PFP algorithm (Wang et al.,

2008). In this study, the FP-Growth algorithm is parallelized to be executed on a cluster

of machines. PFP algorithm divides the workload between nodes as independent tasks

so that each node in the cluster is able to execute without messaging or waiting the other

nodes. This logic minimizes the costs that may arise from communications and depen-

dencies between the nodes. The algorithm uses three MapReduce phases. Five main steps

of PFP, as seen in Figure 2.8 are as follows:

• Sharding: The transaction DB is divided into P successive parts and parts (also

referred to as shards) are stored on different nodes.

• Parallel Counting: Support values of all items within the DB are counted by per-

forming the first MapReduce pass. A shard of the data is given to each mapper

instance. During this step, since all items are traversed once, the set of items "I"

is also discovered. The results are recorded in a list structure, called the "F-list"

(frequent list).

• Grouping Items: All items "|I|" that exist on the "F-List" are divided into Q different

groups. The list that contains these groups is called a "G-List". Each element in

this list is assigned a unique id, "gid". Since the list structures are small because of

the division, this phase is relatively fast, and the time complexity of grouping phase

is O(|I|).

20

• Parallel Fp-Growth: The critical phase of the algorithm. Within this phase, another

MapReduce pass is executed: Mapper – A shard of the dataset that was generated

in the previous step is given to mapper instances. The mapper reads the G-List and

processes each transaction in the shard individually. During this phase, items are

marked according to which group they belong to. Following this "marking" step,

transactions are handled for each group, and items that do not belong to the group

under examination are removed.

Figure 2.8 The overall PFP framework

(Source: Wang et al., 2008)

This step is repeated for each group, causing transactions to dissect into group de-

pendent transactions. After handling every transaction, the mapper phase finishes

21

by returning (key,value) pairs. In these pairs, the key is the group-id and the value

is the group-dependent transaction that was generated.

Reducer – Fp-growth is performed on the shards of the dataset during this step:

After all mapper instances are completed, all group dependent transactions are

grouped by their gids automatically by the infrastructure. This is done for each

group-id. After this operation, each shard becomes group dependent and suitable

for processing simultaneously. Each reducer instance is assigned with one or more

of these shards. A local tree and it’s conditional sub trees are grown recursively

by each Reducer. Following the generation of these structures, the patterns that are

discovered are returned as output.

• Aggregating: Aggregation of the results that are generated in previous step as the

final result.

The authors performed an empirical study on a dataset of 802,939 Web pages and

1,021,107 tags, and conclude that PFP algorithm is both scalable, and is able achieve

virtually linear speedup.

BPFP Algorithm BPFP algorithm is a MapReduce based approach for mining

web usage data using parallelized Fp-growth (Zhou et al., 2010a). Within this study, ex-

periments were performed on webdocs that are 1448580Kb in size containing 1692082

transactions. The documents were reorganized to form a set of web html documents. Two

rounds of MapReduce passes are used to implement the parallel Fp-growth based algo-

rithm. Additionally, BPFP introduces an approach to balance the parallelization. This

approach is called "balanced grouping". During this step, all frequent items are divided

into Q groups, with the balance between different groups in mind. The goal of balancing

the load between groups is to balance the workload between parallel instances. This step

can be examined under two substeps: First is the computation of "load units", which rep-

resent the cost of executing Fp-growth algorithm for each of the frequent items. Second

is the division of the previously calculated "load units" into groups based on their load

values. The algorithm has two major differences from PFP Algorithm: One is the novel

consideration of balancing workloads, another is the elimination of aggregation step in

order to list all of the frequent itemsets. A downside of this appoach is that the mean

square errors and lift parameters were not considered for analysis in detail.

IPFP Algorithm IPFP Algorithm, also called "improved parallel Fp-growth" al-

gorithm, introduces a small files processing strategy based approach (Xia et al., 2013).

This method is ideal for environments containing a large number of small file sets. The

22

IPFP algorithm makes use of a MapReduce based implementation in order to parallelize

Fp-growth. The goal of the algorithm is to reduce the expensiveness of writing and read-

ing from disk and the high execution time for processing of Hadoop. The authors discuss

that the novelty reduces the memory consumption, improves the efficiency of MapReduce

by managing memory and enables accessing data more efficiently, compensating for the

I/O overhead of MapReduce.

Because MapReduce based parallelization causes high I/O overhead for iterative

computations, later implementations such as Balanced Parallel FP-Growth with MapRe-

duce (Zhou et al., 2010b) and the improved version of the same algorithm (YANG et al.,

2016) offer balancing over the Fp-Tree in order to increase efficiency. A later implemen-

tation, S-FPG algorithm (Gassama et al., 2017) suggests using Apache SparkTM for the

task: an in-memory, iterative computing model and framework. Spark framework makes

use of a concept called RDD (resilient distributed database) (Moens et al., 2013).

SPFP Algorithm Within this study, the authors propose an algorithm that is based

on the IPFP algorithm. Instead of using MapReduce, which has high I/O cost, latency

and difficulty of implementing iterative algorithms efficiently; the authors use the Apache

Spark framework. The authors discuss that the SPFP algorithm is efficient and consumes

less time because of the optimizations of the header table and the efficiency of the data

management strategy.

Figure 2.9 An Fp-Tree

(Source: Shi et al., 2017)

DFPS Algorithm Within this study, the authors point that reading and writing on the

disk at every MapReduce operation consumes a high volume of sources, causing the ef-

ficiency of the parallel Fp-growth algorithm to drop. To tackle this, the authors propose

an algorithm called DFPS, "distributed Fp-growth algorithm", and use the Apache Spark

framework which utilizes memory based management and increases efficiency. DFPS

23

algorithm divides the computational tasks between nodes that are then able to execute in

parallel independently (Shi et al., 2017). This division logic can be seen in Figure 2.10

for for the tree structure in 2.9. The fact that there is no need to pass messages between

parallel threads or nodes makes DFPS an efficient algorithm in comparison to the PFP

algorithm.

Figure 2.10 Repartition function of DFPS

(Source: Shi et al., 2017)

DGFP Algorithm Focusing on the problem of imbalance between loads when the

existing Fp-growth based approaches group the data set, this study proposes an optimiza-

tion algorithm DGFP-growth for dividing the data set in a dynamic manner (Zhang et al.,

2017).

2.5. Web Data and Web Mining

Web mining can be briefly described as the application of data mining techniques

to the domain of Web (Agrawal et al., 1996). With the popularity of the world wide web

resulting in an explosive growth in the size of the usage data, organizations are overloaded

24

with information. Therefore it is getting more important to filter meaningful information

from the huge, raw data (Pal et al., 2002). Information on what the users/consumers need,

how they behave and how they interact with a website is valuable information. The web

service providers are interested in predicting user behaviour to use when personalizing

websites, handling the traffic load efficiently, and optimizing the design of the website to

better suit the needs of different groups of users.

Figure 2.11 Web mining taxonomy

Web mining is a combination of multiple research areas: Data mining, world wide web,

database systems, information retrieval and artificial intelligence. Although the problem

could be approached by using web mining techniques as direct solutions, approaching it as

part of a bigger application that addresses the problem from a generalized scope by using

a combination of related fields is also common. Other application fields for web mining

are data confirmation, validity verification, pipelining for web portals, fraud detection,

data integrity, taxonomy capture, content management, content generation and opinion

mining (Galitsky et al., 2011). Therefore, web mining is a research field that offers a

broad variety of application fields, is very popular and in-demand, and contains many

open problems due to the exponential growth of web usage (Kumar and S.Nandan, 2015).

When web mining process is broken down into sub-steps in data mining terms, it can be

said to have three main operations : Clustering, association and sequential analysis. An

example for clustering steps can be given as finding a natural grouping upon a list of users.

The research of which URLs are most often accessed together can be given as an example

25

to association operation. Finally, the order in which the URLs are mostly accessed can be

given as an example for sequential analysis. Note that these sub-steps, as in most research

fields regarding real world problems, do not possess clearly set boundaries between each

other, they overlap considerably often. One of the greatest difficulties of working on web

mining is the complexity of the data that is caused by its unstructured nature. Another

difficulty arises from the fact that the collected data is not completely reliable or accurate

in most cases, again caused by the complex structure of the web itself. The storage and

collection of world wide web data is examined under section 2.7.2.

2.6. Taxonomy of Web Mining

A taxonomical categorization has been proposed as in Figure 2.11 (T.Srivastava

et al., 2005). This approach describes main types of data to be inspected within web

mining as content, structure and usage data. Some categorizations consider user profile

as a separate type (Hasan et al., 2012).

Web Content Mining is the application field of web mining that studies on discovering

useful information from the web contents, such as text, images videos, or from data

and documents that are published on the internet (Inamdar and Shinde, 2010) (Kosla

and Blockeel, 2000).The traditional technique of searching the web is the search

conducted on contents. Web Content mining can be defined in other terms as the

extended work that is performed by search engines (Dunham, 2003). The sources

might be in the form of HTML, JSON (semi-structured),in plain text (unstructured)

or XML (fully-structured).

Figure 2.12 Web content mining subtypes

Web content mining mostly aims to discover patterns in large collections of docu-

ments. It is also an often used approach within ontology based learning methodolo-

gies, when merging or mapping ontologies, or within the research field of instance

learning (Cooper et al., 2003).

26

Two approaches used in web content mining are agent based approach and database

approach (Dunham, 2003) (Inamdar and Shinde, 2010). The approach to be fol-

lowed is often determined by looking at how structured the data at hand is. There-

fore, web content mining approaches are often categorized as seen in figure 2.12.

Web Structure Mining is the research field that focuses on inspection over the world

wide web’s hyperlink structure. It’s main focus is to identify relations between

web pages, either by direct links or by links of information and to discover pre-

viously unknown relationships between or within web pages by working on pre-

viously mentioned data. This research field often studies on the topological infor-

mation of hyperlinks, either with including or without including their descriptions.

