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ABSTRACT 
 

VIBRATION CONTROL OF A SMART CURVED BEAM 
WITH VARIABLE CURVATURE 

 
In this study, vibration control of smart curved beam with variable curvature 

under in plane vibration is studied. The current problem is mathematically represented 

by differential eigenvalue problem with variable coefficients. Since the solution of these 

types of problem is based on the functions of the variable coefficients, Finite Element 

Method is used to reduce the differential eigenvalue problem to discrete eigenvalue 

problem. A computer code is developed in ANSYS to model the geometry and solve the 

vibration control problem by using APDL (ANSYS Parametric Design Language). 

Vibration control is performed by displacement feed-back algorithm. The effects of 

control parameters on time response are investigated. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 
Curved beams are interesting structural members due to their deformation 

behaviors. They can be seen in numerous engineering applications as main or 

complimentary components such as stiffeners in different types of structure, for 

example: airplanes and ships. 

Curved beams can be categorized depending on their shapes. In first approach, it 

may be planar or spatial beams. In second, curvature of curved beams can be used for 

classification as circular and non-circular. Then, cross-section of the curved beam can 

be considered. They may have uniform cross-section or varying cross-section along its 

circumferential axis. Moreover, material characteristic of the curved beams can be a 

criterion for classification. They may be isotropic, orthotropic, or composite. 

Many researchers studied on smart curved beams. However, studies on smart 

curved beams with variable curvature are limited. 

 Brei and Blechschmidt (1992) designed a semicircular polymeric piezoelectric 

actuator shown in Figure 1.1. They used bimorph form of piezoelectric materials. They 

modeled the system as deflection and force models. They found that a bimorph 

semicircular cantilever beam produces significantly more force than a straight bimorph 

cantilever beam having the same length. 

 

 

 

 

 

 

 

 

 

Figure 1.1. Microactuator design of semicircular cross section 
(Source: Brei and Blechschmidt 1992) 
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 Brei (1995) described C-Block actuators in the shape of a semicircle, as shown 

in Figure 1.2, in order to arrange it as series, arrays, and parallel which are shown in 

Figure 1.3. He presented mathematical force model, manufacturing techniques and 

experimental verification of force performance of C-Blocks. 

 

 

 

 

 

 

 

 

 

Figure 1.2. Piezoelectric C-block actuator 
(Source: Brei 1995) 

 

 

 

 

(a) Series architecture 

 

 

 

 

 

(b) Parallel architecture 

 

 

 

 

 

(c) Distributed array architecture 

Figure 1.3. Different piezoelectric C-Block actuator architectures 
(Source: Brei 1995) 
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 Banks and Zhang (1997) developed a computational procedure to approximate 

the solutions of a mathematical model of the vibrations of a curved beam including 

pairs of piezoceramic patches as passive or as active devices. They used Galerkin 

approximation with hybrid B-spline basis elements. Their model is given in Figure 1.4. 

 

 

 

 

 

 

 

 

 

Figure 1.4. Curved beam with pairs of piezoceramic patches 
(Source: Banks and Zhang 1997) 

 

 Moskalik and Brei (1997) extended former studies for deflection-voltage model 

of multilayered piezoelectric curved beams, as shown in Figure 1.5, consisting of a 

variable number of active or inactive layers. Moskalik and Brei (1997) also studied on 

their C-block actuators for force-deflection behavior of the system. 

 

 

 

 

 

 

 

 

Figure 1.5. Polymeric piezoelectric multilayered C-block 
(Source: Moskalik and Brei 1997) 

 

 Shih (2000) studied on vibration control piezoelectric laminated curved beam 

with distributed sensing and actuating systems shown in Figure 1.6. He derived the 

sensing and control equations in continuous domain by modal expansion method and 

investigated the design parameters such as thickness of sensor, actuator, and beam. 



