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ABSTRACT 
 

MODELING AND ANALYSES OF PRETWISTED BEAMS HAVING 
PIEZOELECTRIC SMART MATERIALS 

 
 In this study, modeling and analyses of pretwisted beams having piezoelectric 

smart materials are acomplished by using Finite Element Method. A computer program 

is developed by using APDL (ANSYS Parametric Design Language) in ANSYS with 

SOLID45 and SOLID5 for pretwisted beam and piezoelectric layer, respectively. The 

effects of the pretwist angle on electric field are analyzed. 
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ÖZET 
 

PİEZOELEKTRİK AKILLI MALZEMEYE SAHİP ÖNBURULMALI 
ÇUBUKLARIN MODELLENMESİ VE ANALİZLERİ 

 
Bu çalışmada, piezoelektrik akıllı malzemeleri içeren ön burulmalı kirişlerin 

modellenmesi ve analizi, Sonlu Elemanlar Yöntemi kullanılarak gerçekleştirilmiştir. İlk 

olarak, önburulmalı kiriş ve piezoelektrik tabaka için ANSYS'de APDL (ANSYS 

Parametrik Tasarım Dili) de SOLID45 ve SOLID5 kullanılarak bir bilgisayar programı 

geliştirilmiştir. Önburulma açısının elektrik alanı üzerindeki etkileri analiz edilmiştir. 
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 
Pretwisted beams may have symmetrical or unsymmetrical cross-sections in 

local coordinates. If it is symmetrical in its local coordinate, bending deformations of 

pretwisted beam in two planes are coupled. 

 On the other hand, if the cross-section of the pretwisted beam is not symmetric 

in its local coordinate, then torsional deformation is also coupled with the two bending 

deformations. Similar to previous statement, it is called bending-bending-torsion 

coupling. Many investigators studied on the pretwisted beams. Some of them are 

presented in the next paragraphs. 

Houbolt and Brooks (1958) developed the differential equations for the lateral 

and torsional deformations of twisted rotating beams and used a Rayleigh-Ritz approach 

to compute the solution. Their model is illustrated in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Twisted rotating beam 
(Source: Houbolt and Brooks 1958) 

 

Montoya (1966) derived the equations of motion for a rotating pre-twisted 

cantilever beam with an aerofoil cross-section shown in Figure 1.2. He included shear 

center and higher order effects, and solved these by Runge-Kutta method. He performed 

experimental studies for verification of his theoretical approach. 
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Figure 1:2. Twisted beam with aerofoil cross-section 

(Source: Montoya 1966) 
 

Fu (1974) studied on rotating pre-twisted non-uniform Timoshenko beam having 

coupled bending-bending-torsion vibration by using a set of recursion formulas as the 

basis of a lumped parameter approach. 

Recently, Yardimoglu and Inman (2004) proposed a finite element model having 

fourteen degrees of freedom for coupled bending-bending-torsion vibration of a rotating 

pre-twisted thick beam with varying aerofoil cross-section. 

One of the earliest papers on smart materials for vibration control is that of 

Bailey and Hubbard (1985). They described the use of piezoelectric materials to control 

the vibration of a beam. Their study has been cited 491 times up to now. Another 

seminal work in the field of smart materials is a paper by Crawley and de Luis (1987). 

There are various textbooks on the subject of smart materials. Some of them 

were written by Preumont (2002), Smith (2005), Leo (2007), and Ganguli et al (2016). 

Cesnik and Morales (2001) presented a finite-element analysis of pretwisted and 

curved active composite beams with embedded anisotropic actuation. They 

approximated the 3-D beam problem to 1-D one by considering the certain small 

parameters in the modeling. 

Song et al (2002) modeled pretwisted thin-walled beams with piezo actuators 

bonded or embedded into the structure for dynamic behavior under adaptive 

capabilities. 

Shete et al (2007) analyzed the optimal control of a pretwisted smart composite 

rotating single-celled box beam having transverse shear flexibility. They underscored 

that shear strain variation across the beam wall for achieving efficient control is 

important. 
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Choi et al (2007) interested in bending vibration control of the rotating 

pretwisted thin-walled beam with piezoelectric fiber composites. They used finite 

element method for numerical studies and applied a negative velocity feedback control 

algorithm. Their investigation focused on determination of the effects of design 

parameters of beams such as rotating speeds, pretwist angles and fiber orientations on 

active vibration control. 