This connection between pages allows, for instance, a search engine to pull data in

accordance with a search query and to directly display links for the web sites that

contain related content. The inspection of the structure is conducted by spiders or

agents traversing and scanning web sites, retrieving the home page and linking the

information and the reference links and thus creating a linked, specific page that

contains the desired information. This collected information enables both traversal

from a link to a certain web page regarding a search query and to cluster infor-

mation into site maps, both increasing availability of a web page or information

to users. For example, the search engine Google owes its high usability and suc-

cess to the PageRank algorithm, which rates relevance and reliability of web pages

based on hyperlinks directed to it from other pages, and vice versa (Page et al.,

1999). This structured data collection also provides information on a certain page’s

ranking (Page et al., 1999) or authoritativeness (Kleinberg, 1998). Web structure

mining and web content mining are often applied jointly to utilize the content and

the structure of a hypertext (Stummea et al., 2006). Some studies do not discrimi-

nate between the two fields (Cooley et al., 1997).

Web Usage Mining is the process of automatically discovering usage patterns from Web

Usage data by applying data mining techniques. The collected information is often

meant to be used for better serving and understanding the needs of web-based ap-

plications (Srivastava et al., 2000a). It can be used within numerous fields of study

such as web caching, web perfecting, intelligent online advertisements and group

targeting and web personalization. Most approaches apply one or more of the fol-

lowing: clustering (either on pages or user sessions), association rule generation,

sequential pattern mining and Markov models, as shown in figure 2.7 (Srivastava

et al., 2000b).

27

2.7. Web Usage Mining

Web usage mining is the concept of applying data mining techniques to differ-

ent types of raw data of user-web resource interactions logs, which are also commonly

referred to as web usage logs (Srivastava et al., 2000a). The techniques are intended to

discover insightful, new association rules. Association rules were first formally defined as

a class of regularities in 1993 (Agrawal et al., 1993). These association rules are expected

to be able to represent various groups of users that frequently interact with the website for

different needs and expectations. The objective is to collect, model and analyze the pat-

terns that lie within the data of interactions between users and the website. The log data

can be obtained from different types of sources such as servers, proxy servers or the client

machine itself. For the domain of web usage mining, the raw data generally contains web

log files that have records of page requests. After discovering the frequent patterns that

lie within the dataset by using frequent pattern mining algorithms, association rules are

generated to further describe the dataset. Some common terms used when mining web

usage data are:

• A user is an individual that requests a certain file or resource from one or more web

servers

• An item in the context of web usage mining is a web resource of a particular website

that can be requested by the website visitors.

• A page view is used for naming a one time display of the collection of resources on

a user’s browser.

• A click-stream is a sequential set of requests.

• A user session is a set of requests across the entire web for a single user and a given

time span.

• The request set for a particular website and session is referred to as a server session

(also commonly referred to as a ’visit’).

• Support count refers to the frequency of occurrence of an itemset.

• Support refers to a fraction of transactions that contain a certain itemset.

• Frequent itemsets are sets of web resources that are frequently requested together

by the visitors.(frequently refers to a number above a given support threshold.)

28

Phases that are applied within the process of web usage mining, as seen in Figure 2.13, can

be listed as follows: Data Collection, Preprocessing, Pattern Discovery, Pattern Analysis.

Figure 2.13 Web usage mining steps

(Source: Srivastava et al., 2000)

Data Collection Collection is the first step to mine web usage data. The authenticity, in-

tegrity and quality of data collected affects the following steps tremendously, which

makes this a critical base step in web usage mining studies. Data collection method

must be scientific and organized and the type/content of data collected must be

sufficient and suitable for the requirements of the scope and interest of the study.

Various sources of data collection were mentioned in the previous section in detail.

Preprocessing Since real world data that is directly extracted often tends to be incom-

plete or tends to include aggregate information, noisy data or inconsistencies; a

pre-treatment for increasing quality of input data by either unifying, integrating, or

transforming information at hand to a more consistent state is usually necessary for

healthier further discovery processes (Salleb and Vrain, 2000) (Agarwal and Psaila,

1995). Data cleaning includes routines for filling in missing values, smoothing

noisy data, identification of outlier values, or reducing inconsistencies within data

at hand. Integration of multiple data sources process is required to form a coherent

data store by using correlation analysis, data conflict detection, and the resolution

of semantic heterogeneity contribute towards smooth data integration. Data trans-

formation processes such as normalization or aggregation, is often used to convert

29

data into appropriate forms for following data mining processes. Data reduction and

data summarization techniques such as data cube aggregation, reducing dimensions

within data, data compression, numerosity reduction, and hiding sensitive informa-

tion within data (discretization) can be used to reduce the size of the representation

of the data, with the aim of minimizing the loss of information in mind. For sum-

marization, techniques such as histogram analysis, binning and clustering can be

used for obtaining a summarized version of the data at hand. Other examples for

steps of data preprocessing phase of web usage mining can be given as :

1. user identification

2. session identification

3. user path discovery

Pattern Discovery Pattern discovery is the generalised name for describing the overall

process of actual data mining phase that is applied on preprocessed data. These

could be briefly listed as choosing an appropriate data mining task, designing, im-

plementing and applying an algorithm in accordance with the task at hand. Differ-

ent mining approaches could be applied depending on the data at hand, such as path

analysis, association rule mining, sequential pattern mining, clustering and classi-

fication are used. The preference depends on the requirements of the data at hand

to determine which mining technique or techniques to make use of. After the ex-

ecution of the mining algorithms, data in web access logs can be transformed into

knowledge to uncover the potential patterns underneath the pre-processed log data

and involves analysis of these patterns. The aim of this process is to find frequent

patterns, associations, correlations or structures among sets of items. An item could

refer to a user or a page, depending on the goal and the method.

The knowledge discovery methods have been defined in a general scope in the pre-

vious sections. A brief description of pattern discovery techniques that are applied

to the scope of web usage will be discussed here.

• Classification is applied to discover various profiles of users. These profiles

could later be used for distinguishing users with different behaviors, help-

ing in predicting the most interesting pages for a single user. Classification

techniques could also be applied to classify sessions. This approach results

in classes of sessions, rather than user types. The information gained could

again be used for prediction and recommendation purposes.

30

• Clustering approach could be applied with various approaches. Pages can be

clustered, with an aim to detect pages containing similar content. Another

path to follow could be clustering usage data, focusing on defining groups of

users that have similar browsing behaviour.

• Regression methods can be applied to web usage data to focus on making

predictions of unknown values. This is done by mapping a data item into a

real-valued prediction variable.

• Association rule mining is one of the most commonly applied techniques when

mining web usage data. It could be used to discover unknown relations be-

tween web pages, which could be used to predict or recommend the most

interesting next page (or group of pages). Association rules in web usage

mining will be examined in detail in section 2.7.1.

• Sequential pattern mining approaches can be applied to identify relationships

between occurrences of sequential events. This is beneficial when predicting

subsequent visits or page views.

2.7.1. Association Rules in Web Usage Mining

Generation of association rules can be examined as two separate steps. During

the first phase, all the frequent itemsets are discovered. During the second phase,

constraints such as minimum confidence are applied on the discovered frequent

itemsets to obtain rules. The relationship between two items could be formally

represented as a rule:

X => Y

Assuming X and Y are pages in a website, this association rule suggests that a

strong relationship exists between pages X and Y, meaning many visitors of page

X also visit page Y. How strong a rule applies to a dataset can be determined by

calculating it’s support and confidence values. Support (σ) value represents how

often a rule applies within a given data set. Confidence determines how frequently

items in Y appear in transactions that contain X.

31

While the second step of association rule mining is fairly straightforward, the first

step is complex and therefore requires detailed attention. Various approaches for

finding frequent itemsets in a database are examined in section 2.6.

2.7.2. Sources of Data for Web Usage Mining

Web Usage Mining Data can be collected at the server side, client side, from the

proxy server or the organization’s own logs stored within a database structure. The type

of information collected and stored as web data, the level of the collected data and the

method of implementation to collect the data is all dependant on the choice of the source

type. The decision of which source is going to be used is effected by the mining task at

hand and the scope of the application.

• Server Level Data: Since web server logs explicitly record the browsing behaviour

of a site’s visitor traffic, it is considered an important source for web usage mining

data.This type of web site traffic data, which is recorded by server logs is not com-

pletely reliable hence the caching mechanisms within different levels of the world

wide web environment. Cached accesses and packages that are passed using the

POST method are not logged in server level logs. There are various formats that

the data can be stored in such as Common Log and Extended log formats. Server

level web usage data can be collected using numerous methods. One of these meth-

ods, packet sniffing, is applied by extracting data directly from incoming TCP/IP

packets. Another approach is to use cookies and tokens that are generated by web

server for individual client browsers for the purpose of tracking site visitors. Since

cookies depend on the cooperation of users and raise concerns regarding privacy

issues and the HTTP protocol has a stateless connection model; it is difficult to

track individual users reliably using this method. An example for a web server log

is given in Listing 2.1.

199.72.81.55 - - [01/Jul/1995:00:00:01 -0400]

"GET /history/apollo/HTTP/1.0" 200 6245

Listing 2.1 A web server log

32

For given example, 199.72.81.55 is the host of the request. A hostname is used

when possible, otherwise this section contains an internet address. The section con-

taining [01/Jul/1995 :00:00:01 -0400] is called the timestamp, in this example it is

formatted as " DAY /MON/YYYY:HH:MM:SS". For above example the timezone

setting is -0400. The phrase "GET /history/apollo/HTTP/1.0" denotes the actual

request, given in quotes. 200 is the HTTP reply code for this request, and 6245 is

the number of bytes contained within the reply message.

Client Level Data: Client side data can be collected by using remote agents, or

by using a browser that has enhanced data collection capabilities. Both methods

require user cooperation, either by enabling Javascripts or Java applets to work, or

by using the modified browsers. With client level data collection, it is possible to

identify sessions and it is possible to go-around the side effects of caching that result

in difficulties when collecting web site access information. However, this approach

is no better than server log collection when it comes to determination of how many

times a page has been viewed. It may even introduce some extra overhead such

as when the Java applet is launched or loaded for the very first time. On contrast,

data collection using Javascripts consumes less time but this approach is not able to

capture all user clicks. Especially reload or back buttons are missed in most cases.

Methods mentioned above are most capable when it comes to capturing single-user,

single-site browsing behaviours. For single user over multiple web-site behaviour

capturing, using a modified browser is a much more versatile approach in most

cases. The biggest cost of this approach is, as mentioned above, convincing users

to accept the terms and to use this browser for their daily web browsing activities.

There has been some approaches that look for ways to encourage the users to use

the browser. For example, several companies have introduced reward systems to

users for clicking on advertisements while browsing (Alladvantage)(Netzero).

