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We introduce exactly solvable quantum parametric oscillators, which are general-
izations of the quantum problems related with the classical orthogonal polynomials
of Hermite, Laguerre, and Jacobi type, introduced in the work of Büyükaşık et al. [J.
Math. Phys. 50, 072102 (2009)]. Quantization of these models with specific damping,
frequency, and external forces is obtained using the Wei-Norman Lie algebraic
approach. This determines the evolution operator exactly in terms of two linearly
independent homogeneous solutions and a particular solution of the corresponding
classical equation of motion. Then, time-evolution of wave functions and coherent
states are found explicitly. Probability densities, expectation values, and uncertainty
relations are evaluated and their properties are investigated under the influence of the
external terms. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972293]

I. INTRODUCTION

Evolution of quantum systems with time-variable parameters is rather old but still an extensive
area of research. One of the most fundamental models with explicitly time-dependent Hamiltonian
is probably the quantum harmonic oscillator. It appears in many physical branches such as quantum
optics,1–3 quantum fluid dynamics,4 ion-traps,5 and cosmology.6 It is a useful model also in quantum
information7 and quantum computation.8

As known, for imitation of damped oscillations, Caldirola9 and Kanai10 introduced a harmonic
oscillator with an exponentially increasing mass. This model admits exact solutions and is widely
used to study dissipation in quantum mechanics.11 Then, different methods have been developed for
solving the time-dependent quantum harmonic oscillator. It has been considered first by Husimi,12

who by proper ansatz reduced the problem to a non-linear Riccati equation. Then, other methods
like the path integral method,13 the Lewis-Riesenfeld time invariant method,14 and the Wei-Norman
dynamical symmetry method15 were found. In all these approaches, the solution of the quantum
problem is given in terms of the classical one.16–22

The generalized time-dependent harmonic oscillator, which contains the mixed term (q̂p̂ + p̂q̂)
and the linear terms q̂ and p̂ as well, also allows an exact treatment using the several approaches
listed above. Husimi, in fact, considered the forced harmonic oscillator and obtained Gaussian
type solutions using trial functions.12 Integrals of motion and coherent states of a damped and
forced parametric oscillator were constructed in Ref. 23. In Ref. 24 the forced Caldirola-Kanai
oscillator was solved by the Lewis-Riesenfeld invariant approach, and also by path integration of
the Lagrangian giving an exact Feynman propagator. The dynamical invariant approach was used
also in Refs. 25–29 to find solutions, uncertainty relations, and coherent states of the generalized
oscillator. Recently, quantum integrals of motion for several particular models of the damped and
generalized oscillators were constructed in Ref. 30. In Ref. 31 a unitary operator which connects the
generalized oscillator to its new reduced form was obtained, and in Ref. 32, the propagators of the
general quadratic Hamiltonian systems are obtained from the classical action.

Although formal solutions of the general oscillator are obtained by different approaches, exact
solutions are investigated mostly for the driven Caldirola-Kanai oscillator. Recently, a wide class
of exactly solvable harmonic oscillator models with specific damping and frequency dependence
were introduced in terms of the Sturm-Liouville problems for the classical orthogonal polynomials
and hypergeometric functions.33 The goal of this work is to extend our previous results and provide
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exact explicit solutions for a large class of general quadratic oscillator models, related with the clas-
sical orthogonal polynomials. For this we use the Wei-Norman algebraic approach,15 also known
as evolution operator approach, which has been used in many works, such as Refs. 34–41. It is a
powerful technique for solving evolution problems whose Hamiltonian is a linear combination of
generators of a finite dimensional Lie algebra, so that the evolution operator can be represented as
product of exponential operators. In case when the Hamiltonian consists of generators of su(1,1)
and Heisenberg-Weyl Lie algebras (su(1,1)W ), finding the evolution operator reduces to solv-
ing a nonlinear system of six first-order differential equations, which can be solved by quadrature.
In Sec. II, we obtain and express the solution of this system in terms of two linearly independent
homogeneous solutions and a particular solution to the corresponding classical equation of motion.
Knowing the exact evolution operator we evaluate the corresponding wave functions and proba-
bility densities. Then, the evolution of the initially Glauber coherent states, expectation values, and
uncertainty relations at these states are computed. Additionally, we show that the results obtained
by the evolution operator approach agree with those obtained by the Lewis-Riesenfeld invariant
approach in Ref. 27. In Sec. III, we introduce exactly solvable generalized harmonic oscillators
related with the classical Hermite, Laguerre, and Jacobi type orthogonal polynomials. These quan-
tum parametric oscillators with specific damping and frequency are investigated under the influence
of the external terms, and can be seen as generalization of our previous results.33 The original
frequency ω2(t) of these models depends on the eigenvalues of the related Sturm-Liouville prob-
lem. As known, the external mixed term parameter modifies the original frequency of the classical
oscillator. It happens that special choice of this parameter gives a new frequency Ω2(t) in terms of a
different eigenvalue of the same Sturm-Liouville problem. Then, including also the linear external
terms, we call these models as generalized Hermite, Laguerre, and Jacobi type quantum oscillators.
For each oscillator type, we give examples with explicit solutions and discuss their properties ac-
cording to the influence of the external terms. Illustrative plots are constructed for the probability
densities and uncertainty relations. Section IV includes brief summary and discussion of the present
results.