 4

 

 

 

 

 

 

 

 

Figure 1.6. A curved beam with bonded piezoelectric patches 
(Source: Shih 2000) 

 

 Sun and Tong (2002) presented a mathematical model for thin-walled curved 

beams with piezoelectric actuator and sensor patches shown in Figure 1.7. They 

investigated the effect of debonding piezoelectric patches on vibration control as open- 

and closed-loop. They showed a significant side effect of edge debonding of the 

piezoelectric patch on the closed-loop control of the curved beams. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. A curved beam with debonded piezoelectric patches 
(Source: Sung and Tong 2002) 

 

 Yoon et al. (2005) revisited the design of an energy harvesting shoe insert which 

is a curved piezoelectric unimorph beam. They used shallow thin shell theory of 

Donnell-Mushtari, composite laminate theory, and linear piezoelectric constitutive 

equations. 
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 Kuang et al (2007) analyzed the static responses of a circular curved beam 

bonded with a single piezoelectric actuator or symmetric actuators as shown in Figure 

1.8. They adopted the equilibrium equation of curved beam given by Love (1944) and 

Henrych (1981) for piezolaminated circular beams. Their assumptions can be 

summarized as follows: 

 Inextensionality condition only for the bimorph curved beam due to the 

symmetric piezoelectric layers, 

 No shear deformation, moment of inertia and tangential inertia force, 

 No debonding, 

 Continuous strains along the radial direction of the piezolaminated beam, 

 Constant electric field along the radial direction due to thin piezoelectric 

actuator. 

They also studied on the control parameters of a cantilever circular curved beam for 

displacement control. For the control problem of a cantilever bimorph curved beam, a 

very high radial load is acted at an arbitrary location of the beam. However, for the 

control problem of a cantilever unimorph curved beam, a radial load is acted at the free 

end. They found the optimum length and location of the actuators. 

 

 

 

 

 

 

 

 

 

      (a)             (b) 

Figure 1.8. The circular unimorph (a) and bimorph (b) curved beams 
(Source: Kuang et al 2007) 

 

 Wang (2010) formulated the Timoshenko curved beam having a pair of 

piezoelectric segments that is shown in Figure 1.9. In order to study on responses of the 

smart curved beam system under either an external force at the tip of the beam or an 

applied voltage on the actuator, the analytical-transfer matrix method is employed.    
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The effects of length, thickness and location of the piezoelectric pair on the responses of 

the curved beam system are presented. 

 

 

 

 

 

 

 

 

Figure 1.9. A curved beam with bonded piezoelectric patches 
(Source: Wang 2010) 

 

In this study, a curved beam with variable curvature under in plane vibration is 

considered. In order to apply vibration control to this beam, a unimorph piezoelectric 

patch is bonded. The present case is mathematically represented by differential 

eigenvalue problem with variable coefficients. Since the solutions of these types of 

problem are based on the functions of the variable coefficients, Finite Element Method 

is used to reduce the differential eigenvalue problem to discrete eigenvalue problem. A 

computer code is developed in ANSYS to model the geometry and solve the vibration 

control problem by using APDL (ANSYS Parametric Design Language). Vibration 

control is performed by displacement feed-back algorithm. The effects of control 

parameters on time response are investigated. 
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CHAPTER 2 

 

THEORETICAL ANALYSIS 

 
2.1. Introduction 

 
In this chapter, as first step, the axis of curved beam is given mathematically. 

After this, d

(Love, 1944). Due to the usage of piezoelectric material for vibration control, 

piezoelectric materials and constitutive equations are introduced in reasonable detail. 

Then, piezoelectric layer effect on equations of motion of the curved beam system is 

formulated. Finite element modeling of host beam and piezoelectric patch in ANSYS 

are outlined. The concept of natural frequencies and the time response of discrete 

structure are summarized. Finally, active vibration control procedure is explained. 

 

2.2. Axis of the Curved Beam 

 
 The parabola illustrated in Figure 2.1 is selected as axis of curved beam to form 

it with variable curvature. In order to eliminate the confusion regarding sign convention 

in equation of motion, the coordinate system used by Love (1944) is considered to 

express the mathematical expression of parabola in the z-x plane. 

 

 

 

 

 

 

 

 

Figure 2.1. The parabola and its parameters 

 

z

R(s) 

x 

0 

x=a z2 
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 Mathematical expression of the parabola is given as 

 

0,2 zazx       (2.1) 

 

The curvature  of a point on the curve is written as follows: 

 

2/32

2

2

)/(1 dzdx
dz

xd

      (2.2) 

 

If Equation (2.1) is substituted into Equation (2.2), it gives: 

 

2/32
2

2
2

2

)(1

)(

az
dz
d

az
dz
d

     (2.3) 

 

and then, by simplifying; 

 

2/32241
2

za
a       (2.4) 

 

Equation (2.4) gives the curvature at any abscissa z for the selected parabola. 