• Proxy Level Data: Web proxy is an intermediate caching layer between client

browser and web server layers. It is possibe to use proxy caching to decrease load

time experienced by users of a web page or to decrease the traffic load at server and

client sides. Efficiency of a proxy cache structure highly depends on how well the

design predicts future page requests (Cohen et al., 1998). Proxy level data is able

to capture real http requests for multiple clients for multiple web servers, which

makes it a suitable resource when the scope of a study requires analysis of multiple,

anonymous users that share a common proxy server.

The importance of analyzing web usage data to enhance websites increases as the popu-

33

larity of the web grows. Many studies propose using data mining methodologies in order

to discover frequent patterns. Fp-growth based approaches are particularly suitable for the

task. This is caused by the divide and conquer based nature of the algorithm. Fp-growth

also eliminates the cost of candidate management and performs only two db scans, and

utilizes a compact data structure; making the algorithm suitable for the task of mining

frequent patterns in web usage data. The following chapter discusses applications of fre-

quent pattern mining to the domain of web usage data.

34

CHAPTER 3

RELATED WORK

With the increasing popularity in internet usage, a huge amount of website traffic

data is stored on servers each second. In a network that consists millions of participants,

traffic data generation can result up to gigabytes of logs per second. The increase in

the amount of information and the volume of visitors results in an opportunity for an-

alyzing these traffic data to extract informing patterns for providers to store and serve

data more efficiently to users. A common approach to analyzing this log data is by ap-

plying data mining techniques which is called web usage mining. Discovering frequent

patterns is the key step of web usage mining. This is performed by applying frequent

pattern mining algorithms on the web log files. Frequent pattern mining can be used

to discover various different interesting information regarding a website usage such as

most visited page groups, most popular traversal paths among users, different user groups

based on behaviour or any other variant. Discovering most frequent traversal paths or

node groups within these paths allows website design to be enhanced accordingly, result-

ing in higher quality in website structure, better utilization of resources thus dropping

maintaining costs, better user engagement and so on.

In this section, various algorithmic approaches to the problem of applying fre-

quent pattern mining methods to the domain of mining web usage data will be examined.

Since Fp-growth algorithm is suitable for mining longer patterns (web traversal paths),

performs only two db-scans, eliminates the costly phases of generating and handling can-

didate sets, and uses a compact data structure, it is highly suitable for the task. The initial

approaches for mining web usage logs have been implemented in a more straightforward,

serial fashion. These implementations require a single machine/single thread to execute,

thus, require more time to process as data grows. With the exponential growth in web us-

age data, faster implementations needed to be proposed in order to process higher volumes

within an acceptable execution time. Therefore, the more recent implementations divide

the problem into sub-tasks and parallelize the algorithm. The divide-and-conquer based

nature of Fp-growth algorithm again makes it a suitable approach for parallelization. Sec-

tion 3.1 describes a serial Fp-growth algorithm based approach to the task of mining web

usage data. Section 3.2 lists and describes parallel Fp-growth based algorithms in the

scope of web usage mining.

35

3.1. Serial Fp-growth based Web Usage Mining Algorithms

Although there are various implementations for mining frequent patterns using

Fp-growth algorithm, the focus on mining web usage logs using this method was first

proposed in 2010. The study implemented both Apriori and Fp-growth algorithm in a

serial manner, executed the algorithms on world wide web usage data to discover fre-

quent patterns (Kumar and K.V.Rukman, 2010). This study also compared Apriori al-

gorithm and Fp-growth. Following this approach, a study proposed including the use of

"utility value" to the popular approach of using support value. By using both of these

concepts, the authors aimed to find not only frequent patterns, but also how important a

certain page was for a user (Poovammal and Cigith, 2011). Various other studies imple-

mented and compared Apriori and Fp-Growth algorithms in the following years (Kumar

and K.V.Rukmani, 2010), (R.Kousalya et al., 2013), (Singh et al., 2014), (Shaikh, 2015).

In 2015, a comparison between divisive Apriori and Fp-growth approaches in the domain

of web usage mining was studied (Sharma et al., 2015). Within following year, Fp-growth

algorithm was used specifically for improving user navigation patterns (Kaliyaperumal

and Dorairangaswamy, 2016).

SPFP-Tree Algorithm A novel method called the single pass frequent pattern tree

(SPFP-tree) was proposed in 2016. This method proposed generating the Fp-tree with

performing only one db scan in an incremental approach. Following the construction, the

algorithm changes the tree structure dynamically for creating and rearranging a compact

tree structure that is ordered by frequencies. This is achieved by ordering items by their

frequencies in a descending way from root to leaves. The ordering is performed repeatedly

immeadiately after including a new transaction (Shahbazi et al., 2016).

3.2. Parallel Fp-growth based Web Usage Mining Algorithms

The most primitive studies that parallelize FPM algorithms performed by dis-

tributing the work among threads that use a shared memory. Because of the huge volume

of web usage data, the limitation of single-machine methods motivated researchers to

introduce parallelization to the process of mining web usage data. Shortly, as implemen-

tations evolved, parallelization logic moved from a more thread-based, single machine

logic to parallelizing the task to be executed on a cluster of computers. A thread based

parallelization approach using a tree structure mine the frequent patterns was proposed

36

in 2006 (Chen et al., 2006). In this study, the authors partition a single Fp-Tree into sec-

tions. Each section is then handled independently by parallel threads. Additionally, a

heuristic method to be used for adjusting the workload among threads was introduced.

The solution is executed on various datasets including kosarak, a dataset that contains

990 000 instances of click-streams that occurred in a news portal. Although the algorithm

performed well on other non web-based datasets, it did not perform well in the tree gen-

eration phase. The authors discuss that this is caused by the nature of the dataset, that the

logs contain too many short transactions (most of the transactions consist a small number

of itemsets).

Figure 3.1 Sessionization phase of MIP-PFP

(Source: Sisodia et al., 2016)

MIP-PFP Algorithm This study introduced the concept of "interestingness" in order to

improve the PFP algorithm. The algorithm was named "most interesting pattern-based

parallel FP-growth" or "MIP-PFP" algorithm (Sisodia et al., 2016). The algorithm pro-

cesses web server log data and introduces a novel concept called most interesting pattern

sets. The most interesting pattern sets, also called "MIPS", are determined by investigat-

ing the percentage of users that have accessed each page. This is performed by counting

the page hits for every individual page from every session. The authors proposed im-

plementing the counting operation with a MapReduce based approach. For the task of

detecting frequent patterns, the implementation used the Apache Spark framework. The

discovered patterns are then used for predicting web user navigation behaviours.

37

Figure 3.2 Deducting MIPS elements from transactions

(Source: Sisodia et al., 2016)

MIP-PFP is divided into three phases: preprocessing phase, the mining phase of frequent

patterns on sequential data, and the cleansing phase that removes unnecessary sequences.

Within the pre-processing phase, raw weblogs are cleansed from faulty transactions and

irrelevant pages or attributes. This phase also contains sessionizing the requests in a 1-

hour timeout based manner. The authors state four rules as principles for sessionizing

requests. All of the following properties must be satisfied in order to locate two separate

records in the same session: (1) both records have the same IP, (2) records have a link

between them, (3) the visits all occur within a given time threshold 1 (threshold 1), (4)

a predefined session duration is not surpassed 2 (threshold 2). Figure 3.1 describes the

application of sessionization phase on an example transaction database by using map-

reduce phases.

The key novelty that this study introduces is the concept of most interesting page

sets (MIPS). These page sets are used for including an interestingness measure to the

pages under consideration. Within the study, authors specified this threshold as 50%. By

making use of a map-reduce based model, URLs from all sessions are counted in order to

discover MIPS. After preprocessing the data at hand, MIPS are generated, as explained

above. The MIPS elements are then used for forming the sequence data in such a way that

transactions only contain pages that are included in MIPS. All other pages (non-MIPS)

are removed from all transactions. An example for the generation phase can be seen in

Figure 3.2. Within the example, pages p6 and p7 remain below the support threshold,

therefore are not included as MIPS items.

38

After discovering the MIPS items, this information is applied on transactions at

hand in order to remove all non-MIPS items from sessions. This phase in MIP-PFP algo-

rithm reduces both storage and execution time requirement. The MIP process is shown as

the initial step within Figure 3.3.

Figure 3.3 Removal of non-MIPS and 1-item elements

(Source: Sisodia et al., 2016)

During the following phase, the sequences that have 1 element are cleansed from the set

as they do not contain any patterns to serve the authors’ needs for finding frequent, in-

teresting patterns. The remaining patterns are called the most interesting pattern (MIP).

This process can be observed within Figure 3.3 as the second step. Experiments were per-

formed on "National Aeronautics and Space Administration" (NASA) weblog datasets.

Two weblog files "NASA_Access_Log_Jul95" and "NASA_access_log_Aug95", con-

taining months of clickstream data were used in this study. General statistics of the dataset

can be seen in Table 3.1.

Table 3.1 Statistical details of NASA dataset logs

(Source: Sisodia et al., 2016)

Further statistical information regarding the dataset after cleaning and preprocess-

ing phases can be seen as in Table 3.2. While evaluating the approach, authors conclude

39

that as the minimmum support value for interestingness increases, the number MIPS de-

creases; therefore it is given as 0.01 to obtain a large number of MIPS items within this

study. Similarly, as the support threshold for MIP increases, the number of frequent se-

quence patterns decreases. The authors kept this minimum support to 0.001 in order to

obtain a significant number of frequent patterns.

Table 3.2 Statistical information computed of NASA dataset logs after preprocession

(Source: Sisodia et al., 2016)

The authors also conducted experiments by modifying with the partition number for

SparkTM (between 1 to 8 partitions). The authors observed that for the standalone applica-

tion, SparkTM performed best when given two partitions. The results from the experiments

suggested that MIP-PFP algorithm that used Apache SparkTM framework was able to run

10 times faster than PFP algorithm using Hadoop.

S-FPG Algorithm In 2017, a spark-based parallel implementation of Fp-growth

algorithm was proposed in 2017(Gassama et al., 2017). The authors performed an anal-

ysis on datasets "bms-webview1" and "bms-webview2" that contained months of usage

data of an e-commerce website.