II. EVOLUTION OPERATOR AND SOLUTION OF THE GENERALIZED TIME-DEPENDENT
HARMONIC OSCILLATOR

A. Quantization of the generalized quadratic oscillator

The generalized Hamiltonian for classical oscillator with time-dependent parameters is of the
form

Hg(x,p, t) = p2

2µ(t) +
µ(t)ω2(t)

2
x2 + B(t)xp + D(t)x + E(t)p + F(t), (1)

and the corresponding equations of motion are

ẋ =
∂H
∂p
= B(t)x + p

µ(t) + E(t), (2)

ṗ = −∂H
∂x
= −(µ(t)ω2(t)x + B(t)p + D(t)). (3)

Then, we have the classical equation of motion in position space

ẍ +
µ̇

µ
ẋ +

(
ω2(t) −

(
Ḃ + B2 +

µ̇

µ
B
))

x = − 1
µ

D + Ė +
(
µ̇

µ
+ B

)
E (4)

and the oscillator equation in momentum space

p̈ −
˙(µω2)

µω2 ṗ + *
,
ω2(t) + *

,
Ḃ − B2 −

˙(µω2)
µω2 B+

-
+
-

p = −Ḋ + *
,

˙(µω2)
µω2 + B+

-
D − µω2E. (5)

We notice that the parameter B(t) of the mixed term in Hamiltonian (1) leads to modification of
the original frequency ω2(t), and the external parameters B(t), D(t), and E(t) all contribute to the
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forcing term of the oscillator. Replacing the canonical variables in classical Hamiltonian (1) by the
quantum operators,

x → q̂, p → p̂, xp → p̂q̂ + q̂p̂
2

, (6)

we consider the evolution problem for the quantum harmonic oscillator

i~
∂

∂t
Ψ(q, t) = Ĥg(t)Ψ(q, t), (7)

Ψ(q, t0) = Ψ0(q), −∞ < q < ∞, (8)

with general quadratic Hamiltonian

Ĥg(t) = p̂2

2µ(t) +
µ(t)ω2(t)

2
q̂2 +

B(t)
2

(q̂p̂ + p̂q̂) + D(t)q̂ + E(t)p̂ + F(t)Î, (9)

where µ(t) > 0, ω2(t), B(t), D(t), E(t), and F(t) are sufficiently smooth, real-valued parameters
depending on time. We find the corresponding evolution operator by the Wei-Norman Lie algebraic
approach. Indeed, the Hamiltonian (9) can be written as a time-dependent linear combination of Lie
algebra generators as

Ĥg(t) = −i
(
~2

µ(t) K̂− + µ(t)ω2(t)K̂+ + 2~B(t)K̂0 + D(t)Ê1 + ~E(t)Ê2 + F(t)Ê3

)
, (10)

where

Ê1 = iq, Ê2 =
∂

∂q
, Ê3 = i Î

are generators of the Heisenberg-Weyl algebra, and

K̂− = −
i
2

∂2

∂q2 , K̂+ =
i
2

q2, K̂0 =
1
2
(q ∂

∂q
+

1
2
)

are generators of the su(1,1) algebra. Then, the evolution operator for the general oscillator can be
written as product of exponential operators