Liu et al (2007) derived the governing equations and boundary conditions for 

extension, torsion, and cross-sectional warping of pretwisted beams by using the semi-

inverse method and Hamilton’s principle and investigated the resonance frequencies 

analytically. 

Kiral et al (2008) studied on active vibration control and residual vibrations of a 

cantilever smart beam. They used finite element method in order to design a suitable 

control technique and they verified their results by experiments. 

Valliappan et al (2014) developed a model of initially-curved and pre-twisted 

smart beam and used the Variational Asymptotic Method (VAM). 

Wang et al (2015) studied on coupled flexural–torsional vibration of spinning 

smart beams with asymmetric cross-sections considering the warping effect. They used 

distributed piezoelectric sensor and actuator layers to control the vibration of the 

spinning beam which has not constant natural characteristics due to the spinning 

velocity. The positive position feedback (PPF) approach is employed for control 

algoritm. 

 In this study, modeling and analyses of pretwisted beams having piezoelectric 

smart materials are acomplished by using Finite Element Method. A computer program 

is developed by using APDL (ANSYS Parametric Design Language) in ANSYS with 

SOLID45 and SOLID5 for pretwisted beam and piezoelectric layer, respectively. The 

effects of the pretwist angle on electric field are analyzed. 
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CHAPTER 2  

 

THEORETICAL STUDIES 

 
2.1. Introduction 

 
 In this chapter, the geometrical properties of pretwisted beam are given 

mathematically with illustration for the next sections in the following section. 

Differential equations of pretwisted beam are introduced. Then, piezoelectric materials 

are explained and its constitutive equations are summarized. Differential equations of 

pretwisted beam are extended for piezoelectric patch effect on the system. As numerical 

solution procedure, finite element method is presented. Finally, modeling and analysis 

in ANSYS is outlined. 

 

2.2. Geometrical Properties of Pretwisted Beam 

 
 The pretwisted beam in this study is given in Figure 2.1. It is seen from Figure 

2.1 that it has rectangular cross-section. Also, the cross-section of the pretwisted beam 

is uniform along the z axis, except its rotation about z axis. 

 

 

 

 

 

 

 

Figure 2.1. The geometry of pretwisted beam 

 

 The second moments of cross-sectional area based on the co-ordinate system 

shown in Figure 2.1 are given by Yardimoglu and Yildirim (2004) as follows 
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)(sin)(cos)( 22 zIzIzI yyxxxx φφ ′′′′ +=     (2.1) 

 

)(sin)(cos)( 22 zIzIzI xxyyyy φφ ′′′′ +=     (2.2) 

 

( ) )(2sin5.0)( zIIzI xxyyxy φ′′′′ −=     (2.3) 

where 

zz θφφ += 0)(       (2.4) 

 

Equation (2.4) states that pretwist of the beam along the z axis is linear. 

 

2.3. Differential Equations of Pretwisted Beam 

 
The Bernoulli-Euler beam theory is extended for mathematical model of the 

pretwisted beam shown in Figure 2.1. The differential equations of a pretwisted beam 

for coupled bending-bending displacement can be written as (Yardimoglu, 2016) 

 

)()()( zMuzEIvzEI xxyxx =′′+′′     (2.5) 

 

)()()( zMvzEIuzEI yxyyy =′′+′′     (2.6) 

 

where E is the modulus of elasticity of the beam material, Ixx(z), Iyy(z), and Ixy(z) are the 

second moments of cross-sectional area which are defined in Equations (2.1) to (2.3), 

respectively. Also, Mx(z) and My(z) are external moment functions applied to pretwisted 

beam about x and y axis, respectively. 
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2.4. Piezoelectric Materials 

 
In 1880, Pierre and Jacques Curie discovered the direct piezoelectric effect 

which is illustrated in Figure 2.2. This effect is based on the generation of stress due to 

the current applied to piezoelectric material which is produced by poling (aligning) of 

the material as shown in Figure 2.3. This is accomplished by heating the material above 

its Curie temperature and applying a strong electric field. The Curie temperature is the 

minimum temperature to arrange electric dipoles from random direction to applied 

electric field direction (Ganguli et al 2016). 

