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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Mathematics

by
Tug̃çe PARLAKGÖRÜR

July 2018
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Department of Mathematics, İzmir Institute of Technology

02 July 2018

Prof. Dr. Oktay PASHAEV
Supervisor, Department of Mathematics
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ABSTRACT

APOLLONIUS REPRESENTATION AND COMPLEX GEOMETRY

OF ENTANGLED QUBIT STATES

In present thesis, a representation of one qubit state by points in complex plane

is proposed, such that the computational basis corresponds to two fixed points at a fi-

nite distance in the plane. These points represent common symmetric states for the set

of quantum states on Apollonius circles. It is shown that, the Shannon entropy of one

qubit state depends on ratio of probabilities and is a constant along Apollonius circles.

For two qubit state and for three qubit state in Apollonius representation, the concurrence

for entanglement and the Cayley hyperdeterminant for tritanglement correspondingly, are

constant along Apollonius circles. Similar results are obtained also for n- tangle hyperde-

terminant with even number of qubit states. It turns out that, for arbitrary multiple qubit

state in Apollonius representation, fidelity between symmetric qubit states is also constant

along Apollonius circles. According to these, the Apollonius circles are interpreted as in-

tegral curves for entanglement characteristics. For generic two qubit state in Apollonius

representation, we formulated the reflection principle relating concurrence of the state,

with fidelity between symmetric states.

The Möbius transformations, corresponding to universal quantum gates are de-

rived and Apollonius representation for multi-qubit states is generated by circuits of quan-

tum gates. The bipolar and the Cassini representations for qubit states are introduced, and

their relations with qubit coherent states are established. We proposed the differential ge-

ometry for qubit states in Apollonius representation, defined by the metric on a surface in

conformal coordinates, as square of the concurrence. The surfaces of the concurrence, as

surfaces of revolution in Euclidean and Minkowski (Pseudo-Euclidean) spaces are con-

structed. It is shown that, curves on these surfaces with constant Gaussian curvature

becomes Cassini curves. The hydrodynamic interpretation of integral curves for concur-

rence as a flow in the plane is given and the spin operators in multiqubit |PP...P〉 states are

discussed.
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ÖZET

DOLAŞIK KÜBİT DURUMLARININ APOLLONIUS TEMSİLİ VE

KOMPLEKS GEOMETRİSİ

Bu tezde, kompleks düzlemde bir noktaya göre bir kübit durumunun temsili,

hesaplama tabanı düzlemde sonlu bir mesafede iki sabit noktaya karşılık gelecek şekilde

önerilmiştir. Bu noktalar, Apollonius çemberlerinde bulunan kuantum durumları için or-

tak simetrik durumları temsil eder. Bir kübit durumu için Shannon entropisinin, olasılık-

ların oranına bag̃lı olup ve Apollonius çemberleri boyunca sabit oldug̃u gösterilmiştir.

Apollonius temsilinde dolaşıklık, iki kübit durumu için dolaşıklık derecesi (concurrence)

ve üç kübit durumu için Cayley hiperderminant hesaplanmıştır. Bu özellikler Apollo-

nius çemberleri boyunca sabittir. Benzer sonuçlar, çift sayıdaki n- kübit durumları için

hiperdeterminant hesaplanarak, n- dolaşık (n- tangle) olarak elde edilir. Apollonius tem-

silinde keyfi seçilmiş birden fazla kübit durumu için, simetrik kübit durumları arasındaki

bag̃lılıg̃ın(fidelity) da Apollonius çemberleri boyunca sabit oldug̃u ortaya çıkmaktadır.

Buna göre, Apollonius çemberleri dolaşıklık özelliklerine göre integral eg̃rileri olarak yo-

rumlanır. Apollonius temsilinde genel iki kübit durumu için kübitlerin yansıma ilkesini

dolaşıklık derecesi (concurrence) ile ilişkilendirilerek formüle ettik.

Evrensel kuantum kapılarına karşılık gelen Möbius dönüşümleri türetilmiş ve çok-

kübitli durumlar için kuantum kapılarının devreleri tarafından Apollonius temsili üretilmiştir.

Kübit durumları için bipolar ve Cassini temsilleri tanıtıldı ve eş uyumlu kübit durumlar

ile ilişkilendirildi. Apollonius temsilindeki kübit durumları için, diferensiyel geometride

konformal koordinatlardaki bir yüzey üzerinde tanımlanan metrig̃i dolaşıklık derecesinin

(concurrence) karesi olarak önerdik. Öklidyen ve Minkowski (Sözde - Öklidyen) uza-

ylarında concurrence yüzeyi dönel yüzey olarak inşa edilmiştir. Bu yüzeylerdeki sabit

Gauss eg̃rilig̃ine sahip eg̃rilerin Cassini eg̃rileri oldug̃u gösterilmiştir. Dolaşıklık derecesi

(concurrence ) düzlemde bir akış olarak, integral eg̃rilerinin hidrodinamik yorumu olarak

verilmiş ve çok-kübitli |PP...P〉 durumları için spin operatörleri tartışılmıştır.
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CHAPTER 1

INTRODUCTION

"Complex variable theory is so beautiful that I feel that nature must have made

good use of it, and , very likely, we need to make stronger use of it than we’ve done up to

the present. " P. A. M. Dirac

Quantum computation and quantum information become very hot topics at recent

time. Process of miniaturization of classical computers inevitably leads to quantum laws

and necessity of creation quantum computer with quantum algorithms, taking into account

quantum mechanical laws. (Benenti, Casati and Strini, 2004) , (Chuang and Nielsen,

2011)

In contrast to classical unit of information as a bit, with 0 and 1 classical states, in

quantum information, a qubit as unit of information is a vector in Hilbert space, charac-

terized by infinite number of values on unit sphere (Bloch sphere). Multiple qubit states,

representing input and output in quantum computers, belong to multidimensional Hilbert

space and have special properties. One of them is the entanglement, which is non-classical

and non-local property of two qubit quantum states. Entanglement plays fundamental role

in processing of quantum computer, this is why characterisation of entanglement is cru-

cial in understanding quantum information. One of the qualifications of entanglement for

two qubit state is the concurrence (Wootters, 1998). For three qubit states, similar qual-

ification is given by Cayley hyper-determinant (Cayley, 1889), (Coffman, Kundu and

Wootters, 2000), but different kinds of entanglement in this case could appear (as partial

and total entanglement). Going to multiqubit states, variety of entanglements is growing

(Wong and Christensen, 2001). This is the reason, why proper representation of qubit and

entanglement by simple geometrical structures becomes very actual problem.

The present thesis is devoted to geometrical characterisation of entanglement for

special class of multiple qubit states. The main idea is related with representation of Bloch

sphere by points in complex plane, which is known as coherent qubit state representation

( Pashaev and Gurkan, 2012). This representation allows one to use algebra and analy-

sis of complex variables for description of qubit states. Disadvantage of coherent state

representation is that, one of the computational basis states is at infinity (state |0〉 is at

the origin, state |1〉 is at infinity). This makes difficult to construct simple geometrical

characteristics related with distance between states in the plane. In this thesis, new repre-
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sentation of qubit state by a point in complex plane is proposed, so that |0〉 and |1〉 states

are placed at two finite points in the plane. This allows one to describe characteristics of

qubit states in terms of simple geometrical objects like distances, areas and volumes. The

proposed representation is based on definition of circle as a ratio of distances from two

fixed points a and b:
|z − a|
|z − b| = r , first discovered by Apollonius of Perga in ancient times

(Brannan, Esplen and Gray, 2012). The meaning of this representation becomes clear with

introduction of Möbius transformation w =
z − a
z − b

of concentric circles at origin |w| = r to

the set of circles
|z − a|
|z − b| = r , with common symmetric points a and b (Ahlfors, 1966).

This representation allows one to consider |0〉 and |1〉 states of qubit as common symmet-

ric states for the set of Apollonius circle states. Calculation of the Shannon entropy for

one qubit state in this representation, shows that it is a constant along every Apollonius

circle. An extension of Apollonius representation to two qubit states and to multiple qubit

states, show that the concurrence for two qubit states, the 3-tangle for three qubit states,

the n-tangle for even n-qubit states, and fidelity for symmetric multiqubit states are con-

stant along Apollonius circles. Apollonius circles, supplemented by the set of orthogonal

circles passing from points a and b, describe the bipolar coordinate system in the plane.

This orthogonal coordinate system has several applications in hydrodynamics and elec-

trostatics. In our case to describe states with variable concurrence, we introduce bipolar

representation of qubit states. So that Apollonius circles becomes equi-concurrent curves

and the concurrence is changing along the orthogonal set of curves. This orthogonal set

of curves could be related with some new constant characteristics of qubit states. To gen-

erate our Apollonius qubit states, we propose several circuits of unitary universal gates

and represent them in the form of universal Möbius transformations.

By considering the set of Apollonius circles as integral curves of some vector

field, we can interpret concurrence as the stream function of two dimensional rotational

flow. In addition to this hydrodynamic representation, we developed differential geomet-

rical description of qubit states in coherent and Apollonius representation. For these, we

choose conformal metric on the surface as g(x, y) = C2(x, y), where C(x, y) is the con-

currence. The surfaces of the concurrence, as surfaces of revolution in Euclidean and

Minkowski (Pseudo-Euclidean) spaces are constructed. By calculating Gaussian curva-

ture, we show that it is a constant along the set of Cassini curves. This curves where

proposed by Cassini for description of planet motion, but dismissed by Newton’s descrip-

tion of elliptic orbits or conic sections (Sivardiere , 1994). Cassini curves have beautiful

geometrical property complimentary to Apollonius circles, as |z−a||z−b| = r2. In our the-

sis, we established relation between Cassini curves and Apollonius circles, which allow
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us to introduce Cassini representation of qubit. This Cassini representation is an example

of multivalued representation of qubit, when two points in the plane represent one qubit

state. This multivalued property implies that, some points in plane reflected in y- axis

should be identified.

The thesis is organized in the following form.

In Chapter 2, we introduce bit and qubit as units of classical and quantum in-

formation, Section 2.1. In Section 2.2, we describe geometry of one qubit state, Bloch

sphere and probability distribution. In Section 2.3, we discuss unitary one qubit gates and

universality of one qubit computations.

In Chapter 3, we derive representation of qubit in complex plane. Section 3.1 is

devoted to stereographic projection of Bloch sphere to complex plane. This is known as

qubit coherent states, Section 3.2. Qubit gates as Möbius transformation are discussed in

Section 3.3. Universality of one qubit computations in special form is subject of Section

3.4 and in Section 3.5, fidelity between symmetric states is discussed.

Chapter 4 is devoted to description of multiple qubit states. We start from Sec-

tion 4.1, by describing separability criterium for two qubit states in terms of concurrence

and area. Then, in Section 4.2 we introduce concurrence as a determinant. The concur-

rence and fidelity relation discussed in Section 4.3. In Section 4.4, we generated sym-

metric states by using antipodal points. In Section 4.5, as geometrical characteristics we

found inner product metric relation with concurrence. To physical meaning of concur-

rence as reduced density matrix devoted Section 4.6. Relation between entanglement and

Von Neumann entropy is studied in Section 4.7. To complete this chapter, we discussed

Reimannian metric and concurrence in Section 4.8.

In Chapter 5, we introduce Apollonius representation for qubit states. In Section

5.1, we introduced Apollonius circles and related Möbius transformations. The Hadamard

gate and generation of Apollonius representation of qubit state is considered in Section

5.2. Section 5.3. is devoted to Apollonius representation for one and two qubit states and

corresponding entanglement characteristics. In Section 5.3.1, we show that entropy and

fidelity for non-symmetric states are constant on Apollonius circles. In a similar way in

Section 5.3.2, we treat concurrence and entropy for two qubit states in non-symmetric and

symmetric cases. In Section 5.3.2.4 we find geometrical meaning of concurrence in terms

of areas and angles. Relation of concurrence with reflection principle is subject of Section

5.3.2.5. In Section 5.4, we introduce multiple qubits in Apollonius representation. This

representation for generic two qubit states is derived in Section 5.5. Relation between

concurrence and fidelity of reflected qubits for the generic case is discussed in Section
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5.6.

In Chapter 6, characteristics of entanglement for three and even n qubit states are

studied. The Cayley hyperdeterminant and 3-tangle for three qubit states are subject of

Sections 6.1. Generalization to arbitrary even n number of qubit states in form of n-tangle

hyperdeterminant is obtained in Section 6.2.

Chapter 7 is devoted to Cassini multivalued representation of qubit states. In Sec-

tion 7.1, we introduce Cassini curves in cartesian and polar form. In Section 7.2, we relate

Cassini curves with Apollonius circles by set of conformal transformations. The Cassini

representation of one qubit state and corresponding entropy are calculated in Section 7.3.

Two qubit Cassini states, fidelity for these states (7.4.1), and inversion in leminiscate and

symmetric Cassini states are found in Section 7.4. In Section 7.5. 3-tangle for three qubit

Cassini state and in Section 7.6., n-tangle for the even number of Cassini qubit states are

derived. Transformation between Cassini and Apollonius states are discussed in Section

7.7.

Bipolar representation of qubit states is subject of Chapter 8. We represent one

and two qubit states in bipolar coordinates with corresponding entropy and concurrence

for non-symmetric case in Section 8.1. The symmetric case is treated in Section 8.2.

In Chapter 9, we developed conformal differential geometry description of qubit

states. In Section 9.1, we identified equi-concurrent Apollonius circles with stream lines

of two dimensional hydrodynamic flow. In Section 9.2, we introduce conformal metric

in terms of concurrence for symmetric and non-symmetric Apollonius representation. It

leads us to consider nonlinear Laplace equation in Section 9.3. In Section 9.4, we related

constant Gaussian curvature concurrence surfaces with Cassini curves. In Section 9.5, we

describe the concurrence surface as the surface of revolution in Euclidean and Pseudo-

Euclidean spaces. In Section 9.6. generic conformal transformation of coherent states is

derived. The Liouville equation for concurrence is discussed in Section 9.7.

In Chapter 10, relation between spin operators and qubit states are discussed. The

average of spin 1
2

operators on qubit states and related characteristics of maximally ran-

dom states are subject of Section 10.1. In Section 10.2., we introduce n qubit |PP..P〉 state

and calculate averages of spin operators in these states. For maximally entangled states,

as maximally random states, the averages of spin operators are zero.

Our conclusion are presented in Chapter 11.
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CHAPTER 2

QUBIT QUANTUM STATES

In this chapter, the basic definitions and concepts of quantum information theory

are introduced. For more details see (Chuang and Nielsen, 2011)

2.1. Bit and Qubit

The bit is the fundamental concept of classical computation and classical infor-

mation. The classical bit is a unit of information, which has two states, either 0 or 1.

The quantum computation and quantum information are built upon the quantum bit, for

shortly it is called the qubit (Figure 2.1). The qubit has two basis states, as vectors in

Hilbert space denoted as |0〉 and |1〉. They are correspond to classical bits 0 and 1 respec-

tively. The standard notations for states in quantum mechanics is Dirac notation "| 〉" that

is called the ket state and "〈 |" that is called the bra state. In these notations a qubit can

be represented as a superposition of two states

|ψ〉 = α|0〉 + β|1〉, (2.1)

where α and β are complex numbers. This is why, the state of the qubit is a vector in

Hilbert Space (H). Here, the Hilbert space is a two-dimensional complex vector space

C
2 and states |0〉 and |1〉 are known as computational basis, which is the orthonormal basis

for this vector space.

Figure 2.1. Classical and Quantum Computer
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There is a big difference between bit and qubit, the bit can be examined exactly

to determine whether it is in the position 0 or 1. In contrast to this, the qubit cannot

be examined exactly to determine its quantum state. Quantum mechanics gives only re-

stricted information about it. For the state (2.1), the measurement result is the state |0〉
with probability p0 or it is the state |1〉 with probability p1. Between these probabilities

exist a constraint, which is called the normalization condition,

|α|2 + |β|2 = p0 + p1 = 1,

where probabilities are determined by modulus of complex numbers

p0 = |α|2 = α · ᾱ p1 = |β|2 = β · β̄.

Figure 2.2. Bit and Qubit Representation
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2.2. Geometry of Qubit States

The one qubit quantum computation takes place in vector space C2, where every

vector represents qubit as a unit of quantum information. Every vector in C2 can be

written as a linear combination of two vectors,

|ψ〉 = α|0〉 + β|1〉 = α
(
1

0

)
+ β

(
0

1

)
=

(
α

β

)

corresponding to computational basis in this space

|0〉 =
(
1

0

)
, |1〉 =

(
0

1

)
.

These basis vectors are orthonormal, which means that they are normalized and orthogo-

nal:

〈0|0〉 = 1 = 〈1|1〉, 〈0|1〉 = 0 = 〈1|0〉.
The geometrical meaning of one qubit state can be understood by applying normalization

condition,

〈ψ|ψ〉 = 1

giving

|α|2 + |β|2 = 1,

where coefficients α = α1 + iα2 and β = β1 + iβ2 are complex numbers. This shows that

the normalization condition represents the unit sphere

α2
1 + α

2
2 + β

2
1 + β

2
2 = 1,

in four dimensional real space S3 ∈ R4, where (α1, α2, β1, β2) ∈ R4. This unit sphere S3 is

reduced to unit sphere S2 ∈ R2, due to global phase identification.
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2.2.1. Global Phase

In Quantum mechanics the states are defined up to the global phase and are the

rays in the Hilbert space.

Definition 2.1 The ray is an equivalence class of vectors, that are differ by multiplication

by a non-zero complex scalar, called the global phase eiγ. Ray in Hilbert space is the set

{eiγ|ψ〉 : ∀γ ∈ R}.

Quantum state |ψ〉 is determined up to global phase, such that |ψ〉 ≡ eiγ|ψ〉 and represents

a ray inH .

Probability density for every state |ψ〉 is the same for every ray in Hilbert space {eiγ|ψ〉},
since

〈ψ|ψ〉 = 〈ψ|e−iγeiγ|ψ〉.

2.2.2. Bloch Sphere -S2

Due to this global phase identification, the qubit state takes values on the unit

sphere S 2, which is called the Bloch sphere. This sphere follows from the representation,

|ψ〉 = α|0〉 + β|1〉, |α|2 + |β|2 = 1.

Let’s solve normalization constraint as α = cos
θ

2
eiχ1 , β = sin

θ

2
eiχ2 and substitute into the

state

|ψ〉 = cos
θ

2
eiχ1 |0〉 + sin

θ

2
eiχ2 |1〉

By extracting the global phase eiχ1 and denoting χ2 − χ1 ≡ ϕ the qubit becomes

|ψ〉 = eiχ1(cos
θ

2
|0〉 + sin

θ

2
eiϕ|1〉),

where χ1, θ and ϕ are real numbers. Identifying the qubit states with different global

phases χ1, one gets the Bloch sphere representation of qubit.
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Figure 2.3. Bloch Sphere Representation

Definition 2.2 One qubit in Bloch sphere representation is

|ψ〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ|1〉, (2.2)

where

0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.

According to this definition, every state of qubit is represented by a point on unit sphere

with coordinates (θ, ϕ) as altitude and latitude respectively (Figure 2.3). So that, |0〉 state

corresponds to the north pole of the sphere, while |1〉 state is represented by the south pole

of the sphere. By measuring generic qubit state, the unit vector on Bloch sphere jumps to

the north or the south poles and corresponding qubit state collapses to |0〉 or |1〉 state with

corresponding probabilities (Figure 2.4). These probabilities are completely determined

by angle θ:

• probability to get state |0〉 is p0 = |〈0|ψ〉|2 = cos2 θ

2

• probability to get state |1〉 is p1 = |〈1|ψ〉|2 = sin2 θ

2
.

Addition of these probabilities is one : p0 + p1 = cos2 θ

2
+ sin2 θ

2
= 1.
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Figure 2.4. Probabilities of state |ψ〉

2.2.3. S2 Identification and Surface of Revolution

As it has seen above, the qubit state without global phase identification is de-

scribed by a point on unit sphere S3 in R4, while with global phase identification it cor-

responds to the point on Bloch sphere S2 in R3. Then, the global phase identification can

be described as identification of points on S3 sphere. To describe this explicitly, firstly

elementary example would be considered.

Let S2 is a unit sphere. This sphere is a surface of revolution for the unit circle S1.

Applying identification of points on this surface with different ϕ, the surface of revolution

reduces to the generating curve. For sphere S2 this curve becomes S1 circle. It can be seen

also from parametric representation of sphere in the form

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ.

Identification of points with different angles ϕ with the ones in the plane where ϕ = 0,

gives

x = sin θ, y = 0, z = cos θ,

representing S1 - circle in xz-plane with equation

x2 + z2 = 1, y = 0.
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2.2.4. S3 Identification and Bloch Sphere

In a similar way, for S3 - sphere with angles (θ, ϕ, χ) 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, 0 ≤
χ ≤ 2π, identification of points with different χ leads to S2 - sphere, which is the Bloch

sphere. S3 - sphere can be represented as a hyper surface of revolution in the parametric

form:

x = sin θ cosϕ cos χ, y = sin θ cosϕ sin χ, z = sin θ sinϕ, t = cos θ,

such that

x2 + y2 + z2 + t2 = 1.

Identification of points on S3 with different angles χ with the ones on the hyper-plane

where χ = 0, gives S2 - sphere in (x, z, t) coordinates, with parametric equation

x = sin θ cosϕ, y = 0, z = sin θ sinϕ, t = cos θ,

such that

x2 + z2 + t2 = 1.

2.3. One Qubit Quantum Gates

One qubit quantum gate is a device, which performs a fixed unitary operation

acting on the selected qubit in a fixed period of time. (Ekert, Hayden and Inamori, 2000)

2.3.1. Unitary Transformations and Quantum Gates

Quantum mechanics postulates, that the time evolution of the quantum system is

necessarily unitary. This constraint is unique also for quantum gates.

• What is an unitary transformation?

The unitary transformation is complex analogue of rotation in complex space C2
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and preserving the lengths of vectors. It is described by complex matrices:

U =

⎛⎜⎜⎜⎜⎜⎜⎝a c

b d

⎞⎟⎟⎟⎟⎟⎟⎠ ,

satisfying unitarity condition

UU† = U†U = I,

where U† as Hermitian conjugate of this matrix,

U† =

⎛⎜⎜⎜⎜⎜⎜⎝ā b̄

c̄ d̄

⎞⎟⎟⎟⎟⎟⎟⎠ .

As a result, the unitary matrix in C2 space in U(2) form

U =

⎛⎜⎜⎜⎜⎜⎜⎝ a b

−b̄ ā

⎞⎟⎟⎟⎟⎟⎟⎠ , |a|2 + |b|2 � 0.

If

det U = |a|2 + |b|2 = 1

then U ∈ S U(2).

Definition 2.3 (Loceff, 2015), (Stillwell, 1992) Unitary quantum gate is a linear

transformation of Hilbert space, that maps the normalized (unit) vectors to other

unit vectors. Since Hilbert space for one qubit is two dimensional, a unitary quan-

tum operator can be represented by a 2 × 2 matrix.

• Unitary transformation in the Hilbert space of one qubit maps the basis states |0〉
and |1〉 to orthonormal states |v0〉 = a|0〉 − b̄|1〉 and |v1〉 = b|0〉 + ā|1〉.
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2.3.2. Unitary Gates and Rotation of Bloch Sphere

2.3.3. Pauli Gates

Pauli gates are defined according to (Loceff, 2015).

• X - Gate

Definition 2.4 Pauli X gate is denoted as quantum NOT gate (QNOT) and is defined

as

X ≡ σx ≡
⎛⎜⎜⎜⎜⎜⎜⎝0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

X† = X and X2 = I.

Applying the gate to basis states gives

X|0〉 =
⎛⎜⎜⎜⎜⎜⎜⎝0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ = |1〉, X|1〉 =
⎛⎜⎜⎜⎜⎜⎜⎝0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ = |0〉,

or

X|0〉 = |1〉, X|1〉 = |0〉,

Since this gate interchanges the basis states, X gate usually called as the bit flip

gate. If the quantum state |ψ〉 is written in matrix form

|ψ〉 = α|0〉 + β|1〉 =
⎛⎜⎜⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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application of this gate to the state gives

X|ψ〉 =
⎛⎜⎜⎜⎜⎜⎜⎝0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝β
α

⎞⎟⎟⎟⎟⎟⎟⎠ = β|0〉 + α|1〉.

It shows that X operator swaps the amplitudes of any state vector. The circuit

diagram for this gate is

α|0〉 + β|1〉 X β|0〉 + α|1〉

• Y - Gate

Definition 2.5 The Y gate is defined as

Y ≡ σy ≡
⎛⎜⎜⎜⎜⎜⎜⎝0 −i

i 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Applying it to computational basis states

Y |0〉 =
⎛⎜⎜⎜⎜⎜⎜⎝0 −i

i 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝0i

⎞⎟⎟⎟⎟⎟⎟⎠ = i|1〉, Y |1〉 =
⎛⎜⎜⎜⎜⎜⎜⎝0 −i

i 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝−i

0

⎞⎟⎟⎟⎟⎟⎟⎠ = −i|0〉,

gives

Y |0〉 = i|1〉, Y |1〉 = −i|0〉.

Since it flips both, the bits and relative phases, Y gate is called the bit and phase

flip gate.
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Applying this gate to arbitrary state |ψ〉 gives

Y |ψ〉 =
⎛⎜⎜⎜⎜⎜⎜⎝0 −i

i 0

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎟⎟⎠ = −i

⎛⎜⎜⎜⎜⎜⎜⎝ β−α
⎞⎟⎟⎟⎟⎟⎟⎠ = −iβ|0〉 + iα|1〉.

The circuit diagram for Y gate is

α|0〉 + β|1〉 Y − iβ|0〉 + iα|1〉

• Z - Gate

Definition 2.6 The Z gate is defined by the following matrix

Z ≡ σz ≡
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Applying Z gate to basis states gives

Z|0〉 =
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ = |0〉, Z|1〉 =
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ = −|1〉,

or

Z|0〉 = |0〉, Z|1〉 = −|1〉.

This gate is known as the phase flip gate, since it is changing only the sign of state

|1〉. Application of it to state |ψ〉 gives,

Z|ψ〉 =
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ α−β

⎞⎟⎟⎟⎟⎟⎟⎠ = α|0〉 − β|1〉.
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As can be seen, it changes the relative phase of two amplitudes in |ψ〉 and describes

180 degree rotation of β in complex plane (−1 = eiπ). The circuit diagram for Z

gate is

α|0〉 + β|1〉 Z α|0〉 − β|1〉

2.3.4. Hadamard Gate and Phase Gate

Here the Hadamard and Phase gate are defined according to (Benenti, Casati and

Strini, 2004) and (Loceff, 2015)

Definition 2.7 The Hadamard gate is defined as

H =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎝1 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ .

This single qubit gate corresponds to rotations and reflections of Bloch sphere. Rotation

around
π

4
followed by a reflection. In addition to this, H† = H since H is real and

symmetric, and H2 = I.

Applying Hadamard gate to computational basis states gives

H|0〉 = 1√
2

⎛⎜⎜⎜⎜⎜⎜⎝1 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ = |0〉 + |1〉√
2

,

H|1〉 = 1√
2

⎛⎜⎜⎜⎜⎜⎜⎝1 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ = |0〉 − |1〉√
2

,

or

H|0〉 = |0〉 + |1〉√
2
≡ |+〉, H|1〉 = |0〉 − |1〉√

2
≡ |−〉.

16



States |+〉 and |−〉 are orthonormal Hadamard basis states. Applying H to generic state |ψ〉
gives,

H|ψ〉 = 1√
2

⎛⎜⎜⎜⎜⎜⎜⎝1 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎟⎟⎠ = 1√
2

⎛⎜⎜⎜⎜⎜⎜⎝α + β
α − β

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which implies

H|ψ〉 = α + β√
2
|0〉 + α − β√

2
|1〉 = α|+〉 + β|−〉.

The circuit diagram for this gate is

α|0〉 + β|1〉 H
α + β√

2
|0〉 + α − β√

2
|1〉

Definition 2.8 The Phase gate is defined as

Rz(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 eiθ

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where θ is any real number. This gate generates a counter-clockwise rotation through an

angle θ about z-axis of the Bloch sphere.

Applying phase gate to basis states gives

Rz(θ)|0〉 =
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 eiθ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ = |0〉,

Rz(θ)|1〉 =
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 eiθ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ = eiθ|1〉,
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or

Rz(θ)|0〉 = |0〉, Rz(θ)|1〉 = eiθ|1〉,

and to generic state |ψ〉 is,

Rz(θ)|ψ〉 =
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 eiθ

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ αeiθβ

⎞⎟⎟⎟⎟⎟⎟⎠ .

It implies

Rz(θ)|ψ〉 = α|0〉 + eiθβ|1〉.