Ûg(t, t0) = ÛE(t, t0)ÛK(t, t0), (11)

where

ÛE(t, t0) ≡ ec(t)Ê3e
a(t )
~ Ê1e−b(t)Ê2, ÛK(t, t0) ≡ e f (t)K̂+e2h(t)K̂0eg (t)K̂−, (12)

and f (t), g(t),h(t),a(t),b(t),c(t) are unknown real-valued functions to be determined from the initial
value problem (IVP) defining the unitary operator Ûg , that is,

i~
d
dt

Ûg(t, t0) = Ĥg(t)Ûg(t, t0),
Ûg(t0, t0) = Î .

(13)

After performing time differentiation and comparing both sides of the operator Equation (13), we
obtain that Ûg(t, t0) is the solution of the problem, if the unknown functions satisfy the nonlinear
system of six first-order equations
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ḟ +
~

µ(t) f 2 + 2B(t) f +
µ(t)ω2(t)
~

= 0, f (t0) = 0, (14)

ġ +
~

µ(t) e2h = 0, g(t0) = 0,

ḣ +
~

µ(t) f + B(t) = 0, h(t0) = 0.

ȧ + B(t)a + µ(t)ω2(t)b + D(t) = 0, a(t0) = 0, (15)

ḃ − B(t)b − 1
µ(t)a − E(t) = 0, b(t0) = 0,

ċ +
1

2~µ(t)a2 +
E(t)
~

a − µ(t)ω2(t)
2~

b2 +
F(t)
~
= 0, c(t0) = 0.

In fact, (14) and (15) are two independent systems, one for f , g,h and second for a,b,c. System
(14) can be easily solved by realizing that first line is an initial value problem for the non-linear
Riccatti equation, and using substitution f (t) = µ(t) (ẋ/x − B(t)) /~, it transforms to the classical
homogeneous equation of motion

ẍ +
µ̇

µ
ẋ +

(
ω2(t) − (Ḃ + B2 +

µ̇

µ
B)

)
x = 0, (16)

with initial conditions

x(t0) = x0 , 0, ẋ(t0) = x0B(t0), (17)

whose solution we denote by x1(t). Assuming that all coefficients in Eq. (16) are continuous on a
time interval containing t0, by x2(t) we denote a second solution of Eq. (16), satisfying the initial
conditions

x2(t0) = 0, ẋ2(t0) = 1/µ(t0)x1(t0).
Then, g(t) can be expressed in terms of these two independent solutions. This gives the solution
of system (14) in terms of two linearly independent solutions x1(t) and x2(t) of the homogeneous
equation as

f (t) = µ(t)
~

(
ẋ1(t)
x1(t) − B(t)

)
, (18)

g(t) = −~x2
1(t0)

(
x2(t)
x1(t)

)
,

h(t) = − ln
�����

x1(t)
x1(t0)

�����
.

On the other hand, we realize that in system (15), the equations for b(t) and a(t) are same with
the classical equations (2) and (3) for x(t) and p(t), respectively. Then, using first two equations
in system (15), we obtain that b(t) is the solution of the nonhomogeneous Eq. (4), with initial
conditions

x(t0) = 0, ẋ(t0) = E(t0), (19)

and we denote this solution by b(t) = xp(t). Similarly, it follows that a(t) = pp(t), where pp(t) is
solution of the nonhomogeneous Eq. (5) for momentum, with initial conditions

p(t0) = 0, ṗ(t0) = −D(t0). (20)

Then, solution of system (15) is found in terms of the two particular solutions, xp and pp, as

a(t) = pp(t), (21)
b(t) = xp(t),
c(t) =

 t

t0

−(pp(s))2
2~µ(s) −

E(s)
~

pp(s) + µ(s)ω2(s)
2~

x2
p(s) − F(s)