Converse piezoelectric effect is illustrated in Figure 2.2. It can be seen from this 

figure that the cause and effect in the direct piezoelectric effect are switched, namely, 

piezoelectric material under the electric field produces stress. 

 

 

 

 

 

 

 

 

 

Figure 2.2. Direct and converse piezoelectric effect 
(Source: Ganguli et al 2016) 

 

 

 

 

 

 

 

 

Figure 2.3. Polarization process 
(Source: Ganguli et al 2016) 
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2.5. Constitutive Equations of Piezoelectric Materials 

 
The equations and notations used in this section are based on the excellent 

textbook on smart material systems written by Leo (2007). His textbook has the 

nomenclature stated in the IEEE Standard on Piezoelectricity (1988). 

In order to simplify the presentation of the constitutive equation of piezoelectric 

materials, one dimensional model is selected as first step. 

Mechanical stress and electrical displacement are coupled in piezoelectric 

materials. In other words, if mechanical stress is applied to piezoelectric materials, it 

produces an electrical displacement, and vice versa. Because of this property, it is used 

for sensing and actuation. 

The mechanical-to-electrical coupling is called as the direct effect, while the 

electrical-to-mechanical coupling is known as the converse piezoelectric effect. 

In direct piezoelectric effect, the stress T (N/m2) which applied to piezoelectric 

materials gives two results: strain S (m/m) and electric displacement D (C/m2) as 

follows: 

 

TsT
Y

S ==
1       (2.7) 

 

where s (m2/N) is the reciprocal of the modulus which is called the mechanical 

compliance and 

 

TdD =       (2.8) 

 

where d (C/N) is the piezoelectric strain coefficient. 

In converse piezoelectric effect, the electric field E (V/m) which applied to 

piezoelectric materials gives again the same two results as follows: 

 

EdS =       (2.9) 

 

where d (m/V) is the piezoelectric strain coefficient and 
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ED ε=       (2.10) 

 

where ε (F/m) is dielectric permittivity of the material. 

 Equations (2.7) to (2.10) can be combined into a matrix form as 

 

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

E
T

d
ds

D
S

ε
     (2.11) 

 

 Equation (2.11) can be expressed with strain and electric displacement as the 

independent variables as 

 

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

=
⎭
⎬
⎫

⎩
⎨
⎧

D
S

sd
d

dsE
T ε

ε 2
1    (2.12) 

 

or 

 

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

−
−

−
=

⎭
⎬
⎫

⎩
⎨
⎧

−−

−−

D
S

kd
kds

kE
T

121

211

21
1

ε
  (2.13) 

 

where k is called the piezoelectric coupling coefficient and given as 

 

εs
dk =       (2.14) 

 

 It is possible to generalize the equations presented above for the case of an 

arbitrary volume of piezoelectric material. For this purpose, the piezoelectric material 

with coordinate system illustrated in Figure 2.4 is considered. 

 A general three dimensional piezoelectric material is characterized by 36 

independent elastic constants, 18 piezoelectric strain coefficients, and 9 dielectric 

permittivity values. Therefore, there are 63 coefficients for stress, strain, electric field, 

and electric displacement. However, the many common piezoelectric materials have 

orthotropic properties. Therefore, the numbers of coefficients required for the 

constitutive properties of piezoelectric materials are reduced significantly. 
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Figure 2.4. The coordinate axes of the three-dimensional piezoelectric cube 
(Source: Leo 2007) 

 

 The constitutive equations of piezoelectric material having aforementioned 

properties are given as follows: 

 

⎪
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 The polarization vector of piezoelectric materials is aligned in the direction of 3 

axis. The common operating modes of piezoelectric transducers for use as sensors or 

actuators are 33 and 31. Second number in the operating mode refers to direction of 

strain. 