The circuit diagram for this gate is

α|0〉 + β|1〉 Rz(θ) α|0〉 + eiθβ|1〉

It is important to realize that any unitary operation on a single qubit can be constructed by

using only Hadamard and phase gates. It means that, the unitary transformation moves the

qubit state from one point to another point of the Bloch sphere by using only Hadamard

and phase gates.

2.3.5. Universality of One Qubit Computations

Two gates introduced in previous section represent the so called universal one

qubit quantum gates. It turns out that arbitrary one qubit gate can be implemented by

sequence of Hadamard and phase gates. This property is called universality of gates

and computations on one qubit then become universal quantum computations.This means

that by the set of universal gates, arbitrary one qubit state can be transformed to another

arbitrary state. To show this, first one applies Hadamard and phase gates to basis state |0〉,
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giving the generic state |ψ〉 (2.2),

Rz

(
π

2
+ φ

)
H Rz(θ) H |0〉 = e

i
θ

2
(
cos

θ

2
|0〉 + sin

θ

2
eiϕ|1〉

)

or up to global phase

Rz

(
π

2
+ φ

)
H Rz(θ) H |0〉 = |ψ〉.

For two arbitrary qubits

|ψ1〉 = cos
θ1

2
|0〉 + sin

θ1

2
eiφ1 |1〉, |ψ2〉 = cos

θ2

2
|0〉 + sin

θ2

2
eiφ2 |1〉,

applying circuit

Rz

(
π

2
+ φ2

)
H Rz(θ2 − θ1) H Rz

(
−π

2
− φ1

)
|ψ1〉 = e

i

⎛⎜⎜⎜⎜⎜⎜⎜⎝
θ2

2
−
θ1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (
cos

θ2

2
|0〉 + sin

θ2

2
eiφ2 |1〉

)

up to global phase gives relation

Rz

(
π

2
+ φ2

)
H Rz(θ2 − θ1) H Rz

(
−π

2
− φ1

)
|ψ1〉 = |ψ2〉

This transformation allows one to generate arbitrary qubit |ψ2〉 from arbitrary qubit |ψ1〉.
In addition, X, Y and Z gates can be represented by using only phase and Hadamard

gates as follows,

X = H Rz(π) H, Y = Rz

(
π

2

)
H Rz(π) H Rz

(
−π

2

)
, Z = Rz(π).
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CHAPTER 3

QUBIT IN COMPLEX PLANE

The Bloch sphere representation of one qubit states suggests to use complex num-

bers to parametrize these states. If one considers the Bloch sphere as a Riemann sphere

for complex plane C, then every point in this plane corresponds to some point on the

sphere and represents a qubit state. On the Bloch sphere, as the extended complex plane

C ∪ {∞}, two basis states |0〉 and |1〉, representing the north and the south poles of the

sphere, corresponds to 0 and∞ points in this extended plane.

3.1. Bloch Sphere in Complex Plane Representation

An arbitrary qubit state is represented as a point (θ, ϕ) on the Bloch sphere

|ψ〉 = |θ, ϕ〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ |1〉, (3.1)

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. The stereographic projection from the south pole (0, 0,−1)

of this unit sphere to complex plane C , the reflection plane between the north and the

south poles as symmetric points, is determined by formula (Figure 3.1)

z = tan
θ

2
eiϕ = |z|eiϕ, (3.2)

where z = x + iy ∈ C and |z| = tan
θ

2
.
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Figure 3.1. Stereographic projection of Bloch sphere

By extracting cos
θ

2
from (3.1),

|ψ〉 = cos
θ

2

(
|0〉 + tan

θ

2
eiϕ |1〉

)
,

and using

1√
1 + |z|2

=
1√

1 + tan2
θ

2

= cos
θ

2
,

the one qubit state (3.1)

|ψ〉 = cos
θ

2

(
|0〉 + tan

θ

2
eiϕ |1〉

)
=

1√
1 + |z|2

(|0〉 + z |1〉)

becomes

|z〉 = |0〉 + z|1〉√
1 + |z|2

. (3.3)

This parametrization of qubit by complex number z is called the qubit coherent state. For
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every complex number z ∈ C ∪ {∞} it represents the qubit state |z〉. Points inside of unit

circle |z| < 1 correspond to states |z〉 in upper Bloch hemisphere and points with |z| > 1

correspond to states in lower Bloch hemisphere. Point z = 0 represents state |0〉 and point

z = ∞ corresponds to state |1〉. Representation of qubit by complex numbers allows one

to apply techniques of complex algebra and analysis to study qubit states, which would be

discussed in this section. Disadvantage of qubit coherent state representation is that basis

state |1〉 doesn’t correspond to finite point in the plane. This prevents proper visualisation

of geometrical characteristics of qubits. To correct this disadvantage, in Chapter 5 the

Apollonius representation of qubit would be introduced.

3.2. Qubit Coherent States

Generic one qubit state

|ψ〉 = α|0〉 + β|1〉 =
⎛⎜⎜⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where |α|2 + |β|2 = 1 can be represented in terms of homogenous coordinates z =
β

α
. By

extracting β,

|ψ〉 =
⎛⎜⎜⎜⎜⎜⎜⎝α
β

⎞⎟⎟⎟⎟⎟⎟⎠ = β
⎛⎜⎜⎜⎜⎜⎜⎝1z

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and fixing β by normalization condition 〈ψ|ψ〉 = 1, up to the global phase the qubit state

can be written as

|z〉 = 1√
1 + |z|2

⎛⎜⎜⎜⎜⎜⎜⎝1z
⎞⎟⎟⎟⎟⎟⎟⎠

or

|z〉 = |0〉 + z|1〉√
1 + |z|2

.
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This state is called S U(2) or the spin coherent state, and would be referred as the "coherent

qubit state". Every point z in extended complex plane determines the qubit state in this

representation.

Definition 3.1 (Ahlfors, 1966) Two points z and z∗ are called symmetric with respect to

the circle through z1, z2, z3 if and only if (z∗, z1, z2, z3) = (z, z1, z2, z3), where the cross ratio

of four points is

(z, z1, z2, z3) =
(z − z2)(z1 − z3)

(z − z3)(z1 − z2)
.

The circle in this definition is the generalized circle, that includes also a line, regarded

as a circle with an infinite radius. On the Riemann or the Bloch sphere, all generalized

circles are coming from the intersection of the sphere with a plane, so that if the plane

passes through the projection pole, the corresponding projection would be a line.

According to definition for given point z exist symmetric points as :

1. Reflection in x- axis: z∗ = z̄

2. Reflection in y- axis: z∗ = −z̄

3. Inversion in the unit circle: z∗ =
1

z̄
Combination of first two reflections give point −z, which after inversion in unit

circle gives the antipodal point: z∗ = −1

z̄
.

The qubit state |z〉, for z = 0 is state |0〉 and for z = ∞ is state |1〉. But z = 0

and z = ∞ are symmetric points with respect to the unit circle. Therefore, corresponding

quantum states |0〉 and |1〉 is called symmetric states in unit circle.

Above definition suggests for given generic qubit state |z〉 to define the corre-

sponding symmetric state |z∗〉 with respect to given circle S. These states can be called

symmetric qubits :

1. Symmetric qubit state with respect to the x-axis

|z̄〉 = |0〉 + z̄|1〉√
1 + |z|2
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2. Symmetric qubit state with respect to the y-axis

| − z̄〉 = |0〉 − z̄|1〉√
1 + |z|2

3. Symmetric qubit state with respect to the unit circle

∣∣∣∣∣1z̄
〉
=

z̄|0〉 + |1〉√
1 + |z|2

To antipodal point z∗ = −1

z̄
, corresponds the antipodal qubit state,

∣∣∣∣∣−1

z̄

〉
=
−z̄|0〉 + |1〉√

1 + |z|2
.

The computational basis states |0〉 and |1〉 are also antipodal states and orthogonal

to each other. It turns out that every pair of antipodal states is orthogonal :

〈
−1

z̄

∣∣∣∣∣z
〉
= 0.

3.3. Möbius Transformations and Qubit Gates

Definition 3.2 (Ahlfors, 1966) The linear fractional transformation of the form

w = M(z) =
az + b
cz + d

, ad − bc � 0 (3.4)

is called the Möbius transformation.

It is known from complex analysis that,

• The Möbius transformations transform every generalized circle to another general-
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ized circle.

• The cross ratio defined in section 3.2 is invariant under the Möbius transformation

M.

• Symmetric points with respect to a circle transforms by M to another pair of sym-

metric points for transformed circle.

The Möbius transformations are related with linear transformations in C2. For two

vectors |z〉 and |w〉 related by

⎛⎜⎜⎜⎜⎜⎜⎝w1

w2

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝a b

c d

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝z1

z2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

corresponds the Möbius transformation

M(z) =
az + b
cz + d

acting on the homogenous coordinates z =
z1

z2

and w =
w1

w2

.

This can be applied to qubit coherent states. Transformation between two states

|z〉 and |w〉

|w〉 = U |z〉

or in matrix form

⎛⎜⎜⎜⎜⎜⎜⎝w0

w1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝d c

b a

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝z0

z1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

implies the Möbius transformation M(z) (7.4) for homogenous coordinates w =
w1

w0

and

z =
z1

z0

. This way every 2x2 matrix transformation of qubit states is related with Möbius
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transformation in complex plane :

U =

⎛⎜⎜⎜⎜⎜⎜⎝d c

b a

⎞⎟⎟⎟⎟⎟⎟⎠ ⇐⇒ M(z) =
az + b
cz + d

(3.5)

Möbius matrices in (3.5) and (3.6) are related by X gate linear transformation

(flipped Mobius transformation)

⎛⎜⎜⎜⎜⎜⎜⎝d c

b a

⎞⎟⎟⎟⎟⎟⎟⎠ = X

⎛⎜⎜⎜⎜⎜⎜⎝ a b

−b̄ ā

⎞⎟⎟⎟⎟⎟⎟⎠ X .

3.3.1. Unitary Möbius Transformations

From all linear transformations for qubit the important is the one class of transfor-

mations, preserving norm of the qubit states. If |w〉 = U |z〉 then

〈w|w〉 = 〈z|U†U |z〉 = 〈z|z〉

and

U†U = I,

so that matrix U should be unitary. General form of 2 × 2 unitary matrix is

U =

⎛⎜⎜⎜⎜⎜⎜⎝ a b

−b̄ ā

⎞⎟⎟⎟⎟⎟⎟⎠ (3.6)

where |a|2 + |b|2 = 1. This transformation determines generic one qubit gate. Correspond-

ing Möbius transformation from (3.5) is

w = M(z) =
āz − b̄
bz + a
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Theorem 3.1 (Stillwell, 1992)(Gauss) The maps of the z plane C induced by rotations of

S 2 are precisely the functions

w = M(z) =
az + b
−b̄z + ā

,

where a, b ∈ C and |a|2 + |b|2 = 1.

This theorem implies that every rotation of the Bloch sphere is determined by unitary

matrix, described by above Möbius transformation.

Definition of Möbius transformation (3.5), due to the special choice for homoge-

nous coordinate z is different from the standard notation in complex analysis, which corre-

sponds to z→ 1

z
. These two transformations are connected by simple change of notations

a → ā and b → b̄. In addition, the general form of unitary transformation U (3.6) is

defined up to phase,

U → ±iU.

Indeed, the Möbius transformation is invariant under rescaling :

U → γU,

where γ ∈ C. Due to unitarity, |γ| = 1 and γ = eiλ. The special case λ = ±π
2

gives

identification of U and ±iU.

3.3.2. Anti-Unitary Möbius Transformations

Symmetric point with respect to generalized circles are not Möbius transformed

points. Since it includes reflection or inversion in a line or in a circle with operation of

complex conjugation. To consider these points as Möbius transformed ones, an extension

of Möbius transformation is required.

Definition 3.3 (Stillwell, 1992) The anti - Möbius transformation or an anti- homogra-

phy transformations are

w = M(z̄) =
az̄ + b
cz̄ + d

,
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with a, b, c, d ∈ C and ad − bc � 0.

Theorem 3.2 (Blair, 2000) Anti - Homographies ( anti - Möbius) map lines and circles

to lines and circles and are conformal.

Definition 3.4 (Blair, 2000) The set of all Möbius and anti - Möbius transformations

forms the group called the extended Möbius transformations.

Reflections in axis and inversions in the circles considered in previous section

corresponds to special cases of anti - Möbius transformations.

1. Reflection in x- axis: z∗ = z̄⇐⇒ a = d = 1 and b = c = 0

2. Reflection in y- axis: z∗ = −z̄⇐⇒ a = 1, d = −1 and b = c = 0

3. Inversion in the unit circle: z∗ =
1

z̄
⇐⇒ a = 0, d = 0 and b = 1, c = 1

The antipodal point is also result of anti- Möbius transformations : z∗ = −1

z̄
⇐⇒

a = 0, d = 0 and b = 1, c = −1

As easy to see, every anti - Möbius transformation is composition of the usual Möbius

transformation M and special transformation K : z → z̄. According to this, anti- unitary

Möbius transformations and anti- unitary transformations can be derived.

Definition 3.5 Anti- unitary transformation UA is defined as UA = U · K where U is

unitary matrix and K is anti - unitary map K : z→ z̄.

This implies the following definition :

Definition 3.6 (Stillwell, 1992) Anti- unitary Möbius transformation is

w = M(z̄) =
az̄ + b
−b̄z̄ + ā

,

with a, b, c, d ∈ C and |a|2 + |b|2 = 1.

Theorem 3.3 (Stillwell, 1992) The maps of the z plane C induced by orientation - re-

versing isometries of S 2 are precisely the functions.

w = M(z̄) =
az̄ + b
−b̄z̄ + ā

with a, b, c, d ∈ C and |a|2 + |b|2 = 1.
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This theorem implies that every isometry of the Bloch sphere is determined by unitary

and anti- unitary matrices described by Möbius and anti - Möbius transformation.

3.3.3. Möbius Qubit Gates

According to previous consideration, every one qubit gate can be represented

by corresponding Möbius transformation acting on point in complex plane, representing

qubit state. For Pauli gates Möbius transformations are following :

1. Möbius X - Gate

X =

⎛⎜⎜⎜⎜⎜⎜⎝0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠ −→ w = MX(z) =
1

z

2. Möbius Y - Gate

Y =

⎛⎜⎜⎜⎜⎜⎜⎝0 −i

i 0

⎞⎟⎟⎟⎟⎟⎟⎠ −→ w = MY(z) = −1

z

3. Möbius Z - Gate

Z =

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 −1

⎞⎟⎟⎟⎟⎟⎟⎠ −→ w = MZ(z) = −z

Universal one qubit gates, the Hadamard H and the phase gate Rz(θ), correspond to

Möbius gates :

1. Möbius Hadamard Gate
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H =
1√
2

⎛⎜⎜⎜⎜⎜⎜⎝1 1

1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ −→ w = MH(z) =
1 − z
1 + z

(3.7)

2. Möbius Phase Gate

Rz(θ) =

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 eiθ

⎞⎟⎟⎟⎟⎟⎟⎠ −→ w = Mθ(z) = z eiθ (3.8)

Since Hadamard H and phase gate Rz(θ) are universal one qubit gates, MH(z) and Mθ(z)

are universal Möbius transformations, such that every unitary Möbius transformation is a

combination of these two gates.

3.3.3.1. Qubit States Generated by Möbius Gates

The above Möbius gates generates the following qubit states.

1. By Möbius X - Gate

MX : z→ 1

z
⇐⇒

∣∣∣∣∣1z
〉
=

z|0〉 + |1〉√
1 + |z|2

2. By Möbius Y - Gate

MY : z→ −1

z
⇐⇒

∣∣∣∣∣−1

z

〉
=
−z|0〉 + |1〉√

1 + |z|2

3. By Möbius Z - Gate
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MZ : z→ −z⇐⇒ | − z〉 = |0〉 − z|1〉√
1 + |z|2

The qubit states generated by universal Möbius gates are

1. By Möbius Hadamard Gate

MH(z) =
1 − z
1 + z

⇐⇒
∣∣∣∣∣1 − z
1 + z

〉
=

(1 + z) |0〉 + (1 − z) |1〉√|1 + z|2 + |1 − z|2

This state is called "Apollonius one gubit state" and it is studied in Chapter 5.

2. By Möbius Phase Gate

Mθ(z) = z eiθ ⇐⇒ |z eiθ〉 = |0〉 + z eiθ |1〉√
1 + |z|2

.

3.3.4. Anti - Möbius Qubit Gates

Since every anti - unitary transformation UA is composition of unitary transfor-

mation U and anti - unitary K, one can describe corresponding qubit gates and anti -

unitary Möbius transformations by such decomposition. Anti - unitary Möbius transfor-

mation K : z → z̄ is acting on one qubit coherent state as |z̄〉 = K|z〉. Combination of this

transformation with Möbius gates gives generic anti - Möbius transformation.

Definition 3.7 The set of Möbius and anti - Möbius qubit gates are called extended

Möbius gates.

Since every one qubit gate is composition of Hadamard and phase gates which are

universal gates, an addition of anti - unitary gate K allows one to describe also symmetric

and antipodal states.
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Theorem 3.4 The Hadamard gate H, the phase gate Rθ(z) and anti-unitary transforma-

tion K represent extended universal one qubit quantum gates.

3.3.4.1. Qubit States Generated by Anti - Möbius Gates

1. By K - Gate

K : z→ z̄⇐⇒ |z̄〉 = |0〉 + z̄ |1〉√
1 + |z|2

2. By Anti - Möbius Z - Gate

MZ K : z→ −z̄⇐⇒ | − z̄〉 = |0〉 − z̄ |1〉√
1 + |z|2

3. By Anti - Möbius X - Gate

MX K : z→ 1

z̄
⇐⇒

∣∣∣∣∣1z̄
〉
=

z̄|0〉 + |1〉√
1 + |z|2

This state is symmetric qubit state with respect to the unit circle.

4. By Anti - Möbius Y - Gate

MY K : z→ −1

z̄
⇐⇒

∣∣∣∣∣−1

z̄

〉
=
−z̄|0〉 + |1〉√

1 + |z|2

This state is antipodal qubit state.
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3.3.5. Gate Action on Qubit States

Extended Mobius transformations acting on given state |z〉 produce the set of re-

lated states as reflections in coordinate axis and in the unit circle :

|z〉 = |0〉 + z |1〉√
1 + |z|2

, |z̄〉 = |0〉 + z̄ |1〉√
1 + |z|2

,

| − z〉 = |0〉 − z |1〉√
1 + |z|2

, | − z̄〉 = |0〉 − z̄ |1〉√
1 + |z|2

,

∣∣∣∣∣1z
〉
=

z|0〉 + |1〉√
1 + |z|2

,

∣∣∣∣∣1z̄
〉
=

z̄|0〉 + |1〉√
1 + |z|2

,

∣∣∣∣∣−1

z

〉
=
−z|0〉 + |1〉√

1 + |z|2
,

∣∣∣∣∣−1

z̄

〉
=
−z̄|0〉 + |1〉√

1 + |z|2
.

In this list, the states with complex conjugation z → z̄ are connected by anti -

unitary transformation K.

Pauli gates are acting on the above states in the following way :

X |z〉 =
∣∣∣∣∣1z

〉
, Y |z〉 = i

∣∣∣∣∣−1

z

〉
, Z |z〉 = | − z〉,

X
∣∣∣∣∣−1

z̄

〉
= | − z̄〉, Y

∣∣∣∣∣−1

z̄

〉
= −i |z̄〉, Z

∣∣∣∣∣−1

z̄

〉
= −

∣∣∣∣∣1z̄
〉
.
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Transition amplitudes between the states are

〈z | − z〉 = 1 − |z|2
1 + |z|2 =

〈
−1

z̄

∣∣∣∣∣ 1

z̄

〉
,

〈
z
∣∣∣∣∣1z

〉
=

z + z̄
1 + |z|2 = −

〈
−1

z̄

∣∣∣∣∣ − z̄
〉
,

〈
z
∣∣∣∣∣ − 1

z

〉
=

z̄ − z
1 + |z|2 =

〈
−1

z̄

∣∣∣∣∣ z̄
〉
.

3.4. Universality of One Qubit Computations

In Section 2.3.5 universality of one qubit computations was shown for qubits on

the Bloch sphere. Below universality of one qubit computations in coherent state rep-

resentation is derived. An arbitrary coherent state |z〉 can be generated from basis state

|0〉:
|0〉 A0(z)−−−→ |z〉,

where

A0(z) =
1√

1 + |z|2

⎛⎜⎜⎜⎜⎜⎜⎝1 −z̄

z 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.9)

and

A†
0
(z) =

1√
1 + |z|2

⎛⎜⎜⎜⎜⎜⎜⎝ 1 z̄

−z 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

34



For this matrix det A0(z) = 1, and it is unitary A0†(z)A0(z) = I, so that

A†
0
(z)A0(z) =

1

1 + |z|2
⎛⎜⎜⎜⎜⎜⎜⎝1 + |z|

2 0

0 1 + |z|2
⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎠ = I.

In a similar way, the state |z〉 can be generated from state |1〉:

|1〉 A1(z)−−−→ |z〉,

where

A1(z) =
1√

1 + |z|2

⎛⎜⎜⎜⎜⎜⎜⎝ z̄ 1

−1 z

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.10)

and

A†
1
(z) =

1√
1 + |z|2

⎛⎜⎜⎜⎜⎜⎜⎝z −1

1 z̄

⎞⎟⎟⎟⎟⎟⎟⎠ .

For this matrix det A1(z) = 1, and it is unitary A†
1
(z)A1(z) = I , so that

A†
1
(z)A1(z) =

1

1 + |z|2
⎛⎜⎜⎜⎜⎜⎜⎝1 + |z|

2 0

0 1 + |z|2
⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎠ = I.

By using A0(z) (3.9), it is possible to relate arbitrary state |z1〉 with another arbi-

trary state |z2〉, |z1〉 → |z2〉:

|z1〉 = A0(z1) |0〉, |z2〉 = A0(z2) |0〉,
(A†

0
(z1)) |z1〉 = |0〉, (A†

0
(z2)) |z2〉 = |0〉.
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This implies that

(A†
0
(z1)) |z1〉 = (A†

0
(z2)) |z2〉 → |z2〉 = A0(z2)(A†

0
(z1)) |z1〉. (3.11)

Universality of one qubit computations in coherent state form means that, transformations

A0(z) and A1(z) can be written as decomposition of the Hadamard and the phase gate. It

can be seen explicitly from following formulas

A0(θ, φ) = e
−i
θ

2 R
(
φ +

π

2

)
H R(θ) H R

(
−φ − π

2

)
, (3.12)

and

A1 = A0 i X

giving

A1(θ, φ) = e
−i

⎛⎜⎜⎜⎜⎜⎜⎜⎝
θ

2
−
π

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
R

(
φ +

π

2

)
H R(θ) H R(−φ) H R(π) H R

(
−π

2

)
. (3.13)

The circuits for A0 (3.12) and for A1 (3.13) generate one qubit coherent state from |0〉 and

|1〉 states, respectively,

|0〉 A0(z)−−−→ |z〉 = |0〉 + z |1〉√
1 + |z|2

,

|1〉 A1(z)−−−→ |z〉 = |0〉 + z |1〉√
1 + |z|2

.
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In addition to this, applying A0 to state |1〉 gives the antipodal state,

|1〉 A0(z)−−−→
∣∣∣∣∣−1

z̄

〉
= |z∗〉 = −z̄ |0〉 + |1〉√

1 + |z|2
.

Since Hadamard and phase gates are universal Möbius gates, transformation A†
0
(z2)A0(z1)

(3.11) between arbitrary states |z1〉 and |z2〉, can be implemented by the set of these Möbius

gates.

3.4.1. Universality of Möbius Gates

The relation between 2 × 2 matrix gate

U =

⎛⎜⎜⎜⎜⎜⎜⎝ a b

−b̄ ā

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and the Möbius transformation

w = M(ξ) =
āξ − b̄
bξ + a

,

which has been discussed in Section 3.3. According to this relation, the Möbius gates

corresponding to A0(z) and A1(z) can be derived as

A0(z) =

⎛⎜⎜⎜⎜⎜⎜⎝1 −z̄

z 1

⎞⎟⎟⎟⎟⎟⎟⎠ a=1,b=−z̄−−−−−−→ Mz
0(ξ) =

ξ + z
−z̄ + 1

, (3.14)

and

A1(z) =

⎛⎜⎜⎜⎜⎜⎜⎝ z̄ 1

−1 z

⎞⎟⎟⎟⎟⎟⎟⎠ a=z̄,b=1−−−−−→ Mz
1(ξ) =

zξ − 1

ξ + z̄
. (3.15)
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The matrices A0(z) and A1(z) are acting on states

⎛⎜⎜⎜⎜⎜⎜⎝ξ0

ξ1

⎞⎟⎟⎟⎟⎟⎟⎠ and corresponding Möbius trans-

formations act on projective coordinates ξ =
ξ1

ξ0

. The Möbius transformation M0(z) is

determined by zero at ξ = −z and pole at ξ =
1

z̄
, while M1(z) is determined by zero at

ξ =
1

z
and pole at ξ = −z̄. These transformations act on computational basis |0〉 and |1〉,

corresponding to z = 0 and z = ∞, as

|0〉 A0(z)−−−→ |z〉, Mz
0(0) = z,

|1〉 A0(z)−−−→
∣∣∣∣∣−1

z̄

〉
, Mz

0(∞) = −1

z̄
,

|1〉 A1(z)−−−→ |z〉 Mz
1(∞) = z

|0〉 A1(z)−−−→
∣∣∣∣∣−1

z̄

〉
Mz

1(0) = −1

z̄

Combining these transformations like in (3.11), it is possible to derive the Möbius trans-

formation, relating arbitrary one qubit states |z1〉 → |z2〉,

A0(z2)A†
0
(z1)←→ Mz1z2(ξ) =

(1 + z̄1z2)ξ + z2 − z1

(z̄1 − z̄2)ξ + 1 + z1z̄2

,

|z1〉
A0(z2)A†

0
(z1)−−−−−−−−→ |z2〉, z2 = Mz1z2(z1).

Universality decomposition of one qubit gates (3.12) and (3.13) in terms of the

Hadamard and the phase gates, implies that corresponding Möbius transformations (3.14)
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and (3.15) can be decomposed to universal Möbius gates, namely the Hadamard Möbius

gate (3.7), w = MH(z) =
1 − z
1 + z

, and the phase Möbius gate (3.8), w = Mθ(z) = z eiθ:

Mz
0(ξ) = M

φ+
π

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝MH

⎛⎜⎜⎜⎜⎜⎜⎜⎝Mθ

⎛⎜⎜⎜⎜⎜⎜⎜⎝MH

⎛⎜⎜⎜⎜⎜⎜⎜⎝M
−φ−

π

2

(ξ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

Mz
1(ξ) = M

φ+
π

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝MH

⎛⎜⎜⎜⎜⎜⎜⎜⎝Mθ

⎛⎜⎜⎜⎜⎜⎜⎜⎝MH

⎛⎜⎜⎜⎜⎜⎜⎜⎝M−φ

⎛⎜⎜⎜⎜⎜⎜⎜⎝MH

⎛⎜⎜⎜⎜⎜⎜⎜⎝Mπ

⎛⎜⎜⎜⎜⎜⎜⎜⎝MH

⎛⎜⎜⎜⎜⎜⎜⎜⎝M
−
π

2

(ξ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

3.5. Fidelity Between Symmetric States

Definition 3.8 Fidelity between symmetric states is

F = |〈z∗|z〉| (3.16)

where |z〉 and |z∗〉 are symmetric qubit states, corresponding to symmetric points z and z∗

with respect to a generalized circle.

From definition, it is evident that

0 ≤ F ≤ 1.

Indeed, on the generalized circle the symmetric states coincide and F = 1. This char-

acteristic of one qubit state is important due to several reasons. For two qubit states it

gives concurrence characteristics of entanglement. As it will be discuss in Chapter 5, the

concurrence in this form is constant along Apollonius circles. It is also can characterize

multi-qubit states of the special form.

It would be shown below that fidelity defined in this way is invariant under unitary

Möbius transformations. As is well known the generic Möbius transformation transforms

symmetric points z, z∗ to symmetric points w, w∗. This implies that corresponding unitary
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transformation maps symmetric states |z〉 , |z∗〉 with respect to circle S 1, to symmetric

states |w〉 , |w∗〉 with respect to another circle S 2 where circle S 2 is Möbius image of circle

S 1. Since our Möbius transformations are unitary, the inner product between symmetric

states is preserved.

〈z∗|z〉 = 〈w∗|w〉.

Then, the corresponding fidelities coincide:

Fz = |〈z∗|z〉| = |〈w∗|w〉| = Fw. (3.17)

This is why if

w = M(z) w∗ = M(z∗)

is Möbius transformation of symmetric points, then fidelity is not changing.