Algorithm 1: Counting items

Input : the input file : f and min_sup : d

Output: F1, frequencies of items

1 for each transaction line in T do

2 for each item I in transaction do

3 mapItem(I => (I,1))

4 end

5 end

6 T = flatmap(line => f.getTransaction())

7 F1 = reduceByKey(_+_).filter(item with frequency above d)

40

The authors argue that MapReduce based applications have high I/O costs, since

MapReduce is a disk-based mode. They conclude that a MapReduce based model is not

suited for Fp-growth based approaches for mining frequent itemsets which rely on inten-

sive iterated computation. Instead, they propose using SparkTM framework for the task,

which is much more suitable for iterative computation since SparkTM is able to execute

iterative tasks on the memory much faster. The authors state that SparkTM’s in-memory

primitives improve performance to 10 times faster for frequent itemset mining (Sisodia

et al., 2016). The S-FPG process is shown in detail within Algorithm 1. The output of

this part of the algorithm, F1, holds the information of frequencies of items and is to be

used for generating the header table. Following this step, the Fp-Tree is built as described

in Algorithm 2.

Algorithm 2: S-FPG Algorithm

Input : transaction list T, F1 from first step

Output: Fp-Tree

1 create root with label "null"

2 for each transaction line in T do

3 sortItems(items in transaction, F1)

4 addItems(sorted items, tree)

5 end

6 fpGrowth(tree)

Algorithm 3: addItems(sorted list,tree)

Input : sorted list,tree

1 if root has the head of the item as a child N then

2 increment count of the child N

3 else

4 create new node N with count = 1

5 link N to root

6 link to other nodes with same item

7 end

8 if head is not null then

9 addItems(currentList,node N)

10 end

41

During the second step, tree structure is initialized by creating the root as null. Following

initialization, frequent items in each transaction line are ordered according to the fre-

quency list, F1 which was found in the initial step. Following the sorting step, the sorted

list is added to the tree, with the order preserved. A detailed pseudocode of this step can

be seen in Algorithm 3. Note that the node-link structure from header table to between

instances of the same item is preserved while creating and inserting nodes.

Algorithm 4: fpGrowth()

Input : tree

1 if there exists only one path P in tree then

2 generate all possible subpaths of P

3 else

4 for each item i in header table do

5 generate the conditional pattern base pbi for i generate the conditional tree

ti for pbi

6 if ti is not empty then

7 fpGrowth(Tree-i)

8 end

9 end

10 end

Finally, fpGrowth() method is called for the tree structure at hand, which is ex-

plained in Algorithm 4. The combinations of subpaths are considered within this step.

Each subpath represents a frequent itemset, with support value equal to the support of the

least frequent node in the subpath. This logic sets basis for the parallelization of the algo-

rithm, since conditional pattern bases can be handled independently. Experiment results

have shown that the S-FPG performs about 15 times faster than PFP for bms-webview1

and 10 times faster than PFP for bms-webview2. The experiments also showed that the

implementation scales well and efficiently processes large datasets, compared to PFP al-

gorithm, as seen in Figure 3.4. Frequent pattern discovery is the most significant and

time consuming phase of web usage mining. The explosive growth in website traffics and

usage data has forced the studies to work on scalable methods for mining this usage data.

Fp-growth approach is suitable for the task because of the structure’s compact nature and

its convenience for parallelization. SparkTM Framework offers in-memory calculations

of parallelized tasks on clusters, which as a results makes it a suitable Framework for

42

the task. Although there already are many implementations using Fp-growth based par-

allelization with Spark framework on various collections of web usage logs, and other

types of data, the nature of the test data itself has not been inspected in accordance to the

success of the implementations.

Figure 3.4 Scalability of S-FPG compared to PFP

(Source: Gassama et al., 2017)

43

CHAPTER 4

PARALLEL FP-GROWTH IMPLEMENTATION FOR WEB

USAGE MINING

Even though there already are implementations of parallel Fp-growth using Spark

framework on web usage logs and other types of data, the nature of the test data itself has

not been inspected in accordance to the success of the implementations. This analysis is

needed for comparing algorithms and applications in a reliable way. Since the nature of a

website highly effects both the design goals and the statistical structure of the generated

log files. For example, the logs collected from a website with a more content based nature

that focuses on capturing user attraction for a long duration would be different in nature

than the logs of a more transaction oriented website that focuses on selling a single item,

or an online university platform that enables users to complete operations as quick as

possible, etc. For this purpose, we have implemented parallel Fp-growth using Apache

SparkTM for web usage mining on web usage logs with different characteristics. To be

able to compare performance, we have used five different web usage logs as datasets.

One of the datasets is taken from a real website server while the other four are generated

in order to represent usage logs of different types of websites.

Section 4.1 describes the Fp-growth algorithm in detail. Section 4.2 describes the

application of Fp-growth algorithm in parallel manner using Apache Spark framework

and discusses the phases in detail.

4.1. FP-Growth

A naive solution to the problem of finding frequent itemsets is generating all of

the possible itemsets (candidates) and then decide on their usability by counting their

occurrence. This approach is called the Apriori algorithm (Agrawal and Srikant, 1994).

Solutions based on this approach are not easily scalable since the task at hand quickly

becomes a combinatorial explosion problem because of the huge volume of input data.

Another classic approach for finding frequent itemsets is the Fp-growth algorithm. Fp-

growth executes without generating and then testing all candidates (Han et al., 2000).

The algorithm models the input data as a set of transactions, each of them con-

44

taining a set of items. It then performs two DB-scans, one for calculating support values,

filtering the infrequent items, collecting and sorting the sets of frequent items, and second

for generating the respective suffix trees within the Fp-tree. The tree structure is a com-

pact representation of frequent items and their respective support values. Nodes of the

same item (request) that exists in multiple branches within the tree are linked to eachother

using a map structure. This representation prevents any additional db scans to calculate

support values and eliminates the need to generate candidate sets as in (Agrawal et al.,

1996). Common prefixes between itemsets are stored within the same path in the Fp-tree

by increasing the support values of common nodes. The compact design for managing

nodes and supports, and the fact that only the frequent patterns that appear in a designated

(minimum support) proportion of all transactions are inserted into the tree structure, re-

sults in a compressed and efficient representation of the data at hand, reducing memory

consumption. Within the following step of the algorithm, this generated structure is used

to extract the frequent itemsets from suffix trees.

Preprocessing The datasets we have used each contain server level request logs

of a website that represents a certain business model. Within our application domain,

each transaction represents a single user session. Each item within a transaction itemset

is a request for a source from the user, which represents an operation that the user has

performed within that session. During the data cleaning, we have pruned requests that

received an error as response, as identifying the underlying reasons of faulty requests was

out of the scope of our study. While identifying sessions, we made an assumption that

a user session would exist within a thirty minute time span, is not interrupted between

log files, and categorized requests that were sent from the same IP address within that

duration as the same session. Since we have collected server level data, we considered

requests from the same IP address within a session time span are from a single user.

Counting and ordering The data is modeled as sets of items for each transaction.

A representation of this model is shown in Figure 4.1. Here, the ID column corresponds to

a single session and the Items column corresponds to a series of web requests sent within

that transaction. Within the initial state, the items in each transaction are not ordered

in a meaningful way for our context. To be able to generate an Fp-tree efficiently, the

items are first ordered by their frequencies. This is achieved by performing a db scan to

count frequencies of items. Counting phase also enables the detection of infrequent items.

Following the counting phase, each transaction is handled so that the items are ordered

in a descending fashion. The phase finishes after all transactions ordered in itself. An

example of this phase can be seen in Figure 4.1.

45

Figure 4.1 A sample db ordering process

Tree generation Following the counting and ordering, the tree generation phase occurs.

The generated tree structure for the sample db can be seen in Figure 4.2. Within this

phase, the tree is initialized by creating a root and labeling it as null. The root is generally

represented by {} Then each transaction is again handled one by one and added into the

tree. For the first transaction, first item is added as a child of the root node. Second item

is added as a child of the first item, third item is added as a child of the second item, and

so on, until every item within the transaction is added into the branch. In order to track

the support counts and nodes in the tree efficiently, a header table is generated. This table

contains links to the items within the tree structure, making finding and tracking counts

of items much more efficient. In case of an intersection between transactions, a new node

is not added, instead the count value for corresponding node is updated. Note that this

intersection has to start from the first element of both transactions. As opposed to this,

the intersection may end anytime, causing the branch to split into different sub-branches.

An example of this is the node labeled "u2:7" and "u1:4" in Figure 4.2. Since item "u2"

can be found as the first item in 7 different transactions, every one of them uses the same

node to be represented. However, since second items differ, the tree is split into three

sub-branches after "u2". The same structure repeats after node "u1:4". This approach

provides a compression of the data at hand, and hugely benefits the fact that the data at

hand is ordered. After every transaction is included within the tree structure, ideally it is

expected to compress data so that tree is smaller in size than the initial db structure.

46

Figure 4.2 Fp-tree structure for sample db

Mining After preprocessing the data and generating the tree structure, the mining

phase begins. This time, the tree is handled starting from the leaves, the most infrequent

items. After an item is selected, conditional pattern base and conditional sub-trees for

that particular item is generated. This is done by tracking every path that ends with that

particular item. Tracking every instance within the tree makes use of the header table. The

count of the leaf or leaves containing current item is equal to the support of that particular

conditional Fp-tree. Using this structure, the conditional pattern base is extracted. The

conditional Fp-trees are then used for generating frequent patterns. Further mining phase

examples are listed under Figure 4.3 for the sample db.

The conditional pattern base for "u5" from the sample db is :

u5 : {{u2, u1, u3 : 1}, {u2, u1 : 1}}
The conditional Fp-Tree is :

u5 : {u2 : 2}, {u1 : 2}

Frequent patterns for "u5" from sample db are:

u5 : {u2, u1, u5 : 2}, {u1, u5 : 2}, {u2, u5 : 2}

There are several bottlenecks of implementing the Fp-growth algorithm in a serial

manner: 1. Storage For the cases where the size of the Fp-tree is too big to fit in memory

or the disk, the need to divide the db at hand into partitions to represent the complete

one arises. 2. Computation distribution Since Fp-growth is an algorithm suitable for

47

parallelization, implementing the algorithm serially does not utilize it’s advantages com-

pletely. 3. Costly communication Older implementations based on the idea of dividing

the database by sequentially dividing the transactions has a high risk of seperate Fp-trees

to depend on eachother. This results in the need of passing messages between threads and

causes a high source consumption. High dependency between parallel threads of execu-

tion might cause an increase in execution time. 4. Low support value Setting the support

threshold with a very small value to obtain longer sets of items may consume an unac-

captable computational time, or the Fp-tree could overflow the storage. 5. Complex error

recovery is hard to implement and consumes valuable sources.