The multilayer piezoelectric stack shown in Figure 2.5 is an example for 33 

operating mode. Figure 2.6 shows a bimorph piezoelectric beam for 31 operating mode. 

 

 

 

 

 

 

 

 

 

Figure 2.5. The multilayer piezoelectric stack 
(Source: Leo 2007) 

 

 

 

 

 

 

 

 

 

Figure 2.6. A pinned–pinned bimorph piezoelectric beam 
(Source: Leo 2007) 

 

For 33 operating mode, T1=T2=T4=T5=T6=E1=E2=0 can be assumed. Also, S1 and 

S2 are not main interest. Therefore, the following constitutive equations are needed 

 

3333
3

3
1 EdT

Y
S E +=      (2.17) 
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where EY3  is the Young’s modulus of the material in the 3 direction for the constant 

electric field which denoted by superscript E. 

 

3333333 ETdD Tε+=      (2.18) 

 

where the superscript T denotes a stress-free (T=0) condition. 

 Similar to 33 operating mode, 31 operating mode can be based on assumption 

T2=T3= T4=T5=T6=E1=E2=0. Also, S2 and S3 are not main interest. Thus, the following 

constitutive equations are required 

 

3131
1

1
1 EdT

Y
S E +=      (2.19) 

 

3331133 ETdD Tε+=      (2.20) 

 

2.6. Differential Equations of Smart Pretwisted Beam 

 
 The differential equations of pretwisted beam are presented in Section 2.3 by 

Equations (2.5) and (2.6) for the applied moments effects Mx(z) and My(z). 

 When a thin piezoelectric material is fixed to lateral surface of the beam, it 

causes bending moment for this beam, if it is under electric field. Therefore, these 

bending moments can be treated as a part of applied moments. 

 

3)()( EMzMzM pexx +=     (2.21) 

 

3)()( EMzMzM peyy +=     (2.22) 

 

where Mex(z) and Mey(z) are the moment applied by external loads and Mp is the moment 

applied by the piezoelectric layers per unit electric field (N.m/(V/m)) which can be 

written as follows 

 

pGp FzM =       (2.23) 
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where zG is the centroid of the piezoelectric layers with respect to neutral axis of the 

beam shown in Figure 2.7 and Fp is the force applied by the piezoelectric layers per unit 

electric field which is calculated from the following equation 

 

ppp AEdF 13=       (2.24) 

 

where Ap is the cross-sectional area of the piezoelectric layer. 

 

 

 

 

 

 

Figure 2.7. The force applied by the piezoelectric layer 

 

2.7. Finite Element Method 

 
Finite element method is generalized form of Rayleigh-Ritz method (Reddy 

1993, Petyt 2010) and has been developed before half century ago (Cook 1989). In this 

method, nonuniform domain is divided into uniform small bodies such as in the shape 

of bar, beam, plate, and shell, in order to model the main nonuniform domain. These 

small bodies are called as finite element which has connecting points with its neighbors 

that are called nodes. Therefore, domain parameters are discretized in nodes. Division 

process is known as meshing. 

If the problem is related with solid mechanics, characteristic matrix of the body 

is the stiffness matrix and nodal freedoms are displacements as linear and angular. 

Modeling of the whole domain is completed by assembling the all finite element and 

applying the boundary condition. 

Selecting of the types and determination of the size of the finite element is the 

most critical steps for modeling. Moreover, selecting the numerical method in the 

commercial finite element packages requires backgrounds for these methods to get the 

solution accurately (Yardimoglu, 2015). 
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2.8. Modeling and Analysis in ANSYS 

 
The constitutive equations for finite element formulation is given by Allik and 

Hughes (1970) which are used and cited in Kohnke (2004) as 

 

}]{[}]{[}{ EeScT −=      (2.25) 

 

}]{[}{][}{ ESeD T ε+=        (2.26) 

 

where {T}, {D}, {S}, and {E} are stress, electric flux density, mechanical strain, and 

electric field vectors, respectively. Also, [c], [e], and [ε] are the elastic stiffness matrix 

evaluated at constant electric field, the piezoelectric matrix and the dielectric matrix 

evaluated at constant mechanical strain, respectively. 