F = |〈z∗|z〉| = |〈w∗|w〉| = |〈M(z∗)|M(z)〉|.
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CHAPTER 4

TWO QUBIT STATES

Here some notions for tensor product of qubit states is introduced. For more

details see (Benenti, Casati and Strini, 2004) and (McMahon, 2008).

4.1. Two Qubit States

Definition 4.1 Tensor Product

Consider two Hilbert spacesH1 andH2 of dimensions m and n, respectively. The Hilbert

space H is the tensor product of these two spaces, such that H = H1 ⊗ H2. The state

|ψ〉 ∈ H , associated with each pair of vectors |α〉 ∈ H1 and |β〉 ∈ H2 is denoted as

|ψ〉 = |α〉 ⊗ |β〉,

and is called the tensor product of states |α〉 and |β〉. The shorthand notation for tensor

product is

|α〉 ⊗ |β〉 ≡ |αβ〉 ≡ |α〉 |β〉.

Definition 4.2 The matrix representation for tensor product of one qubit states

|α〉 =
⎛⎜⎜⎜⎜⎜⎜⎝α0

α1

⎞⎟⎟⎟⎟⎟⎟⎠

and

|β〉 =
⎛⎜⎜⎜⎜⎜⎜⎝β0

β1

⎞⎟⎟⎟⎟⎟⎟⎠
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is

|α〉 ⊗ |β〉 =
⎛⎜⎜⎜⎜⎜⎜⎝α0

α1

⎞⎟⎟⎟⎟⎟⎟⎠ ⊗
⎛⎜⎜⎜⎜⎜⎜⎝β0

β1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0 ·
⎛⎜⎜⎜⎜⎜⎜⎝β0

β1

⎞⎟⎟⎟⎟⎟⎟⎠
α1 ·

⎛⎜⎜⎜⎜⎜⎜⎝β0

β1

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0β0

α0β1

α1β0

α1β1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Definition 4.3 If H1 and H2 are two dimensional vector spaces (m = n = 2), with basis

vectors |0〉 and |1〉, thenH has dimension m · n = 4 with following basis vectors,

|0〉 ⊗ |0〉 = |00〉, |0〉 ⊗ |1〉 = |01〉, |1〉 ⊗ |0〉 = |10〉, |1〉 ⊗ |1〉 = |11〉

called the computational basis. The matrix representation for the computational basis

states is

|0〉 ⊗ |0〉 =
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ ⊗
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, |0〉 ⊗ |1〉 =

⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ ⊗
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

|1〉 ⊗ |0〉 =
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ ⊗
⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, |1〉 ⊗ |1〉 =

⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ ⊗
⎛⎜⎜⎜⎜⎜⎜⎝0
1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Definition 4.4 The generic two qubit state |ψ〉 ∈ H is defined as

|ψ〉 =
∑

i, j=0,1

ci j|i〉 ⊗ | j〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉, (4.1)

where complex valued coefficients ci j = 〈i j|ψ〉 determine probabilities pi j = |〈i j|ψ〉|2 ,
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i, j = 0, 1. The total probability is

∑
i j

pi j = p00 + p01 + p10 + p11 = 1,

implying normalization condition for state |ψ〉,

〈ψ|ψ〉 = |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1.

4.1.1. Classification of Two Qubit States

This section introduces, classification of two qubit states as separable and entan-

gled states .

Definition 4.5 If the generic two qubit state |ψ〉 in (4.1) can be represented as a tensor

product of one qubit states, then state |ψ〉 is called the separable state

|ψ〉 = |α〉 ⊗ |β〉 ≡ |α β〉

Proposition 4.1 The generic separable two qubit state as the tensor product of one qubit

states, |α〉 = α0|0〉 + α1|1〉 and |β〉 = β0|0〉 + β1|1〉 has the form

|αβ〉 = α0β0|00〉 + α0β1|01〉 + α1β0|10〉 + α1β1|11〉.
Proof Tensor product of states |α〉 = α0|0〉 + α1|1〉 and |β〉 = β0|0〉 + β1|1〉 gives

|αβ〉 = |α〉|β〉 = (α0|0〉 + α1|1〉)(β0|0〉 + β1|1〉)
= α0|0〉(β0|0〉 + β1|1〉) + α1|1〉(β0|0〉 + β1|1〉)
= α0β0|00〉 + α0β1|01〉 + α1β0|10〉 + α1β1|11〉.

�
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Definition 4.6 If the generic two qubit state |ψ〉 in (4.1), cannot be represented as a tensor

product of one qubit states, then state |ψ〉 is called the entangled state

|ψ〉 � |α〉 ⊗ |β〉

4.1.1.1. Generic Separable States

In this section, criterium of separability for generic two qubit state is derived.

Lemma 4.1 An arbitrary generic two qubit state

|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉

can be represented as

|ψ〉 = |0〉 ⊗ |ψ1〉 + |1〉 ⊗ |ψ2〉, (4.2)

where the one qubit states are

|ψ1〉 = c00|0〉 + c01|1〉, |ψ2〉 = c10|0〉 + c11|1〉.
Proof It follows from decomposition

|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉
= |0〉 ⊗ (c00|0〉 + c01|1〉)︸�������������︷︷�������������︸

|ψ1〉
+|1〉 ⊗ (c10|0〉 + c11|1〉)︸�������������︷︷�������������︸

|ψ2〉
,

thus

|ψ〉 = |0〉 ⊗ |ψ1〉 + |1〉 ⊗ |ψ2〉.
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�

From this lemma the criterium of separability follows.

Theorem 4.1 Separability and Linear Dependence

The state

|ψ〉 = |0〉 ⊗ |ψ1〉 + |1〉 ⊗ |ψ2〉
is separable if and only if the states |ψ1〉 and |ψ2〉 are linearly dependent

|ψ1〉 = λ|ψ2〉.
Proof

• (=⇒) Assume |ψ〉 is a separable two qubit state, such that

|ψ〉 = |α〉 ⊗ |β〉,

where |α〉 = α0|0〉 + α1|1〉. Then

|ψ〉 = |α〉 ⊗ |β〉 = (α0|0〉 + α1|1〉) ⊗ |β〉 = α0|0〉 ⊗ |β〉 + α1|1〉 ⊗ |β〉,

and the state |ψ〉 can be represented as

|ψ〉 = α0|0〉 ⊗ |β〉 + α1|1〉 ⊗ |β〉 = |0〉 ⊗ α0|β〉︸︷︷︸
|ψ1〉
+|1〉 ⊗ α1|β〉︸︷︷︸

|ψ2〉
.

It is clear that, states |ψ1〉 and |ψ2〉 are linearly dependent,

|ψ1〉 = λ|ψ2〉.

• (⇐=) Assume that the state |ψ〉 in (4.2) is such that |ψ1〉 = λ|ψ2〉 are linearly

dependent states. Substitution of state |ψ1〉 into (4.2) gives

|ψ〉 = |0〉 ⊗ λ|ψ2〉 + |1〉 ⊗ |ψ2〉 = (λ|0〉 + |1〉) ⊗ |ψ2〉.
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This shows that the state |ψ〉 is separable.

�

It should be noticed that instead of representation (4.2), another similar form of

decomposition is possible to use

|χ〉 = (c00|0〉 + c10|1〉)︸�������������︷︷�������������︸
|χ1〉

⊗|0〉 + (c10|0〉 + c11|1〉)︸�������������︷︷�������������︸
|χ2〉

⊗|1〉. (4.3)

In this case, separability of state |χ〉 is related with linear dependence of states |χ1〉 and

|χ2〉: |χ1〉 = λ|χ2〉.

4.1.1.2. Separability and Determinant

As it is well known, for the linear dependent vectors, the determinant of cor-

responding coefficients vanishes. This is why, separability of two qubit states can be

connected with values of the determinant.

Theorem 4.2 The generic state |ψ〉 in (4.1) is separable if and only if determinant of the

coefficients vanishes

D =

∣∣∣∣∣∣∣∣
c00 c01

c10 c11

∣∣∣∣∣∣∣∣ = 0. (4.4)

Proof As it is mentioned above, the state |ψ〉, represented in the form (4.2) is separable,

if and only if one qubit states are linearly dependent

|ψ1〉 = λ|ψ2〉. (4.5)

• (=⇒) Suppose that one qubit states |ψ1〉 and |ψ2〉 are expended as |ψ1〉 = c00|0〉 +
c01|1〉 and |ψ2〉 = c10|0〉 + c11|1〉. Substitution into (4.5) gives

|ψ1〉 = c00|0〉 + c01|1〉 = λ(c10|0〉 + c11|1〉) = λ|ψ2〉.
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This implies

c00 = λc10, c01 = λc11,

and corresponding determinant

D =

∣∣∣∣∣∣∣∣
c00 c01

c10 c11

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
λc10 λc11

c10 c11

∣∣∣∣∣∣∣∣ = 0.

• (⇐=) Let for states |ψ1〉 = c00|0〉 + c01|1〉 and |ψ2〉 = c10|0〉 + c11|1〉 the determinant

vanishes

D =

∣∣∣∣∣∣∣∣
c00 c01

c10 c11

∣∣∣∣∣∣∣∣ = 0.

Then

c00 · c11 = c10 · c01

or
c00

c10

=
c01

c11

≡ λ,
and as follows, the states |ψ1〉 and |ψ2〉 are linearly dependent

|ψ1〉 = λ|ψ2〉.
�

As a result, this theorem establishes separability criterium for two qubit state in

terms of vanishing determinant.

4.1.1.3. Separability, Determinant and Area Relation

Since determinant corresponding to two real vectors in plane has geometrical

meaning of the parallelogram area, it allows one to relate separability condition with that

area. In the special case of two qubit states with real coefficients, expansion (4.2) relates
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this qubit state with pair of real vectors �r0 ≡ (r00, r01) and �r1 ≡ (r10, r11),

|ψ〉 = r00|00〉 + r01|01〉 + r10|10〉 + r11|11〉
= |0〉(r00|0〉 + r01|1〉) + |1〉(r10|0〉 + r11|1〉). (4.6)

Definition 4.7 The one qubit state

|r〉 = r0|0〉 + r1|1〉, r2
0 + r2

1 = 1

with real coefficients r0 and r1 is called the rebit.

This definition implies that generic two qubit rebit state (4.6) can be represented by two

one rebit states. Then, separability condition for two rebit state is related with linear

dependence of two real vectors �r0 ≡ (r00, r01) and �r1 ≡ (r10, r11) corresponding to rebits

|r0〉 = r00|0〉 + r01|1〉,

|r1〉 = r10|0〉 + r11|1〉.
These vectors determine the parallelogram in plane with area

A = |�r0 × �r1| =
∣∣∣∣∣∣∣∣

r00 r01

r10 r11

∣∣∣∣∣∣∣∣ = |�r0||�r1| sin θ. (4.7)

For separable two rebit states, vectors �r0 and �r1 are linearly dependent

�r0 = λ�r1

and corresponding determinant and area are vanishing.The vanishing area condition A = 0

means that angle between these two vectors is θ = 0 (parallel) or θ = π (anti-parallel).

• Maximum and Minimum Area
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If A � 0, the corresponding determinant D � 0 and related two rebit state is entangled.

Since 0 ≤ A ≤ Amax, this area can be considered as a measure of entanglement for two

rebit states.

To find maximum value of area Amax, the following optimization problem can be

formulated.

Optimization Problem (Real Case)

Find maximal area of parallelogram (�r0, �r1) with constraint |�r0|2 + |�r1|2 = 1.

Figure 4.1. Parallelogram

Solution: The maximal area of parallelogram (4.7) corresponds to maximal value

of sin θ, which is 1 for θ =
π

2
. Then one needs to find maximal value of the area

A = |r0||r1| sin
π

2
= |r0||r1|,

with constraint |r0|2 + |r1|2 = 1. To find this value two approaches can be proposed.

1. In the first approach by parametrization |r0| = cos β , |r1| = sin β the area formula

becomes

Amax = (cos β sin β)max =
1

2
(sin 2β)max =

1

2
.

2. In the second approach, by denoting r0 ≡ μ the constraint becomes

r2
0 + r2

1 = μ
2 + r2

1 = 1.
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It gives r1 =
√

1 − μ2 and the area

A(μ) = μ
√

1 − μ2.

The maximal value of this area corresponds to extremum point :

dA
dμ
=

1 − 2μ2√
1 + μ2

= 0, (4.8)

implying that μ2 =
1

2
. Then, substituting this into A(μ) gives the maximal area

A(μ)max = μ
√

1 − μ2 =

√
1

2

√
1

2
=

1

2
.

According to above optimization problem, the area of parallelogram correspond-

ing to arbitrary two rebit states is bounded: 0 ≤ A ≤ 1

2
. This suggests to introduce positive

number

C = 2A =

∣∣∣∣∣∣∣∣
r00 r01

r10 r11

∣∣∣∣∣∣∣∣ ,
bounded between 0 ≤ C ≤ 1. This number can characterize the level of entanglement

for arbitrary two rebit state. If the state is separable then C = 0, if the state is maximally

entangled, then C = 1.

4.2. Concurrence and Determinant

For genetic two qubit state with complex coefficients, the separability and entan-

glement are related with linear dependence of qubits |ψ1〉 and |ψ2〉 in (4.2). For separable

states, the complex vectors �c0 ≡ (c00, c01) and �c1 ≡ (c10, c11) are linearly dependent and

determinant (4.4) vanishes. For entangled states, these vectors are linearly independent

and determinant is non zero. In the real case of rebit states, the determinant as a real

number was bounded and related with area of parallelogram. In a similar way, in complex

case, by taking modulus of complex determinant as a complex area the real number is
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defined

D =

∣∣∣∣∣∣∣∣det

⎛⎜⎜⎜⎜⎜⎜⎝ c00 c01

c10 c11

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

c00 c01

c10 c11

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ .

This determinant is bounded and can be considered as a measure of entanglement

0 ≤ D ≤ Dmax.

When D = 0 the state is separable and for D = Dmax it is maximally entangled. To find

maximal value of this determinant Dmax, the following lemma would be used.

Lemma 4.2 Module of determinant D satisfies inequality

D =

∣∣∣∣∣∣∣∣det

⎛⎜⎜⎜⎜⎜⎜⎝ c00 c01

c10 c11

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣∣ ≤ max (|c00||c11| + |c01||c10|)

Proof

D2 = |c00c11 − c01c10|2 = |c00|2|c11|2 + |c01|2|c10|2 − 2|c00||c11||c01||c10| cosα

where α = arg c00 + arg c11 − arg c01 − arg c10. Since | cosα| ≤ 1, maximal value of

determinant is

D2
max = max(|c00|2|c11|2 + |c01|2|c10|2 + 2|c00||c11||c01||c10|) = max((|c00||c11| + |c01||c10|)2)

and as follows

Dmax = max (|c00||c11| + |c01||c10|).
�

To find maximal value of the determinant, the following optimization problem

arises. By denoting x ≡ |c00|, y ≡ |c11|, z ≡ |c01|, t ≡ |c10| the problem is to find maximal

value of

D(x, y, z, t) = xy + zt,
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where x, y, z, t are non negative numbers, satisfying constraint

x2 + y2 + z2 + t2 = 1.

Proposition 4.2 Module of determinant D is bounded

0 ≤ D ≤ 1

2

Proof By solving constraint for t =
√

1 − x2 − y2 − z2, the function becomes

D(x, y, z) = xy + z
√

1 − x2 − y2 − z2.

For critical points it satisfying

∂D
∂x
=
∂D
∂y
=
∂D
∂z
= 0,

and gives relations

1 − x2 − y2 − z2 = z2, x = y.

This implies the circle equation

x2 + z2 =
1

2
.

Parametrization

x =
1√
2

cos μ, z =
1√
2

sin μ =⇒ y = x =
1√
2

cos μ

and

t =
√

1 − x2 − y2 − z2 =
√

z2 = z =
1√
2

sin μ.

In this parametrization,

Dmax = xy + zt = x2 + z2 =
1

2
.

For separable states Dmin = 0, this completes the proof. �

52



Due to the last proposition, it is convenient, instead of D to introduce C = 2D so

that 0 ≤ C ≤ 1.

Definition 4.8 For the generic two qubit state

|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉,

with normalization condition

|c00|2 + |c01|2 + |c10|2 + |c11|2 = 1,

the concurrence as a degree of entanglement is given by the determinant formula

C =

∣∣∣∣∣∣∣∣2
∣∣∣∣∣∣∣∣

c00 c01

c10 c11

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ , 0 ≤ C ≤ 1. (4.9)

• If C = 0 =⇒ |ψ〉 is seperable state

• If C = 1 =⇒ |ψ〉 is maximally entangled state

• If 0 < C ≤ 1 =⇒ |ψ〉 is entangled state

For particular case of two rebit states, the concurrence coincides with double area:

C = 2A,

and in generic case is double of complex area.

The Bell States

|α±〉 = |00〉 ± |11〉√
2

|β±〉 = |01〉 ± |10〉√
2

are maximally entangled states with C = 1, as easy to see from the determinant formula

(4.9).
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Generalized Bell States The above Bell states are the particular cases of the gen-

eralized Bell states. For the first pair of states it is

|ψ〉 = cos
θ

2
|00〉 + sin

θ

2
eiϕ|11〉.

This state is normalized 〈ψ|ψ〉 = cos2 θ

2
+ sin2 θ

2
= 1 and the concurrence is

C =

∣∣∣∣∣∣∣∣2
∣∣∣∣∣∣∣∣

c00 c01

c10 c11

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣2
∣∣∣∣∣∣∣∣∣

cos
θ

2
0

0 sin
θ

2
eiϕ

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ = | sin θ|.

These states can be represented by points (θ, ϕ) on unit sphere S2. Values of θ character-

izes of degree of entanglement.

• If θ = 0⇒ C = 0 then |ψ〉 = |00〉 represents separable state- the north pole

• If θ = π⇒ C = 0 then |ψ〉 = |11〉 is separable state- the south pole

• If θ =
π

2
and θ =

3π

2
⇒ C = 1 for two maximally entangled states

|ψ1〉 = |00〉 + eiϕ|11〉√
2

, |ψ2〉 = |00〉 − eiϕ|11〉√
2

,

on the equator.

It is possible to restrict value of θ between

0 < θ < π,

then both of these states can be described by the same formula.

• These states are orthogonal; 〈ψ1|ψ2〉 = 0 for any ϕ. For ϕ = 0 they reduce to the

first pair of Bell states. Similar consideration can be done for the second pair of

Bell states.
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4.2.1. Rotation Invariance of Concurrence

Determinant formula for concurrence, as well as the area formula shows invari-

ance of concurrence under rotation of two parallelogram vectors. Indeed, for two rebit

state, the concurrence as an area is

C = 2A = 2|�r0 × �r1| = 2

∣∣∣∣∣∣∣∣
r00 r10

r01 r11

∣∣∣∣∣∣∣∣ . (4.10)

For rotation of vectors

�r′
0
= R�r0, �r′

1
= R�r1,

on angle α the matrix representation is

⎛⎜⎜⎜⎜⎜⎜⎝r00

r01

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ cosα sinα

− sinα cosα

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝r
′
00

r′01

⎞⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎝r10

r11

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ cosα sinα

− sinα cosα

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝r
′
10

r′11

⎞⎟⎟⎟⎟⎟⎟⎠ .

From these matrices

r00 = cosα r′00 + sinα r′01, r10 = cosα r′10 + sinα r′11,

r01 = − sinα r′00 + cosα r′01, r11 = − sinα r′10 + cosα r′11.

Then the concurrence is

C = 2

∣∣∣∣∣∣∣∣
r00 r10

r01 r11

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
cosα r′00 + sinα r′01 cosα r′10 + sinα r′11

− sinα r′00 + cosα r′01 − sinα r′10 + cosα r′11

∣∣∣∣∣∣∣∣
= 2(cos2 α + sin2 α)r′00 r′11 − 2(cos2 α + sin2 α)r′01 r′10

= 2

∣∣∣∣∣∣∣∣
r′00 r′10

r′01 r′11

∣∣∣∣∣∣∣∣ = 2|�r′
0
× �r′

1
|.
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In the complex form, denoting

z0 ≡ r00 + ir01, z̄0 ≡ r00 − ir01,

z1 ≡ r10 + ir11, z̄1 ≡ r10 − ir11.

and solving for real vectors

r00 =
z0 + z̄0

2
, r01 =

z0 − z̄0

2i
,

r10 =
z1 + z̄1

2
, r11 =

z1 + z̄1

2i
.

the concurrence becomes

C = |z̄0z1 − z0z̄1|.
Rotation of complex vectors z0 = z′0e−iα, z1 = z′1e−iα preserves this concurrence formula.

(Similar invariance relation can be derived for concurrence in generic two qubit state)

As it was shown in Section 3, fidelity between symmetric states is invariant under Möbius

transformation, and as the concurrence it is bounded 0 ≤ F ≤ 1. This suggests on possible

relation between concurrence and fidelity for symmetric states.

4.3. Concurrence and Fidelity

In Section 3, fidelity between symmetric qubit states was defined and it was shown

that this fidelity (3.16) is invariant under Möbius transformation. In previous section, it

was shown that, concurrence for two qubit states is invariant under rotations. This is why,

the next problem arises:

"For given generic two qubit state |ψ〉, find the symmetric two qubit state |ψ̃〉, such

that fidelity between these states

F = |〈ψ̃|ψ〉| = C,
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gives the concurrence ?"

For solving this problem the generic two qubit state

|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c00

c01

c10

c11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

can be represented in the form

|ψ〉 = |0〉 (c00|0〉 + c01|1〉) + |1〉 (c10|0〉 + c11|1〉),

with one qubit states

|c0〉 = c00|0〉 + c01|1〉, |c1〉 = c10|0〉 + c11|1〉,

giving

|ψ〉 = |0〉 ⊗ |c0〉 + |1〉 ⊗ |c1〉. (4.11)

Suppose that, the symmetric state is in the generic form

|ψ̃〉 = c̃00|00〉 + c̃01|01〉 + c̃10|10〉 + c̃11|11〉,

and can be represented as

|ψ̃〉 = |0〉 ⊗ |c̃0〉 + |1〉 ⊗ |c̃1〉,
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where the pair of one qubits is

|c̃0〉 = c̃00|0〉 + c̃01|1〉, |c̃1〉 = c̃10|0〉 + c̃11|1〉.

Fidelity between these states is

F = |〈ψ̃|ψ〉| = |〈c̃0|c0〉 + 〈c̃1|c1〉|
= |c̃00c00 + c̃01c01 + c̃10c10 + c̃11c11|.

Comparison with the concurrence C, calculated according to the determinant formula

C =

∣∣∣∣∣∣∣∣2
∣∣∣∣∣∣∣∣

c00 c01

c10 c11

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ = |2 |c00c11 − c01c10|| = |c11c00 − c10c01 − c01c10 + c00c11|

gives a solution, relating coefficients between symmetric states

c̃00 = e−iγc̄11, c̃11 = e−iγc̄00, c̃01 = −e−iγc̄10, c̃10 = −e−iγc̄01, (4.12)

where γ is an arbitrary phase. Then, desired one qubit states are

|c̃0〉 = e−iγ (c̄11|0〉 − c̄10|1〉), |c̃1〉 = e−iγ (−c̄01|0〉 + c̄00|1〉).

By choosing phase γ = π one gets in particular

|c̃0〉 = −c̄11|0〉 + c̄10|1〉, |c̃1〉 = c̄01|0〉 − c̄00|1〉.

Then, the symmetric state |ψ̃〉 is represented as

|ψ̃〉 = |0〉 (−c̄11|0〉 + c̄10|1〉) + |1〉 (c̄01|0〉 − c̄00|1〉)
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or

|ψ̃〉 = −c̄11|00〉 + c̄01|01〉 + c̄10|10〉 − c̄00|11〉. (4.13)

The symmetric state obtained above, can be generated by anti - unitary two qubit gates.

Proposition 4.3 Symmetric state |ψ̃〉 results from application of unitary Y ⊗ Y gate and

anti-unitary K gate

|ψ̃〉 = Y ⊗ Y |ψ̄〉 = (Y ⊗ Y) K|ψ〉,

where |ψ̄〉 = K|ψ〉.
Proof Application Y |0〉 = i|1〉 and Y |1〉 = −i|0〉 gives

Y ⊗ Y |00〉 = Y |0〉 ⊗ Y |0〉 = −|11〉, Y ⊗ Y |11〉 = Y |1〉 ⊗ Y |1〉 = −|00〉,
Y ⊗ Y |01〉 = Y |0〉 ⊗ Y |1〉 = |10〉, Y ⊗ Y |10〉 = Y |1〉 ⊗ Y |0〉 = |01〉.

Then

Y ⊗ Y |ψ̄〉 = −c̄11|00〉 + c̄10|01〉 + c̄01|10〉 − c̄00|11〉

and comparison with (4.13) shows that it is the symmetric state |ψ̃〉. �

Combining the above results together, solution of the problem posed at the beginning of

this section is given by following proposition,

Proposition 4.4 Concurrence for generic two qubit state is equal to fidelity between sym-

metric states |ψ〉 and |ψ̃〉 = Y ⊗ Y |ψ̄〉,

C = 2D = |2 |c00c11 − c01c10|| = |〈ψ̃|ψ〉| = F.
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4.4. Antipodal Points Generating Symmetric States

The generic two qubit state has 6 real or 3 complex parameters. Then, transition

from given state |ψ〉 to the symmetric state |ψ̃〉 can be implemented by a proper trans-

formation of these complex numbers in complex planes. In present section it would be

shown for that generic state |ψ〉, characterized by three complex numbers z,w, η the cor-

responding symmetric state |ψ̃〉 appears as combined antipodal transformation of these

points. For state |ψ〉 written in the form

|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉
= |0〉 (c00|0〉 + c01|1〉) + |1〉 (c10|0〉 + c11|1〉)
= |0〉 c00 (|0〉 + z |1〉) + |1〉 c10 (|0〉 + w |1〉), (4.14)

where

z ≡ c01

c00

, w ≡ c11

c10

,

the symmetric state |ψ̃〉 is

|ψ̃〉 = c̃00|00〉 + c̃01|01〉 + c̃10|10〉 + c̃11|11〉
= |0〉 (c̃00|0〉 + c̃01|1〉) + |1〉 (c̃10|0〉 + c̃11|1〉)
= |0〉 c̃00 (|0〉 + z̃ |1〉) + |1〉 c̃10 (|0〉 + w̃ |1〉),

and

z̃ ≡ c̃01

c̃00

, w̃ ≡ c̃11

c̃10

.
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Due to relations between symmetric states (4.12),

z̃ =
c̃01

c̃00

=
−e−iγc̄10

e−iγc̄11

=
1

− c̄11

c̄10

= − 1

w̄
,

and

w̃ =
c̃11

c̃10

=
e−iγc̄00

−e−iγc̄01

=
1

− c̄01

c̄00

= −1

z̄
.

This shows that the symmetric state is related with transformation of points z and w to the

antipodal mutual points

z −→ − 1

w̄
, w −→ −1

z̄
.

By choosing

c00 =
γ00√

1 + |z|2
, c10 =

γ10√
1 + |w|2

,

and substituting these into (4.14), one gets

|ψ〉 = γ00 |0〉|z〉 + γ10 |1〉|w〉, (4.15)

where one qubit states are written in coherent state form

|z〉 = |0〉 + z |1〉√
1 + |z|2

, |w〉 = |0〉 + w |1〉√
1 + |w|2

. (4.16)

The state (4.15) can be rewritten as

|ψ〉 = γ00 (|0〉|z〉 + γ10

γ00

|1〉|w〉),
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where

〈ψ|ψ〉 = |γ00|2 + |γ10|2 = 1.

By denoting

η ≡ γ10

γ00

and solving the constraint, the state |ψ〉 up to global phase acquires the form

|ψ〉 = |0〉|z〉 + η |1〉|w〉√
1 + |η|2

. (4.17)

4.4.1. Coherent Like Two Qubit States

The generic two qubit state (4.17), in particular cases depends on one complex

parameter and formally looks like the one qubit coherent state (4.16):

1. In the limit z→ 0, w→ ∞ states |z〉 → |0〉, |w〉 → |1〉 and state

|ψ〉 = |00〉 + η |11〉√
1 + |η|2

. (4.18)

2. In the limit z→ ∞, w→ 0 states |z〉 → |1〉, |w〉 → |0〉 and state

|ψ〉 = |01〉 + η |10〉√
1 + |η|2

≡ |χ〉. (4.19)

This one qubit like states can be generated from |00〉 and |11〉 states by one qubit gates

A0(η) (3.9) and A1(η) (3.10), and generalized CNOT gates.