 

2.3. Equation of Motion by Newtonian Method 

 
Newtonian method is based on the following two vectorial equations with usual 

notation: 

 

amF
i

i        (2.5) 

 

i
i IM        (2.6) 
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 A curved beam with arbitrary curvature is shown in Figure 2.2 by introducing 

the internal normal force T, internal shear force N, and internal bending moment My. 

 

 

 

 

 

 

 

 

Figure 2.2. Internal forces and moment of curved beam 

 

 The internal normal force T is written as 

 

AET        (2.7) 

 

where E is the modulus of elasticity, A is the cross-sectional area of the curved beam, 

and  is the strain normal to the cross-section due to tension and is given by Love (1944) 

 

u
ds
dw

0        (2.8) 

 

where u and w are displacements of any point on curved beam axis in radial and 

circumferential directions, respectively. Also, 0  is the initial curvature of the curved 

beam axis which lies in the x-z plane. 

 In order to express the internal normal force T in terms of displacements, 

Equation (2.8) is substituted into Equation (2.7), and then the following equation is 

written 

 

u
ds
dwAET 0       (2.9) 

x 

z 

y 

T 

My 
N 

0 

s 
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 The internal bending moment My about the y axis is written as (Love, 1944) 

 

)( 01EIM y       (2.10) 

 

where I is second moment of area of the cross-section of the curved beam about y axis. 

Also, 1  is dynamic curvature in x-z plane which is given by Love (1944) as 

 

)( 001 w
ds
du

ds
d      (2.11) 

 

 In order to express the internal bending moment My in terms of displacements, 

Equation (2.11) is substituted into Equation (2.10), and then the following equation is 

written 

 

)( 0 w
ds
du

ds
dEIM y      (2.12) 

 

 The internal shear force N can be treated as the derivative of the internal bending 

moment My . 

Neglecting the rotary inertia, equations of motion of the curved beam are 

obtained by using Equations (2.5) and (2.6) as follows: 

 

uAqT
ds
dN

t1      (2.13) 

 

wAqN
ds
dT

n1      (2.14) 

 

0y
y mN

ds
dM

      (2.15) 

 

where  is density of material, qn, qt are distributed force in normal and tangential 

directions. Also, my is the distributed moment about y axis. 
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 It is clear that Equations (2.13)-(2.16) give non-linear equations. Therefore, 

higher orders terms are neglected to obtain linear differential equations. 

 

2.4. Piezoelectric Materials and Constitutive Equations 

 
Curie brothers discovered the piezoelectric effects shown in Figure 2.3. They 

produced piezoelectric material by the polarization process as shown in Figure 2.4. This 

process is done by heating the material above its Curie temperature and applying a 

strong electric field. Material looses its spontaneous polarization in Curie temperature. 

 

 

 

 

 

 

(a) Direct piezoelectric effect 

 

 

 

 

 

 

(b) Converse piezoelectric effect 

Figure 2.3. Direct and converse piezoelectric effects 
(Source: Huo et al 2017) 
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Figure 2.4. Polarization stages (a) before, (b) during (c) after polarization 
(Source: abdal-Kadhim and Leong 2016) 

 

In order to introduce the constitutive equations of piezoelectric materials, the 

nomenclature given in the IEEE Standard on Piezoelectricity (1988) is used in this part 

since the clear textbook written by Leo (2007) has the same notation. One dimensional 

system is considered first. 

Piezoelectric materials exhibit electromechanical coupling so that they are used 

to design devices for sensing and actuation. The relationship between strain S (m/m) 

and electric displacement D (C/m2) as a function of applied stress T (N/m2) and   

electric field E (V/m) is given in matrix form by Leo (2007) as 

 

E
T

d
ds

D
S

      (2.16) 

 

where s (m2/N) is the reciprocal of the modulus which is called the mechanical 

compliance, d (C/N) is the piezoelectric strain coefficient, and  (F/m) is dielectric 

permittivity of the material. 