~


ds.
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Writing pp(t) in terms of xp(t), the solution of this system becomes

a(t) = µ(t) �ẋp(t) − B(t)xp(t) − E(t)� , (22)

b(t) = xp(t),
c(t) = −1

2~

 t

t0

µ(s)

ẋ2
p(s) − 2B(s)xp(s)ẋp(s)

+

(
B2(s) − ω2(s)

)
x2
p(s) − E2(s) + 2

µ(s)F(s)

ds,

showing that solution of the general oscillator is completely determined by solutions x1(t), x2(t),
and xp(t) of the classical oscillator. We note that choosing different orderings of the exponential
operators in the evolution operator (11) leads to different formulations of the system for the six
unknown parameters. In any case, the system can be solved by quadrature, but we cannot always
easily see its solution in terms of x1, x2, and xp, as in the present case. Now, after finding all
unknown functions in (11), the exact form of the evolution operator becomes

Ûg(t, t0) = exp
(

i
~

 t

t0


−1

2µ(s) p2
p(s) − E(s)pp(s) + µ(s)ω2(s)

2
x2
p(s) − F(s)


ds

)
× exp

�
ipp(t)q� × exp

(
−xp(t) ∂

∂q

)
× exp

(
i
µ(t)
2~

(
ẋ1(t)
x1(t) − B(t)

)
q2

)
× exp

(
ln
�����
x1(t0)
x1(t)

�����

(
q
∂

∂q
+

1
2

))
× exp

(
i
2
~x2

1(t0)
(

x2(t)
x1(t)

)
∂2

∂q2

)
, (23)

where pp(t) = µ(t) �ẋp(t) − B(t)xp(t) − E(t)�. Therefore, with this evolution operator we can solve
the quantum oscillator problem (7) for given initial data. Here, as initial functions we choose the
normalized eigenstates of the standard Hamiltonian,

ϕk(q) = Nke−
mω0

2~ q2
Hk

(
mω0

~
q
)
, (24)

where Hk(√mω0/~q) are the Hermite polynomials, Nk = (2kk!)−1/2(mω0/π~)1/4 are normalization
constants, and eigenvalues are Ek = (~/ω0)(k + 1/2), k = 0,1,2, . . .. Applying the evolution oper-
ator, and using that (d/dt)(x2(t)/x1(t)) = 1/(µ(t)x2

1(t)), we obtain the exact wave function in the
form

Ψk(q, t) = Nk


RB(t) × exp


i
(
k +

1
2

)
η(t)



× exp

− i

2~
µ(t)

(
B(t) + ṘB(t)

RB(t)
)
(q − xp(t))2 + i

~
pp(t)q



× exp

−i
2~

 t

t0

µ(s)

ẋ2
p(s) − 2B(s)xp(s)ẋp(s) +

(
B2(s) − ω2(s)

)
x2
p(s) − E2(s) + 2F(s)

µ(s)

ds


× exp

−1

2

(
mω0

~
RB(t) �q − xp(t)�

)2
× Hk

(
mω0

~
RB(t) �q − xp(t)�

)
, (25)

where

η(t) = arctan
(
−mω0x2

1(t0)
(

x2(t)
x1(t)

))
= −mω0

 t

t0

R2
B(s)
µ(s) ds (26)

and

RB(t) =


x0
2

x2
1(t) + (mω0x0

2x2(t))2 . (27)
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The probability density is then

ρk(q, t) = N2
k RB(t) exp *

,
−
(

mω0

~
RB(t)(q − xp(t))

)2

+
-
× H2

k

(
mω0

~
RB(t) �q − xp(t)�

)
, (28)

where RB(t) is the squeezing (or spreading) coefficient, and xp(t) is the displacement of the wave
packet. We note that RB(t) depends on the mixed term coefficient B(t), but does not depend on
the external term parameters D(t),E(t), and F(t). On the other hand, the displacement xp(t) clearly
depends on all parameters of the Hamiltonian. By previous assumptions, x1(t) and x2(t) are smooth
and cannot be simultaneously zero, and if xp(t) is also smooth, probability density is a conserved
quantity, that is  ∞

−∞
ρk(q, t)dq = 1.