Table 4.1 Conditional Fp-trees for sample db

Although Apriori algorithm is also parallelizable (Li et al., 2012); considering the per-

formance reasons and our need for applying the solution to large-scale web usage data,

we have decided that a parallel implementation of the Fp-growth algorithm that uses map

reduce jobs would better suit the needs of the current mining task at hand (Wang et al.,

2008).

4.2. Parallel FP Growth Using Apache Spark

Since mining large web usage files requires a scalable and efficient approach,

we have implemented the Fp-growth algorithm in a parallel manner, using the Apache

SparkTM framework for the task. SparkTM (Zaharia et al., 2010) is an in-memory, iterative

computing model and framework that was developed by the AMPLab of UC Berkeley.

For managing clusters, SparkTM uses a cluster manager and is able to support Spark stan-

dalone, Hadoop and Apache Mesos. For managing the storage, SparkTM is able to support

Hadoop’s Distributed File System, Cassandra and Amazon S3 (Shi et al., 2017). Since

48

SparkTM allows loading data into memory by using "resilient distributed datasets", also

referred to as RDDs, it is also suitable for executing iterative implementations. RDDs also

provide a rebuild mechanism in case a partition is lost, increasing reliability of the system.

SparkTM is suited for implementing data analysis, data mining and machine learning algo-

rithms and aims to improve scalability by making use of RDDS, clusters and distributed

machines. RDD architecture represents the dataset by splitting it into immutable parti-

tions and storing them in memory on worker nodes of the cluster. Additionally, instead of

writing intermediate results on HDFS, these results are kept in-memory.

Figure 4.3 Spark architecture

This approach eliminates repeated access to the HDFS, reducing the I/O costs

greatly and provides performance enhancements especially for iterative or interactive op-

erations by allowing in-memory data sharing between multiple jobs. The partitions can

be operated in a parallel manner. For certain applications, Spark’s in-memory primitives

provide performance up to 10 times faster in comparison to Hadoop’s MapReduce which

operates on disk space (Shi et al., 2017).

The general characteristics of Spark Architecture is as follows: Each Spark cluster

has a Master and any number of Slave nodes. The master node of the Spark Application

is called the Spark Driver. The driver contains a JVM which has Spark Context, which is

used to contact with cluster manager or worker nodes directly. After the user code submits

a job, the driver initiates the main function, schedules tasks and tracks the operations by

using the directed acyclic graph (DAG) structure. An execution plan is generated at this

stage. After planning the execution, driver than connects to the cluster manager to obtain

49

resources. The cluster manager arranges the worker nodes (also called Spark Executors)

and receives tasks from the driver to distibute among workers.

Figure 4.4 Parallel Fp-growth phases

(Source: Wang et al., 2008)

For our study, we have used the standalone version instead of managing a cluster.

The driver is informed about the state of each executor and tracks the overall state at all

times. Each worker node has a general executor java virtual machine, which is the core

that executes specific tasks such as mapping or reducing based on the workflow’s need.

This structure can be seen in Figure 4.3. For our execution, we have used the standalone

mode, using a single machine as a Worker, which contained multiple executors. The

parallelized tasks such as counting items, MapReduce operations for various paralell Fp-

growth stages such as grouping, generating group conditional transactions and finding

50

frequent itemset sub-results by generating local Fp-trees are all independently executed

by worker nodes.

A- Preparation

B- Applying parallel Fp-growth

C- Aggregating results

Finally, for fault tolerance, Spark provides tracking of individual nodes and transforma-

tion operations by using an RDD lineage graph. This graph helps for tracking failed

nodes and recalculating necessary partitions when needed so that reliable results can be

achieved. Steps of parallel fp growth implementation can be examined under three main

phases for simplification. The phases are marked within Figure 4.4:

4.2.1. Preparation

Preparation phase consists of three main jobs: partitioning, parallel counting and

ordering, and grouping the database at hand.

Partitioning: This is also called "sharding" the database. Within this step the

transactional data is partitioned into independent shards. These shards are then distributed

amongst different computers.

Parallel Counting: Within this step the support value of each item within parti-

tioned transactions are counted in parallel(for each shard), by using a mapReduce pass.

Within this step both a vocabulary of items(I) and their frequencies are discovered. The

result is stored within the F-list. These count values are to be used for sorting the elements

in itemsets in descending order. The time complexity is O(|I|).

Grouping: All items are divided into seperate groups. These groups are referred

to as the G-List. In order to manage seperate and parallel execution of the shards, each

item in the G-list has a unique group id (gid). The time complexity of grouping can be

expressed as O(|I|).

4.2.2. Parallel Fp-growth

The key step of parallel Fp-growth algorithm. Another mapReduce is executed

within this step. The pseudocode of the phase can be seen in Figure 4.5. This phase is

51

where Fp-growth algorithm is applied to the groups (G-List) at hand. The algorithm has

two procedures; a Mapper() and a Reducer(). The output of this phase is the generated

conditional local Fp-trees.

Figure 4.5 Parallel Fp-growth algorithm

(Source: Wang et al., 2008)

Mapper: A shard of db is given to each mapper. The mapper also accesses the

G-List, and processes the transactions in the shard one by one. During this phase, items

are marked according to their gid’s. Following this "marking" step, the algorithm handles

transactions from each group’s perspective, and items that do not belong to the group

under examination are removed. This step is repeated for each group and each transaction

that contains items from that group, causing transactions to dissect into group dependent

transactions that are parallelizable without any information loss. After handling every

transaction, the mapper phase finishes by returning (key,value) pairs. In these pairs, the

key is the group-id and the value is the group-dependent transaction that was generated.

The mapper then outputs key-value pairs such that each key is a gid (group id) and each

value is its respective group dependent transaction that is generated within the mapping

phase.

52

Reducer: After the mapper instance finishes, mapReduce performs a grouping on

all of the transactions to contain them in a shard. Following the generation, these shards

are handled one by one, and a local Fp-tree is grown for each. Afterwards, these local

trees are handled individually and conditional sub-trees of each are generated recursively.

4.2.3. Aggregation

This is the final phase where the output of parallel Fp-growth reducer phase is

combined to get the final result set. This phase consists of only one step, Aggregating.

The pseudocode of the aggregation algorithm can be seen in in Figure 4.6.

Aggregating: The discovered patterns are aggregated to display a final result.

This is achieved by executing another MapReduce pass. Aggregation receives the result

of the Fp-growth phase as input. The algorithm stores the support values as data pairs

in the Map. A data pair contains a key and the corresponding total support value of a

particular item. After obtaining all data pairs the reducer selects the patterns with highest

support values and returns. The final output of the aggregation phase is the top K patterns

according to their support values for each item, which are the final list of frequent itemsets.

Figure 4.6 Aggregation

(Source: Wang et al., 2008)

The main space consumption of aggregation is caused by managing the heap structure,

which is bound by K, resulting in a complexity of O(K). With |I| being number of items,

53

K size of max heap and P number of machines that the load will be distributed amongst,

is O(|I|*Max(NumOfItemRelatedPatterns)*log(K)/P) denotes the time complexity.

In order to observe how the algorithm performs in accordance with various char-

acteristics of data, the parallel Fp-growth algorithm is applied on five different datasets: a

dataset taken from a busy web server, a content based website, a transaction based web-

site, a social media website and a product website. Each of the datasets has different

characteristics that represent a different business model. The following chapter discusses

the experiment results in detail.

54

CHAPTER 5

EMPRICAL STUDY

Five different datasets were used for experiments. One of the datasets was taken

from an actual server, the other four were generated to represent different business models.

Different types of websites were represented by synthetic datasets were modeled by using

various number of transactions, length of transactions, correlation between patterns and

number of individual items. The models represented are: a content based website, a

transaction based website, a social media website and a product website. Parallel Fp-

growth algorithm was executed to observe how well the algorithm scaled for each model

with changes in file size, minimum support threshold value and number of transactions.

Experiments were repeated using different numbers of executors to observe parallelization

performance.

Within this chapter, the first section describes our simulation environment. Section

5.2 describes the datasets at hand. Experiments are given for Nasa weblogs and synthetic

weblogs under section 5.3. Finally, the experiment results are discussed under section 5.4.

5.1. Simulation Environment

During knowledge discovery phase, we executed the Fp-growth algorithm in two

versions: one to be executed serially, the second to be executed in a parallel manner. In

order to compare performances, we have applied both approaches using various file sizes

between 25MB and 2GB and various minimum supports for performance comparison.

The experiments were conducted on a machine with 16GB of RAM, Intel(R) Core(TM)

i5-6500 CPU @ 3.2GHz processor with 4 cores and 6 MB SmartCache, running on a

64-bit operating system. Because of our hardware constraints, we were able to test the

parallel execution up to 4 nodes, but the implementation can easily be executed with more

nodes by providing a larger cluster. Since FP growth has the largest constraint regarding

memory because of the in-memory FP-Tree, each node had a memory of 2GB. For larger

file sizes, scaling up would possibly be needed.

55

5.2. Datasets

Two kinds of datasets are used for experimentation. NASA weblogs, taken from

a real web server, and synthetic datasets, generated with IBM’s synthetic data generator,

provided by QUEST big data research group (IBM QUEST, 1996). We have applied mi-

nor modifications to the generator in order to be able to execute it on a more recent version

of a development environment, and to better fit our parser’s needs. Since a single dataset

is unable to represent various scenarios that we aim to inspect, we have used IBM’s data

generator to include different business models in our study. Another reason that required

generation of synthetic datasets is that real data is hard to obtain by nature. There are var-

ious causes for not being able to capture usage logs completely: Browsers generally offer

mechanisms that cache last visited pages. These mechanisms might prevent capturing

some of the browsing behaviour. This case also occurs when users hit backspace to return

to the previously viewed page. Another scenario that prevents capturing real browsing

behaviour is shared computers. For these machines it is not possible to discriminate in-

dividual users unless a logging mechanism is introduced. Although logging mechanisms

are able to capture realistic data, they cause user to enter information and log in every

visit, which might effect user behaviour or prevent visits or logging in altogether because

of the time consumption factor. Another factor causing distortion in real data is users

that regularly switch machines or use multiple at the same time. Since there is no other

mechanism to prevent this other than logging in scenario, it is highly possible that same

consequences will apply here as well. The other factor preventing to capture realistic web

traverse data even when using real server logs is that user might get distracted for a time

and considered a new session altogether during the same visit. The length of this time

frame is an approximation and up to the data analyst, hereby effects the results. As a

solution to capture better logs, cookies or specific browsers have been proposed, but these

structures rely completely on user cooperation and raise privacy concerns.