 The top partition of Equation (2.16) is related to the converse piezoelectric effect 

or electrical-to-mechanical coupling, whereas the bottom partition regarding with the 

direct effect or mechanical-to-electrical coupling. 
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 Equation (2.16) can be expressed with stress and electric field as the dependent 

variables and strain and electric displacement as the independent variables as 

 

D
S

kd
kds

kE
T

121

211

21
1    (2.17) 

 

where k is called the piezoelectric coupling coefficient and given as 

 

s
dk        (2.18) 

 

 It is possible to extend the one dimensional system equations to a general one 

that relates the electromechanical parameters in Equation (2.16) in all three directions. 

The common coordinate system used for the piezoelectric material is given in Figure 

2.5. In this coordinate system, the poling axis of the material is the 3 direction. 

 

 

 

 

 

 

 

 

Figure 2.5. The coordinate axes of the piezoelectric material 
(Source: Leo 2007) 

 

 Many common piezoelectric materials are orthotropic materials. Also, the 

compliance matrix is symmetric. Moreover, piezoelectric materials have the same 

elastic modules in the 1 and 2 directions due to the plane of symmetry. 

 The permittivity matrix is in diagonal form, since the electrical displacements 

orthogonal to electrical field application direction are not produced. Similarly, some 

elements of the strain coefficient matrix are zero. Therefore, the constitutive equations 

of piezoelectric material are obtained in reduced form. 
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 The top partition of Equation (2.16), which is also known as actuation part 

(Preumont, 2002) due to the electrical-to-mechanical coupling, is written in three 

dimensions as 

 

3
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  (2.19) 

 

 The bottom partition of Equation (2.16), which is also known as sensing part 

(Preumont, 2002) due to the mechanical-to-electrical coupling, is written in three 

dimensions as 

 

3

2

1

33

22

11

6

5

4

3

2

1

332313
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2

1

00
00
00
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ddd
d
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   (2.20) 
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 The common operating modes of piezoelectric transducers are 33 and 31 in 

which second number refers to direction of strain. For 33 operating mode, it is assumed 

that T1=T2=T4=T5=T6=E1=E2=0. Also, S1 and S2 are not main interest. Therefore, the 

following constitutive equations are needed 

 

3333333 EdTsS E       (2.21) 

 

3333333 ETdD T       (2.22) 

 

In Equation (2.21), superscript E represents a short-circuit (E=0) condition. Also, in 

Equation (2.22), the superscript T denotes a stress-free (T=0) condition. 

 Similar to 33 operating mode, 31 operating mode can be based on assumption 

T2=T3= T4=T5=T6=E1=E2=0. Also, S2 and S3 are not main interest. Thus, the following 

constitutive equations are required 

 

3131111 EdTsS E       (2.23) 

 

3331133 ETdD T       (2.24) 

 

2.5. Piezoelectric Layer Effect on Equations of Motion 

 
 Derivation of the equations of motion of curved beam with variable curvature 

for in-plane bending is presented in Section 2.3. Equations (2.13), (2.14), and (2.15) 

have the applied distributed forces qn, qt and distributed moment my, respectively. 

 When a thin piezoelectric layer segment is bonded perfectly to concave surface 

of the curved beam near the root region as shown in Figure 2.6, it applies distributed 

forces in tangential direction which also generates bending moment about y axis if it is 

under electrical field. It should be noted that the thin piezoelectric layer segment in 

Figure 2.6 has light gray color. The applied distributed force qn due to piezoelectric 

layer is not effective for 31 operating mode. 
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Figure 2.6. Parabolic curved beam with piezoelectric layer segment 

 

 Therefore, the applied distributed forces qtp due to piezoelectric layer alone is 

necessary. To express qtp due to piezoelectric layer, cross-section of the parabolic 

curved beam with piezoelectric layer segment shown in Figure 2.6 is illustrated in 

Figure 2.7 with the geometrical parameters. Thus, 

 

ppppptp LEAEdLFq // 313     (2.25) 