 The two coupled equilibrium equations in finite element domain which are used 

in Kohnke (2004) are given by Allik and Hughes (1970) as 

 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
}{
}{

}{
}{

][][
][][

L
F

V
u

KK
KK

dTz

z

   (2.27) 

 

where [K], [Kd], and [Kz] are structural stiffness, dielectric conductivity, and 

piezoelectric coupling matrices, respectively. These matrices are described in Kohnke 

(2004) as follows 

 

∫∫∫=
vol

u
T

u dvolBcBK ]][[][][     (2.28) 

 

∫∫∫=
vol

V
T

V
d dvolBBK ]][[][][ ε     (2.29) 

 

∫∫∫=
vol

V
T

u
z dvolBeBK ]][[][][     (2.30) 

 

in which [Bu] and [BV] are defined in Kohnke (2004). 
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{u} and {V} in Equation (2.27) are the nodal displacements and nodal electrical 

potential vectors, respectively. They are written in open form as 

 

{ }T
nnn UzUyUxUzUyUxu L111}{ =   (2.31) 

 

{ }T
nVVVV L21}{ =     (2.32) 

 

The right hand side terms in the Equation (2.27): {F} and {L} are nodal force 

and nodal charge vectors, respectively. They are input values of the model. 

The strain vector {S} is expressed in terms of the displacement vector {u} as 

 

}]{[}{ uBS u=       (2.33) 

 

On the other hand, the electric field vector {E} is expressed in terms of the 

electrical potential vector {V} as 

 

}]{[}{ VBE V−=      (2.34) 

 

Having the nodal displacement and electric potential for an element from 

solution of Equation (2.27), the stresses and the electric flux density at any point within 

the finite element are obtained by substituting Equations (2.33) and (2.34) into 

Equations (2.25) and (2.26) as 

 

}]{][[}]{][[}{ VBeuBcT Vu +=    (2.35) 

 

}]{][[}]{[][}{ VBuBeD Vu
T ε−=       (2.36) 

 

The finite element model of the smart pretwisted beam is modeled in ANSYS by 

employing SOLID45 and SOLID5 for pretwisted beam and piezoelectric layer, 

respectively. A computer program is developed by using APDL (ANSYS Parametric 

Design Language) in ANSYS. 
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CHAPTER 3 

 
NUMERICAL STUDIES 

 
3.1. Verification of Finite Element Model 

 
 The uniform rectangular cross-sectioned pretwisted beam having breadth b, 

height h, length L, total twist angle θ at its free end is parametrically modeled in 

ANSYS as shown in Figure 3.1 for the numerical data b=20 mm, h=2 mm, L=300 mm,  

θ=-45º. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Geometrical model of the pretwisted beam 

 

After geometric modeling of the pretwisted beam, it is meshed by SOLID45 in 

ANSYS which gives the numerical results in the analysis as possible as near to 

theoretical results. For this purpose, untwisted form of the beam is considered to 

determine the number of element which is necessary for desired accuracy in results. 

Therefore, its untwisted form is obtained in ANSYS by setting θ=0º as shown in Figure 

3.2. 
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Figure 3.2 Geometrical model of the untwisted beam 

 

The fixed-free boundary condition is applied to the geometrical model shown in 

Figure 3.2. It is meshed with different number of SOLID45 elements and loaded from 

its tip point on neutral axis by a force Fz acting in -z direction, in order to decide for the 

meshing parameters comparing the displacement of tip point with the analytical result. 

 Selecting the tip force Fz=0.5 N and finding the tip displacements for usage of 

different number of finite elements, mesh parameters are determined as follows: 

• number of elements in x direction = 60, 

• number of elements in y direction = 4, 

• number of elements in z direction = 1. 

Displacement of the tip point of the cantilever beam for the determined mesh 

parameters and analytical results based on aluminum of which modulus of elasticity 

E=62 GPa are given in Table 3.1. Finite element model of the fixed-free untwisted 

beam under tip load is shown in Figure 3.3. 