5.2.1. NASA Weblogs

We acquired web server logs from a busy log server in order to mine for informa-

tive patterns. During preprocessing, we have identified different users and urls by parsing

the server logs. After preprocessing, we sessionized the server log data with the assump-

tion that a single session has the maximum duration of thirty minutes and categorized all

56

requests from a single IP within a this time interval as a single session. As cleaning phase,

we have considered unsuccessful requests with code 404, requests other than UTF-8 and

items -request urls for our domain- with very rare (less than 500) occurrence as outliers

and eliminated them from our set of items. Although they are still included for counting

page hit counts, sessions that contain only one request are not eligible for pattern dis-

covery so they are removed. Basic characteristics of the logs at hand can be examined in

Table 5.1. After grouping sessions and ordering itemsets by hit count, the number of valid

sessions for Fp-tree generation is 124,406 as seen in Table 5.1.

Table 5.1 Number of frequent itemsets for each minimum support

number of requests 1,509,890

number of requests after cleansing 1,498,369

number of distinct transactions 272,230

number of sessions 146,521

longest session length 250

valid sessions for Fp-tree generation 124,406

5.2.2. Synthetic Datasets

To be able to achieve the metrics of each business model’s requirements, we have

determined four different types of websites.

Table 5.2 Characteristics of the logs from different platforms

Type Transaction

count

Transaction

length

Correlation

between

patterns

Number of

items

Content based high/very

high

long/very

long

high (for a

given time)

high

Transaction

based

average short very high low

Social media very high long/very

long

low very high

Product website low very short very high very low

57

As seen in Table 5.2, environments that we intend to inspect are: (1) Content based

website: In this structure content is produced by professionals. The main objective is to

capture attention of as many users as possible for as long as possible. The contents tend

to be long, such as long texts or videos. Page hits are expected to be high in an ideal

case, and the itemsets tend to be longer since capturing user attention is wanted. News

websites, online publishing platforms, entertainment websites could be listed under this

type. (2) Transaction based website: These platforms are designed for specific processes,

such as an online system to manage accounts or a university website designed to manage

lecture enrollments etc. Other examples could be library, hotel or sports club websites.

In these websites the objective is highly defined and limited, which makes them simpler

in structure in most cases. Page hits may vary from average to high and peaks might

occur in visits depending on the domain. Ideally, itemsets tend to be shorter since the

goal is to help user reach and complete actions as quick and easily as possible. Number

of individual items may vary, again depending on the domain. (3) Social media : These

are platforms where users are able to produce and share content quickly.

Table 5.3 Characteristics of synthetic web usage logs

Type Transaction

length (10)

Correlation

between

patterns

(0.25)

Number

of items

(100.000)

Content based 50 0.35 250

Transaction based 8 0.5 50

Social media 25 0.1 500

Product website 3 0.5 10

The main goal is to encourage users to produce content as frequent as possible and to

capture user attention as much as possible in order to get high page hits. In these websites

the number of items (pages) tend to be higher since content is produced very frequently

by users. The website is designed for attracting user attention so itemsets are usually

longer. (4) Advertisement/Product website : A small and focused platform, the goal is to

direct users to a single sales or information page. The number of items (pages) can be

very low in order to direct user attention to the designated product page. Because of the

focused structure, very high similarity between different visits and shorter transactions are

expected. Similar to transaction based websites, the goal is to make it easy for the users

to access the relative content as quick as possible. The actual numbers that correspond to

58

representations from Table 5.2 are as shown in Table 5.3. The values were determined by

taking average values and the needs of the dataset into consideration. These values can be

seen in Table 5.3.

5.3. Experiments

Experiments were conducted on five datasets, divided into two types: Web usage

logs taken from a real server and synthetic web usage logs. The two will be examined

under separate sections, 5.3.1 and 5.3.2. For each type two different approaches have

been pursued in order to observe how the algorithm scales for NASA weblogs: First set of

experiments were done by using a constant file size and a variant minimum support value.

A change in the minimum support value directly effects the number of frequent itemsets

and the size of the Fp-tree. Thus, as the size of the tree increases an increase in execution

time is expected. Second set of experiments were performed by changing the file size

for the same value of minimum support. An increase in the file size naturally results in

a higher volume of data, similar to dropping the minimum support value. Experiments

were performed for ten different file sizes in order to observe how the algorithm scales.

Finally, all experiments were repeated for different levels of parallelization to be able to

observe the difference between parallel and serial executions.

5.3.1. NASA Weblog Results

The size of the Fp-tree is in relation with the number of the frequent items in the

database. To estimate the approximate size of the FP Tree, Table 5.4 can be examined

for numbers of frequent itemsets for each minimum support value. The height of the Fp-

tree depends on the length of the maximal frequent itemset within the database (250 in

this case). Keep in mind that with an increase in the number of common itemsets, which

completely depends on the data set instance at hand, the size of the tree would drop.

Support Impact: The difference in execution times for various minimum support

values varying between 0.01 and 0.09 have been observed as in Figure 5.1. The dramatic

increase in time consumption with lower minimum support is caused by the significant in-

crease by 28473 itemsets between 0.01 and 0.02 minimum supports. Minimum supports

that are above 0.1 decrease the number of frequent itemsets drastically, causing the re-

maining data lose its ability to represent details. In order to examine meaningful changes

59

considering time consumption, we have used minimum support values between 0.01 and

0.09 for testing.

Table 5.4 Number of frequent itemsets for each minimum support

minimum support frequent itemsets

0.01 36500

0.02 8027

0.03 3459

0.04 1552

0.05 964

0.06 777

0.07 508

0.08 283

0.09 137

0.1 114

0.2 47

0.3 33

0.4 11

0.5 2

Transaction Number Impact: A set of experiments were performed to observe

the relatioship between number of transactions and the execution time of the algorithm.

Since the characteristics of data is stable for this single dataset, effects of number of

transactions is directly in accordance with the file size. The initial log file consisted of 1,5

M lines of server logs. Following the preprocessing phase, in which error responses and

non UTF-8 formatted requests were cleansed, 1,49M lines of requests remained. These

requests were sessionized using our sessionization algorithm which took 30 minutes as a

time window for a single session. This phase resulted with 272K transactions. This base

file has been used to obtain log files that contain various numbers of transactions between

1K and 6M The file size growth in accordance to the number of transactions contained

has been observed as seen in Figure 5.2.

60

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

6

5

4

2

3

1

Minimum Support

E
x
ec

u
ti

o
n

T
im

e
(m

in
u
te

s)

Figure 5.1 Execution time with support change (0.01-0.09)

parallel execution
serial execution

1K 10K 100K 1M 1.5M 2M 3M 4M 5M 6M
0

50

100

150

200

250

300

350

400

Number of Transactions

F
il

e
S

iz
e

(M
B

)

Figure 5.2 Log file sizes for different transaction volumes

The average length of transactions contained in a sessionized NASA weblog file

is around 15. This fact causes both the growth rate of the size of the log files and the

execution times in accordance with the number of transactions to remain small. However,

61

number of unique items are high for NASA dataset. This causes the size of the Fp-tree to

grow, reducing compression, and also factoring in a minor increase in execution time of

the algorithm. The increase in execution times have been observed as close to linear, as

seen in Figure 5.3.

500K 1M 1.5M 2M 3M 4M 5M 6M 8M

10

20

30

40

50

60

70

80

90

Number of Transactions

E
x
ec

u
ti

o
n

T
im

e
(s

ec
o
n
d
s)

Figure 5.3 Execution time with transaction volume change

Serial execution
Parallel execution

File Size Impact: Experiments were conducted to observe the difference between

serial execution and different levels of parallelization for various file sizes. For these

experiments, the lowest minimum support, 0.01 has been used to obtain the largest fre-

quent item space. Time consumption has been observed as scaling slightly higher than

linear for file sizes 15 MB, 25 MB, 50 MB, 100 MB, 220 MB, 450 MB, 700 MB, 900

MB, 1GB, 1.5 GB and 2GB, as seen in Figure 5.4. The maximum improvement re-

garding time consumption is observed between serial and 4-parallel execution for 2GB

file as expected, approximately differing by 30 seconds. Note that since Fp-growth is a

memory-intensive algorithm, increasing file size too much so that memory of nodes are

not sufficient anymore would increase the performance of the algorithm, possibly causing

dramatic execution time increases caused by high I/O cost from switching to disk read

and write operations.

62

25 50 100 220 450 700 900 1024 1500 2048
0

30

60

90

120

150

180

210

240

270

300

330

File Size (MB)

E
x
ec

u
ti

o
n

T
im

e
(s

ec
o
n
d
s)

Figure 5.4 Execution time with file size change

4 executors
3 executors
2 executors

serial execution

Comparisons between parallel and serial execution time for different file sizes has

been observed as in Figure 5.5. The decrease in execution time is about 10 seconds for the

smallest file, whereas the decrease for a 2GB file is about a minute. It can be seen from

the results that as the file size grows, the enhancement in the execution time gets higher.

About %10 enhancement in time consumption has been observed for all file sizes

by using 4-Parallelization istead of serial execution. A ratio can be seen between the

enhancement in time consumption and parallelization. This ratio has been examined in

Figure 5.6. While 2-Parallelization resulted in a %1-4 reduce in time consumption for

different sized files varying between 25 MB and 2 GB, 3-parallelization has resulted in

a %5-9 reduced time consumption, and 4-parallelization resulted in an enhancement be-

tween %10-11 regarding time consumption. The results suggest that a greater improve-

ment could be achieved either by increasing the file sizes, which would result in a time

improvement with the current fixed improvement percentage, or by increasing the number

of parallel nodes, which would enhance the efficiency by a new ratio that is above %10.