 

where Lp is the length of the piezoelectric layer in tangential direction, Ap is the cross-

section of the piezoelectric layer and Ep is the Young modulus of the piezoelectric 

material. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. The force applied by the piezoelectric layer 
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Thus, bending moments Myp due to piezoelectric layer is written by using  

Figure 2.7 as 

 

pyp hFM        (2.26) 

 

Thus, distributed bending moment myp is expressed by using Equation (2.23) as 

 

ppp

ppppp

ppp

pp

pypyp

LVbEhd
LtVtbEhd

LEAEdh
LhF
LMm

/

/)/)((

/

/

/

13

13

313     (2.27) 

 

2.6. Finite Element Modeling 

 
Finite element method is based on discretization of complex geometrical shapes 

to simple ones such as lines, triangles, rectangles, tetrahedrons, and rectangular prisms 

which are called finite elements. This process is called as meshing. Finite elements are 

connected to each other by their extremities on which element nodes are located. 

Physical parameters in problems such as displacement, temperature, pressure etc are 

discretized at the nodes of finite elements. Therefore, an approximate solution function 

is expressed by using nodal variables. (Yardimoglu, 2012) 
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 The equations of motion of a piezoelectric materials system for one element 

model are given by Kohnke (2004) as 

 

}{
}{

}{
}{

][][
][][

}{
}{

]0[]0[
]0[][

}{
}{

]0[]0[
]0[][

L
F

V
u

KK
KK

V
uC

V
uM

dTz

z

T     (2.28) 

 

where [M] is structural mass, [C] is structural damping matrices. Also, [K], [Kd], and 

[Kz] are structural stiffness, dielectric conductivity, and piezoelectric coupling matrices, 

respectively. Details of these matrices are described in Kohnke (2004). It should be 

noted that a dot above a variable in Equation (2.28) denotes a time derivative as usual. 

Moreover, {u} and {V} in Equation (2.28) are the nodal displacements and nodal 

electrical potential vectors, respectively. They are written in open form as 

 
T

nnn UzUyUxUzUyUxu 111}{   (2.29) 

 
T

nVVVV 21}{      (2.30) 

 

Additionally, {F} and {L} in Equation (2.28) are nodal force and nodal charge 

vectors, respectively. They are input values of the model. 

Finally, the damping matrix [C roach which is 

known as proportional damping.  

 

][][][ KMC       (2.31) 

 

where  and  are multipliers for mass and stiffness matrices, respectively. 

 The assembling of the finite element matrices to obtain the global characteristics 

such as mass and stiffness are performed by using the continuity conditions. 

The finite element model of the smart curved beam is done in ANSYS by 

employing SOLID45 and SOLID5 for host beam and piezoelectric layer, respectively. 
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The modeling and solution code is developed by using APDL (ANSYS Parametric 

Design Language) in ANSYS. 

 

2.7. Natural Frequencies and Time Response 

 
Differential eigenvalue problem is expressed in general form as 

 

][][ 2 xMxL       (2.32) 

 

where L[x] and M[x] are linear differential operators and  is eigenvalues. 

By using the Finite Element Method, Equation (2.32) is reduced to simultaneous 

algebraic equations. Boundary conditions are applied to simultaneous algebraic 

equations in order to obtain the following matrix form 

 

XBXA ][2       (2.33) 

 

 Solutions of the generalized eigenvalue problem can be done by using several 

numerical methods. The available mode-extraction methods in ANSYS are Block 

Lanczos (default), subspace, PowerDynamics, reduced, unsymmetric, damped, and QR 

damped. 

 Time response of the system is also called transient dynamic analysis. ANSYS 

uses three methods to do a transient dynamic analysis which are 

 the full method, 

 the mode superposition method, 

 the reduced method. 

In the full mesthod, the full system matrices are used. However, the mode superposition 

method sums factored mode shapes found from modal analysis. On the other hand, the 

reduced method uses master degrees of freedom provided by the user and then reduced 

matrices. 
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2.8. Active Vibration Control 

 
 Active control of smart structure is accomplished by a displacement feed-back 

system illustrated in Figure 2.8. 