The concurrence for both states is the same and equal

C =
2|η|

1 + |η|2 . (4.20)

In the limits η → 0 and η → ∞ it is zero C = 0. The concurrence is constant along

62



concentric circles |η| = r

C =
2r

1 + r2

in complex η plane. For the circle |η| = 1, the concurrence reaches maximal value C =

1. Comparison of these two, particular two qubit states with one qubit coherent state

shows formal similarity. Moreover, in both cases Shannon entropy for one qubit and the

concurrence for two qubits, are constant along the concentric circles. This suggest that

concurrence is related with level of randomness for two qubit states. And it measures how

close is the state and the symmetric one. The symmetric states with respect to (4.18) and

(4.19) are

|ψ̃〉 = η̄ |00〉 + |11〉√
1 + |η|2

, |χ̃〉 = η̄ |01〉 + |10〉√
1 + |η|2

.

Like in one qubit coherent state representation, these states correspond to inversion of

point η in the unit circle: η → 1

η̄
. According to proposition (4.4), the concurrence for

states (4.18) and (4.19) in (4.20) can be calculated by fidelity between symmetric states.

Indeed,

Fψ = |〈ψ̃|ψ〉| = 2|η|
1 + |η|2 = C

Fχ = |〈χ̃|χ〉| = 2|η|
1 + |η|2 = C

coincide with the formula (4.20) .

4.4.2. Concurrence for the Generic Case

Returning back to the generic state (4.17) and calculating the concurrence for this

state according to the determinant formula gives

C = 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1√
(1 + |z|2)(1 + |η|2)

z√
(1 + |z|2)(1 + |η|2)

η√
(1 + |z|2)(1 + |η|2)

ηw√
(1 + |z|2)(1 + |η|2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

2 |η|
(1 + |η|2)

√
(1 + |z|2)(1 + |w|2)

∣∣∣∣∣∣∣∣
1 z

1 w

∣∣∣∣∣∣∣∣
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or

C = 2
|η| |w − z|

(1 + |η|2)
√

(1 + |z|2)(1 + |w|2)
. (4.21)

This formula in particular cases

1. in the limit z→ 0, w→ ∞

2. in the limit z→ ∞, w→ 0

reduces the concurrence (4.20.

Complex numbers z and w, determining states |z〉 and |w〉 are involved to concur-

rence formula (4.21) in a symmetric way : it is invariant under exchange z ↔ w. If two

points z and w coincide: z = w, then C = 0 and states are separable. For entangled states

z � w and |z − w| � 0. The Euclidean distance between these two points determines the

level of entanglement. It is noted that in contrast to separability condition for two qubit

state (4.11), where two one qubit states are linearly dependent, now separability corre-

sponds just to equality of two states |z〉 and |w〉 : |z〉 = |w〉 and points z = w. This is due to

that z and w are homogenous coordinates, given by ratio of two complex numbers. And

this ratio is not changing under scaling transformation like

z =
c01

c00

=
λc01

λc00

.

According to proposition (4.4), the generic concurrence for (4.17) is given by

fidelity between symmetric states. For symmetric state |ψ̃〉 = Y ⊗ Y |ψ̄〉, first calculate

|ψ̄〉 = |0〉|z̄〉 + η̄ |1〉|w̄〉√
1 + |η|2

,

where

|z̄〉 = |0〉 + z̄ |1〉√
1 + |z|2

, |w̄〉 = |0〉 + w̄ |1〉√
1 + |w|2

.
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Then

Y ⊗ Y |ψ̄〉 =
|1〉 z̄|0〉 − |1〉√

1 + |z|2
+ η|0〉−w̄|0〉 + |1〉√

1 + |w|2√
1 + |η|2

,

and

|ψ̃〉 = 1√
1 + |η|2

⎛⎜⎜⎜⎜⎜⎝η̄|0〉−w̄|0〉 + |1〉√
1 + |w|2

− |1〉−z̄|0〉 + |1〉√
1 + |z|2

⎞⎟⎟⎟⎟⎟⎠ .

Since

∣∣∣∣∣−1

z̄

〉
=
−z̄|0〉 + |1〉√

1 + |z|2
,

∣∣∣∣∣− 1

w̄

〉
=
−w̄|0〉 + |1〉√

1 + |w|2
,

then up to global phase

|ψ̃〉 = −
−η̄ |0〉

∣∣∣∣∣ 1

w̄

〉
+ |1〉

∣∣∣∣∣−1

z̄

〉
√

1 + |η|2
. (4.22)

The concurrence as a fidelity is

C = F = |〈ψ̃|ψ〉| = |η|
1 + |η|2

∣∣∣∣∣
〈
− 1

w̄

∣∣∣∣∣z
〉
−

〈
−1

z̄

∣∣∣∣∣w
〉 ∣∣∣∣∣, (4.23)

where

〈
− 1

w̄

∣∣∣∣∣z
〉
=

−w + z√
(1 + |w|2)(1 + |z|2)

,

〈
−1

z̄

∣∣∣∣∣w
〉
=

w − z√
(1 + |w|2)(1 + |z|2)

.

Substituting these into (4.23) gives the same form of the concurrence (4.21). Therefore

the following proposition holds.

65



Proposition 4.5 The symmetric state

|ψ̃〉 = −
−η̄ |0〉

∣∣∣∣∣ 1

w̄

〉
+ |1〉

∣∣∣∣∣−1

z̄

〉
√

1 + |η|2

for the generic state

|ψ〉 = |0〉|z〉 + η |1〉|w〉√
1 + |η|2

results from combined antipodal transformations

z −→ − 1

w̄
, w −→ −1

z̄
, η −→ −1

η̄
.

4.5. Concurrence and Inner Product Metric

It was shown in Subsection 4.2.1 that concurrence for two rebit state is given by

the area formula (4.10). Since area of parallelogram is related with the inner product

metric and with Riemannian metric, here the concurrence would be connected with this

metric.

It is known that (Dubrovin, Fomenko and Novikov, 1984), if �r0 and �r1 are vectors

in the Euclidean plane, then they determine the parallelogram consisting of all vectors

λ�r0 + μ�r1, 0 ≤ λ, μ ≤ 1.

The area of this parallelogram is given by

a = | det A|,
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where

A =

⎛⎜⎜⎜⎜⎜⎜⎝r00 r01

r10 r11

⎞⎟⎟⎟⎟⎟⎟⎠
and �r0 = (r00, r01), �r1 = (r10, r11) are components of vectors �r0 and �r1, relative to an

orthonormal basis �e0, �e1 :

�r0 = r00 �e0 + r01 �e1, �r1 = r01 �e0 + r11 �e1.

Indeed,

a = |�r0 × �r1| = |�r0| |�r1| sinα = | det A|.
This area formula can be related with the Riemannian metric (Dubrovin, Fomenko and

Novikov, 1984). Let in 2- dimensional inner product space over the reals, as a 2- dimen-

sional vector space equipped with an inner (scalar) product, the orthonormal basis is �e0,

�e1. Then, it is natural to define the area of parallelogram by analogy with the Euclidean

case.

Definition 4.9 The metric in two dimensional vector space is

〈�r0, �r0〉 = g00, 〈�r1, �r1〉 = g11, 〈�r0, �r1〉 = g01 = g10.

By using components of vectors �r0 and �r1 it gives

g00 = r2
00 + r2

01, g11 = r2
10 + r2

11, g01 = g10 = r00 r10 + r01 r11.

The inner product matrix can be factorized as

gi j =

⎛⎜⎜⎜⎜⎜⎜⎝g00 g01

g10 g11

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ r2

00 + r2
01 r00 r10 + r01 r11

r00 r10 + r01 r11 r2
10 + r2

11

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝r00 r01

r10 r11

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝r00 r10

r01 r11

⎞⎟⎟⎟⎟⎟⎟⎠ = A Aᵀ

or

G = A Aᵀ.

Then

det G = det A det Aᵀ = (det A)2,
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and the area of parallelogram is

a = | det A| = √det G. (4.24)

This result constitutes the following lemma.

Lemma 4.3 (Dubrovin, Fomenko and Novikov, 1984) The area of the parallelogram,

determined by the vectors �r0, �r1 of the inner product space is
√

det G, where

det G = g00 g11 − g2
01.

4.5.1. Determinant Formula For Two Rebit Concurrence

• Right Decomposition

Let arbitrary two rebit state

|ψ〉 = r00 |00〉 + r01 |01〉 + r10 |10〉 + r11 |11〉,

where ri j ∈ R is represented as

|ψ〉 = |0〉 |r0〉 + |1〉 |r1〉,

where one rebits are

|r0〉 = r00 |0〉 + r01 |1〉, |r1〉 = r10 |0〉 + r11 |1〉.

Two vectors �r0 = (r00, r10), �r1 = (r01, r11) determines the parallelogram of states

λ�r0 + μ�r1, 0 ≤ λ, μ ≤ 1.
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The area of the parallelogram

| det A| =
∣∣∣∣∣∣∣∣

r00 r10

r01 r11

∣∣∣∣∣∣∣∣

is half of the concurrence C,

C = 2| det A| = 2

∣∣∣∣∣∣∣∣
r00 r10

r01 r11

∣∣∣∣∣∣∣∣

if the vectors are normalized as

r2
00 + r2

01 + r2
10 + r2

11 = 1.

The Hilbert space of rebits is the real inner product space, so that components of

the inner products are

〈r0|r0〉 = g00, 〈r1|r1〉 = g11, 〈r0|r1〉 = g01 = g10,

or in component form

〈r0|r0〉 = r2
00 + r2

01, 〈r1|r1〉 = r2
10 + r2

11, 〈r0|r1〉 = r00 r10 + r01 r11,

and corresponding matrix is factorized as

gi j =

⎛⎜⎜⎜⎜⎜⎜⎝g00 g01

g10 g11

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ r2

00 + r2
01 r00 r10 + r01 r11

r00 r10 + r01 r11 r2
10 + r2

11

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝r00 r01

r10 r11

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝r00 r10

r01 r11

⎞⎟⎟⎟⎟⎟⎟⎠ = A Aᵀ

or

G = A Aᵀ.
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Then

det G = (det A)2.

Normalization condition 〈ψ|ψ〉 = 1 or

r2
00 + r2

01 + r2
10 + r2

11 = 1

implies that

Tr G = 1.

In this case, the concurrence is

C = 2| det A| = 2
√

det G. (4.25)

But Tr G and det G are invariants of matrix G. The characteristic equation for this

matrix is

det |G − λ I| = 0 =⇒ λ2 − (Tr G) λ + det G = 0 (4.26)

with eigenvalues

λ1,2 =
1

2
Tr G ±

√
1

4
(Tr G)2 − det G.

For rebit states, the characteristic equation becomes

Tr G = 1 =⇒ λ2 − λ + C2

4
= 0,

with eigenvalues

λ1,2 =
1 ± √1 −C2

2
.
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Then, the concurrence is the product of eigenvalues of the inner product metric

C2 = 4λ1λ2 =⇒ C = 2
√
λ1λ2.

• Left Decomposition

As it was noticed in (4.3), another decomposition of two rebit state is possible with

|ψ〉 = |l0〉|0〉 + |l1〉|1〉,

where one qubit rebits are

|l0〉 = r00 |0〉 + r10 |1〉, |l1〉 = r10 |0〉 + r11 |1〉.

In this case, the area of the parallelogram will be the same

| det A| =
∣∣∣∣∣∣∣∣

r00 r10

r01 r11

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

r00 r01

r10 r11

∣∣∣∣∣∣∣∣ ,

since transposition in matrix A such that A → Aᵀ doesn’t change the determinant.

As a result, the concurrence formula will not change as well. However, the inner

product matrix will change. Indeed, instead of

〈ri|r j〉 = gi j i, j = 0, 1

appears the matrix

hi j = 〈li|l j〉, i, j = 0, 1 ,
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where

H =

⎛⎜⎜⎜⎜⎜⎜⎝h00 h01

h10 h11

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝〈l0|l0〉 〈l0|l1〉
〈l1|l0〉 〈l1|l1〉

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝ r2
00 + r2

10 r00 r01 + r10 r11

r00 r01 + r10 r11 r2
01 + r2

11

⎞⎟⎟⎟⎟⎟⎟⎠ .

=

⎛⎜⎜⎜⎜⎜⎜⎝r00 r10

r01 r11

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝r00 r01

r10 r11

⎞⎟⎟⎟⎟⎟⎟⎠

= AᵀA.

Then

H = AᵀA =⇒ det H = (det A)2.

4.5.2. Determinant Formula For Two Qubit Concurrence

In this section extension of previous result to generic two qubit state is obtained.

• Right Decomposition

The generic two qubit state

|ψ〉 = c00 |00〉 + c01 |01〉 + c10 |10〉 + c11 |11〉,

where ci, j ∈ C, i, j = 0, 1, can be represented as

|ψ〉 = |0〉 |c0〉 + |1〉 |c1〉, (4.27)

where one qubit states are

|c0〉 = c00 |0〉 + c10 |1〉, |c1〉 = c10 |0〉 + c11 |1〉.
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The Hilbert space of qubits is complex Hermitian space with the Hermitian inner

product.

Definition 4.10 (Dubrovin, Fomenko and Novikov, 1984) The inner product of an

ordered pair of vectors |x〉, |y〉 ∈ H is a complex number, denoted as 〈x | y〉, with the

following requirements:

1. Skew- symmetry: 〈x | y〉 = 〈y | x〉
2. Linearity: 〈x | cy + dz〉 = c〈x | y〉 + d〈x | z〉 with |x〉, |y〉, |z〉 ∈ C2,where for any

complex numbers c, d ∈ C,

3. Positivity: 〈x | x〉 ≥ 0 for any state |x〉 ∈ H , with equality if and only if |x〉 is

the zero vector.

4. 〈λx | y〉 = λ̄〈x | y〉, where λ ∈ C,

5. 〈x | λy〉 = λ〈x | y〉.

Any inner product on H = Cn with the above properties is called an Hermitian

inner product.

For two vectors |c0〉 and |c1〉, it gives complex inner product matrix with elements

〈c0|c0〉 = g00, 〈c1|c1〉 = g11, 〈c0|c1〉 = g01, (4.28)

〈c1|c0〉 = g10 = ḡ01 = 〈c0|c1〉.

In components of vectors it gives

g00 = |c00|2 + |c01|2, g11 = |c10|2 + |c11|2,
g01 = c̄00 c10 + c̄01 c11, g10 = c00 c̄10 + c01 c̄11 = ḡ01, (4.29)
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and in the matrix form is

G =

⎛⎜⎜⎜⎜⎜⎜⎝g00 g01

g10 g11

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝〈c0|c0〉 〈c0|c1〉
〈c0|c1〉 〈c1|c1〉

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝ |c00|2 + |c01|2 c̄00 c10 + c̄01 c11

c00 c̄10 + c01 c̄11 |c10|2 + |c11|2
⎞⎟⎟⎟⎟⎟⎟⎠ . (4.30)

Let

A ≡
⎛⎜⎜⎜⎜⎜⎜⎝c00 c01

c10 c11

⎞⎟⎟⎟⎟⎟⎟⎠ , B ≡
⎛⎜⎜⎜⎜⎜⎜⎝c00 c10

c01 c11

⎞⎟⎟⎟⎟⎟⎟⎠ ,
and corresponding Hermitian conjugate matrices are

A† ≡
⎛⎜⎜⎜⎜⎜⎜⎝c̄00 c̄10

c̄01 c̄11

⎞⎟⎟⎟⎟⎟⎟⎠ , B† ≡
⎛⎜⎜⎜⎜⎜⎜⎝c̄00 c̄01

c̄10 c̄11

⎞⎟⎟⎟⎟⎟⎟⎠ .

Matrices A and B are just transpose of each other

Aᵀ = B, A = Bᵀ.

Then, matrix G can be written as product

G = B†B, Gᵀ = AA†.

As easy to see G is Hermitian matrix:

G† = (B†B)† = B†B = G,

and as follows, corresponding eigenvalues are real. By taking trace and using nor-

malization condition 〈ψ|ψ〉 = 1 implies

Tr G = |c00|2 + |c01|2 + |c10|2 + |c11|2 = 1.
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The determinant of the matrix is

det G = det B† det B = det B det B

= | det B|2.

In a similar way

det G = | det A|2.
But | det A| is the half of the concurrence for two qubit state

C = 2| det A| = 2

∣∣∣∣∣∣∣∣
c00 c10

c01 c11

∣∣∣∣∣∣∣∣ .

Therefore, the concurrence C is given by formula similar to (4.25) ,

C = 2
√

det G.

The characteristic equation for this matrix is

λ2 − λ + C2

4
= 0,

with the eigenvalues

λ1,2 =
1 ± √1 −C2

2
.

From the above consideration follows that the norm and the concurrence of two

qubit state are two invariants, Tr G and det G respectively, of the inner product ma-

trix G.

Proposition 4.6 The norm and the concurrence of generic two qubit state are in-
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variants, tr G and det G respectively, of the inner product matrix G :

Gi j = 〈ci|c j〉, i, j = 0, 1.

• Left Decomposition

In addition to expansion (4.27), possible to have

|ψ〉 = |d0〉 |0〉 + |d1〉 |1〉,

where one qubit states are

|d0〉 = c00 |0〉 + c10 |1〉, |d1〉 = c10 |0〉 + c11 |1〉.

In this case the Hermitian inner product matrix becomes

hi j = 〈di|dj〉, i, j = 0, 1,

where

H =

⎛⎜⎜⎜⎜⎜⎜⎝h00 h01

h10 h11

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝〈d0|d0〉 〈d0|d1〉
〈d0|d1〉 〈d1|d1〉

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎝ |c00|2 + |c10|2 c̄00 c01 + c̄10 c11

c00 c̄01 + c10 c̄11 |c01|2 + |c11|2
⎞⎟⎟⎟⎟⎟⎟⎠ . (4.31)

It can be decomposed to matrices

A† =

⎛⎜⎜⎜⎜⎜⎜⎝c̄00 c̄10

c̄01 c̄11

⎞⎟⎟⎟⎟⎟⎟⎠ , B† =

⎛⎜⎜⎜⎜⎜⎜⎝c̄00 c̄01

c̄10 c̄11

⎞⎟⎟⎟⎟⎟⎟⎠ .
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In terms of matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎝c00 c10

c01 c11

⎞⎟⎟⎟⎟⎟⎟⎠ ,
the matrices G and H can be written as

G = B†B, Hᵀ = BB†. (4.32)

By matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎝c00 c01

c10 c11

⎞⎟⎟⎟⎟⎟⎟⎠ ,
matrices G and H become

Gᵀ = AA†, H = A†A. (4.33)

From (4.32) and (4.33) follow

det H = | det A|2 = det G.

This means that concurrence determined by these matrices is the same

C = 2
√

det G = 2
√

det H.

4.6. Concurrence and Reduced Density Matrix

Geometrical characteristics of entangled states, obtained in previous chapters are

related with physical characteristics as density matrix of quantum states.

Definition 4.11 The density matrix or density operator ρ for pure state |ψ〉 is defined as

ρ = |ψ〉〈ψ|.
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If |ψ〉 is given in the form |ψ〉 = α|u1〉 + β|u2〉 , then in matrix form it is represented as

ρ ≡
⎛⎜⎜⎜⎜⎜⎜⎝〈u1|ρ|u1〉 〈u1|ρ|u2〉
〈u2|ρ|u1〉 〈u2|ρ|u2〉

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.34)

Main properties of density operator are following:

• The density operator is Hermitian, ρ = ρ†

• tr(ρ) = 1

• ρ is a positive operator, 〈ϕ|ρ|ϕ〉 ≥ 0, for any state |ϕ〉.

Definition 4.12 Suppose A and B are physical systems, whose states is described by a

density operator ρAB. Then the reduced density operator for system A is defined as

ρA ≡ trB(ρAB),

where trB is partial trace over the system B. The partial trace is defined as

trB(|a1〉〈a2| ⊗ |b1〉〈b2|) = |a1〉〈a2| tr(|b1〉〈b2|).

The reduced density operator for system B is defined as

ρB ≡ trA(ρAB).

For pure states, the density operator is a projection operator:

ρ2 = |ψ〉〈ψ||ψ〉〈ψ| = |ψ〉〈ψ| = ρ.

Since tr(ρ) = 1 for pure states, than clearly

tr(ρ2) = 1.
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This gives following criterium of mixed and pure states:

• Pure State: tr(ρ2) = 1

• Mixed State: tr(ρ2) < 1.

It is instructive to rewrite generic two qubit state in density matrix form, to es-

tablish link between the inner product metric and reduced density matrix. The level of

mixture for this reduced state is determined by criterium for trace of square of reduced

density matrix.

• Right Decomposition

For arbitrary two qubit pure state in the form

|ψ〉 = |0〉|c0〉 + |1〉|c1〉,

where

|c0〉 = c00 |0〉 + c10 |1〉, |c1〉 = c10 |0〉 + c11 |1〉, (4.35)

the density matrix is

ρ = |ψ〉〈ψ| = (|0〉|c0〉 + |1〉|c1〉)(〈0|〈c0| + 〈1|〈c1|)
= |0〉〈0| |c0〉〈c0| + |1〉〈1| |c1〉〈c1| + |0〉〈1| |c0〉〈c1| + |1〉〈0| |c1〉〈c0|,

and reduced density matrix appears as

ρA = trA ρ = |c0〉〈c0| + |c1〉〈c1|.

Substituting one qubit states (4.35) into reduced density matrix gives

ρA = (|c00|2 + |c10|2) |0〉〈0| + (|c01|2 + |c11|2) |1〉〈1|
+(c00c̄01 + c10c̄11) |0〉〈1| + (c01c̄00 + c11c̄10) |1〉〈0|.
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Therefore, the reduced density matrix in matrix form is

ρA =

⎛⎜⎜⎜⎜⎜⎜⎝ |c00|2 + |c10|2 c00c̄01 + c10c̄11

c01c̄00 + c11c̄10 |c01|2 + |c11|2
⎞⎟⎟⎟⎟⎟⎟⎠ . (4.36)

• Left Decomposition

The left decomposition of arbitrary two qubit state is

|ψ〉 = |d0〉|0〉 + |d1〉|1〉,

where

|d0〉 = c00 |0〉 + c10 |1〉, |d1〉 = c01 |0〉 + c11 |1〉. (4.37)

Then from the density matrix

ρ = |ψ〉〈ψ| = (|0〉|d0〉 + |1〉|d1〉)(〈0|〈d0| + 〈1|〈d1|)
= |0〉〈0| |d0〉〈d0| + |1〉〈1| |d1〉〈d1| + |0〉〈1| |d0〉〈d1| + |1〉〈0| |d1〉〈d0|,

the following reduced density matrix appears

ρB = trB ρ = |d0〉〈d0| + |d1〉〈d1|.

Substituting one qubit states (4.37) into this matrix gives

ρB = (|c00|2 + |c01|2) |0〉〈0| + (|c10|2 + |c11|2) |1〉〈1|
+(c00c̄10 + c01c̄11) |0〉〈1| + (c10c̄00 + c11c̄01) |1〉〈0|.
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Then, the matrix form for this reduced density matrix is

ρB =

⎛⎜⎜⎜⎜⎜⎜⎝ |c00|2 + |c01|2 c00c̄10 + c01c̄11

c10c̄00 + c11c̄01 |c10|2 + |c11|2
⎞⎟⎟⎟⎟⎟⎟⎠ . (4.38)

Comparison of reduced density matrices (4.36) and (4.38) with the inner space metric G

(4.30) and H (4.31) shows that they coincide,

ρA = Hᵀ = BB†, ρB = Gᵀ = AA†.

Therefore, determinants of the reduced density matrices are equal

det ρA = det H = | det B|2 = | det A|2, (4.39)

det ρB = det G = | det A|2 = | det B|2, (4.40)

implying that concurrence is

C = 2| det A| = 2
√

det ρA = 2
√

det ρB. (4.41)

This formula expresses concurrence by determinants of reduced density matrices. Since

concurrence characterizes entanglement of two qubit state, it is possible now to compare

the entanglement with the mixed character of the reduced quantum states.

For reduced density matrices (4.36) and (4.38) following relations are valid:

1) tr ρA = 1, tr ρB = 1 (4.42)

2) ρ2
A = (Hᵀ)2, ρ2

B = (Gᵀ)2 (4.43)
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3) tr ρ2
A = 1 − 2|c00c11 − c01c10|2, tr ρ2

B = 1 − 2|c00c11 − c01c10|2. (4.44)

Since concurrence C = 2|c00c11 − c01c10|, it gives

tr ρ2
A = 1 − 1

2
C2, tr ρ2

B = 1 − 1

2
C2.

These formulas represent Pythagoras theorem for concurrence and reduced density ma-

trices:

tr ρ2
A +

1

2
C2 = 1, tr ρ2

B +
1

2
C2 = 1.

Figure 4.2. Relation between concurrence and reduced density matrix
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• Seperable states:

If C = 0, then tr ρ2
A = 1 and the state is pure

• Entangled states:

1. If C = 1, then tr ρ2
A =

1

2
< 1 and the state is maximally mixed

2. If 0 < C < 1, then tr ρ2
A = 1 − 1

2
C2 < 1 - and the state is mixed .

The same analysis is valid also for matrix ρB.

In addition to above formulas, possible to express the concurrence as a function

of reduced density matrix. Indeed from

tr ρ2
A = tr ρ2

B = 1 − 1

2
C2,

follows that

C =
√

2(1 − tr ρ2
A) =

√
2(1 − tr ρ2

B).

4.7. Entanglement and Von Neumann Entropy

In classical information theory the measure of randomness or measure of unpre-

dictability is determined by the Shannon entropy.

Definition 4.13 Let X is random variable taking values x1, x2, ..., xn characterized by

probability distribution p1, p2, ..., pn where

n∑
i

pi = 1 0 ≤ pi ≤ 1.
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Then, the Shannon entropy of X is defined as expected value

S (X) = −
n∑
i

pi log2 pi.

The Shannon entropy satisfies the following bounds

0 ≤ S (X) ≤ log2 n.

For n = 2 elements, the bound is

0 ≤ S (X) ≤ 1.

The quantum mechanical analogue of the Shannon entropy is the Von Neumann

entropy.

Definition 4.14 Von Neumann entropy of a quantum state ρ is defined by formula

S (ρ) = − tr (ρ log2 ρ),

where ρ is the density matrix of the quantum state, satisfying constraint

tr ρ = 1.

Proposition 4.7 If ρ is diagonalized in a basis |i〉,

ρ =
∑

i

pi|i〉〈i|,

84



then the Von Neumann entropy takes the form of the Shannon entropy

S = −
∑

i

pi log2 pi.

Proof Evaluating the trace in the basis states |n〉

S = −k
∑
n,m

〈n |ρ|m〉〈m| log2 ρ|n〉

and transforming basis |n〉 to |i〉 with diagonal ρ

ρ =
∑

i

pi |i〉〈i|, log2 ρ =
∑

i

log2 pi |i〉〈i|

the entropy becomes

S = −
∑

i

pi log2 pi

where pi = 〈i |ρ| i〉.
�

The Von Neumann entropy plays essential role in definition of entanglement for

qubit states. The basic idea is that, by taking partial trace of a state one can decide, if the

reduced state is pure state or the mixed state, if it is random or not.

Definition 4.15 (Wootters, 1998) The entanglement E for a pure two qubit state |ψ〉 is

defined as the entropy in the form of the Von Neumann entropy

E(ψ) = − tr (ρA log2 ρA)

= − tr (ρB log2 ρB)

where reduced density matrices are

ρA = trB ρ = trB |ψ〉〈ψ|, ρB = trA ρ = trA |ψ〉〈ψ|
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and

ρ = |ψ〉〈ψ|.

Characteristic equations for these two matrices are equal. Indeed,

λ2 − λ tr ρA + det ρA = 0,

and

λ2 − λ tr ρB + det ρB = 0,

for matrices (4.36) and (4.38), due to

tr ρA = tr ρB = 1,

and

det ρA = det ρB = det G = det H,

which follows from (4.39), (4.40), are the same. Since the determinants can be expressed

by the concurrence (4.41),

det ρA = det ρB =
C2

4
,

the characteristic equation becomes

λ2 − λ + C2

4
= 0.
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This equation has two real solutions as eigenvalues of reduced density matrices,

λ± =
1 ± √1 −C2

2
,

with eigenstates |λ+〉 and |λ−〉. In terms of these eigenstates the density matrices ρA and

ρB are diagonal and the entanglement E takes form of the Shannon entropy

E = −λ+ log2 λ+ − λ− log2 λ−.

It gives the following expression for the entanglement E as a function of concurrence C:

E(C) = −1 +
√

1 −C2

2
log2

⎛⎜⎜⎜⎜⎝1 +
√

1 −C2

2

⎞⎟⎟⎟⎟⎠ − 1 − √1 −C2

2
log2

⎛⎜⎜⎜⎜⎝1 − √1 −C2

2

⎞⎟⎟⎟⎟⎠. (4.45)

Plot of this function is shown in Figure 4.1, and the function is monotonically increasing

from 0 to 1 on the interval 0 ≤ C ≤ 1. This means that concurrence C can characterizes

entanglement E as the level of entropy or the randomness. The maximal concurrence

C = 1 corresponds to maximally entangled states, which are maximally random states.