63

700 MB 900 MB 1 GB 1.5 GB 2 GB

100

150

200

250

300

122

150

178

215

322

111

138

162

182

258

File size

E
x
ec

u
ti

o
n

T
im

e
(s

ec
o
n
d
s)

Figure 5.5 Execution time with file size and executor number change

Serial
4-Parallel

2-executors 3-executors 4-executors
0

50

100

150

200

250

300

350

%1 %5 %10

E
x
ec

u
ti

o
n

T
im

e
(s

ec
o
n
d
s)

Figure 5.6 Relative execution time with executor number change

Serial
Parallel

64

5.3.2. Synthetic Dataset Results

In order to observe how the nature of the data at hand effects performance and

scalability, experiments for both support and file size impact were performed for different

levels of parallelization for all four types of synthetic datasets.

Support Impact: Each web usage log was tested using various minimum support

values varying between 0.01 and 0.06. Files of size 2GB were used. All other character-

istics remained in accordance with the characteristics of the dataset.

0.01 0.02 0.03 0.04 0.05 0.06

8

7

6

5

4

2

3

1

Minimum Support

E
x
ec

u
ti

o
n

T
im

e
(m

in
u
te

s)

Figure 5.7 Execution time with support change (0.01-0.06)

Content based
Transaction based

Social media
Product website

As seen in Figure 5.7, product website has a much higher execution time, almost 4 times

of social media and transaction based websites. Content based website has scaled second

worst, following product website. Product website has a very low number of items, which

casuses intersections and results in a dramatic increase in number of frequent itemsets.

As number of frequent itemsets increase, the tree size grows and the algorithm consumes

more space and time in return. In contrast, the second type of website that consumed most

time is content based website. Unlike product website that has 10 different items, content

based website has a higher number of items, which is 250. Another major cause for the

increase in execution time for content based website is the transaction length, 50, which

is the highest among all types.

65

Transaction Number Impact: We created synthetic log files that contain different

number of transactions varying between one thousand and six million. The relationship

between number of transactions and size of log data depends very much on the length

of transactions, as observed in Figure 5.8. For content websites, which have the longest

transactions, 50 as average transaction length, the file size increases faster as the number

of transactions grows.

1K 10K 100K 1M 1.5M 2M 3M 4M 5M 6M

50
150

300

500

800

1,200

1,700

2,200

Number of Transactions

F
il

e
S

iz
e

(M
B

)

Figure 5.8 Log file sizes for different transaction volumes

Content based
Transaction based

Social media
Product website

Content based website is followed by product website, which has 30 as average transac-

tion length, and social media, which has 25 as average transaction length. Transaction

based websites have the least average transaction length, as 8, causing them to grow the

slowest as the number of transactions increase. For web usage logs that contain longer

traversal information file size grows faster as number of transactions increase since each

transaction will be containing more data. Logs of content based website grow the fastest

with the increase in number of transactions, followed by social media and product web-

sites, and lastly transaction based websites. The increase in volume directly applies to the

execution time as an additional cost. Consistent with the volumes seen in Figure 5.8, a

similar increase in execution times for the algorithm has been observed, which is shown

in Figure 5.9. Content based website logs consume the most time, followed by social

66

media and product websites, and lastly transaction based websites. There is a difference

between the execution times and volume increases of social media and product websites,

which is caused by the very low number of items, 10, for product website in contrast to

social media, which has 500 different items.

1K 10K 100K 1M 1.5M 2M 3M 4M 5M 6M

5

15

30

50

70

90

120

140

Number of Transactions

E
x
ec

u
ti

o
n

T
im

e
(s

ec
o
n
d
s)

Figure 5.9 Execution time with transaction volume change

Content based
Transaction based

Social media
Product website

File Size Impact: A second observation for scalability was made, this time taking

file sizes into account. We have created log files for all types of websites with differ-

ent sizes varying between 25 MB to 2 GB to examine how much time each type of log

consumed. As seen in Figure 5.10, product website scales the worst amongst all types,

followed by content based, transaction based and social media. Product website scales the

worst in execution time because of the fact that it has a very low number of items, causing

a peak in transactions that contain frequent itemsets, which causes the data to be handled

to grow. The second type of website that has the highest execution time is content based,

which is mostly caused by it’s huge transaction length, 50. The difference between exe-

cution times based on file size also highly depends on the differences between transaction

lengths, since log types with short transaction length require much more transactions to

satisfy the needed file size. This relationship has been explained in detail in figure 5.8.

67

25 50 100 220 450 700 900 1024 1500 2048
0

30

60

90

120

150

180

210

240

File Size (MB)

E
x
ec

u
ti

o
n

T
im

e
(s

ec
o
n
d
s)

Figure 5.10 Execution time with file size change

Content based
Transaction based

Social media
Product website

5.4. Discussion

The experiments suggest that the performance of the algorithm is highly effected

by the number of items, number of frequent items, transaction length, correlation be-

tween patterns, minimum support threshold value and file size. This can be observed in

experiments with varying minimum support values.

For the minimum support experiments, results are also highly effected from the

fact that the size of the log files are all 2 GB. With very low transaction length, number of

transactions need to be very high in order to compensate and achieve the same file size.

Traversal of all transactions and counting costs tend to increase. Branches of the tree tend

to be shorter but the number of branches might increase, depending on the number of

different items, which would increase the execution time. Similarly, an increase in min-

imum support effects social media dataset worse, since it has the lowest correlation thus

the lowest compression of the data at hand. As a result, Product website, which has very

low transaction length and number of items, results with the worst execution time. The

bigger the transaction length is, the faster the log files grow with each transaction. When

evaluating the performance of an algorithm using execution time to number of transaction

68

ratio, datasets with higher transaction length have a higher probability to execute for a

longer period of time. Since the Fp-tree depth is bound by the longest transaction at hand,

the tree size might increase as transactions get longer. The execution time also depends

on file size. Experiments suggest that the execution time is much bigger for datasets with

short transactions. More transactions are needed in order to achieve the same file size

for shorter transactions. The results of execution time with file size change experiments

support the results previously found in execution time with support change experiments.

69

CHAPTER 6

CONCLUSION

The World Wide Web is being used more than ever, causing an explosive growth

in website traffics and the amount of information consisting user activities on websites.

Moreover, the popularity of www has also caused an increased competition between web-

sites with similar content. Gaining valuable user attraction and becoming the preferred

alternative has become primary concern. For this purpose, websites are analyzed and en-

hanced continuously. Enhancements can vary between updating content to reorganizing

the structure of the website. Although the enhancement decisions can be made implicitly;

results of implicit designs are rarely optimal and the risk of losing precious user atten-

tion arises. Enhancement decisions made scientifically by evaluating how users actually

perceive and interact with the website have a far better potential to succeed. Deriving

information from actual usage data such as web server logs could be inspected in order

to propose better improvements. This could be achieved by finding frequent, informing

patterns otherwise unknown to gain insight of how the website operates in practice. The

methodology for finding frequent patterns should require as little manual interference as

possible. Since the volume of web server log data is enormous, the proposed scientific

methods should be automatable. Automation is advantageous both for reusability and for

obtaining realistic results for longer durations.

For all the purposes stated above, we have investigated some of the previous ap-

proaches for frequent pattern mining, and propose a solution that is based on the Fp-

growth algorithm, which is a scalable and efficient approach (Han et al., 2000). By

removing the costly phases of candidate generation, candidate testing and repetitive db

scans, Fp-growth algorithm performs better then it’s ancestors. The algorithm also offers

a divide and conquer based approach, making it easy to parallelize, scale and to automate.

In this study, Fp-growth algorithm (Han et al., 2000) is applied to the domain

of web usage mining. The initial goal of applying data mining methodologies to this

domain is to discover meaningful insights from web usage logs. This information could be

directive for achieving a better website structure, utilizing resources efficiently, dropping

maintenance costs, improving the user experience and engagement rates. Although there

are various studies using Fp-growth for the task of web usage mining, it is hard to evaluate

the relative performance of an application for different types of websites. An inspection of

70

the relationship between the characteristics of data at hand and the success of the mining

process have yet to be studied. As the primary motivation of this study, we applied the

algorithm on five different datasets with varying characteristics in order to examine this

relationship.

Firstly, in order to execute the Fp-growth algorithm in a parallel manner, the

database is sharded into smaller pieces using conditional sub-trees to execute indepen-

dently. Implementing the Fp-growth algorithm in a parallel manner is expected to im-

prove the overall performance of the application. Our experimental results also support

that parallelizing the mining process of web usage data enhances the efficiency of ex-

tracting meaningful website traversal paths among website usage logs. We have observed

between %1-6 reduced time consumption between serial execution and 2-parallelization,

%6-9 reduced time consumption between serial execution and 3-parallelization and %8-

10 reduced time consumption between serial execution and 4-parallelization for different

sized files varying between 25 MB and 2 GB. Secondly, we applied the algorithm on five

different datasets with varying characteristics. We used one dataset that is extracted from

HTTP logs of a busy WWW server (Wang et al., 2008), and generated four different syn-

thetic datasets, each designed to represent a different business model. The algorithm is

applied on usage logs of all types and results have been observed in accordance with each

dataset’s characteristics.

The experiments suggest that the performance is highly correlated with the num-

ber of items, number of frequent items, transaction length, similarity between frequent

patterns, minimum support value and size of the log file. Log file size, by directly ef-

fecting the size of the tree, has an immediate effect on execution time. Although number

of items is important when mining for frequent patterns, either by effecting the size of

the tree and the table structure, it is also important how similar the frequent patterns are.

The higher the correlation between patterns, the smaller the tree structure, which in re-

turn causes a faster execution time. For datasets that contain a very low number of items,

the transactions are very high in similarity, which is expected to increase performance.

However, as our experiments suggest, when given a low minimum support or a huge file

size, these features might cause an explosive increase in number of frequent itemsets and

number of processed transactions, drastically dropping performance. Similar to this prob-

lem, with very low transaction length, file sizes tend to get smaller. In order to achieve

the same file size and to compensate for the shortness of the transactions, the number of

transactions need to be very high, causing the execution time to increase. An increase in

number of items is prone to cause an increase in the width of the tree by introducing sep-

71

arate frequent paths. Similarly, as correlation between patterns drop or number of items

increase, the size of the tree structure grows, causing the execution time to increase.