 

 

 

 

 

 

 

 

Figure 2.8. Block diagram of the active control system 

 

 Active control of smart structure is applied in ANSYS by using transient 

analysis based on initial displacement of the smart structure. A control loop to apply the 

actuation voltage is provided by *do-*enddo loop. Within this loop, the error signal is 

calculated in each time increment depending on the displacement of the smart structure, 

and then it is amplified for the voltage which will be applied in next time interval. The 

simulation is continued until desired time. 

 The transfer function of the active control system shown in Figure 2.1 can be 

written as 

 

ssvc

svcz

GKKK
GKK

ref
uG

1
     (2.34) 

 

where Kc, Kv, and Ks are transfer functions of controller, voltage amplifier and controller 

for displacement sensor, respectively. Gs is the transfer function of the smart beam. 

Equation (2.34) can be written by defining Kp=KcKv as 

 

ssp

spz

GKK
GK

ref
uG

1
     (2.35) 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSION 

 
3.1. Introduction 

 
 The parabolic curved beam axis is formed by the following function: 

 

)25.00(,5)( 2 zzzx      (3.1) 

 

The plot of Equation (3.1) is given in Figure 2.1. Cross-sectional dimensions of 

the curved beam are b=20 mm and h=1.5 mm. It has 0.4463 m arch length. The 

modeling and solution code is developed by using APDL (ANSYS Parametric Design 

Language) in ANSYS. Discretizing the parabolic curved beam by the proper number of 

finite elements which gives the results in desired accuracy, an equivalent circular 

cantilever beam having the same arch length and cross-section is considered. Natural 

frequencies of the respective curved beam without piezoelectric layer are found by 

using different meshes of SOLID45 in ANSYS and the present results are compared 

with analytical results of Archer (1960). Then, the numbers of finite elements in axial, 

tangential and radial directions are decided as 4, 96, and 1, respectively. 

The piezoelectric layer is modeled by SOLID5 in ANSYS. The meshed 

parabolic curved beam and piezoelectric layer model is shown in Figure 3.1. 

 The piezoelectric layer mesh is shaded light grey in Figure 3.1. As seen from the 

Figure 3.1, the piezoelectric layer is bonded to the concave surface of the parabolic 

curved beam. 

The geometrical properties of the piezoelectric layer are listed below: 

 

Width of the piezoelectric layer bp=20 mm, 

Thickness of the piezoelectric layer tp=1.5 mm, 

Length of the piezoelectric layer sp=25 mm, 

The distance of the piezoelectric layer from the root dp=10 mm. 
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Figure 3.1. The parabolic curved beam and piezoelectric layer after meshing 

 

The material is selected as aluminum for the curved beam of which the 

properties are given as follows: 

 

Young modulus  68 109 N/m2 

Density   2676 kg/m3 

  0.32 
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PZT-5H is used for the piezoelectric layer material. Their material properties are 

presented in matrix forms as (Auld, 1973), 

 

25.2300000
00.230000
000.23000
0001171.841.84
0001.841265.79
0001.845.79126

][][ 1EE sc  GPa 

 

000593274274
00741000
07410000

]][[][ cde  C/m2 

 

147000
017000
001700

][ S  

 

 The numerical matrices are based on IEEE order as [x, y, z, yz, xz, xy]. However, 

ANSYS uses the order [x, y, z, xy, yz, xz]. Therefore, they must be modified 

accordingly. Also, [ S] is relative permittivity matrix under constant strain condition. 

 

3.2. Parabolic Curved Beam with Piezoelectric Layer 

 
 The parabolic smart curved beam introduced in Section 3.1 is used to study on 

vibration control by displacement feed-back algorithm for different combination of Kp 

and Kv values. 
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 Time responses of displacement of the mid-point of the tip of the parabolic smart 

curved beam under displacement feed-back control are given in Figures 3.2-3.18 for 

Ks=200. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Displacement response plot without control 
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Figure 3.3. Displacement response plot with Kp=25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Displacement response plot with Kp=50 
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Figure 3.5. Displacement response plot with Kp=75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Displacement response plot with Kp=100 
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Figure 3.7. Displacement response plot with Kp=125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Displacement response plot with Kp=150 
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Figure 3.9. Displacement response plot with Kp=175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Displacement response plot with Kp=200 
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Figure 3.11. Displacement response plot with Kp=225 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Displacement response plot with Kp=250 
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Figure 3.13. Displacement response plot with Kp=275 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Displacement response plot with Kp=300 