The separable states with C = 0 give minimum of randomness with E = 0.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3. Entanglement Function of Concurence
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4.7.1. Entanglement of Two Qubit Coherent Like State

For two qubit coherent like state

|z〉 = |00〉 + z|11〉√
1 + |z|2

the concurrence is

C =
2|z|

1 + |z|2 .

Calculation of entanglement E(C) , (4.45), in terms of z gives

1 −C2 = 1 − 4|z|2
(1 + |z|2)2

=
(1 − |z|2)2

(1 + |z|2)2
,

√
1 −C2 =

∣∣∣∣∣∣ (1 − |z|
2)

(1 + |z|2)

∣∣∣∣∣∣ = |1 − |z|
2|

1 + |z|2 ,

then

1 +
√

1 −C2 =
1 + |z|2 + |1 − |z|2|

1 + |z|2 (4.46)

or

1 +
√

1 −C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2|z|2
1 + |z|2 for |z|2 > 1

1 for |z|2 = 1
2

1 + |z|2 for |z|2 < 1

(4.47)

88



Similar calculation

1 −
√

1 −C2 =
1 + |z|2 − |1 − |z|2|

1 + |z|2 (4.48)

gives

1 −
√

1 −C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

1 + |z|2 for |z|2 > 1

1 for |z|2 = 1

2|z|2
1 + |z|2 for |z|2 < 1

(4.49)

Due to these results the entanglement is

E =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− |z|2
1 + |z|2 log2

( |z|2
1 + |z|2

)
− 1

1 + |z|2 log2

(
1

1 + |z|2
)

for |z|2 > 1

−1

2
log2

(
1

2

)
− −1

2
log2

(
1

2

)
= 1 for |z|2 = 1

− 1

1 + |z|2 log2

(
1

1 + |z|2
)
− |z|2

1 + |z|2 log2

( |z|2
1 + |z|2

)
for |z|2 < 1

For arbitrary |z|2,

E(|z|2) = − 1

1 + |z|2 log2

(
1

1 + |z|2
)
− |z|2

1 + |z|2 log2

( |z|2
1 + |z|2

)

=
1

1 + |z|2 log2 (1 + |z|2) +
|z|2

1 + |z|2 (log2 (1 + |z|2) − log2 |z|2),

giving entanglement

E(|z|2) = log2 (1 + |z|2) − |z|
2 log2 |z|2
1 + |z|2 .
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As easy to see, on every circle |z|2 = r2, the entanglement is a constant

E(r2) = log2 (1 + r2) − r2 log2 r2

1 + r2
, (4.50)

coinciding with the Shannon entropy (5.3).

4.8. Concurrence and Riemannian Metric

The inner product metric (4.28), for the generic two qubit state (4.17), depends on

three complex parameters η, z,w or six real parameters.

Comparision the generic state representation (4.27), with (4.17) gives

|c0〉 = |z〉√
1 + |η|2

, |c1〉 = η |w〉√
1 + |η|2

.

Then, elements of the inner product matrix can be found as

g00 = 〈c0|c0〉 = 1

1 + |η|2 , g01 = 〈c0|c1〉 = η

1 + |η|2
1 + z̄w√

(1 + |z|2)(1 + |w|2)
,

g11 = 〈c1|c1〉 = |η|2
1 + |η|2 , g10 = 〈c0|c1〉 = η̄

1 + |η|2
1 + zw̄√

(1 + |z|2)(1 + |w|2)
.

This metric has the matrix form

G =
1

1 + |η|2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

η (1 + z̄w)√
(1 + |z|2)(1 + |w|2)

η̄ (1 + zw̄)√
(1 + |z|2)(1 + |w|2)

|η|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Trace of this matrix is one, Tr G = 1, and determinant with concurrence are

det G = | det A|2 = C2

4
,

where the concurrence is given by (4.21).

In particular cases, when this metric depends on only one complex variable, or

two real variables, this metric becomes the Riemannian metric on a surface. Depending

on the reduction, several possibilities exist.

Particular Cases -"Entangled Metric":

1. By taking limits in (4.16) as z → 0 =⇒ |z〉 → |0〉, w → ∞ =⇒ |w〉 → |1〉 one qubit

states are represented as

|c0〉 = |0〉√
1 + |η|2

, |c1〉 = η |1〉√
1 + |η|2

,

and the state (4.17) becomes

|ψ〉 = |00〉 + η |11〉√
1 + |η|2

.

The matrix elements for the metric are

g00 = 〈c0|c0〉 = 1

1 + |η|2 , g01 = 〈c0|c1〉 = 0,

g11 = 〈c1|c1〉 = |η|2
1 + |η|2 , g10 = 〈c0|c1〉 = 0,

and the matrix is

G =
1

1 + |η|2
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 |η|2
⎞⎟⎟⎟⎟⎟⎟⎠ .

91



2. By taking limits in (4.16) as z→ ∞ =⇒ |z〉 → |1〉, w→ 0 =⇒ |w〉 → |0〉, one qubit

states are represented as

|c0〉 = |1〉√
1 + |η|2

, |c1〉 = η |0〉√
1 + |η|2

,

the state (4.17) becomes

|ψ〉 = |01〉 + η |10〉√
1 + |η|2

.

The matrix elements for the metric are

g00 = 〈c0|c0〉 = 1

1 + |η|2 , g01 = 〈c0|c1〉 = 0,

g11 = 〈c1|c1〉 = |η|2
1 + |η|2 , g10 = 〈c0|c1〉 = 0,

and corresponding matrix is

G =
1

1 + |η|2
⎛⎜⎜⎜⎜⎜⎜⎝1 0

0 |η|2
⎞⎟⎟⎟⎟⎟⎟⎠ .

In both cases 1 and 2, the metric is the same. Invariants of this metric Tr G = 1, and

det G = | det A|2 = |η|2
(1 + |η|2)2

=
C2

4
,

imply the concurrence

C =
2|η|2√
1 + |η|2

.
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3. By taking limits in (4.16) as w → ∞ =⇒ |w〉 → |1〉 and η = 1, one qubit states are

represented as

|c0〉 = |z〉√
2
, |c1〉 = |1〉√

2
,

the state (4.17) becomes

|ψ〉 = |0〉|z〉 + |1〉|1〉√
2

.

Then matrix elements for the metric are

g00 = 〈c0|c0〉 = 1

2
, g01 = 〈c0|c1〉 = z̄√

1 + |z|2
,

g11 = 〈c1|c1〉 = 1

2
, g10 = 〈c0|c1〉 = z√

1 + |z|2
,

and corresponding matrix is

G =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

z̄√
1 + |z|2

z√
1 + |z|2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Then Tr G = 1 with

det G = | det A|2 = 1

4(1 + |z|2)
=

C2

4
,

which implies that concurrence

C =
1√

1 + |z|2
.

It reaches maximal value for z = 0, giving the Bell state.
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4. By taking limits in (4.16) as z → 0 =⇒ |z〉 → |0〉 and η = 1, one qubit states are

represented as

|c0〉 = |0〉√
2
, |c1〉 = |w〉√

2
,

the state (4.17) becomes

|ψ〉 = |0〉|0〉 + |1〉|w〉√
2

.

The matrix elements for the metric

g00 = 〈c0|c0〉 = 1

2
, g01 = 〈c0|c1〉 = w√

1 + |w|2
,

g11 = 〈c1|c1〉 = 1

2
, g10 = 〈c0|c1〉 = w̄√

1 + |w|2
,

give

G =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

w√
1 + |w|2

w̄√
1 + |w|2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Then, Tr G = 1 and

det G = | det A|2 = 1

4(1 + |w|2)
=

C2

4
,

which implies that

C =
1√

1 + |w|2
.
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5. By taking z = η and w = 0, one qubit states are represented as

|c0〉 = |η〉√
1 + |η|2

, |c1〉 = η|0〉√
1 + |η|2

,

and the state (4.17) becomes

|ψ〉 = |0〉|η〉 + η |1〉|0〉√
1 + |η|2

.

Then matrix elements for the metric are

g00 = 〈c0|c0〉 = 1

1 + |η|2 , g01 = 〈c0|c1〉 = η

(1 + |η|2)3/2
,

g11 = 〈c1|c1〉 = |η|2
1 + |η|2 , g10 = 〈c0|c1〉 = η̄

(1 + |η|2)3/2
,

and corresponding matrix is

G =
1

1 + |η|2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

η√
1 + |η|2

η̄√
1 + |η|2

|η|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

For this metric Tr G = 1 and

det G = | det A|2 = |η|4
(1 + |η|2)2

=
C2

4
,

which implies that

C =
2|η|2

1 + |η|2 .
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Particular Case -"Separable Metric":

By taking z = w, the state (4.17) becomes separable

|ψ〉 = |0〉|z〉 + η |1〉|z〉√
1 + |η|2

=
|0〉 + η|1〉√

1 + |η|2
|z〉 = |η〉 |z〉,

and is a direct product of one qubit coherent states. With respect to these, one qubit states

are represented as

|c0〉 = |z〉√
1 + |η|2

, |c1〉 = η|z〉√
1 + |η|2

.

The matrix elements for corresponding metric are

g00 = 〈c0|c0〉 = 1

1 + |η|2 , g01 = 〈c0|c1〉 = η

1 + |η|2 ,

g11 = 〈c1|c1〉 = |η|2
1 + |η|2 , g10 = 〈c0|c1〉 = η̄

1 + |η|2 ,

and the matrix is

G =
1

1 + |η|2
⎛⎜⎜⎜⎜⎜⎜⎝1 η

η̄ |η|2
⎞⎟⎟⎟⎟⎟⎟⎠ .

Since the state |ψ〉 is separable:

det G = | det A|2 = 0 =
C2

4
,

which implies that

C = 0.

This means that for separable states the metric is degenerate, det G = 0.
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CHAPTER 5

APOLLONIUS QUBIT STATES

5.1. Apollonius Circles and Möbius Transformations

Definition 5.1 (Brannan, Esplen and Gray, 2012) Apollonius Circle: A circle can be

defined as the set of points z = x+iy in complex plane that have specified ratio of distances

from two fixed points. The ratio is

|z − a|
|z − b| = r, (5.1)

where a and b are common symmetric points playing role of the fixed points. (Figure 5.1)

Figure 5.1. Apollonius circles with z = a and z = −a fixed points
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5.2. Hadamard Gate and Apollonius Representation

In Section 3.2, one qubit in coherent state representation was defined as

|z〉 = |0〉 + z|1〉√
1 + |z|2

,

where complex number z = tan θ
2
eiϕ denotes the stereographic projection of Bloch sphere.

Figure 5.2. Coherent states plane

In this representation |0〉 state corresponds to the origin z = 0, and the state |1〉
is going to infinity, and belongs to the extended complex plane(Figure 5.2). This creates

some disadvantages for visualization of geometrical characteristics of qubits. For this

reason, more convenient to use a new parametrization of qubit state with |0〉 and |1〉 states

located at two finite points in complex plane. This parametrization is related with Möbius

transformations and Apollonius circles. By using Hadamard gate, one can move 0 and∞
points to a finite points 1 and −1 in the plane. As a result, it gives a new representation of

qubit, with state |0〉 at point 1 and state |1〉 at point −1:

H|z〉 = |b〉 = (1 + z)|0〉 + (1 − z)|1〉√
2
√

1 + |z|2
.

To get ordered basis qubits |0〉 and |1〉 at positions −1 and 1, correspondingly, the follow-
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ing circuit diagram:

|z〉 Y

∣∣∣∣∣−1

z

〉
H |ψ〉

can be used, so that the following state appears

|ψ〉 = (z − 1)|0〉 + (z + 1)|1〉√
2
√

1 + |z|2
.

Definition 5.2 The one qubit state

|ψ〉 = (z − 1)|0〉 + (z + 1)|1〉√
2
√

1 + |z|2
=

(z − 1)|0〉 + (z + 1)|1〉√|z − 1|2 + |z + 1|2
,

is called the symmetric Apollonius qubit state.

When z = 1 it gives state |1〉 located on real axis at point 1,and when z = −1 it gives state

|0〉 located on real axis at point −1.

In principle, one can fix |0〉 and |1〉 states at arbitrary points in the plane. For

illustration reasons the natural choice is to consider the special case, when |0〉 state is

located at the origin 0, and |1〉 state is located at point 1.

Figure 5.3. Symmetric Apollonius One Qubit State
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Definition 5.3 The one qubit state

|ψ〉 = (z − 1)|0〉 + z|1〉√
2
√

1 + |z|2
=

(z − 1)|0〉 + z|1〉√|z − 1|2 + |z|2

is called the non- symmetric Apollonius qubit state.

It is useful for comparison of bits and qubits. Indeed, one bit corresponds just to two

points 0 and 1 in plane, while the qubit is determined by an arbitrary point in the plane.

5.3. Non-Symmetric Apollonius Qubit States

5.3.1. One Qubit State

To fix position of states |0〉 and |1〉 at points 0 and 1 correspondingly, one replaces

z to 2z − 1 (scaling and translation) and gets one qubit state |ψ〉 in the form

|ψ〉 = (z − 1)|0〉 + z|1〉√|z − 1|2 + |z|2
,

which is the non-symmetric Apollonius qubit representation. Probabilities to measure

states |0〉 or |1〉 are:

p0 =
|z − 1|2

|z − 1|2 + |z|2 ,

p1 =
|z|2

|z − 1|2 + |z|2 ,
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where p0 + p1 = 1 and the ratio of probabilities is

p1

p0

=
|z|2
|z − 1|2 ≡ r2 . (5.2)

As easy to see, for fixed ratio of probabilities r2, the set of points in complex plane

z belongs to the Apollonius circles. This is why, the set of qubit states in Apollonius

representation, with fixed ratio of probabilities, is located on an Apollonius circle. This

representation splits the set of all qubit states to the states on different Apollonius circles.

Figure 5.4. Non - Symmetric Apollonius One Qubit State

5.3.1.1. Entropy of One Qubit State

For Apollonius state |ψ〉 probabilities to measure states |0〉 and |1〉 are

p0 = |〈0|z〉|2 = |z − 1|2
|z − 1|2 + |z|2 =

1

1 + r2
,

p1 = |〈1|z〉|2 = |z|2
|z − 1|2 + |z|2 =

r2

1 + r2
,
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where r2 as ratio of probabilities is defined in (5.2). The level of randomness for this state

|ψ〉 then could be characterized by the Shannon entropy

S = −p0 log2 p0 − p1 log2 p1

represented as

S (r2) = log2(1 + r2) − r2

1 + r2
log2 r2. (5.3)

This formula shows that the Shannon entropy or the level of randomness for Apollonius

qubit states is constant along Apollonius circles.

Maximally Random States: For maximally random state, derivative of entropy

with respect to r2 vanishes

dS
dr2
= − 1

(1 + r2)2
log2 r2 = 0 ⇒ r = 1.

The second derivative gives

d2S
(dr2)2

= − 2

(1 + r2)3
log2 r2 − 1

(1 + r2)2

1

r2 ln 2

and

S ′′|r=1 = − 1

4 ln 2
< 0,

which implies that r = 1 is the local maximum. Therefore, Apollonius circles are level

curves of the same randomness (constant entropy S along these level curves). The max-

imally random states with S = 1 are located at vertical line Re z =
1

2
(Figure 5.3). In

contrast, the computational basis states with r = 0 and r = ∞ have zero entropy: S (0) = 0

and S (∞) = 0.
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Figure 5.5. Entropy on Apollonius circles

5.3.1.2. Fidelity and Distance

Definition 5.4 Fidelity of two quantum states |ψ1〉 and |ψ2〉 is defined by F ≡ |〈ψ1|ψ2〉|. It

is a measure of the distance between two quantum states. Fidelity is bounded 0 ≤ F ≤ 1;

it is F = 1, when |ψ1〉 coincides with |ψ2〉 and if F = 0, when |ψ1〉 and |ψ2〉 are orthogonal.

Another characteristics, which is constant along Apollonius circles is the fidelity

between symmetric states, reflected in vertical axis Re z =
1

2
. This reflection corresponds

to substitution z→ 1 − z̄ and gives the symmetric Apollonius state |ψ〉

|ψs〉 = −z̄|0〉 + (1 − z̄)|1〉√|z − 1|2 + |z|2
,

with fidelity

F = |〈ψs|ψ〉| = 2|z||z − 1|
|z − 1|2 + |z|2 .

This fidelity depends only on the ratio r =
|z|
|z − 1| and is constant along the Apollonius cir-
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cles. This constant is bounded 0 ≤ F ≤ 1 and vanishes for |0〉 and |1〉 states as orthogonal

symmetric states.

Figure 5.4 shows the entropy and the fidelity versus r. Both curves in this figure

reach maximal value at r = 1 and vanish at r = 0 and r = ∞. Comparison of these curves

show that maximally random state corresponds to maximal fidelity between symmetric

states and it happens, when these states belong to the line Re z =
1

2
. Increasing the

geometrical distance between symmetric states will decrease the level of randomness. So

that |0〉 and |1〉 states as maximally far symmetric states are orthogonal and as a result

F = 0.

Figure 5.6. Entropy (blue line) and fidelity (pink line) between symmetric states versus r

The standard distance between symmetric states in the Hilbert space is given by

formula

‖|ψ〉 − |ψs〉‖ = 2

∣∣∣∣∣Re z − 1

2

∣∣∣∣∣√|z − 1|2 + |z|2
.

It shows that the distance reaches maximal value for orthogonal states at z = 0 and z = 1

and it vanishes on the vertical line Re z =
1

2
. Due to this property, one can introduce

another distance characteristics between states in terms of fidelity

d =
√

1 − F2 .

For Apollonius qubit state |ψ〉 and the symmetric one |ψs〉 due to r =
|z|
|z − 1| , the distance
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is

d =
||z − 1|2 − |z|2|
|z − 1|2 + |z|2 =

|1 − r2|
1 + r2

. (5.4)

This formula shows that distance between symmetric states depends only on Apollonius

circle and is determined by its parameter r. It is invariant under substitution r → 1

r
, cor-

responding to the pair of symmetric circles as reflections in axis Re z =
1

2
. For symmetric

states on the line with r = 1, the distance is minimal d = 0. For r = 0 and r = ∞,

corresponding to states |0〉 and |1〉 respectively, which are orthogonal states, the distance

takes maximal value d = 1. This value coincides with geometrical (Euclidean) distance

between corresponding points 0 and 1 in complex plane. The distance (5.4) is the same for

symmetric (reflected in vertical line Re z =
1

2
) states on reflected Apollonius circles with

values r and
1

r
. It is given just by Euclidean distance between two points of intersection

of Apollonius circles with real line interval [0, 1].

5.3.2. Apollonius Two Qubit State

Application of the CNOT gate to the product of one qubit states:

|a〉 ⊗ |0〉 CNOT |A〉

where |a〉 is the Apollonius one qubit, generates the Apollonius two qubit state:

|A〉 = (z − 1)|00〉 + z|11〉√|z − 1|2 + |z|2
. (5.5)

In this representation state |00〉 is located at z = 0 and state |11〉 at z = 1(Figure 5.5).
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Figure 5.7. Apollonius Two Qubit State

5.3.2.1. Concurrence and Entropy for Two Qubit States

The concurrence for this state |A〉, by the determinant formula from Section 4.2 is

C =
2|z||z − 1|
|z − 1|2 + |z|2 =

2r
1 + r2

,

where r =
|z|
|z − 1| . 3D plot of this concurrence is shown in Figure 5.6 and the contour

plot in Figure 5.7. The concurrence depends on r and as follows it depends on Apollonius

circle. Therefore, the concurrence and Apollonius circles are related; the concurrence is

a constant along Apollonius circle for given r(Figure 5.7). The qubit states with r = 1

belong the line Re(z) =
1

2
and are maximally entangled with Cmax = 1. While states |00〉

and |11〉 with Cmin = 0 are separable and correspond to common symmetric points for

Apollonius circles.
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Figure 5.8. Concurence 3D

Figure 5.9. Concurence Contour Plot

By calculating the Shannon entropy (S ) for two qubit Apollonius state (5.5) one gets

the same expression as in (5.3), (calculations are identical to the one qubit case). Since

the concurrence C = C(r) is function of r only the entropy can be rewritten in the form
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S = S (C): S is a function of C, where

S (C) = 1 +

(
3 − C

r(C)

)
log2 r(C) − log2 C

and

r(C) =
1 ± √1 −C2

C
.

As it was noticed before that, both the entropy S and concurrence C(r) are constant along

Apollonius circles. Now, this formula shows explicitly how the level of randomness S

depends on concurrence C.

5.3.2.2. Entanglement for Non- Symmetric Apollonius States

For two qubit non-symmetric Apollonius state

|z〉 = (z − 1) |00〉 + z |11〉√|z − 1|2 + |z|2

the concurrence is

C =
2|z| |z − 1|
|z − 1|2 + |z|2 .

By calculating entanglement E(C), (4.45):

1 −C2 = 1 − 4|z|2|z − 1|2
(|z − 1|2 + |z|2)2

=
(|z − 1|2 − |z|2)2

(|z − 1|2 + |z|2)2
,

√
1 −C2 =

∣∣∣∣∣∣ |z − 1|2 − |z|2
|z − 1|2 + |z|2

∣∣∣∣∣∣ = ||z − 1|2 − |z|2|
|z − 1|2 + |z|2 ,
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then

√
1 −C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z − 1|2 − |z|2
|z − 1|2 + |z|2 for |z − 1|2 > |z|2

|z|2 − |z − 1|2
|z − 1|2 + |z|2 for |z − 1|2 < |z|2

It gives

1 +
√

1 −C2

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z − 1|2
|z − 1|2 + |z|2 for |z − 1|2 > |z|2

|z|2
|z − 1|2 + |z|2 for |z − 1|2 < |z|2

and

1 − √1 −C2

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z|2
|z − 1|2 + |z|2 for |z − 1|2 > |z|2

|z − 1|2
|z − 1|2 + |z|2 for |z − 1|2 < |z|2

Therefore, the entanglement E(z) as a function of z is a constant along non-symmetric

Apollonius circles

∣∣∣∣∣ z
z − 1

∣∣∣∣∣ = r. Indeed, from

E(z) = log2 (|z − 1|2 + |z|2) − |z|
2 log2 |z|2 + |z − 1|2 log2 |z − 1|2

|z − 1|2 + |z|2 (5.6)

follows

E(r2) = log2(1 + r2) − r2

1 + r2
log2 r2
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5.3.2.3. Entanglement for Symmetric Apollonius States

For two qubit symmetric Apollonius state

|z〉 = (z − 1) |00〉 + (z + 1) |11〉√|z − 1|2 + |z + 1|2

the concurrence is

C =
2|z2 − 1|

|z − 1|2 + |z + 1|2 .

By calculating the entanglement E(C), (4.45):

1 −C2 = 1 − 4|z2 − 1|2
(|z − 1|2 + |z + 1|2)2

=
(|z − 1|2 − |z + 1|2)2

(|z − 1|2 + |z + 1|2)2

√
1 −C2 =

∣∣∣∣∣∣ |z − 1|2 − |z + 1|2
|z − 1|2 + |z + 1|2

∣∣∣∣∣∣ = ||z − 1|2 − |z + 1|2|
|z − 1|2 + |z + 1|2 ,

then

√
1 −C2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z − 1|2 − |z + 1|2
|z − 1|2 + |z + 1|2 for |z − 1|2 > |z + 1|2

|z + 1|2 − |z − 1|2
|z − 1|2 + |z + 1|2 for |z − 1|2 < |z + 1|2

It gives

1 +
√

1 −C2

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z − 1|2
|z − 1|2 + |z + 1|2 for |z − 1|2 > |z + 1|2

|z + 1|2
|z − 1|2 + |z + 1|2 for |z − 1|2 < |z + 1|2
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and

1 − √1 −C2

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|z + 1|2
|z − 1|2 + |z + 1|2 for |z − 1|2 > |z + 1|2

|z − 1|2
|z − 1|2 + |z + 1|2 for |z − 1|2 < |z + 1|2

As a result, entanglement E(z) is a constant along symmetric Apollonius circles∣∣∣∣∣z + 1

z − 1

∣∣∣∣∣ = r. Indeed, from

E(z) = log2 (|z − 1|2 + |z + 1|2) − |z − 1|2 log2 |z − 1|2 + |z + 1|2 log2 |z + 1|2
|z − 1|2 + |z + 1|2 .

follows

E(r2) = log2(1 + r2) − r2

1 + r2
log2 r2.

Entanglement contour plot is shown in Figure 5.10 and 3D plot in Figure 5.11.

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

Figure 5.10. Contour Plot of Entanglement for Apollonius Symmetric States
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Figure 5.11. 3D Plot of Entanglement for Apollonius Symmetric States

5.3.2.4. Geometrical Meaning of Concurrence

The concurrence for two qubit Apollonius state has simple geometrical meaning.

Since concurrence has the same value for arbitrary point on the given Apollonius circle,

the intersection of this circle with the orthogonal circle

∣∣∣∣∣z − 1

2

∣∣∣∣∣ = 1

4

can be considered. The intersection points in Figure5.12 shows that the concurrence is

determined as the double area of the shaded rectangle. In Figure 5.10 it is a distance

between two intersection points.

Figure 5.12. a) Concurrence as an area, b) Concurrence as a distance
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5.3.2.5. Concurrence and Reflection Principle

Reflecting Apollonius two qubit state |A〉 with respect to the line Re(z) =
1

2
gives

the symmetric two qubit state (Figure 5.13)

|As〉 = −z̄|00〉 + (1 − z̄)|11〉√|z − 1|2 + |z|2
.

Figure 5.13. Symmetric qubit states

Fidelity between these two symmetric states coincides with the concurrence

F = |〈As|A〉| = 2|z||z − 1|
|z − 1|2 + |z|2 = C,

and is constant for the symmetric states on reflected Apollonius circles.
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5.4. Multiple Qubits in Apollonius Representation

By applying the following circuit

|a〉 ⊗ |0〉...|0〉 ⊗ |0〉 CNOT ⊗ ...I ⊗ I ... I ⊗ I... ⊗ CNOT |A〉

the n-qubit Apollonius state can be generated in the form

|A〉 = (z − 1)|00...0〉 + z|11...1〉√|z − 1|2 + |z|2
.

The corresponding symmetric state is

|As〉 = −z̄|00...0〉 + (1 − z̄)|11...1〉√|z − 1|2 + |z|2

and fidelity between these states

F = |〈As|A〉| = 2|z||z − 1|
|z − 1|2 + |z|2 =

2r
1 + r2

is constant on Apollonius circle with fixed r.

5.5. Apollonius Representation for Generic Two Qubit State

The Apollonius states, as introduced in Section 5.3.2 are characterized by one

complex parameter z. For the one qubit case it represents the generic state. However,

for multiple generic qubit states, more parameters are required. Below, the Apollonius

representation for the generic two qubit state

|ψ〉 = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉 , (5.7)
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with normalization

|c00|2 + |c01|2 + |c10|2 + |c11|2 = 1 .

would be derived. First of all, instead of four complex variables ci j, i, j = 0, 1, another set

of four complex variables η, ζ, a and b, according to formulas

c00 = (η − 1) a, c11 = η a ,

c01 = (ζ − 1) b, c10 = ζ b ,

is introduced, where complex a and b could be expressed in terms of complex α and β as:

a =
α√|η − 1|2 + |η|2

, b =
β√|ζ − 1|2 + |ζ |2

.

By introducing Apollonius two qubit states in the form

|η〉 = (η − 1)|00〉 + η|11〉√|η − 1|2 + |η|2
, |ζ〉 = (ζ − 1)|01〉 + ζ |10〉√|ζ − 1|2 + |ζ |2

,

the generic state (5.7) appears as superposition of these states

|ψ〉 = α|η〉 + β|ζ〉 .

Parameters α and β can be fixed by normalization condition. Since Apollonius states |η〉
and |ζ〉 are orthogonal and normalized:

〈η|η〉 = 〈ζ |ζ〉 = 1, 〈η|ζ〉 = 〈ζ |η〉 = 0,
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it implies |α|2 + |β|2 = 1. By choosing

α = (ξ − 1) λ, β = ξ λ ,

where ξ is an arbitrary complex number, the following condition holds

|λ| = 1√|ξ − 1|2 + |ξ|2
.

Then, by neglecting an arbitrary global phase factor, the normalized generic two qubit

state in Apollonius representation can be characterized by three arbitrary complex num-

bers η, ζ and ξ :

|ψ〉 = (ξ − 1)|η〉 + ξ|ζ〉√|ξ − 1|2 + |ξ|2
.