In the limiting case, when all external terms are zero, i.e., B = D = E = F = 0, the probability
density takes the form

ρk(q, t) = N2
k × R0(t) × exp *

,
−
(

mω0

~
R0(t)q

)2

+
-
× H2

k

(
mω0

~
R0(t) (q)

)
, (29)

which coincides with our earlier result in Ref. 33. We also note that ϱ(t) = 1/(√mω0RB(t)) is
solution of the Ermakov-Pinney differential equation

ϱ̈ +
µ̇

µ
ϱ̇ +

(
ω2(t) −

(
Ḃ + B2 +

µ̇

µ
B
))

ϱ =
1

µ2ϱ3 , (30)

with the initial conditions

ϱ(t0) = 1
√

mω0
, ϱ̇(t0) = B(t0)√

mω0
. (31)

Then it is easy to see that, for this particular solution ϱ(t), the wave functions (25) agree with the
wave functions obtained by the Lewis-Riesenfeld approach in Ref. 27.

B. Heisenberg picture, expectation, and uncertainties at states Ψk(q, t ).
The position and momentum operators in Heisenberg picture defined by

q̂H(t) = Û†g(t, t0)q̂SÛg(t, t0), q̂H(t0) = q̂S,

p̂H(t) = Û†g(t, t0)p̂SÛg(t, t0), p̂H(t0) = p̂S

are obtained explicitly using the evolution operator (23) as

q̂H(t) = 1
x0

x1(t)q̂H(t0) + x0x2(t)p̂H(t0) + xp(t), (32)

p̂H(t) = 1
x0

µ(t)�ẋ1(t) − B(t)x1(t)�q̂H(t0) + x0µ(t)�ẋ2(t) − B(t)x2(t)�p̂H(t0) + pp(t). (33)

These operators satisfy the Heisenberg equations of motion,

d
dt

q̂H(t) = p̂H(t)
µ(t) + B(t)q̂H(t) + E(t),

d
dt

p̂H(t) = − �µ(t)ω2(t)q̂H(t) + B(t)p̂H(t) + D(t)� ,
where q̂H(t) is the solution of the classical equation (4) and p̂H(t) is the solution of (5). Then, the
expectations of position and momentum at state Ψk(q, t) can be found using

⟨q̂⟩k(t) ≡ ⟨Ψk(q, t)|q̂S |Ψk(q, t)⟩ = ⟨ϕk(q)|q̂H(t)|ϕk(q)⟩,
⟨p̂⟩k(t) ≡ ⟨Ψk(q, t)|p̂S |Ψk(q, t)⟩ = ⟨ϕk(q)|p̂H(t)|ϕk(q)⟩,
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where q̂H(t) is given by (32) and p̂H(t) is given by (33). Indeed, since

q̂H(t0) =

~/(2mω0)(â + â†), p̂H(t0) = −i

(mω0~)/2(â − â†),
where â, â† are lowering and raising operators of the standard Hamiltonian Ĥ0 = ~ω0(â†â + 1/2),
and âϕk(q) =

√
kϕk−1, â†ϕk(q) =

√
k + 1ϕk+1, k = 0,1,2, . . ., we obtain

⟨q̂⟩k(t) = xp(t), ⟨p̂⟩k(t) = pp(t).
Then, the expectation values of squares of position and momentum are

⟨q̂2⟩k(t) =
(
k +

1
2

)
*
,

~

mω0R2
B(t)

+
-
+ x2

p(t),

⟨p̂2⟩k(t) =
(
k +

1
2

)
(mω0~R2

B(t))

1 +

µ2(t)
(mω0R2

B(t))2
(

ṘB(t)
RB(t) + B(t)

)2
+ p2

p(t).