 



 31

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Displacement response plot with Kp=325 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Displacement response plot with Kp=350 
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Figure 3.17. Displacement response plot with Kp=375 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Displacement response plot with Kp=500 
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The feed-back voltage values for the cases presented in Figures 3.2-3.18 are 

given in the Figures 3.19-3.35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Feed-back voltage values for Kp=0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Feed-back voltage values for Kp=025 



 34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21. Feed-back voltage values for Kp=050 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Feed-back voltage values for Kp=075 
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Figure 3.23. Feed-back voltage values for Kp=100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. Feed-back voltage values for Kp=125 
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Figure 3.25. Feed-back voltage values for Kp=150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26. Feed-back voltage values for Kp=175 
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Figure 3.27. Feed-back voltage values for Kp=200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28. Feed-back voltage values for Kp=225 
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Figure 3.29. Feed-back voltage values for Kp=250 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30. Feed-back voltage values for Kp=275 
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Figure 3.31. Feed-back voltage values for Kp=300 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.32. Feed-back voltage values for Kp=325 
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Figure 3.33. Feed-back voltage values for Kp=350 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34. Feed-back voltage values for Kp=375 
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Figure 3.35. Feed-back voltage values for Kp=500 

 

 RMS values of the displacement responses for different Kp values for the plots 

presented in Figures 3.2-3.18 are calculated. These values are given in Table 3.1 and 

also plotted in Figure 3.36. 

 

Table 3.1. RMS values of the displacement responses for different Kp 

 

Kp RMS value Kp RMS value 

0 0.0202 225 0.0085 

25 0.0173 250 0.0081 

50 0.0151 275 0.0078 

75 0.0134 300 0.0075 

100 0.0120 325 0.0073 

125 0.0110 350 0.0072 

150 0.0102 375 0.0071 

175 0.0095 500 0.0076 

200 0.0089   
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Figure 3.36. RMS values of displacement responses for different Kp values 

 

3.3. Discussion of Results 

 
 Active vibration control of smart parabolic curved beam is based on the control 

parameters which are related with the block diagram given in Figure 2.8. 

 For numerical method, determination of these parameters is based on trial error 

method. 

 By visual evaluation and comparison of the Figures 3.2 through 3.18, it is seen 

that for Kp values between 25 and 250, the system exhibits a stable behavior, which is 

evident from the observation that the tip displacement settles within a finite envelope. It 

is also seen that the settling time decreases as Kp is increased from 25 to 250. The 

decrease in settling time is valid only until Kp=250 however, after this value, the system 

starts to become unstable as Kp is increased further. This is observed in Figures 3.13 

through 3.18, where the amplitude of the tip displacement is seen as increasing, after an 

initial duration of declination. 

 In Figure 3.19, a voltage spike can be seen. This spike occurs due to the strain 

caused by the application of the initial impulsive force. This force is applied during four 

time integration steps. One time integration step is determined as one tenths of the first 

natural period of the smart beam. Since the first natural frequency of the smart beam is 

6.60Hz, one time step is calculated as 0.015s. Therefore, four time integration steps 
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constitute 0.060s. The Figures 3.20 through 3.34 are plotted with the time axis starting 

from 0.076s in order to leave out this voltage spike. 

 It can be seen from Figure 3.36 that the RMS values of displacement responses 

is decreased until a critical value of Kp. However, it is increased after critical value of 

Kp. Therefore, stability of the system can also be determined from this plot. 
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CHAPTER 4 

 

CONCLUSIONS 

 
There are numerous studies on vibration control of curved beams with 

piezoelectric layers in the existing literature. However, researches on vibration control 

of non circular smart curved beam are rare. 

Since the present problem is represented mathematically by differential 

eigenvalue problem with variable coefficients which has solution only for special cases 

of functions of the variable coefficients, Finite Element Method is used to reduce the 

differential eigenvalue problem to discrete eigenvalue problem. A computer code is 

developed in ANSYS to model the geometry and solve the vibration control problem by 

using APDL (ANSYS Parametric Design Language). Vibration control is performed by 

displacement feed-back algorithm. The effects of control parameters on time response 

are investigated. 
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