As a future study, larger log files might be inspected with a larger scale of par-

allelization. Secondly, the same principles can be applied to evaluate different business

models. Moreover, evaluations could be enhanced to observe the relative effects of differ-

ent types of characteristics. Furthermore, the results obtained from mining web usage logs

can be made use of when observing specifics about web usage information of a website,

such as when executing A/B testing on users to compare results for each website version.

The logs collected from different groups of users can be examined seperately to com-

pare results in a scientific manner. Lastly, mining sets of frequent pages can be used in

combination with another methodology such as clustering or classification to categorize

frequent sets into frequent set classes or clusters, which then can be used to enhance user

experience and provide personalized suggestions or adaptations specifically for related

users.

72

REFERENCES

Agarwal, R. and Psaila, G. (1995). Active data mining. in proceedings on knowledge

discovery and data mining. KDD-95.

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining association rules between sets

of items in large databases.

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. (1996). Fast dis-

covery of association rules. Advances in Knowledge Dis-covery and Data Mining.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules. In-

VLDB.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. ICDE.

Apte, C. and Hong, S. (1996). Predicting equity returns from security data. in advances

in icnowledge discovery and data mining. AAAI Press and the MIT Press.

Brin, S., Motwani, R., and Silverstein, C. (1997). Generalizing association rules to corre-

lations. InSIGMOD.

Burdick, D., Calimlim, M., and Gehrke, J. (2001). Mafia: A maximal frequent itemset

algorithm for transactional databases.

Canada, C. I. M. (2015). Microsoft attention spans. Spring.

Cheeseman, P. and Stutz, J. (1996). Bayesian classification (auto class): Theory and re-

sults. Advances in Knowledge Discovery and Data Mining, American Association for

Artificial Intelligence, Menlo Park.

Chen, D., Lai, C., Hu, W., Chen, W., Zhang, Y., and Zheng, W. (2006). Tree partition

based parallel frequent pattern mining on shared memory systems.

Cohen, E., Krishnamurthy, B., , and Rexford, J. (1998). Improving end-to-end perfor-

mance of the web using server volumes and proxy filters. In Proceedings of ACM

73

SIGCOMM-98’, pages 241–253.

Cooley, R., Mobasher, B., and Srivastava, J. (1997). Web mining: Information and pattern

discovery on the world wide web. In Proceedings of the Ninth IEEE International

Conference on Tools with Artificial Intelligence-ICTAI’ 97, IEEE Computer Society.

Cooper, M., Foote, J., Adcock, J., and Casi, S. (2003). Shot boundary detection via simi-

larity analysis. In Proceedings of TRECVID 2003 workshop.

Dean, J. and Ghemawat, S. (2004). Simplified data processing on large clusters. OSDI.

Dunham, M. H. (2003). Data mining introductory and advanced topics. Pearson Educa-

tion.

Fayyad, U., Shapiro, G. P., and Smyth, P. (1997). From data mining to knowledge dis-

covery in databases. AI Magazine, 3(17):37–54.

Fayyad, U. M., Djorgovski, S. G., and Weir, N. (1996). From digitized images to on-line

catalogs: Data mining a sky survey. AI Magazine, 17:51–66.

Galitsky, B., de la Rosa, G. D. J., and Kuznetsov, S. (2011). Using generalization of

syntactic parse trees for taxonomy capture on the web. ICCS, (5):1163–1177.

Gassama, A., Camara, F., and Ndiaye, S. (2017). S-fpg: A parallel version of fp-growth

algorithm under apache spark.

Glymour, Clark, Richard, Peter, and Kevin (1987). Discovering causal structure: Artifi-

cial intelligence, philosophy of science, and statistical modeling. Journal of Educa-

tional Statistics. 14. 10.2307/1164612.

Han, J. and Kamber, M. (2006). Data mining: Concepts and techniques. The Morgan

Kaufmann Series in Data Management Systems, 2nd edition.

Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate genera-

tion.

Hasan, M. Z., Chisty, K. A., and Ayshik., N.-E.-Z. (2012). Research challenges in web

74

data mining. International Journal of Computer Science and Telecommunications,

3(7):37–54.

IBM QUEST, I. i. s. (1996).

Inamdar, S. A. and Shinde (2010). An agent based intelligent search engine system for

web mining. International Journal on Computer Science and Engineering, 2(3).

Jain, K., A., Dubes, and C., R. (1988). Algorithms for clustering data.

Kaliyaperumal, D. and Dorairangaswamy, M. (2016). Web usage mining: Improve the

user navigation pattern using fp-growth algorithm.

Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th Ann.

ACM–SIAM Symp. Discrete Algorithms, ACM Press, pages 668–677.

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo., A. (1994).

Finding interesting rules from large sets of discovered association rules. CIKM.

Kosla, R. and Blockeel (2000). Web mining research: A survey. SIG KDD Explorations,

2:1–15.

Kumar and S.Nandan (2015). World towards advanced web mining: A review. American

Journal of Systems and Software 3.2, pages 44–61.

Kumar, B. and K.V.Rukman (2010). Implementation of web usage mining using apriori

and fp growth algorithms.

Kumar, B. and K.V.Rukmani (2010). Implementation of web usage mining using apriori

and fp growth algorithms.

Li, N., Zeng, L., He, Q., and Shi, Z. (2012). Parallel implementation of apriori algorithm

based on mapreduce.

Moens, S., Aksehirli, E., and Goethals, B. (2013). Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing. IEEE International Conference

on Big Data.

75

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation ranking:

Bringing order to the web. Previous number = SIDL-WP-1999-0120.

Pal, S. K., V.Talwar, and Mitra, P. (2002). Web mining in soft computing framework:

Relevance, state of the art and future directions. IEEE transactions on neural network,

13(5):1163–1177.

Poovammal, E. and Cigith, P. (2011). Mining web path traversals based on generation of

fp tree with utility.

R.Kousalya, K.Suguna, and Saravanan, V. (2013). Improving the efficiency of web usage

mining using k-apriori and fp-growth algorithm. International Journal of Scientific

Engineering Research Volume 4, Issue3, March-2013.

Salleb, A. and Vrain, C. (2000). An application of association knowledge discovery and

data mining. PKDD, LNAI 1910, pages 613–618.

Shahbazi, N., Soltani, R., Gryz, J., and An, A. (2016). Building fp-tree on the fly: Single-

pass frequent itemset mining. pages 387–400.

Shaikh, A. (2015). Web usage mining using apriori and fp growth algorithm.

Sharma, P., Khan, S., Singh, S., and Tiwari, P. (2015). An analysis on web usage mining

for internet users. (IJCSIT) International Journal of Computer Science and Informa-

tion Technologies, Vol. 6 (5), 4765-4767 www.ijcsit.com.

Shenoy, P., Haritsa, J., Sudarshan, S., Bhalotia, G., Bawa, M., and Shah, D. (2000). Viper:

A vertical approach to mining association rules. SIGMOD 2000.

Shi, X., Chen, S., and Yang, H. (2017). Dfps: Distributed fp-growth algorithm based on

spark. IEEE.

Silverman, B. W. (1986). Density estimation for statistics and data analysis.

Silverstein, C., Brin, S., Motwani, R., and Ullman, J. (1998). Scalable techniques for

mining causal structures. VLDB.

76

Singh, A. K., Kumar, A., and Maurya, A. K. (2014). An empirical analysis and compari-

son of apriori and fp- growth algorithm for frequent pattern mining. Advanced Com-

munication Control and Computing Technologies (ICACCCT), 2014 International

Conference.

Sisodia, D. S., Khandal, V., and Singhal, R. (2016). Fast prediction of web user browsing

behaviours using most interesting patterns.

Srivastava, J., Cooley, R., Deshpande, M., and P.N.Tan (2000a). Web usage mining:

Discovery and applications of usage patterns from web data. SIGKDD Explorations,

1(2):12–23.

Srivastava, J., Cooley, R., Deshpande, M., and Tan, P. (2000b). Web usage mining: Dis-

covery and applications of usage patterns from web data. SIGKDD Explorations,

1(2):12–23.

Stummea, G., Hothoa, A., and B.Berendtb. (2006). Semantic web mining: State of the art

and future directions. SIG KDD Explorations, 4(2):124–143.

Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985). Statistical analysis of

finite mixture distributions.

T.Srivastava, P.Desikan, and V.Kumar (2005). Web mining – concepts, applications and

research directions. IEEE Transactions on Computers.

Wang, Y., Li, H., Zhang, D., Zhang, M., and Chang, E. (2008). Pfp: Parallel fp-growth

for query recommendation. ACM 2008.

Weiss, S. M. and Kulikowski, C. A. (1991). Computer systems that learn: Classifica-

tion and prediction methods from statistics, neural nets, machine learning, and expert

systems. M. Kaufmann Publishers.

Xia, D., Zhou1, Y., Rong, Z., and Zhang, Z. (2013). Ipfp: An improved parallel fp-

growth algorithm for frequent itemsets mining. Proceedings 59th ISI World Statistics

Congress, 25-30 August 2013, Hong Kong (Session CPS026).

YANG, Q., Fei-Yang, ZHU, X., and JIANG, C.-G. (2016). Improved balanced parallel

77

fp-growth with mapreduce. Joint International Conference on Artificial Intelligence

and Computer Engineering (AICE 2016) and International Conference on Network

and Communication Security (NCS 2016).

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010). Spark:

Cluster computing with working sets. HotCloud 2010.

Zaki, M. J., Parthasarathy, S., Ogihara, M., and Li, W. . (1997). New algorithms for fast

discovery of association rules.

Zembowicz, R. and Zytkow, J. M. (1996). Advances in knowledge discovery and data

mining. pages 328–349.

Zhang, F., Xiao, Y., and Long, Y. (2017). Research and improvement of parallelization of

fp growth algorithm based on spark.

Zhou, L., Zhong, Z., Chang, J., Li, J., Huang, J. Z., and Feng, S. (2010a). Balanced

parallel fp-growth with mapreduce. IEEE.

Zhou, L., Zhong, Z., Chang, J., Li, J., Huang, J. Z., and Feng, S. (2010b). Balanced

parallel fp-growth with mapreduce. Information Computing and Telecommunications

(YC-ICT), 2010 IEEE Youth Conference.

78