As a result, the fluctuations for q̂ and p̂ are found as

(∆q̂)k(t) =
(

k +
1
2

)
*
,

~

mω0R2
B(t)

+
-
,

(∆p̂)k(t) =
(

k +
1
2

)
(mω0~R2

B(t))


1 +
µ2(t)

(mω0R2
B(t))2

(
ṘB(t)
RB(t) + B(t)

)2

,

and the uncertainty relation in state Ψk(q, t) becomes

(∆q̂)k(∆p̂)k(t) = ~
(
k +

1
2

) 
1 +

µ2(t)
(mω0R2

B(t))2
(

ṘB(t)
RB(t) + B(t)

)2

, k = 0,1,2, . . . . (34)

C. Coherent states, expectation values, and uncertainty relation

Coherent states of standard harmonic oscillator (Glauber coherent states) have many use-
ful physical and mathematical properties, and they can be defined in different, but equivalent
ways.42–44,18 As minimum uncertainty states they satisfy (∆q̂)α(∆p̂)α = ~/2, and are therefore
closest to the classical states. Displacement operator coherent states are defined by the action of
the displacement operator D(α) = eαâ

†−α∗â on the ground state, confirming that they are shifted
Gaussian wave packets. Coherent states are known also as annihilation operator eigenstates, that
is, if â is the annihilation operator of the standard Hamiltonian Ĥ0, the coherent states satisfy
âφα(q) = αφα(q), for any complex number α = α1 + iα2, α1,α2 − real. Then, they can be expanded
in terms of the eigenstates ϕk(q) of Ĥ0 as

φα(q) = e−|α |
2/2

∞
k=0

αk

√
k!
ϕk(q) (35)

or can be written in a closed form

φα(q) =
(mω0

π~

)1/4
e−

i
2~ ⟨q̂⟩α⟨p̂⟩αe

i
~ ⟨p̂⟩αqe−

mω0
2~ (q−⟨q̂⟩α)2, (36)

where ⟨q̂⟩α =


2~/(mω0) α1, ⟨p̂⟩α =
√

2mω0~ α2. According to this, time-evolved coherent states
for the standard oscillator become

φα(q, t) = e−
iω
2 te−|α(t)|

2/2
∞
k=0

α(t)k
√

k!
ϕk(q),

where α(t) = e−iωtα(t0). Thus, they are also eigenstates of the annihilation operator, but corre-
sponding to the time-dependent eigenvalues, since âφα(q, t) = α(t)φα(q, t). It follows that coherent
states of the standard oscillator remain coherent under time-evolution and they are non-spreading
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wave packets since d(∆q̂)α(t)/dt = 0 and expectation of position ⟨q̂⟩α(t) follows the classical trajec-
tory.

Now, we consider time-evolution of initially Glauber coherent states under the influence of the
evolution operator (23) of the generalized parametric oscillator, that is, Φα(q, t) = Ûg(t, t0)φα(q, t0).
Using that φα(q, t0) = φα(q) is given by (35), and Ûg(t, t0)ϕk(q) = Ψk(q, t), one directly gets the
generalized coherent states in terms of the wave functions (25),

Φα(q, t) = e−
|α |2

2

∞
k=0

αk

√
k!
Ψk(q, t). (37)

Or applying the evolution operator Ûg(t, t0) to (36), time-evolved coherent states are found explicitly

Φα(q, t) =
(mω0

π~

)1/4
RB(t) ×


x1(t)
x0
− i(mω0x0)x2(t)

× exp


i
~

 t

t0

(
−1

2µ(s) p2
p(s) − E(s)pp(s) + µ(s)ω2(s)

2
x2
p(s) − F(s)

)
ds


× exp

−i(mω0)x2(t)R2

B(t)
(
x1(t) − i(mω0x2

0)x2(t)
)
α2 +

α2 − |α|2
2



× exp
(

i
~

pp(t)q
)
× exp


−i
2~

µ(t)
(
B(t) + ṘB(t)

RB(t)
)
(q − xp(t))2



× exp

−R2

B(t)
 mω0

2~
(q − xp(t)) −

( x1(t)
x0
− i(mω0x0)x2(t)

)
α
2


, (38)

and the corresponding probability densities become

ρα(q, t) =


mω0

π~
RB(t)

× exp

−

(mω0

~

)
R2
B(t)


q −

( 2~
mω0

(
α1

x1(t)
x0
+ α2(mω0x0)x2(t)

)
+ xp(t)

)2
. (39)