The concurrence of this state, calculated by the determinant formula is

C =
2√|ξ − 1|2 + |ξ|2

∣∣∣∣∣∣∣(ξ − 1)2 η(η − 1)√|η − 1|2 + |η|2
− ξ2 ζ(ζ − 1)√|ζ − 1|2 + |ζ |2

∣∣∣∣∣∣∣ (5.8)

In particular cases, this states and the concurrence are reduced to the previous results

ξ = 0⇒ C =
2|η||η − 1|√|η − 1|2 + |η|2

,

ξ = 1⇒ C =
2|ζ ||ζ − 1|√|ζ − 1|2 + |ζ |2

.
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5.6. Reflected Qubits and Concurrence

The concurrence formula (5.8) can be derived from the reflection principle for

Apollonius generic two qubit state as

C = |〈ψs|ψ〉| ,

where the symmetric qubit state |ψs〉 is coming from reflection of input qubits in three

steps.

1) Reflection in complex plane η, in the vertical line Re η =
1

2
(Figure 5.14):

ηs ≡ η∗ = 1 − η̄

Figure 5.14. Symmetric qubits |η〉 and |η∗〉

2) Reflection in complex plane ζ in the vertical line Re ζ =
1

2
(Figure 5.15):

ζs ≡ ζ∗ = 1 − ζ̄
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Figure 5.15. Symmetric qubits |ζ〉 and |ζ∗〉

3) Inversion in complex plane ξ in circle

∣∣∣∣∣ξ − 1

2

∣∣∣∣∣ = 1

4
(Figure 5.16) :

ξs ≡ ξ∗ = 1

2
+

1

4

ξ̄ − 1

2

Figure 5.16. Symmetric qubits |ξ〉 and |ξ∗〉 by inversion in circle
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The resulting state is

|ψs〉 = (ξ∗ − 1)|η∗〉 + ξ∗|ζ∗〉√|ξ∗ − 1|2 + |ξ∗|2
,

or up to global phase

|ψs〉 = (ξ̄ − 1)|η∗〉 − ξ̄|ζ∗〉√|ξ − 1|2 + |ξ|2
, (5.9)

where symmetric qubit states are

|η∗〉 = − η̄|00〉 + (η̄ − 1)|11〉√|η − 1|2 + |η|2
,

|ζ∗〉 = − ζ̄ |01〉 + (ζ̄ − 1)|10〉√|ζ − 1|2 + |ζ |2
.

Calculating the concurrence C = |〈ψs|ψ〉|, the same result as by determinant formula (5.8)

is obtained.

It is instructive to see how the phase flipping gate action as in Section 4.3 is related

with reflection of Apollonius qubits. Applying the gate to anti-unitary transformed states

K|η〉 = |η̄〉, K|ζ〉 = |ζ̄〉 ,

the reflected states appear

Y ⊗ Y |η̄〉 = |η∗〉 ,

Y ⊗ Y |ζ̄〉 = −|ζ∗〉 ,
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and

Y ⊗ Y |ψ̄〉 = (ξ̄ − 1)Y ⊗ Y |η̄〉 + ξ̄ Y ⊗ Y |ζ̄〉√|ξ − 1|2 + |ξ|2
=

(ξ̄ − 1)|η∗〉 − ξ̄|ζ∗〉√|ξ − 1|2 + |ξ|2
= |ψs〉 .
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CHAPTER 6

ENTANGLEMENT FOR MULTIPLE QUBIT STATES

Entanglement for two qubit system is related with bipartite expansion of two

qubits on product of one qubits. For three and more qubits, several partitions are pos-

sible. For example, for a three qubit state |ψ〉, one partition is |ψ〉 = |a〉 |b〉 |c〉 and the

another one is |ψ〉 = |a〉 |ψ2〉, where |ψ2〉 is a two qubit state. This is why, entanglement

characteristics for multiple qubits are more complicated. In this Chapter the n-tangle of n

qubit state, which is a pure state, is studied.

6.1. Hyperdeterminant and 3-tangle for Three Qubit State

As it was shown in Chapter 4, the concurrence as a measure of entanglement can

be derived from several geometrical and physical ideas. To generalize it to three qubit

state, the determinant formula is instructive,

C = 2

∣∣∣∣∣∣∣∣
c00 c01

c10 c11

∣∣∣∣∣∣∣∣ = 2|c00c11 − c01c10|.

Since determinant is skew-symmetric, it can be represented by absolute skew -symmetric

Levi- Civita tensors. Since coefficients in qubit states are taking only two value 0 and 1,

the Levi- Civita tensor is the second rank tensor, εi j = −ε ji :

εi j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 for i, j = 0, 1

−1 for i, j = 1, 0
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with only non zero components ε01 = 1, ε10 = −1. Then for two complex vectors �a0 =

(a00, a01) and �a1 = (a10, a11) (we denote ai j ≡ ci j, i, j = 0, 1) the vector product is

�a0 × �a1 = εi j (�a0)i (�a1) j

= (�a0)0 (�a1)1 − (�a0)1 (�a1)0 = a00a11 − a01a10,

so that

C = 2 |�a0 × �a1| = 2 | εi j (�a0)i (�a1) j |.

Since

a00a11 − a01a10 =
1

2
εi j εkl aik a jl,

this equation can be rewritten as

C = 2

∣∣∣∣∣ 1

2
εi j εkl aik a jl

∣∣∣∣∣ , (6.1)

(the Einstein convention for sum in repeated indices is implied). This tensor form for the

concurrence is convenient way for generalization to three qubits. One notices that, the

concurrence (6.1) is zero rank tensor (scalar), obtained by contraction of bilinear form

of coefficients aik a jl which is the fourth rank tensor, with two second rank Levi-Civita

tensors. If three qubit state is

|ψ〉 =
∑
i, j,k

ai jk|i jk〉,

then bilinear form as a tensor ai1 j1k1
ai2 j2k2

has rank 6 and can be contracted with three

Levi-Civita tensors, giving identically zero,

εi1i2 ε j1 j2 εk1k2
ai1 j1k1

ai2 j2k2
= 0.
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This is why, it cannot be proper characteristic of entanglement. As a next generalization

the trilinear form ai1 j1k1
ai2 j2k2

ai3 j3k3
is considered as a tensor of rank 9, which is not even

and cannot be contracted with Levi-Civita tensors. Then the next candidate is the quartic

form in the coefficients, with rank 12 and it can be contracted to a scalar by 6 Levi-Civita

tensors. This is the generalization of the determinant formula (6.1) introduced by A.

Cayley, and known as the Cayley’s hyperdeterminant, (Cayley, 1889)

detψ = −1

2
εi1i2 ε j1 j2 εi3i4 ε j3 j4 εk1k3

εk2k4
ai1 j1k1

ai2 j2k2
ai3 j3k3

ai4 j4k4
.

As a three dimensional generalization of a two dimensional determinant, it has explicit

form

detψ = d1 − 2d2 + 4d3, (6.2)

where

d1 = a2
000a2

111 + a2
001a2

110 + a2
010a2

101 + a2
100a2

011,

d2 = a000 a111 a011 a100 + a000 a111 a101 a010

+ a000 a111 a110 a001 + a011 a100 a101 a010

+ a011 a100 a110 a001 + a101 a010 a110 a001,

d3 = a000 a110 a101 a011 + a111 a001 a010 a100.

In above formulas the following identity is used

εi j εi′ j′ = δii′ δ j j′ − δi j′ δ ji′ . (6.3)
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This hyperdeterminant can be considered as characteristics of entanglement for three

qubit state and it is known as the "residual entanglement " or "3-tangle". (Coffman,

Kundu and Wootters, 2000)

Definition 6.1 The 3-tangle of three qubit |ABC〉 state

|ψ〉 =
∑
i, j,k

ai jk|i jk〉

is defined as

τABC = 4 | detψ|.

Explicitly it is

τABC(|ψ〉) = 2

∣∣∣∣∣∣∣
∑
0,1

aα1α2α3
aβ1β2β3

aγ1γ2γ3
aδ1δ2δ3

εα1β1
εα2β2

εγ1δ1
εγ2δ2

εα3γ3
εβ3δ3

∣∣∣∣∣∣∣ ,

or

τABC = 4|d1 − 2d2 + 4d3|. (6.4)

6.1.1. Determinant Decomposition of 3-tangle

In Chapter 4, the concurrence characteristics of entanglement was represented by

determinant formula. Here, the determinant representation for 3-tangle is derived.

Proposition 6.1 The 3-tangle formula (6.4) can be represented in terms of 2× 2 determi-

nants. These determinants correspond to areas of parallelograms constructed on vectors,
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combined from coefficients ai jk,

τABC

4
=

∣∣∣∣∣∣∣∣
a000 a001

a110 a111

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
a010 a011

a100 a101

∣∣∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣∣∣
a000 a001

a010 a011

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a101 a100

a111 a110

∣∣∣∣∣∣∣∣ + 2

∣∣∣∣∣∣∣∣
a000 a001

a100 a101

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a011 a010

a111 a110

∣∣∣∣∣∣∣∣

or

τABC

4
=

∣∣∣∣∣∣∣∣
a000 a001

a110 a111

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
a010 a011

a100 a101

∣∣∣∣∣∣∣∣
2

− 2

∣∣∣∣∣∣∣∣
a000 a001

a010 a011

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a101 a100

a111 a110

∣∣∣∣∣∣∣∣ − 2

∣∣∣∣∣∣∣∣
a000 a001

a100 a101

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a011 a010

a111 a110

∣∣∣∣∣∣∣∣
Proof The 3-tangle formula is

τABC = 4|d1 − 2d2 + 4d3|,

where

d1 = a2
000a2

111 + a2
001a2

110 + a2
010a2

101 + a2
100a2

011,

d2 = a000 a111 a011 a100 + a000 a111 a101 a010

+ a000 a111 a110 a001 + a011 a100 a101 a010

+ a011 a100 a110 a001 + a101 a010 a110 a001,

d3 = a000 a110 a101 a011 + a111 a001 a010 a100.
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Substitution and regrouping the terms gives

τABC

4
= (a000 a111 − a001 a110)2 + (a010 a101 − a100 a011)2 + 2a000 a011 (a110 a101 − a100 a111)

+ 2a111 a010 (a001 a100 − a000 a101) + 2a110 a011 (a000 a101 − a100 a001)

+ 2a001 a010 (a111 a100 − a101 a110)

=

∣∣∣∣∣∣∣∣
a000 a001

a110 a111

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
a010 a011

a100 a101

∣∣∣∣∣∣∣∣
2

+ 2a000 a011

∣∣∣∣∣∣∣∣
a101 a100

a111 a110

∣∣∣∣∣∣∣∣ + 2a111 a010

∣∣∣∣∣∣∣∣
a001 a000

a101 a100

∣∣∣∣∣∣∣∣
+ 2a110 a011

∣∣∣∣∣∣∣∣
a000 a001

a100 a101

∣∣∣∣∣∣∣∣ + 2a001 a010

∣∣∣∣∣∣∣∣
a100 a110

a101 a111

∣∣∣∣∣∣∣∣ .

By changing sign in the 4th and 6th terms

τABC

4
=

∣∣∣∣∣∣∣∣
a000 a001

a110 a111

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
a010 a011

a100 a101

∣∣∣∣∣∣∣∣
2

+ 2a000 a011

∣∣∣∣∣∣∣∣
a101 a100

a111 a110

∣∣∣∣∣∣∣∣ − 2a111 a010

∣∣∣∣∣∣∣∣
a000 a001

a100 a101

∣∣∣∣∣∣∣∣
+ 2a110 a011

∣∣∣∣∣∣∣∣
a000 a001

a100 a101

∣∣∣∣∣∣∣∣ − 2a001 a010

∣∣∣∣∣∣∣∣
a101 a100

a111 a110

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
a000 a001

a110 a111

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
a010 a011

a100 a101

∣∣∣∣∣∣∣∣
2

+ 2(a000 a011 − a001 a010)

∣∣∣∣∣∣∣∣
a101 a100

a111 a110

∣∣∣∣∣∣∣∣
+ 2(a110 a011 − a010 a111)

∣∣∣∣∣∣∣∣
a000 a001

a100 a101

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
a000 a001

a110 a111

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
a010 a011

a100 a101

∣∣∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣∣∣
a000 a001

a010 a011

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a101 a100

a111 a110

∣∣∣∣∣∣∣∣
+ 2

∣∣∣∣∣∣∣∣
a011 a010

a111 a110

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a000 a001

a100 a101

∣∣∣∣∣∣∣∣
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then finally equation is found in the form

τABC

4
=

∣∣∣∣∣∣∣∣
a000 a001

a110 a111

∣∣∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∣∣
a010 a011

a100 a101

∣∣∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣∣∣
a000 a001

a010 a011

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a101 a100

a111 a110

∣∣∣∣∣∣∣∣ + 2

∣∣∣∣∣∣∣∣
a000 a001

a100 a101

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

a011 a010

a111 a110

∣∣∣∣∣∣∣∣

�

It is known that, a 2×2 determinant can be interpreted as an area of parallelogram,

determined by two vectors with real components. In a similar way, 2 × 2 determinant for

complex vectors, appears as complex area in C2. Due to this, possible to represent the

Cayley hyperdeterminant and corresponding 3-tangle in terms of areas and the vector

product of complex (real) vectors.

Proposition 6.2 Let

�r00 = (a000, a001), �r01 = (a010, a011), �r10 = (a100, a101), �r11 = (a110, a111)

are real vectors in R2 satisfying constraint

�r2
00 + �r

2
01 + �r

2
10 + �r

2
11 = 1.

Then, Cayley’s hyperdeterminant is

detψ = (�r00 × �r11)2 + (�r01 × �r10)2 − 2(�r00 × �r01)(�r10 × �r11) − 2(�r00 × �r10)(�r01 × �r11)

and 3-tangle for three qubit (rebit) state is

τ = 4| detψ|.
Proof It is evident by identification of determinants with signed areas and with the

vector products in the form

�ri j × �rkl =

∣∣∣∣∣∣∣∣
ai j0 ai j1

akl0 akl1

∣∣∣∣∣∣∣∣ ,
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where i, j, k, l = 0, 1. �

The vectors and areas are shown in figure 6.1.

Figure 6.1. Area representation of vectors

6.1.2. Apollonius and Coherent Like Three Qubit States

Here, the 3-tangle of several three qubit states is calculated.

1. Coherent Like Three Qubit States For three qubit state

|ψ〉 = |000〉 + z|111〉√
1 + |z|2

,

the 3-tangle (6.4) is

τ = 4|a2
000 a2

111| = 4
|z|2

(1 + |z|2)2
.

Fidelity between symmetric states then is

F = |〈ψ̃|ψ〉| = 2
|z|

1 + |z|2 ,
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where

|ψ̃〉 = z̄|000〉 + |111〉√
1 + |z|2

.

This is why, the 3- tangle is

τ = F2,

and 3-tangle for such states is a constant along concentric circles |z| = r. It reaches

maximum value for circle |z| = 1. (See 3D plot of 3-tangle in Figure 6.2 and the

contour plot in Figure 6.3.)

Figure 6.2. 3-tangle Coherent State 3D
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Figure 6.3. 3-tangle Coherent State Contour Plot
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2. Maximally Tritangled States

The states have τ = 1 and are maximally tritangled states

|ψ〉 = 1√
2

(|000〉 + |111〉)→ a000 = a111 =
1√
2
,

|ψ〉 = 1√
2

(|101〉 + |010〉)→ a101 = a010 =
1√
2
,

|ψ〉 = 1√
2

(|001〉 + |110〉)→ a001 = a110 =
1√
2
,

|ψ〉 = 1√
2

(|011〉 + |100〉)→ a011 = a100 =
1√
2
.

3. Apollonius Three Qubit States For state

|ψ〉 = (z − 1)|000〉 + (z + 1)|111〉√|z − 1|2 + |z + 1|2
,

the 3-tangle (6.4) is

τ = 4|a2
000 a2

111| = 4
|z2 − 1|2

(|z − 1|2 + |z + 1|2)2
,

and it is a constant along Apollonius circles
|z + 1|
|z − 1| = r, and reaches maximal value

τ = 1 for vertical line Re z = 0, and minimal value τ = 0 for z = ±1.
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6.2. n - Tangle of n - Qubit State

In previous Section, the 3-tangle for three qubit state or the "residual entangle-

ment" (Coffman, Kundu and Wootters, 2000) was determined by the Cayley hyperdeter-

minant formula,

τABC(|ψ〉) = 2

∣∣∣∣∣∣∣
∑
0,1

aα1α2α3
aβ1β2β3

aγ1γ2γ3
aδ1δ2δ3

εα1β1
εα2β2

εγ1δ1
εγ2δ2

εα3γ3
εβ3δ3

∣∣∣∣∣∣∣ ,

where ai1,i2,i3 are coefficients of pure three qubit state.

|ψ〉 =
∑

i1,i2,i3

ai1i2i3 |i1i2i3〉, (6.5)

and ε01 = −ε10 = 1, ε00 = −ε11 = 0.

This formula can be generalized to multiple qubit states with even number n = 2k

of qubits. (Wong and Christensen, 2001)

Definition 6.2 For even n-qubit state

|ψ〉 =
∑

i1i2...in

ai1i2...in |i1i2...in〉

the n-tangle is defined as

τ12...n = 2

∣∣∣∣∣∣∣
∑
0,1

aα1α2...αn aβ1β2...βn aγ1γ2...γn aδ1δ2...δn εα1β1
εα2β2

...εαnβn εγ1δ1
εγ2δ2

...εγn−1δn−1
εαnγn εβnδn

∣∣∣∣∣∣∣
(6.6)

It was shown that it is invariant under permutations of the qubits (Wong and Christensen,

2001) . In addition, it can be related with fidelity between symmetric states. In Section

4.3, the pure state concurrence for two qubit states was defined as fidelity

C(ψ) = |〈ψ̃|ψ〉|.
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This formula was generalized to arbitrary even n, (Wong and Christensen, 2001) as

C12...n(ψ) = |〈ψ̃|ψ〉|,

where

|ψ̃〉 = (Y ⊗ Y ⊗ ... ⊗ Y)︸��������������︷︷��������������︸
n times

|ψ̄〉.

For two qubit states, the 2-tangle (6.6) with n = 2 is square of the concurrence

τ12 = C2.

Generalization of this formula for arbitrary even n is (Wong and Christensen, 2001)

τ12...n = C2
12...n.

6.2.1. Apollonius and Coherent Like n = 2k Qubit States

Here, the n-tangle for specific even n = 2k qubit states is calculated.

1. Coherent Like States

For n- qubit coherent state in the form

|z〉 = |00...0〉 + z|11...1〉√
1 + |z|2

, (6.7)

with even number n = 2k, the above formula (6.6) gives

τ12...n = 2 |(−1)n 2 a2
00...0 a2

11...1| = 2

∣∣∣∣∣∣(−1)n 2z2

(1 + |z|2)2

∣∣∣∣∣∣
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or

τ12...n =
4|z|2

(1 + |z|2)2
.

By using the symmetric state

|z̃〉 = (Y ⊗ Y ⊗ ... ⊗ Y)︸��������������︷︷��������������︸
n times

|z̄〉 = i2k |11...1〉 + z̄ (−i)2k |00...0〉√
1 + |z|2

= (−1)k z̄|00...0〉 + |11...1〉√
1 + |z|2

= |z̃〉,

which corresponds to the symmetric point z∗ =
1

z̄
of z in the unit circle, it is easy to

see that

τ12...n = C2
12...n,

where

C12...n = |〈z̃|z〉| = 2|z|
1 + |z|2 .

This shows that, n-tangle of state (6.7) is constant τ12...n = constant along concentric

circles |z| = r and it is maximal τ12...n = 1 on the unit circle |z| = 1.

2. Apollonius States

For n-qubit Apollonius state

|z〉 = (z − 1) |00...0〉 + (z + 1) |11...1〉√|z − 1|2 + |z + 1|2
, (6.8)
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with even n = 2k, the n-tangle is

τ12...n = 2|(−1)n 2 a2
00...0 a2

11...1| = 2

∣∣∣∣∣∣(−1)n 2
(z − 1)2(z + 1)2

(|z − 1|2 + |z + 1|2)2

∣∣∣∣∣∣

or

τ12...n =
4 |z2 − 1|2

(|z − 1|2 + |z + 1|2)2
.

It is vanishing for z = ±1 states and takes maximal value on the line Re z = 0.

Along every Apollonius circle
|z + 1|
|z − 1| = r the n- tangle is a constant. (See for

contour plot of n-tangle Figure 6.4 and for 3D plot of n-tangle Figure 6.5) It means

that Apollonius circles are "iso-tangle" curves for specific (6.8) even n-qubit states.
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Figure 6.4. n-tangle Apollonius Symmetric Contour Plot

Figure 6.5. n-tangle Apollonius Symmetric 3D
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CHAPTER 7

CASSINI QUBIT STATES

In Chapter 5 Apollonius representation of qubit states was introduced and classifi-

cation of the sates with constant entropy along Apollonius circles was described. It turns

out that Apollonius circles can be related with Cassini curves. This is why, it is natural to

find representation of qubits on Cassini curves.

7.1. Cassini Curves

In present section Cassini curve in cartesian and in polar form are derived.

Definition 7.1 (Sivardiere , 1994) A Cassini curve (oval) is a quartic plane curve defined

as the set (or locus) of points in the plane, such that the product of the distances to two

fixed points is constant. For any point P(x, y) in coordinate plane at |PF1| and |PF2|
distances to two fixed points F1(−c, 0) , F2(c, 0) the curve is defined as

|PF1||PF2| = a2,

where a is a constant (Figure 7.1).

Figure 7.1. Cassini Ovals
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7.1.1. Cartesian Form of Cassini Curve

By substituting the distance formulas

|PF1| =
√

(x − c)2 + (y − 0)2, |PF2| =
√

(x + c)2 + (y − 0)2

into the product formula, the cartesian form of Cassini curve can be derived

|PF1||PF2| =
√

(x − c)2 + (y − 0)2
√

(x + c)2 + (y − 0)2 = a2.

From this equation, the 1st and 2nd forms of Cassini curve are

1) (x2 + y2 + c2)2 − 4x2c2 = a4,

2) (x2 + y2)2 + 2c2(y2 − x2) = a4 − c4. (7.1)

In this thesis only the 2nd form of Cassini equation (7.1) will be used. Depending

on values of a and c, three different cases appear:

• a = c : equation (7.1) is represented as

(x2 + y2)2 + 2c2(y2 − x2) = 0.

By solving this equation the following, roots can be found

(0, 0), (
√

2c, 0), (−√2c, 0).

The corresponding curve is represented in Figure 7.2 and is called "The Bernoulli

Leminiscate".
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Figure 7.2. Bernoulli Leminiscate

• a < c : equation (7.1) has no solution for x = 0, but solved for y = 0 it has four

roots

(
√

c2 + a2, 0), (−
√

c2 + a2, 0), (
√

c2 − a2, 0), (−
√

c2 − a2, 0).

This curve is represented by two closed ovals, symmetrical with respect to x and y

axis and it is shown in Figure 7.3

Figure 7.3. Cassini Oval a < c
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• a > c : by taking x = 0 two roots appear in the form

(0,
√

a2 − c2), (0,−
√

a2 − c2)

and by choosing y = 0, another pair of roots can be found

(
√

a2 + c2, 0), (−
√

a2 + c2, 0).

Then, the corresponding curve represents closed oval and it is shown in Figure 7.4.

Figure 7.4. Cassini Oval a > c

7.1.2. Polar Form of Cassini Curve

By using polar coordinates x = r cos θ, y = r sin θ, equation (7.1) can be repre-

sented in polar form

r4 − 2c2r2 cos 2θ − a4 + c4 = 0. (7.2)
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Solving this equation, r(θ) can be find as

r(θ) =

√
c2 cos 2θ ∓

√
a4 − c4 + c4 cos2 2θ.

Depending on relation between a and c it reduces to the following cases:

• a = c : Bernoulli Leminisacate: r(θ) =
√

c2 cos 2θ

• a <c : Two closed ovals: r(θ) =

√
c2 cos 2θ ∓ √a4 − c4 + c4 cos2 2θ

• a > c : One closed oval: r(θ) =

√
c2 cos 2θ +

√
a4 − c4 + c4 cos2 2θ

7.2. From Cassini Curves to Apollonius Circles

Comparing definition of Cassini curve with definition of Apollonius circles, one

can notice complimentary character of their definitions. In the first case, the curve is

defined by constant product of distances

|PF1||PF2| = a2,

while in the second case by ratio of the distances

|PF1|
|PF2| = a2

from two fixed points.

The natural question appears, if these two curves can be related with each others?

Despite that the Apollonius circle curve is quadratic and Cassini curve is quartic, exists

transformation between these two curves. This transformation is combination of confor-

mal transformations. To describe it, the Cassini curve can be rewritten in complex form

as

|z − c||z + c| = |z2 − c2| = a2, (7.3)
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where z = x + iy.

7.2.1. From Cassini Curves to Concentric Circles

Via conformal map w = z2, where w = u + iv, the Cassini equation becomes

equation of the circle

|w − c2| = a2,

or

|w|2 − c2(w + w̄) + c4 = a4,

and

(u − c2)2 + v2 = (a2)2.

This represents the circle in w plane with center C(c2, 0) and radius r = a2(Figure 7.5).

For fixed c and different a, the set of concentric circles around point C occur.

Figure 7.5. Cassini to Concentric circles

7.2.2. Translating Concentric Circles to the Origin

Translating the origin ξ = w − c2, the equation becomes |w − c2| = |ξ| = a2 and it

represents concentric circles in ξ plane with center C(0, 0) and radius r = a2 (Figure 7.6).
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Figure 7.6. Translation of Concentric Circles

7.2.3. Möbius Mapping of Concentric Circles to Apollonius Circles

In ξ plane, 0 and∞ are symmetric points with respect to concentric circles around

origin. These symmetric points determine the Möbius transformation in the form

η = −c
ξ + c2

ξ − c2
. (7.4)

Proposition 7.1 Transformation (7.4) maps concentric circles in ξ plane to Apollonius

circles in η plane.

Proof Equation (7.4) rewritten in the form

ξ = c2η − c
η + c

,

implies

|ξ| = c2 |η − c|
|η + c| .
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For the circle |ξ| = a2, the equation can be written as

|η − c|
|η + c| =

a2

c2
.

This is equation of Apollonius circles. Depending on value of constant
a2

c2
three different

cases occur (Figure 7.7).

• a = c : Equation |η− c| = |η+ c| shows that the circle with center C(0, 0) and radius

r = c2 in ξ plane is mapped to imaginary axis Re(η) = 0 in η plane.

• a <c : Equation |η − c| > |η + c| shows that the circle with center C(0, 0) and radius

a2 < c2 in ξ plane is mapped to the circle in the right half of η plane.

• a > c : Equation |η− c| < |η+ c| shows that the circle with center C(0, 0) and radius

a2 > c2 in ξ plane is mapped to the circle in the left half of η plane.

Figure 7.7. Concentric Circles to Apollonius

�

Combining these conformal transformations together

z- plane w = z2

−−−−−−−−−−−−→ w-plane

w- plane ξ = w − c2

−−−−−−−−−−−−→ ξ-plane
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ξ- plane η = −c
ξ + c2

ξ − c2

−−−−−−−−−−−−−−→
η-plane

the following proposition holds.

Proposition 7.2 Conformal transformation

η = −c
z2

z2 − 2c2
(7.5)

maps Cassini curves in z plane into Apollonius circles in η plane (Figure 7.8).

Figure 7.8. Cassini Ovals to Apollonius Circles

7.3. Cassini Representation of One Qubit State

The relation between Cassini curves and Apollonius circles implies representation

of one qubit state as Cassini qubit state. In chapter 5, Apollonius one qubit state was

represented by the set of Apollonius circles with respect to symmetric points −1 and 1.

For points −c and c the state is

|η〉 = (η − c)|0〉 + (η + c)|1〉√|η − c|2 + |η + c|2
(7.6)
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It is evident that, in η-plane the point η = −c represents the state |0〉, and the point η = c

represents the state |1〉. Probabilities to measure these states are

p0 =
|η − c|2

|η − c|2 + |η + c|2 , p1 =
|η + c|2

|η − c|2 + |η + c|2 .

Due to (7.5),

η − c = −2c
z2 − c2

z2 − 2c2
, η + c = −2c

c2

z2 − 2c2
, (7.7)

and in terms of z, one can define Cassini representation of one qubit state,

|z〉 = (z2 − c2)|0〉 + c2|1〉√|z2 − c2|2 + c4
. (7.8)

In this representation, every value of complex number z determines one qubit state, so that

|0〉 state corresponds to z = ∞, and |1〉 state corresponds to points z = ±c. This implies

that points z = −c and z = c should be identified. As it is clear from (7.8), the Cassini

state is invariant under replacement z to −z, which means rotation to angle π around the

origin. This implies that Cassini states are uniquely determined by points in the right half

plane z: −π
2
≤ arg(z) ≤ π

2
.