 

Table 3.1. Displacements of tip point (m) 
 

Analytical by δ=FzL3/3EI 0.00544 

Numerical by FEM 0.00540 

 



 17

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Finite element model of the fixed-free untwisted beam under tip load 

 

Also, deformed and undeformed states of the fixed-free untwisted beam is 

illustrated in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Deformed and undeformed states of the fixed-free untwisted beam 
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Finite element model of the pretwisted beam with smart patch under tip load 

acting in local z direction is shown in Figure 3.5. Piezoelectric layer shown in Figure 

3.5 with light color is meshed by SOLID5 with the following mesh parameters: 

• Number of elements in x direction = 5, 

• Number of elements in y direction = 4, 

• Number of elements in z direction = 1. 

The piezoelectric patch has the following geometrical properties: 

• Breadth bp = 20 mm, 

• Length sp = 25 mm, 

• Thickness tp = 1 mm, 

• Distance from the fixed support dp = 10 mm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Finite element model of the pretwisted beam with smart patch 

 

The material of piezoelectric patch is PZT-5H. Its material properties are given 

by Auld (1973) as follows: 

 

 Elements of mechanical compliance matrix: 

s11 = 16.5 10-12 m2/N 

s12 = -4.78 10-12 m2/N 
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s13 = -8.45 10-12 m2/N 

s22 = s11 

s23 = s13 

s33 = 20.7 10-12 m2/N 

s44 = 43.5 10-12 m2/N 

s55 = s44 

s66 = 2 (s11-s12)  

 

Elements of piezoelectric strain matrix: 

d13 = -274 10-12 C/N 

d23 = d13 

d33 = 593 10-12 C/N 

d24 = d15 

d15 = 741 10-12 C/N 

 

Elements of relative permittivity matrix under constant strain condition: 

=011 /εε S 1700 

=022 / εε S 1700 

=033 / εε S 1470 

where =0ε 8.854 10-12 F/m is the free-space permittivity. 

The order of the piezoelectric material matrix elements are based on IEEE 

standards, namely in the order x, y, z, yz, xz, xy. However, ANSYS input order is x, y, z, 

xy, yz, xz. Therefore, the matrices are needed to arrange for the ANSYS input by 

switching the shear terms (ANSYS. 2009). 

 To verify the finite element model of piezoelectric patch bonded to pretwisted 

beam, converse piezoelectric effect given in Equation (2.9) can be used, since analytical 

solution of the pretwisted beam with piezoelectric layer is not found in the published 

literature. Thus, a planar form of piezoelectric patch is modeled by SOLID5 elements 

by neglecting the twist of the patch due to the closeness of its position to fixed end. It 

has the following geometrical properties: 

• Breadth bp = 20 mm, 

• Length sp = 25 mm, 

• Thickness tp = 1 mm. 
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Finite element model of the planar form of piezoelectric patch with fixed-free 

boundary conditions and under electrical field is shown in Figure 3.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Finite element model of the planar form of piezoelectric patch 

 

Analytical values of strains in x and z directions are calculated as S1 and S3, 

respectively, below: 
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Finite element model results as contours of strains in x and z directions are 

shown in Figures 3.7 and 3.8, respectively. It can be seen from figures that analytical 

results are within the range of scales of which colors occupy the majority of the areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Contours of strains in x direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 Contours of strains in z direction 
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3.2. Case Studies 

 
 Finite element model of the pretwisted beam with smart patch shown in Figure 

3.5 is considered. As seen from Figure 3.5, it has fixed–free boundary condition and a 

tip load acting in local z direction. Local coordinates is the principle coordinates of the 

cross-section introduced in Figure 2.1. Tip load is used to get the voltage from the back 

and front surfaces of the piezoelectric patch. To determine the allowable tip load 

depending on the strength of aluminum and PZT, stress analysis is performed in first 

step considering the unit load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Principle stress contours 

 

The yield stresses of aluminum can be taken as 250 MPa. Also, Weibull 

characteristic strength of PZT-5H is given by Anton et al (2012) as 115 MPa. It can be 

seen from Figure 3.9 that maximum principle stress in beam and PZT are 18.3 MPa and 

9.77 MPa, respectively. Therefore, the limit tip load for each part can be calculated as 

 

For Aluminum: 66.133.18/250 ==−AlzmazF  N 

 

For PZT-5H: 77.1177.9/1155 ==− HPZTzmazF  N 
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 Therefore, assuming the safety factor as approximately 4, as tip load, 3 N can be 

applied to pretwisted beam. However, electromechanical analysis results of current 

studies are presented in the next figures for unit load. 