As another approach, we show that coherent states Φα(q, t) can be defined also as eigenstates of
the annihilation operator Â0(t) of a certain dynamical invariant Î0(t) of the generalized Hamiltonian
system. Indeed, let Â0(t) = Ûg(t, t0)âÛ†g(t, t0) and Â†0(t) = Ûg(t, t0)â†Û†g(t, t0), where â and â† are the
annihilation and creation operators for Ĥ0, respectively. Then the operator Î0(t), defined as

Î0(t) = ~
(
Â†0(t)Â0(t) + 1

2

)
,

satisfies

dÎ0

dt
≡ ∂ Î0

∂t
+

1
i~
[Î0, Ĥg] = 0,

and is therefore an invariant for the system. Knowing the evolution operator, the lowering Â0(t) and
raising Â†0(t) operators are explicitly found as

Â0(t) = eiη(t)
 

mω0

2~
RB(t) + iµ(t)

√
2mω0~RB(t)

(
B(t) + ṘB(t)

RB(t)
)

(q̂ − xp(t)) + i(p̂ − pp(t))√
2mω0~RB(t)


,

Â†0(t) = e−iη(t)
 

mω0

2~
RB(t) − iµ(t)

√
2mω0~RB(t)

(
B(t) + ṘB(t)

RB(t)
)

(q̂ − xp(t)) − i(p̂ − pp(t))√
2mω0~RB(t)


,

where η(t) is given by (26), and Î0(t) becomes

Î0(t) = mω0

2
R2
B(t)(q̂ − xp(t))2 + 1

2mω0R2
B(t)


(p̂ − pp(t)) + µ(t)

(
B(t) + ṘB(t)

RB(t)
)
(q̂ − xp(t))

2

.
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Then, by construction, we have Â0(t)Φα(q, t) = αΦα(q, t), showing that coherent states Φα(q, t)
are eigenstates of Â0(t), corresponding to eigenvalues α = α1 + iα2. It is known that for a given
Hamiltonian, the invariants depend on the initial wave functions. The invariant Î0(t) found here
corresponds to the initial state ϕk(q), and Î0(t) is special in the sense that its eigenstates are Ψk(q, t)
corresponding to the time-independent eigenvalues Ek = (~/ω0)(k + 1/2) of the standard Hamil-
tonian Ĥ0, that is, Î0(t)Ψk(q, t) = EkΨk(q, t), k = 0,1,2, . . . . On the other hand, if we define the
operators

Â(t) = e−iη(t)Â0(t), Â†(t) = eiη(t)Â†0(t),
then Î(t) = ~(Â†(t)Â(t) + 1/2) = Î0(t), and Â(t)Φα(q, t) = αe−iη(t)Φα(q, t), that is, coherent states are
eigenstates of Â(t), corresponding to eigenvalues α(t) = αe−iη(t). These relations show that the
evolution operator approach agrees with the Lewis-Riesenfeld approach in Ref. 27, and results will
be exactly same, when the invariant Î(t) in Ref. 27 corresponds to the particular solution ϱ(t) of the
Eq. (30) with the specific initial conditions (31).

Now, using that ⟨q̂⟩α(t) = ⟨φα(q, t0)|q̂H(t)|φα(q, t0)⟩, the expectation value of position at coherent
stateΦα(q, t) is

⟨q̂⟩α(t) =


2~
mω0

(
α1

x0
x1(t) + α2(mω0x0)x2(t)

)
+ xp(t), (40)

and using that ⟨p̂⟩α(t) = ⟨φα(q, t0)|p̂H(t)|φα(q, t0)⟩, the expectation value of the momentum is

⟨p̂⟩α(t) =


2~
mω0

(
α1

x0
p1(t) + α2(mω0x0)p2(t)

)
+ pp(t), (41)

where p1(t) = µ(t)(ẋ1(t) − B(t)x1(t)) and p2(t) = µ(t)�ẋ2(t) − B(t)x2(t)� are two linearly indepen-
dent solutions of the homogeneous part of the classical oscillator (5) in momentum space. Ob-
viously, the expectation values at coherent states satisfy the classical equations of motion. We
note that the homogeneous solutions of the classical oscillator can be written also in terms of the
functions ϱ(t) and η(t) as

x1(t) = √mω0x0ϱ(t) cos η(t), x2(t) = − 1
√

mω0x0
ϱ(t) sin η(t).