Probabilities to measure |0〉 and |1〉 state are

p0 =
|z2 − c2|2
|z2 − c2|2 + c4

p1 =
c4

|z2 − c2|2 + c4
.

and the ratio of these probabilities

p0

p1

=
|z2 − c2|2

c4

is constant along Cassini curves:

|z2 − c2|2 = a4, (7.9)
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where

a4 = c4 p0

p1

=⇒ p0

p1

=
a4

c4
.

Depending on ratio of probabilities, the qubit states are classified according following

Cassini curves:

• a = c : Bernoulli Leminiscate:
p0

p1

= 1→ p0 = p1

• a < c : Two closed ovals:
p0

p1

< 1→ p0 < p1

• a > c : One closed oval:
p0

p1

> 1→ p0 > p1

It should be noted that, due to uniqueness of Cassini states mentioned above, only half of

these curves in the right half plane should be taken into account.

7.3.1. Shannon Entropy For One Qubit Cassini State

Along Cassini curve (7.9), probabilities for one qubit state (7.8) are constant and

can be represented as;

p0 =
a4

a4 + c4
=

a4

a4

1 +
c4

a4

=
1

1 + r2
,

and

p1 =
c4

a4 + c4
=

c4

a4

1 +
c4

a4

=
r2

1 + r2
,

where r2 is the ratio of probabilities r2 =
c4

a4
=

p1

p0

. By substituting these probabilities

into the Shannon entropy formula,

S = −p0 log2 p0 − p1 log2 p1,

the entropy of Cassini state can be found as

S = log2 (a4 + c4) − 1

a4 + c4
(a4 log2 a4 + c4 log2 c4)

145



or

S (r2) = log2 (1 + r2) − r2

1 + r2
(log2 r2).

Maximally random state corresponds to maximal entropy, and can be find at r = 1 or

a = c, which corresponds to Bernoulli leminiscate. In this case probabilities p0 = p1 =
1

2
and entropy S = 1. For r2 � 1, there exists symmetry for entropy values between Cassini

curves. For every closed Cassini oval with r2 > 1, exists two Cassini ovals with the same

entropy, determined by
1

r2
< 1.

7.4. Cassini Representation of Two Qubit States

The two qubit analogy of the Cassini state, (7.8) are given in the following form,

|z〉 = (z2 − c2)|00〉 + c2|11〉√|z2 − c2|2 + c4
, (7.10)

and

|z〉 = (z2 − c2)|01〉 + c2|10〉√|z2 − c2|2 + c4
.

Level of entanglement for these two qubit states can be calculated by the determinant

formula for concurrence. For Cassini state (7.10), the concurrence is

C = 2

∣∣∣∣∣∣∣∣∣∣∣∣

z2 − c2√|z2 − c2|2 + c4
0

0
c2√|z2 − c2|2 + c4

∣∣∣∣∣∣∣∣∣∣∣∣
=

2|z2 − c2|c2

|z2 − c2|2 + c4
. (7.11)

This concurrence

C(a, c) =
2a2c2

a4 + c4
(7.12)
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is constant along every Cassini curve (7.9). For maximally entangled state:

dC
da2
= 0→ a = c.

This is why, maximally entangled states with C = 1 are located on the Bernoulli leminis-

cate. For states with C < 1, due to symmetry (7.12) in a and c ,the Cassini curves with
a
c
< 1 and with

c
a
> 1 gives the same concurrence.

7.4.1. Fidelity for Two Qubit Cassini State

As it is seen in Chapter 5, concurrence for two qubit states can be rewritten as

fidelity F = |〈ψ̃|ψ〉| between the qubit state |ψ〉 and the bit-phase flipped state |ψ̃〉 such that

|ψ̃〉 = Y ⊗ Y |ψ̄〉,

where the complex conjugate state |ψ̄〉 results from application of anti -unitary operator

K,

|ψ̄〉 = K|ψ〉.
For two qubit state in Cassini representation (7.10), the bit-flipped state is

|z̃〉 = Y ⊗ Y |z̄〉 = −c2|00〉 + (z̄2 − c2)|11〉√|z2 − c2|2 + c4
. (7.13)

The corresponding fidelity coincides with concurrence

F = |〈z̃|z〉| = 2|z2 − c2|c2

|z2 − c2|2 + c4
= C

and it is a constant along every Cassini curve |z2 − c2| = a2.
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7.4.2. Inversion in Leminiscate and Symmetric Cassini States

As it is mentioned in previous section, for Cassini curves with parameters a2
1 =

c2

r
and a2

2 = c2r, the Shannon entropy and concurrence coincides. Here it is shown that, these

two curves represent inversions of each others in Bernoulli leminiscate, corresponding to

r = 1 and a2
1 = c2 = a2

2.

Definition 7.2 (Hurwitz and Courant, 1964) Inversion of point z = x + iy in analytical

curve F(x, y) = 0 gives the point z∗. Explicit formula to find this symmetric point z∗ is

F
(
z + z̄∗

2
,

z − z̄∗

2i

)
= 0.

For leminiscate curve (7.1),

(x2 + y2)2 − 2c2(x2 − y2) = 0

it gives relation

(z∗)2 =
z̄2c2

z̄2 − c2

or

(z2 − c2)((z̄∗)2 − c2) = c4 (7.14)

For given Cassini curve |z2 − c2| = a2
1, inversion (7.14) gives symmetric curve

|(z∗)2 − c2| = a2
2,

which is also Cassini curve, so that

a2
1 · a2

2 = c4.
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For these symmetric curve the concurrence for two qubit coincides.(Similar result is valid

for Shannon entropy for one qubit state)

Inversion formula implies also that, for given Cassini state |z〉 (7.9) exists the sym-

metric state

|z∗〉 = c2|00〉 + (z̄2 − c2)|11〉√|z2 − c2|2 + c4

and as easy to see, up to global phase this state coincides with |z̃〉 (7.13). This shows that,

the concurrence in Cassini representation

C = |〈z∗|z〉| = F

is just fidelity between symmetric Cassini states, reflected in the leminiscate.

7.5. Tritangle for Three Qubit Cassini State

The three qubit Cassini state

|z〉 = (z2 − c2)|000〉 + c2|111〉√|z2 − c2|2 + c4
(7.15)

is determined by complex parameter z = x + iy and real parameter c, so that in extended

complex plane C

• state |111〉 corresponds to two points z = ±c

• state |000〉 corresponds to point z = ∞.

By identifying points +z and −z, the plane C is reduced to the right half plane

Re z = x ≥ 0,

and the state |111〉 is located at just z = c (Figure 7.9).
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Tritangle for Cassini three qubit state (7.15) is

τ =
4|z2 − c2|2c4

(|z2 − c2|2 + c4)2
(7.16)

and as a function of z, it is related with the concurrence for Cassini two qubit state (7.11)

by formula

τ = C2.

Then, along arbitrary Cassini curve

|z2 − c2| = a2,

determined by real number a, the tritangle (7.16) is constant

τ =
4a4c4

(a4 + c4)2
.

It means that Cassini curves in plane z are iso-tritangle curves, and tritangle is a constant

along the curve, with 0 ≤ τ ≤ 1. Particular values of tritangle are following

• For a = 0, two points z = ±c, corresponding to |111〉 state give τ = 0.

• For a = ∞, solution is z = ∞, corresponding to the state |000〉 has τ = 0.

• For a = ±c maximal value τ = 1, corresponds to the "Bernoulli Leminiscate".

Figure 7.9. Half Cassini Ovals
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7.6. n - tangle for Even Cassini Qubit States

The n = 2k - even number Cassini qubit state is defined as

|z〉 = (z2 − c2)|00...0〉 + c2|11...1〉√|z2 − c2|2 + c4
,

where z = x+ iy, and c is real. The state |11...1〉 corresponds to points z = ±c and the state

|00...0〉 corresponds to point z = ∞. The n - tangle for this state is determined by (6.6) as

τ12...n = 2|(−1)n 2 a2
00...0 a2

11...1| = 2

∣∣∣∣∣∣(−1)n 2
(z2 − c2)2c4

(|z2 − c2|2 + c4)2

∣∣∣∣∣∣

or

τ12...n =
4|z2 − c2|2c4

(|z2 − c2|2 + c4)2
.

Along Cassini cures

|z2 − c2|2 = a4

the n-tangle becomes a constant

τ12...n =
4a4c4

(a4 + c4)2
= C2(a, c).

The symmetric state

|z̃〉 = (Y ⊗ Y ⊗ ... ⊗ Y)︸��������������︷︷��������������︸
n times

|z̄〉 = (z̄2 − c2)i2k |11...1〉 + z̄ (−i)2k |00...0〉√|z2 − c2|2 + c4

= (−1)k c2|00...0〉 + (z̄2 − c2)|11...1〉√|z2 − c2|2 + c4

= |z̃〉,
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is reflected state in leminiscate, like in Section 7.4.2. Then fidelity becomes

F = |〈z̃|z〉| = 2|z2 − c2|c2|
|z2 − c2|2 + c4

and as easy to see, it is related with n - tangle formula

τ12...n = F2.

Figure 7.10. n - tangle for Cassini Qubit Contour Plot

Figure 7.11. n - tangle for Cassini Qubit 3D Plots
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For very small range Bernoulli Leminiscate occurs.

Figure 7.12. n - tangle for Cassini Qubit Bernoulli Leminiscate Contour and 3D Plot

7.7. Transforming Cassini State to Apollonius State

As it is known in Section 7.2.3, the conformal map

η = −c
z2

z2 − 2c2
(7.17)

transforms Cassini curves to Apollonius circles. Here, it will introduced by using qubit

states. Cassini qubit state is

|z〉 = (z2 − c2)|0〉 + c2|1〉√|z2 − c2|2 + c4

can be transform into Apollonius states by using same conformal mapping. To find this,

(7.17) can be rewritten as

z2 − c2 = c2η − c
η + c

,
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substituting into state |z〉 gives symmetric Apollonius state

|η〉 = (η − c) |0〉 + (η + c) |1〉√|η − c|2 + |η + c|2
.

Scaling η→ 2η − c gives non - symmetric Apollonius state

|η〉 = (η − c) |0〉 + η |1〉√|η − c|2 + |η|2
.

This result can be generalized for two, three and n- qubits.
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CHAPTER 8

BIPOLAR REPRESENTATION OF QUBIT STATES

In Chapter 5, Apollonius circles were defined as a ratio of distances between two

symmetric points. These symmetric points determine the symmetric one - qubit states.

As an example, computational basis states |0〉 and |1〉 are symmetric states. In Section

5.3, it was shown that, entropy of one qubit state along these Apollonius circles is a

constant. It is known that, Apollonius circles represent part of the so called bipolar coor-

dinates, determined by two fixed points in the plane. These coordinates have applications

in electro-magnetic theory, determining the electric and magnetic field of two infinitely

long parallel cylindrical conductors. This is why, it is natural to use bipolar coordinates

to parametrize qubit states. In the present Chapter, bipolar coordinates for one and two

qubit states are derived for two different choices of symmetric states.

8.1. Bipolar Coordinates: Non-Symmetric Case (0,1)

Here the bipolar coordinates are introduced for fixed points 0 and 1. For given

complex number z = x + iy, two real variables are defined as τ and σ,

z =
eτ

eτ − eiσ ,

where

−∞ < τ < ∞, −π < σ < π,

and

|z|
|z − 1| = r = eτ .

Relation of these variables with cartesian coordinates is

x =
1

2
+

1

2

sinh τ

cosh τ − cosσ
, y =

1

2

sinσ

cosh τ − cosσ
,
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so that

z = x + iy =
1

2
+

1

2

sinh τ + i sinσ

cosh τ − cosσ
.

Figure 8.1. Bipolar Coordinates for Apollonius circle

8.1.1. One Qubit State in Bipolar Coordinates (0,1)

The bipolar representation for one qubit state is,

|A〉 = 1

2

(eiσ − e−τ)|0〉 + (eτ − e−iσ)|1〉√
cosh τ(cosh τ − cosσ)

.

This state, up to the global phase can be rewritten as

|τ, σ〉 = eiσ|0〉 + eτ|1〉√
1 + e2τ

,

where probabilities in bipolar form are

p0 =
1

1 + e2τ
, p1 =

e2τ

1 + e2τ
,
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with ratio
p1

p0

= e2τ ≡ r2.

The Shannon entropy represented in bipolar form is

S (τ) = log2(1 + e2τ) − e2τ

1 + e2τ
log2 e2τ.

By simplifying this equation it becomes

S (τ) = 1 +
ln(cosh τ) − τ tanh τ

ln 2
.

Maximally and Minimally Random States:

• If τ = 0, then r = eτ = e0 = 1 ,which shows S (0) = 1, that gives the maximally

random state.

• If τ = ∞, then r = eτ = e∞ = ∞, which shows S (∞) = 0, that gives the minimally

random state |1〉.

• If τ = −∞ then r = eτ = e−∞ = 0, which shows S (−∞) = 0, that gives minimally

random state. |0〉.

8.1.2. Two Qubit state in Bipolar Coordinates (0,1)

Definition 8.1 The Apollonius two qubit state in bipolar coordinates is defined as

|τ, σ〉 = eiσ|00〉 + eτ|11〉√
1 + e2τ

.

where (Figure 8.1)

−∞ < τ < ∞, −π < σ < π.

The determinant formula for concurrence of this two qubit state gives expression

C =
1

cosh τ
= sech τ . (8.1)
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It shows that, concurrence is not depending on angle σ, and is constant along the Apol-

lonius circle with fixed coordinate τ. This formula suggests to consider complex valued

transition amplitude between symmetric states in bipolar coordinates.

For two qubit state it gives the complex fidelity

F = 〈As|A〉 = Fe−iσ =
e−iσ

cosh τ
,

which describes complex version of the concurrence

C = 〈As|A〉 = Ce−iσ =
e−iσ

cosh τ
. (8.2)

The modulus of this complex concurrence is just the usual concurrence (8.1)

|C| = |〈As|A〉| = C =
1

cosh τ
.

Figure 8.2. Bipolar Coordinates for Two Qubit (0,1)
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8.2. Bipolar Coordinates: Symmetric Case (-1,1)

For two fixed points −1 and 1, the distance ratio becomes

∣∣∣∣∣z + 1

z − 1

∣∣∣∣∣ = r = eτ.

where z = x+iy. This complex variable z is represented in bipolar coordinates by equation

z =
eτ−iσ + 1

eτ−iσ − 1
.

For x and y variables it is

x =
z + z̄

2
=

sinh τ

cosh τ − cosσ
, y =

z − z̄
2i
=

sinhσ

cosh τ − cosσ
,

z = x + iy =
sinh τ + sinhσ

cosh τ − cosσ
.

8.2.1. One Qubit State in Bipolar Coordinates (-1,1)

Starting from Apollonius state

|ψ〉 = (z − 1)|0〉 + (z + 1)|1〉√|z − 1|2 + |z + 1|2
,

by using eτ =
|z + 1|
|z − 1| , and

z − 1 =
2

eτ−iσ − 1
, z + 1 =

2eτ−iσ

eτ−iσ − 1
,
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|z − 1|2 = 2eτ

cosh τ − cosσ
, |z + 1|2 = 2e−τ

cosh τ − cosσ
,

|z − 1|2 + |z + 1|2 = 4 cosh τ

cosh τ − cosσ
,

the one qubit state up to the global phase is obtained as

|τ, σ〉 = |0〉 + eτ−iσ|1〉√
1 + e2τ

.

The probabilities are

p0 =
1

1 + e2τ
, p1 =

e2τ

1 + e2τ
,

and the ratio of these probabilities is the same as in non-symmetric case,

p1

p0

= e2τ.

This implies that the Shannon entropy, which depends on this ratio only, takes the same

form.

8.2.2. Two Qubit State in Bipolar Coordinates (-1,1)

The Apollonius two qubit state in symmetric form is

|ψ〉 = (z − 1)|00〉 + (z + 1)|11〉√|z − 1|2 + |z + 1|2
,

with concurrence

C =
2|z2 − 1|

|z − 1|2 + |z + 1|2 .
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This two qubit state can be represented in bipolar coordinates as

|ψ〉 = |00〉 + eτ−iσ|11〉√
1 + e2τ

.

The concurrence for this state in bipolar form is in the same, as in non-symmetric case

C =
|eτ−iσ|
1 + e2τ

=
1

cosh τ
.

161



CHAPTER 9

CONCURRENCE AS CONFORMAL METRIC

In this Chapter, hydrodynamic and geometric interpretations of entanglement char-

acteristics, as the concurrence and the 3-tangle are given. In the first case, this is the

stream function of the hydrodynamic flow, and in the second one, the conformal metric

on a surface.

9.1. Hydrodynamic Flow and Concurrence

Definition 9.1 (Milne-Thomson, 1968) Complex Potential:

Let ϕ(x, y) is velocity potential and ψ(x, y) is stream function of the irrotational two di-

mensional motion. The complex potential is defined as

F(x, y) = ϕ(x, y) + iψ(x, y).

For irrotational and incompressible flow, these functions satisfy the Cauchy-Riemann

equations:
∂ϕ

∂x
=
∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x
.

These equations imply that complex valued function F(z) of complex argument z = x+ iy

is analytic function. Singularities of this function describes vortices, sources, etc.

Definition 9.2 Point Vortex:

The point vortex, corresponds to complex potential with logarithmic singularity, which is

located at z0,

F(z) =
γ

2πi
log (z − z0).

If γ > 0, then circulation is counterclockwise, if γ < 0, then circulation is clockwise.

Definition 9.3 Vortex Pair:

A pair of vortices, each of strength γ, but in opposite rotations called the vortex pair.
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Considering such pair of vortices with strengths γ at point A(0,−ia) and −γ at

point B(0, ia), where |AB| = 2a, the complex potential becomes

F(z) = iγ log
z − ia
z + ia

.

9.1.1. Hydrodynamic Flow: Apollonius and Cassini

Here, two point vortex configurations are considered. According to the sign of

vortex strengths, two cases with opposite and the same directions of rotation are possible.

This leads to the flow along Apollonius circles and Cassini ovals, respectively.

• Apollonius Vortex Circles:

For two point vortices in x- axis, at (−a, 0), with γ < 0, and at (a, 0), with γ > 0,

the complex potential is

F(z) =
γ

2πi
log (z − a) +

−γ
2πi

log (z − (−a))

=
γ

2πi
log

z − a
z + a

.

The stream function of this flow is

ψ(x, y) =
F(z) − F(z)

2i
= − γ

4π

(
log

z − a
z + a

+ log
z̄ − a
z̄ + a

)

= − γ
4π

log
(z − a
z + a

· z̄ − a
z̄ + a

)

= − γ
4π

log
|z − a|2
|z + a|2 .

Then, along the stream lines, the stream function is a constant: ψ(x, y) = ψ0

ψ0 = − γ
4π

log
|z − a|2
|z + a|2 .
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Solution of this equation gives

|z − a|
|z + a| = e

−2πψ0
γ .

By denoting e
−2πψ0
γ ≡ k, where k is a constant, the Apollonius circles appear as the

stream lines of vortex motion

|z − a|
|z + a| = k.

• Cassini Vortex Ovals:

For two point vortices in x- axis, at (−a, 0), and at (a, 0) with the same strength

γ > 0, the complex potential is

F(z) =
γ

2πi
log (z − a) +

γ

2πi
log (z − (−a))

=
γ

2πi
log ((z − a) · (z + a))

=
γ

2πi
log (z2 − a2). (9.1)

The stream function of this flow is

ψ(x, y) =
F(z) + F(z)

2i
= − γ

4π

(
log (z2 − a2) + log (z̄2 − a2)

)

= − γ
4π

log
(
log (z2 − a2) · (z̄2 − a2)

)

= − γ
4π

log |z2 − a2|2.

Then, along the stream lines, the stream function is a constant: ψ(x, y) = ψ0 and

ψ0 = − γ
4π

log |z2 − a2|2.
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Solving this equation gives

|z2 − a2| = e
−2πψ0
γ .

By denoting e
−2πψ0
γ ≡ t, where t is a constant, the Cassini ovals becomes the stream

lines of the flow

|z − a||z + a| = t.

9.1.2. Concurrence Flow for Two Qubit States

The curves along which the concurrence is a constant, can be considered as a

stream lines of the some planar flow, which would be called as "the concurrence flow".

To describe this flow, the stream function is introduced according to equation

ψ(x, y) = ln C2(x, y),

where C(x, y) is the concurrence, as a function of z = x + iy. The concurrence flow is a

vector field �v = (vx, vy), where

vx(x, y) =
∂ψ

∂y
, vy(x, y) =

∂ψ

∂x
,

which is the tangent to the stream lines of the flow. Vorticity of the flow is determined by

formula

ω =
∂vy

∂x
− ∂vx

∂y
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and can be expressed by stream function as

ω = −
(
∂2

∂x2
+
∂2

∂y2

)
ψ = −Δψ,

or

ω = −2Δ ln C(x, y).

• Two Qubit Coherent State

For the state

|z〉 = |00〉 + z|11〉√
1 + |z|2

,

the concurrence is

C(z) =
2|z|

1 + |z|2 .

It determines the stream function

ψ(x, y) = ln

(
4|z|2

(1 + |z|2)2

)
= ln

(
4|(x2 + y2)

(1 + x2 + y2)2

)
.

The concurrence flow is given by

vx = g(r) y, vy = g(r) x,

where r2 = x2 + y2, and

g(r) =
2

r
1 − r2

1 + r2
.
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This vector field is tangent to concentric circles around origin, due to

�r · �v = xvx + yvy = xg(r)y − yg(r)x = 0.

The flow with r > 1 =⇒ g(r) < 0 is in counter-clockwise direction, while for

r < 1 =⇒ g(r) > 0, it is in clockwise direction. At unit circle r = 1 =⇒ g(r) = 0

and velocity of the flow is zero. This circle corresponds to maximally entangled

states and at this circle, the flow change the direction of rotation. Vorticity of the

flow

ω =
8

(1 + r2)2

is constant along every circle with fixed radius.

For r → 0

vx ∼ 2y
r2
, vy ∼ −2x

r2

so that, for v =
√

v2
x + v2

y it gives v ∼ 2

r
.

For r → ∞ it is

vx ∼ −2y
r2
, vy ∼ 2x

r2

and again v ∼ 2

r
. This asymptotic behaviour of the velocity field is similar to point

vortex with complex potential

f (z) =
γ

2πi
ln z
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and velocity field

vx =
γ

2π

−y
r2
, vy =

γ

2π

x
r2
,

located at the origin with strength Γ = +4π for r → ∞, Γ = −4π for r → 0.

The total vorticity on the plane is equal

�
ω(x, y) dx dy = 8

�
dx dy

(1 + r2)2
= 8

∫ ∞

0

∫ 2π

0

r dr dϕ
(1 + r2)2

= 8π,

which according to the Green formula, is equal to difference of circulations around

∞ and 0: +4π − (−4π) = 8π.

• Apollonius Flow

For Apollonius two qubit state

|z〉 = (z − 1)|00〉 + (z + 1)|11〉√|z − 1|2 + |z + 1|2

has concurrence is

C(z) =
2|z2 − 1|

|z − 1|2 + |z + 1|2

and it determines the stream function

ψ(x, y) = ln

(
(x2 − y2 − 1)2 + 4x2y2

(1 + x2 + y2)2

)
.

The flow

vx(x, y) = 4 y h(x, y), vy(x, y) = −4 x h(x, y),
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where

h(x, y) =
4x2

[(x2 − y2 − 1)2 + 4x2y2][1 + x2 + y2]
.

The velocity function

v(x, y) =
16x2 r√

1 + r2((1 + r2)2 − 4x2)

is shown in Figure 9.1 , and it is singular around points z = 1 and z = −1, on the

plane, as centers of circulation.

Figure 9.1. Concurrence Flow

9.2. Concurrence as Conformal Metric

It was shown in Chapter 6 that the square of concurrence gives 3-tangle τ = C2

or n-tangle for even multiqubit states in coherent state representation. In this Section, the

square of concurrence C2(x, y) is treated as a conformal metric on a surface.
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9.2.1. Qubit and Conformal Metric on Sphere

Here, a relation between qubit and conformal metric is established. The one qubit

state

|ψ〉 = c0|0〉 + c1|1〉

is determined by two complex numbers c0, c1, allowing to define Hermitian metric in C2

(Dubrovin, Fomenko and Novikov, 1984)

dl2 = dc0dc̄0 + dc1dc̄1.

A surface in real space can be considered then as a complex curve in C2, given by implicit

analytic function

f (c0, c1) = 0.

Induced metric on this surface can be calculated as

dl2 = dc0dc̄0 +
dc1

dc0

dc0

dc̄1

dc̄0

dc̄0

or

dl2 =

(
1 +

∣∣∣∣∣dc1

dc0

∣∣∣∣∣
2
)

dc0dc̄0.

If c0 = x + iy, then induced metric on surface f (c0, c1) = 0 is

dl2 = g(c0, c̄0) dc0dc̄0 = g(x, y)(dx2 + dy2)

and

g(x, y) = g(c0, c̄0) = 1 +

∣∣∣∣∣dc1

dc0

∣∣∣∣∣
2

.
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This metric is called the "conformal metric".

Definition 9.4 If the metric on a real two dimensional surface has the form

dl2 = g(x, y)(dx2 + dy2) (9.2)

in terms of real coordinates x and y on the surface, then these coordinates called "confor-

mal".

But coordinates c0 and c1 in addition have to satisfy normalization constraint

|c0|2 + |c1|2 = 1.

Parametrizing c0 = r0 eiϕ0 , c1 = r1 ei(ϕ0+ϕ1), this constraint gives the unit circle

r2
0 + r2

1 = 1. (9.3)

So that the metric can be calculated by taking into account the global phase (ϕ0) identifi-

cation dϕ0 = 0 :

dc0 = dr0eiϕ0 + r0eiϕ0idϕ0,

dc̄0 = dr0e−iϕ0 − r0e−iϕ0idϕ0,

dc0dc̄0 = dr2
0 + r2

0dϕ2
0

ϕ0=0
= dr2

0

dc1dc̄1 = dr2
1 + r2

1(dϕ0dϕ1)2 ϕ0=0
= dr2

1 + r2
1dϕ2

1.

The circle equation (9.3) gives

r0dr0 = −r1dr1 → dr0 = −r1

r0

dr1
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and

dr2
0 =

r2
1

r2
0

dr2
1. (9.4)

Then

dl2 = dc0dc̄0 + dc1dc̄1

= dr2
0 + dr2

1 + r2
1dϕ2

1

(9.4)
=

r2
0 + r2

1

r2
0

dr2
1 + r2

1dϕ2
1

(9.3)
=

1

1 − r2
1

dr2
1 + r2

1dϕ2
1,

and the metric becomes

dl2 =
dr2

1

1 − r2
1

+ r2
1 dϕ2

1. (9.5)

This is the metric for generic one qubit state

|ψ〉 = c0|0〉 + c1|1〉 = eiϕ0(r0|0〉 + r1eiϕ1 |1〉),

and due to the circle equation (9.3),

|ψ〉 =
√

1 − r2
1
|0〉 + r1eiϕ1 |1〉. (9.6)

• Example 1 : For r1 = sin
θ

2
, ϕ1 ≡ ϕ this gives the Bloch representation of qubit

(9.6),

|ψ〉 = |θ, ϕ〉 = cos
θ

2
|0〉 + sin

θ

2
eiϕ|1〉,
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and metric (9.5) is the " spherical metric "

dl2 =
1

4
dθ2 + sin2 θ

2
dϕ2, (9.7)

on the Bloch sphere.

• Example 2 : Rewriting the state (9.6) as

|ψ〉 =
√

1 − r2
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝|0〉 +
r1eiϕ1√
1 − r2

1

|1〉
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and denoting

z ≡ r1eiϕ1√
1 − r2

1

,

the state (9.6) becomes the coherent qubit state

|ψ〉 = |z〉 = |0〉 + z |1〉√
1 + |z|2

.

The corresponding metric is the conformal metric on the unit sphere

dl2 =
dz dz̄

(1 + |z|2)2
. (9.8)

A complex analytical coordinate changes preserve the conformal form of the met-

ric. Indeed, by taking z = x + iy the metric (9.2) is

dl2 = g(z, z̄)dz dz̄.

Let z = z(w) define a complex analytic coordinate change, so that
∂z
∂w̄
= 0 and z̄ = z̄(w̄),

dz =
dz
dw

dw, dz̄ =
dz̄
dw̄

dw̄.
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Multiplying them, gives

dz dz̄ =
∣∣∣∣∣ dz
dw

∣∣∣∣∣
2

dwdw̄.

Then, the metric (9.2) in new coordinates remains conformal

dl2 = g(z, z̄)(dz + dz̄) = g(z(w), z̄(w̄))

∣∣∣∣∣ dz
dw

∣∣∣∣∣
2

dwdw̄

= h(w, w̄) dwdw̄.