Deformed and undeformed configurations of smart pretwisted beam are shown 

in Figure 3.10. Displacement of the beam is consistent with the applied load. 

Contours of electric field of smart pretwisted beam in z direction are illustrated 

in Figure 3.11. It can be seen from figure that the maximum value of electrical field in z 

direction is 76200 V/m. 

The zoomed view of piezoelectric patch showing contours of electric field in z 

direction are also given in Figure 3.12. 

 Due to the operating mode of piezoelectric patch used in this structure, strain 

distributions of PZT patch in x direction are presented in Figure 3.13. 

 In addition to presented plots, the stress contours of PZT patch in x direction are 

shown in Figure 3.14. 

Moreover, to determine effects of the pretwist angle on electric field, variations 

of electric field from θ=5º to 75º are given in Figures 3.15-3.22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Deformed and undeformed configurations of smart pretwisted beam 
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Figure 3.11. Contours of electric field of smart pretwisted beam in z direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Electric field of PZT patch in z direction 
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Figure 3.13. Strains of PZT patch in x direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Stresses of PZT patch in x direction 
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Figure 3.15. Electric field of PZT patch in z direction for θ=5º 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Electric field of PZT patch in z direction for θ=15º 
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Figure 3.17. Electric field of PZT patch in z direction for θ=25º 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Electric field of PZT patch in z direction for θ=35º 
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Figure 3.19. Electric field of PZT patch in z direction for θ=45º 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Electric field of PZT patch in z direction for θ=55º 
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Figure 3.21. Electric field of PZT patch in z direction for θ=65º 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Electric field of PZT patch in z direction for θ=75º 
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 Variation of electric field depending on the pretwist angle is plotted by using the 

results given in Figures 3.15-3.22. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Plot of Electric field versus twist angle 

 

 Simple tests for piezoelectric effects are illustrated in Appendix A. 

 

3.3. Discussion of Results 
 

 A computer program developed in ANSYS by using APDL (ANSYS Parametric 

Design Language) is proved considering the following items: 

• the deformed configuration and its numerical value, 

• the strain distributions along the beam, 

• the voltage generation on piezoelectric patch. 

The effects of the pretwist angle on electric field are analyzed. When the 

pretwist angle is increased, strain in x direction is reduced. Therefore, the value of 

electric field is decreased. The reason of these results is the direction of the tip load 

which is applied in local z direction. 
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CHAPTER 4 

 
CONCLUSIONS 

 
 Modeling and analysis of uniform straight beams with piezoelectric layers are 

common in the existing literature. However, when the beam has pretwist, analysis of 

this type of smart beams require numerical methods. 

 Modeling and analyses of pretwisted beams having piezoelectric smart materials 

are acomplished by using ANSYS Mechanical. Instead of usage of graphical user 

interface, APDL (ANSYS Parametric Design Language) in ANSYS is used to code a 

parametric program. 

The effects of the pretwist angle on electric field are analyzed. It is shown that 

when the pretwist angle is increased, the value of electric field due to the load acting in 

local z direction is decreased. 
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APPENDIX A 
 

EXPERIENCE WITH PIEZOELECTRIC MATERIAL 

 
 

 First experience is obtained by using piezo buzzer with led. The piezo buzzer is 

supported as seen in Figure A.1. Then, a transverse load is applied from the center of 

the piezo buzzer as illustrated in Figure A.2. Therefore, the led lights up. 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Pizeo buzzer and led without load. 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2. Pizeo buzzer and led with load. 

 



 36

Second experience is gained by using piezo buzzer and digital multimeter. The 

piezo buzzer is supported as before as seen in Figure A.3. Then, a transverse load is 

applied from the center of the piezo buzzer. Therefore, 10.78 volt is read from the 

screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3. Pizeo buzzer without and with load. 

 

 

 

 