In above consideration, a relation between parametrization of one qubit state (9.6)

and metric on sphere (9.5) was established. Representation of two qubit state in terms of

one complex parameter z implies interpretation of the concurrence C(z, z̄), or C2(z, z̄) ( the

3-tangle of three qubit state is τ = C2) as conformal metric on a surface.

9.2.2. Apollonius Metric: Non-symmetric Case

The Apollonius two qubit state in z-plane

|ψ〉 = (z − 1)|00〉 + z|11〉√|z − 1|2 + |z|2
(9.9)

has concurrence

C =
2|z||z − 1|
|z − 1|2 + |z|2 . (9.10)

This gives conformal metric

dl2 = g(z, z̄) dzdz̄ = C2(z, z̄) dzdz̄.
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The metric can be represented in bipolar coordinates, defined as z =
eτ

eτ − eiσ . For this, dz

and dz̄ are calculated,

dz =
eτ+iσ

(eτ − eiσ)2
(−dτ + idσ), dz̄ =

eτ−iσ

(eτ − e−iσ)2
(−dτ − idσ),

dzdz̄ =
e2τ

(eτ − eiσ)2(eτ − e−iσ)2
(dτ2 + dσ2),

giving the conformal factor,

g(z, z̄) =
4|z|2|z − 1|2

(|z − 1|2 + |z|2)2
=

4e2τ

1 + e2τ
=

4

4 cosh2 τ
=

1

cosh2 τ
.

Then, the metric is represented in bipolar form as

dl2 = g(z, z̄) dzdz̄ =
dτ2 + dσ2

4 cosh2 τ(cosh τ − cosσ)2
= g(τ, σ)(dτ2 + dσ2),

where the conformal factor is

g(τ, σ) =
1

4 cosh2 τ(cosh τ − cosσ)2
. (9.11)

9.2.3. Apollonius Metric: Symmetric Case

Two qubit state in symmetric form,

|ψ〉 = (z − 1)|00〉 + (z + 1)|11〉√|z − 1|2 + |z + 1|2
(9.12)
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has concurrence

C =
2|z2 − 1|

|z − 1|2 + |z + 1|2 . (9.13)

The metric is represented as

C2(z, z̄) =
4|z2 − 1|2

(|z − 1|2 + |z + 1|2)2
= g(z, z̄).

In terms of bipolar coordinates

z =
eτ−iσ + 1

eτ−iσ + 1

this metric takes the form

dl2 =
dτ2 + dσ2

cosh2 τ
= g(τ, σ)(dτ2 + dσ2),

where conformal factor is

g(τ, σ) =
1

cosh2 τ
. (9.14)

9.3. Constant Gaussian Curvature Surfaces and Cassini Curves

In Section 9.2, conformal metrics for two dimensional surfaces corresponding

to Apollonius qubits were derived. Here, the Gaussian curvature for these surfaces is

calculated.

Proposition 9.1 (Dubrovin, Fomenko and Novikov, 1984) If u and v are conformal coor-

dinates on a surface in 3 dimensional Euclidean space, in terms of which induced metric
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has the form

dl2 = g(u, v)(du2 + dv2),

then Gaussian curvature of the surface is

K = − 1

2g(u, v)
Δ ln g(u, v), (9.15)

where

Δ =
∂2

∂u2
+
∂2

∂v2

is the Laplace operator.

9.4. Apollonius and Bipolar Representation of Gaussian Curvature

The Apollonius two qubit state metrics in bipolar coordinates are conformal, this

is why the Gaussian curvature of these metrics can be calculated according to formula

K = − 1

2g(u, v)
Δ ln g(u, v) = − 1

2g(τ, σ)

(
∂2

∂τ2
+

∂2

∂σ2

)
ln(g(τ, σ)). (9.16)

Below, two cases of bipolar coordinates, non-symmetric and symmetric one will be con-

sidered.

9.4.1. Non-symmetric Case

The Apollonius two qubit state in z-plane (9.9) has concurrence (9.10). Conformal

metric, calculated in bipolar coordinate (9.11) is

g(τ, σ) =
1

4 cosh2 τ(cosh τ − cosσ)2
.
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The Gaussian curvature K, with respect to this metric can be calculated by

ln g(τ, σ) = ln
1

4
− 2 ln cosh τ − 2 ln(cosh τ − cosσ),(

∂2

∂τ2
+

∂2

∂σ2

)
ln(g(τ, σ)) = −2

1

cosh2 τ
.

Substituting into (9.16), the Gaussian curvature in bipolar form is represented as

K = 4(cosh τ − cosσ)2.

Calculating

K = 4(cosh τ − cosσ)2

= (eτ + e−τ − (eiσ + e−iσ)2) =
(eτ − eiσ)2(eτ − e−iσ)2

e2τ

in complex z =
eτ

eτ − eiσ , |z|2 = e2τ

(eτ − eiσ)(eτ − e−iσ)
and |z − 1|2 = 1

(eτ − eiσ)(eτ − e−iσ)
, it

gives

K =
1

|z|2|z − 1|2 .

According to this formula, the Gaussian curvature is a constant along the curve on the

surface, satisfying equation

|z||z − 1| = 1√
K
.

This is equation for the Cassini curves and the Gaussian curvature is constant along these

curves, with fixed points 0 and 1.
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9.4.2. Symmetric Case

The symmetric Apollonius two qubit state (9.12) has concurrence (9.13) and cor-

responding conformal metric (9.14),

g(τ, σ) =
1

cosh2 τ
.

Substituting into (9.16), the bipolar form of Gaussian curvature appears

K = (cosh τ − cosσ)2.

This curvature is constant along curves,

|z + 1||z − 1| = 2√
K
,

which are Cassini curves, with fixed points −1 and 1.

9.5. Concurrence Surface as Surface of Revolution

In Section 9.2, the square of concurrence C2(x, y) as conformal metric on a surface

was studied. The question is "how to recover this surface globally from local character-

istics as the metric ?" This surface would be called as the concurrence surface. Intersec-

tion of this surface with parallel planes, corresponds to level curves, representing integral

curves of constant concurrence. Here, this surface is recovered as a surface of revolution,

partially in Euclidean space and partially in Minkowski space.
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9.5.1. Surface As a Graph

For a surface given by a graph z = f (x, y) the parametric form in 3D space is

�r (x, y) = (x, y, z = f (x, y)). If

z = f (x, y) = f (x2 + y2) ≡ φ(
√

x2 + y2) = φ(r),

then this surface is "the surface of revolution", with

x = r cos v, y = r sin v, z = φ(r), (9.17)

where x2 + y2 = r2, 0 ≤ v ≤ 2π. The surface of revolution is invariant under rotations

around z - axis.

9.5.2. Induced Metric on Surface

Distance between points on a surface is determined by the induced metric. De-

pending on metric of 3D space, two cases occur.

1. R3 : Euclidean space

dl2 = dx2 + dy2 + dz2.

Since z = f (x, y), then

dz =
∂ f
∂x

dx +
∂ f
∂y
= fxdx + fydy,

and

dl2 = dx2 + dy2 + ( fxdx + fydy)2 = (1 + f 2
x )dx2 + 2 fx fydxdy + (1 + f 2

y )dy2.
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This gives induced metric

dl2 = (1 + f 2
x )dx2 + 2 fx fydxdy + (1 + f 2

y )dy2. (9.18)

2. R2,1 :Minkowski (Pseudo-Euclidean)space

dl2 = dx2 + dy2 − dz2

Similar substitution

dl2 = dx2 + dy2 − ( fxdx + fydy)2 = (1 − f 2
x )dx2 − 2 fx fydxdy + (1 − f 2

y )dy2.

gives induced metric

dl2 = (1 − f 2
x )dx2 − 2 fx fydxdy + (1 − f 2

y )dy2. (9.19)

9.5.3. Induced Metric on Surface of Revolution

The induced metric on surface of revolution can be obtained from representation

(9.17).

• Euclidean Space

By

dx = dr cos v − r sin vdv

dy = dr sin v + r cos vdv
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and

fx = φx =
dφ
dr

dr
dx
=

dφ
dr

x
r

fy = φy =
dφ
dr

dr
dy
=

dφ
dr

y
r

substitution into (9.18) gives

dl2 = (1 + (φ′(r))2) dr2 + r2dv2. (9.20)

This is induced metric on a surface of revolution in Euclidean space.

• Minkowski Space

By

dx = dr cos v − r sin vdv

dy = dr sin v + r cos vdv

and

fx = φx =
dφ
dr

dr
dx
=

dφ
dr

x
r

fy = φy =
dφ
dr

dr
dy
=

dφ
dr

y
r

substitution into (9.19) gives

dl2 = (1 − (φ′(r))2) dr2 + r2dv2. (9.21)

This is induced metric on the surface of revolution in Minkowski space.
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9.5.4. Conformal Metric on Surface of Revolution

To apply the metric surface of revolution to the concurrence surface, it is required

transform the metric to conformal form.

1. Euclidean Space

By rewriting metric (9.20) in conformal coordinates (r, φ)→ (u, v), so that

dl2 = (1 + (φ′(r))2) dr2 + r2dv2 = g(u, v)(du2 + dv2),

identification g(u, v) = r2, due to equality

g(u, v)du2 = r2 du2 = (1 + (φ′(r))2) dr2,

and

du2 =
1 + (φ′(r))2

r2
dr2,

du = ±
√

1 + (φ′(r))2

r
dr,

gives

u = ±
∫ √

1 + (φ′(r))2

r
dr. (9.22)

This shows that u is a function of r only u = u(r) and as inverse function r = r(u).

Therefore, the metric

g(u, v) = r2(u)

is only function of u, and coordinates u and v are conformal

dl2 = g(u)(du2 + dv2). (9.23)
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2. Minkowski Space

• Elliptic Case:

By rewriting metric (9.21) in conformal coordinates (r, φ)→ (u, v), so that

dl2 = (1 − (φ′(r))2) dr2 + r2dv2 = g(u, v)(du2 + dv2),

identification g(u, v) = r2, due to equality

g(u, v)du2 = r2 du2 = (1 − (φ′(r))2) dr2,

(if 1 − (φ′(r))2 > 0, then (φ′(r))2 < 1), and

du2 =
1 − (φ′(r))2

r2
dr2,

du = ±
√

1 − (φ′(r))2

r
dr, (9.24)

gives

u = ±
∫ √

1 − (φ′(r))2

r
dr. (9.25)

Here

u = u(r), r = r(u),

so that

g(u, v) = r2(u)

is function of u only. This conformal metric

dl2 = g(u)(du2 + dv2) (9.26)

is similar to (9.23).
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• Hyperbolic Case:

By taking conformal metric in hyperbolic form

dl2 = (1 − (φ′(r))2) dr2 + r2dv2 = g(u, v)(−du2 + dv2),

and using identification g(u, v) = r2, gives

−g(u, v)du2 = r2 du2 = (1 − (φ′(r))2) dr2

If (φ′(r))2 − 1 > 0, then (φ′(r))2 > 1, and as follows

du2 =
(φ′(r))2 − 1

r2
dr2,

du =

√
(φ′(r))2 − 1

r
dr,

which gives

u =
∫ √

(φ′(r))2 − 1

r
dr. (9.27)

It means that u = u(r) and r = r(u), so that

g(u, v) = r2(u),

is function of u only. Then the corresponding conformal metric is

dl2 = g(u)(−du2 + dv2). (9.28)
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9.5.5. Gaussian Curvature for Conformal Metric on Surface of

Revolution

For conformal metric

dl2 = g(u, v)(du2 + dv2),

the Gaussian curvature is

K = − 1

2g(u)

(
∂2

∂u2
+
∂2

∂v2

)
ln g. (9.29)

For the metric (9.23), g(u, v) = g(u) then

K = − 1

2g(u)

∂2

∂u2
ln g(u). (9.30)

Therefore, for surface of revolution : g(u) = r2(u)

K = − 1

2r2

d2

du2
ln r2 = − 1

r2

d2

du2
ln r(u).

This formula allows one for given curvature K, to find r(u) and corresponding surface of

revolution.

Example 1 : Metric on Sphere

Starting from conformal metric on unit sphere (9.8)

dl2 =
4 dzdz̄

(1 + |z|2)2
,

and transforming

z = ew → dz = ewdw, dz̄ = ew̄dw̄
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the metric becomes

dl2 =
4 ew+w̄

(1 + ew+w̄)2
dwdw̄.

Since w = u + iv→ |z|2 = e2u, then

dl2 =
4 e2u

(1 + e2u)2
(du2 + dv2) =

4 e2u

(eu(e−u + eu))2
(du2 + dv2),

and due to cosh u =
eu + e−u

2
, it gives

dl2 =
du2 + dv2

cosh2 u
.

For conformal metric g(u) =
1

cosh2 u
, the curvature (9.30) is calculated as

K = −cosh2 u
2

d2

du2
ln

(
1

cosh2 u

)
︸��������︷︷��������︸

= −cosh2 u
2

d2

du2
(−2 ln cosh u)

=
cosh2 u
cosh2 u

= 1.

It is a constant curvature surface with K = 1 and the unit radius. To recover the surface,

following transformation is used

g(u) = r2(u) =
1

cosh2 u
→ r =

1

cosh u
,

dr = − 1

cosh2 u
sinh udu = −cosh2 u

sinh u
dr.
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Rewriting this in terms of r, related equation (9.24) gives

du = − dr

r
√

1 − r2
= ±

√
1 + φ′2

r
dr.

Then, by integration

φ2 + r2 = 1,

appears as the circle equation, and the surface of revolution is the unit sphere.

9.5.6. Concurrence Metric

From conformal metric

dl2 =
4|z|2

(1 + |z|2)2
dzdz̄,

by taking z = ew gives

dl2 =
4e4u

(1 + e2u)2
(du2 + dv2) =

e2u

cosh2 u
(du2 + dv2),

where the conformal factor is

g(u) =
e2u

cosh2 u
.

Then, the curvature calculated by (9.30) is

K = −1

2

1(
e2u

cosh2 u

) d2

du2
(2u − 2 ln cosh u) = −1

2

cosh2 u
e2u

(
− 2

cosh2 u

)
,
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or

K =
1

e2u =
1

|z|2 .

This curvature is positive for z = 0 it becomes infinite. To recover the surface following

identification is applied

g(u) = r2(u) =
e2u

cosh2 u
→ r(u) =

eu

cosh u
,

where r(u) is bounded 0 ≤ r ≤ 2. By taking derivative of r(u),

dr =
(

eu

cosh u
− eu sinh u

cosh2 u

)
du = (r − r tanh u) du.

Expressing tanh u by r

r =
eu

cosh u
=

2eu

eu + e−u → r − 1 =
eu − e−u

eu + e−u = tanh u,

and

r − 1 = tanh u,

gives

du
dr
=

1

r(2 − r)
.

• Case 1 : "Concurrence Surface in Euclidean Space"

For surface of revolution in Euclidean space

du
dr
= ±

√
1 + (φ′(r))2

r
=

1

r(2 − r)
> 0,
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so that

√
1 + (φ′(r))2 =

1

2 − r
≥ 1,

and

|2 − r| ≤ 1 → r ≥ 1.

The surface can be found for 1 ≤ r ≤ 2. To find φ, the identification is implied

(1 + (φ′(r))2)2 =
1

(2 − r)2
→ φ′ =

dφ
dr
= ±
√

(3 − r)(r − 1)

2 − r
.

By denoting 2 − r ≡ x it gives

−dφ
dx
= ±
√

1 − x2

x
.

Taking integral

φ = ∓
∫ √

1 − x2

x
dx

(x=cos y)
= ∓

∫
sin y
cos y

(− sin y)dy

= ±
(∫

1

cos y
dy −

∫
cos ydy

)

= ±(ln (sec y + tan y) − sin y +C)

= ±
⎛⎜⎜⎜⎜⎝ln

⎛⎜⎜⎜⎜⎝1

x
+

√
1 − x2

x

⎞⎟⎟⎟⎟⎠ − √1 − x2 +C
⎞⎟⎟⎟⎟⎠

leads to

φ(r) = ±
(
ln

(
1 +
√

(3 − r)(r − 1)

2 − r

)
− √

(3 − r)(r − 1) +C
)
.
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Then, parametric form of the surface of revolution is

x = r cos v, y = r sin v, z = φ(r)

where

z(r) = z(1) ±
(
ln

1 +
√

(3 − r)(r − 1)

2 − r
− √

(3 − r)(r − 1)

)

and

1 ≤ r ≤ 2.

Corresponding generating curve of revolution is

z(x) = z(1) ±
(
ln

1 +
√

(3 − x)(x − 1)

2 − x
− √

(3 − x)(x − 1)

)

Figure 9.2. Euclidean Surface
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• Case 2: Concurrence Surface in Minkowski Space

To recover the surface of revolution for 0 ≤ r ≤ 1 the Euclidean space is not

suitable. This is why the Minkowski (Pseudo-Euclidean) space is used, so that

du
dr
= ±

√
1 − (φ′(r))2

r
=

1

r(2 − r)
,

or

√
1 − (φ′(r))2 =

1

2 − r
,

and

(2 − r)2 ≥ 1 → r ≤ 1.

This surface can be found for 0 ≤ r ≤ 1. To find φ, by applying the same procedure

one gets parametric surface

x = r cos v, y = r sin v, z = φ(r),

where

φ(r) = ±(
√

(3 − r)(1 − r) − arctan
√

(3 − r)(1 − r) +C).

Corresponding generating curve of revolution is

z(x) = z(1) ∓ (
√

(3 − x)(1 − x) − arctan
√

(3 − x)(1 − x)),

where 0 ≤ x ≤ 1.
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Figure 9.3. Minkowski Surface

9.6. Conformal Transformation of Coherent States

Let

|z〉 = |0〉 + z |1〉√
1 + |z|2

(9.31)

is one qubit coherent state, determined by one complex variable z. In Section 5.3, ac-

tion of Möbius transformations on this state was derived. Here, more general conformal

transformations acting on state (9.31) are considered.

Let μ = μ(z) is entire function, so that

∂

∂z̄
μ(z) = 0.

Then, conformal transformation z→ μ(z) implies transformation to new state

|μ(z)〉 = |0〉 + μ(z) |1〉√
1 + |μ(z)|2

. (9.32)
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• Example 1 : Hadamard gate as conformal transformation. For

μ(z) =
1 − z
1 + z

it transforms the concentric circles in complex plane to the Apollonius circles.

• Example 2 : Conformal transformation

μ(z) =
z2 − c2

c2

splits the plane to the set of Cassini ovals, corresponding to state

|μ(z)〉 = c2 |0〉 + (z2 − c2) |1〉√
c4 + |z2 − c2|2

like in Section 7.3 and 7.8.

9.7. Concurrence and Liouville Equation

Two qubit analogy of state (9.32) is

|μ(z)〉 = |00〉 + μ(z) |11〉√
1 + |μ(z)|2

and the determinant formula for it gives the concurrence

C =
2 |μ(z)|

1 + |μ(z)|2 .

This concurrence determines the conformal metric on a surface

dl2 = g(z, z̄)dz dz̄,
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where

g(z, z̄) = C2 =
4 μ(z) μ(z)

(1 + μ(z) μ(z))2
.

The Gaussian curvature of this surface can be calculated by

K = − 1

2g
Δ ln g = −2

g
∂2μ

∂z ∂z̄
ln g.

The result is

K(z, z̄) =
μz(z)

μ(z)

μz(z)

μ(z)
=

∣∣∣∣∣μz(z)

μ(z)

∣∣∣∣∣
2

. (9.33)

Then, the concurrence square satisfies the variable Liouville equation

Δ ln C2 = −2K(z, z̄)C2.

For the stream function of the concurrence (entanglement) flow

ψ = ln g = ln C2

it gives the Liouville equation for vorticity

Δψ = −2K(z, z̄) eψ.

• Example 1 : In Apollonius case

μ(z) =
z + 1

z − 1
,

the Gaussian curvature is

K(z, z̄) =
4

|z2 − 1|2 ,
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and the Liouville equation becomes

Δψ = − 8

|z2 − 1|2 eψ.

• Example 2: Lines on the surface as a set of points with positive constant Gaussian

curvature K, which is a constant, are Cassini curves

|z2 − 1|2 = 4

K
≡ a2

and the flow along these curves is a solution of the Liouville equation

Δψ = − 8

a2
eψ.

• Example 3: For coherent state μ(z) = z, and the curvature is

K(z, z̄) =
1

|z|2

• Example 4: Conformal mapping to constant curvature surface, according to (9.33)

is given by

μz(z)

μ(z)
= λ, (9.34)

where λ is a complex constant, so that,

K = |λ|2.

By integrating of (9.34)

dμ
μ
= λdz
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it is

μ(z) = eλz.
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CHAPTER 10

SPIN OPERATORS AND QUBIT STATES

The Pauli gates studied in Chapter 3 are describing spin
1

2
physical system. This

system is simplest two level quantum system, describing qubit. In present Chapter several

spin averages of qubit states are considered.

10.1. Spin
1

2
and Qubit

Spin
1

2
is described by spin operator

�S =
�

2
(σx, σy, σz).

It is acting on computational states as

S x|0〉 = �

2
σx|0〉 = �

2
|1〉, S x|1〉 = �

2
σx|1〉 = �

2
|0〉,

S y|0〉 = �

2
σy|0〉 = i

�

2
|1〉, S y|1〉 = �

2
σy|1〉 = −i

�

2
|0〉,

S z|0〉 = �

2
σz|0〉 = �

2
|0〉, S z|1〉 = �

2
σz|1〉 = −�

2
|1〉,

showing that |0〉 and |1〉 states are eigenstates of S z =
�

2
σz with eigenvalues

�

2
and −�

2
,

correspondingly. The average values are

〈0|S x|0〉 = 〈1|S x|1〉 = 0,

〈0|S y|0〉 = 〈1|S y|1〉 = 0,

〈0|S z|0〉 = �

2
, 〈1|S z|1〉 = −�

2
.
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For one qubit coherent state

|z〉 = |0〉 + z |1〉√
1 + |z|2

,

then

S x|z〉 = �

2

z |0〉 + |1〉√
1 + |z|2

=
�

2

∣∣∣∣∣1z
〉
,

S y|z〉 = i�
2

−z |0〉 + |1〉√
1 + |z|2

=
i�
2

∣∣∣∣∣−1

z

〉
,

S z|z〉 = �

2

|0〉 − z |1〉√
1 + |z|2

=
�

2
|z〉.

Average values of spin in coherent qubit state are

〈z |S x| z〉 = �
2

z + z̄
1 + |z|2 , 〈z |S y| z〉 = i

�

2

−z + z̄
1 + |z|2 , 〈z |S z| z〉 = �

2

1 − |z|2
1 + |z|2 .

In addition

〈z|(S x + iS y)|z〉 = 〈z|S +|z〉 = �
2

2z
1 + |z|2 ,

〈z|(S x − iS y)|z〉 = 〈z|S −|z〉 = �
2

2z̄
1 + |z|2 .

These formulas have simple meaning, that the average values of spin operators

〈z|�S |z〉 = �
2
�n,

give a vector �n on the unit sphere

�n2 = n2
1 + n2

2 + n2
3 = 1,
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and complex coordinate z is just the stereographic projection of the corresponding point

on the sphere,

(〈z|S x|z〉)2 + (〈z|S y|z〉)2 + (〈z|S z|z〉)2 =
�

2

4
. (10.1)

The Shannon entropy for state |z〉,

S (|z|2) = log2(1 + |z|2) − |z|2
1 + |z|2 log2 |z|2

is constant along concentric circles |z| = r2. The entropy takes maximal value S = 1 for

|z| = 1 circle. In this case

〈z|S z|z〉 = 0

and n3 = 0, that means the vector �n is located on equator of the Bloch sphere. Therefore,

states on equator are maximally random states. On the contrary, for z = 0 and z = ∞
states, the entropy S = 0 and north and south pole states are not random at all.

10.2. Spin Operators and n-qubit |PP...P〉 States

The n-qubit coherent like state

|z〉 = |00...0〉 + z |11...1〉√
1 + |z|2

(10.2)

can be generalized to the n-qubit |PP〉 state

|PP...P〉 =
|ψψ...ψ〉 + z

∣∣∣∣∣∣− 1

ψ̄
− 1

ψ̄
... − 1

ψ̄

〉
√

1 + |z|2
, (10.3)
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where |ψ〉 and

∣∣∣∣∣∣− 1

ψ̄

〉
are one qubit antipodal coherent states. The state is normalized

〈PP...P|PP...P〉 = 1.

For ψ = 0 this state reduces to (10.2), and for z = 1 to states, introduced by ( Pashaev and

Gurkan, 2012) .

Spin operators for n- qubit state are defined by the tensor products

S x =
�

2
(σx ⊗ I... ⊗ I + ... + ⊗I ⊗ ... ⊗ σx),

S y =
�

2
(σy ⊗ I... ⊗ I + ... + ⊗I ⊗ ... ⊗ σy),

S z =
�

2
(σz ⊗ I... ⊗ I + ... + ⊗I ⊗ ... ⊗ σz).

The average values of these spin operators in |PP...P〉 state (10.3) are

〈PP...P|�S |PP...P〉 ≡ 〈�S 〉,

and

〈S x〉 = �

2
n

ψ + ψ̄√
1 + |ψ|2

1 − |z|2
1 + |z|2 ,

〈S y〉 = �

2
n

ψ̄ − ψ√
1 + |ψ|2

1 − |z|2
1 + |z|2 ,

〈S z〉 = �

2
n

1 − |ψ|2√
1 + |ψ|2

1 − |z|2
1 + |z|2 .

They belong to the sphere

〈S x〉2 + 〈S y〉2 + 〈S z〉2 = �
2

4
n2

(
1 − |z|2
1 + |z|2

)2

with radius

R =
�

2
n
√

1 −C2
z ,
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where

Cz =
2|z|

1 + |z|2 ,

is concurrence of coherent state |z〉. Here, following identity was used

1 −C2
z =

(
1 − |z|2
1 + |z|2

)2

.

In two qubit |PP〉 state with Cz = 1, |z| = 1, and the radius of the sphere R = 0,

which implies

〈S x〉2 + 〈S y〉2 + 〈S z〉2 = 0

or

〈S x〉 = 〈S y〉 = 〈S z〉 = 0.

This means that maximally entangled state is maximally random state, so that average of

observables, like components of spin, are vanishing.

For separable state C = 0 gives radius of sphere R = 2
�

2
= � � 0,

〈S x〉2 + 〈S y〉2 + 〈S z〉2 =
(
2
�

2

)2

,

which is twice of one qubit coherent state radius in (10.1). More general than two qubit

|PP〉 state

|PP〉 =
|ψψ〉 + z

∣∣∣∣∣∣− 1

ψ̄
− 1

ψ̄

〉
√

1 + |z|2
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is the state

|PT 〉 =
|ψχ〉 + z

∣∣∣∣∣∣− 1

ψ̄
χ′

〉
√

1 + |z|2
.

The concurrence of this state is proportional to geometric distance between complex num-

bers χ and χ′:

C =
2|z|

1 + |z|2
|χ − χ′|√

(1 + |χ|2)(1 + |χ′|2
.

Since a generic two qubit state is determined by 6 real or 3 complex parameters in |PT 〉
state, one can choose

χ′ = −1

χ̄
.

Then, most general form of this state is

|OT 〉 =
|ψχ〉 + z

∣∣∣∣∣∣− 1

ψ̄
− 1

χ̄

〉
√

1 + |z|2

with concurrence

C =
2|z|

1 + |z|2 .
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CHAPTER 11

CONCLUSION

In the present thesis, the Apollonius representation for qubit states by symmetric

points in complex plane and the set of Apollonius circles was proposed. By using this

representation, the randomness characteristics of qubit states, as the Shannon entropy, the

concurrence and fidelity, entanglement, 3-tangle and n-tangle were calculated and it was

shown that the randomness is constant along Apollonius circles.

By using stereographic projection of Bloch sphere, the qubit was represented by

a point in complex plane. It was shown that, unitary gates are acting on this qubit state

as Möbius transformations. For two qubit states, entanglement characteristics as determi-

nant, area, concurrence, inner product metric, reduced density matrix and Von Neumann

entropy were introduced and their relations with geometrical and physical characteristics

of entangled qubit states were studied.

To represent computational basis by finite points in complex plane, the Apollonius

representation was introduced. In this representation entropy, fidelity, concurrence, 3-

tangle and n- tangle characteristics of multiple qubit states are constant along Apollonius

circles.

In addition to Apollonius representation, Cassini and bipolar representation of

qubit states were derived. The Cassini representation was connected with Apollonius

representation by conformal transformation.

The concurrence flow as vector field for Apollonius integral curves was intro-

duced. By conformal metric, the concurrence surface as the surface of revolution was

reconstructed in Euclidean and Minkowski spaces. Conformal transformation of coherent

states and Liouville equation for concurrence metric C2 were obtained.

Average values of observables in coherent and |PP...P〉 states were calculated and

it was shown that for maximally entangled, as maximally random states, they are vanish-

ing.
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