Then, it is not difficult to see that, if the expectation values ⟨q̂⟩α(t) and ⟨p̂⟩α(t) are evaluated using
the operators Â(t) and Â†(t), as in the LR-invariant approach,27 they will agree with (40) and (41).
Next, finding the expectation of squares

⟨q̂2⟩α(t) =



2~

mω0

(
α1

x1(t)
x0
+ α2(mω0x0)x2(t)

)
+ xp(t)



2

+
~

2mω0R2
B(t)

, (42)

⟨p̂2⟩α(t) =
 2~

mω0

(
α1

x0
p1(t) + α2(mω0x0)p2(t)

)
+ pp(t)

2

+
~

2mω0


(mω0RB(t))2 + µ2(t)

R2
B(t)

(
ṘB(t)
RB(t) + B(t)

)2
gives the fluctuations for q̂ and p̂,

(∆q̂)α(t) =

~

2mω0

1
RB(t) , (43)

(∆p̂)α(t) =


mω0~

2
RB(t)


1 +

µ2(t)
(mω0R2

B(t))2
(

ṘB(t)
RB(t) + B(t)

)2

. (44)

We see that the expectation values depend on all parameters of the Hamiltonian; however, the
fluctuations depend only on µ(t), ω2(t), and parameter B(t). In other words, uncertainties does not
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depend on the external linear terms, which contribute only to displacement of the wave packet.
Finally, the uncertainty relation for the generalized harmonic oscillator with time dependent param-
eters is

(∆q̂)α(∆p̂)α(t) = ~2


1 +

µ2(t)
(mω0R2

B(t))2
(

ṘB(t)
RB(t) + B(t)

)2

, (45)

where clearly (∆q̂)α(∆p̂)α ≥ ~/2, and this relation coincides with the uncertainty relation at Gaussian
(ground) state for k = 0 in Eq. (34).

As a result we can say that our formulas confirm the well-known properties, such as coherent
states of the generalized parametric oscillator are displaced Gaussian wave packets, they are eigen-
states of the annihilation operator of a dynamical invariant, and follow the classical trajectory.
However, they are spreading or squeezing in time, since (∆q̂)α(t) given by (43) depends explicitly
on time, and are no longer minimum uncertainty states, as we can see from Eq. (45).

III. EXACTLY SOLVABLE MODELS

Since the solution of the generalized time-dependent quadratic oscillator is completely deter-
mined by the corresponding classical equation of motion, it is interesting to consider cases for
which this equation has exact closed form solutions. Here, we introduce generalized oscillator
models related with the classical orthogonal polynomials, which are eigenfunctions of certain
singular Sturm-Liouville problems, and are also solutions of a classical oscillator of the form

ẍ +
µ̇(t)
µ(t) ẋ +Ω2(t)x = 0. (46)

Precisely, we shall consider problems in which the damping Γ(t) = µ̇(t)/µ(t) and the modified
frequency

Ω
2(t) = ω2(t) − (Ḃ + B2 +

µ̇

µ
B)

are coefficients of the classical Hermite, Laguerre, and Jacobi differential equations. Clearly, this
requires a special relation between the original frequency ω2(t) and the parameter B(t). To see this
relation, we denote by

Λ
2(t) = −(Ḃ + B2 +

µ̇

µ
B) (47)

the modification of the original frequency ω2(t). Then, substitution B(t) = ẏ/y in (47) gives differ-
ential equation for classical oscillator with frequency Λ2(t),

ÿ +
µ̇

µ
ẏ + Λ2(t)y = 0. (48)

This suggests that it is possible to obtain the exact solutions of the classical oscillator (46), when
for given parameters µ(t), ω2(t), and B(t) Equations (46) and (48) are related with the same
Sturm-Liouville problem, that is, the frequencies Ω2(t) and Λ2(t) are compatible. According to this,
in Subsections III A–III C we introduce generalized Hermite, Laguerre, and Jacobi type oscillators.

A. Hermite type generalized quantum oscillator

We define the Hermite type generalized quantum oscillator by the Hamiltonian

Ĥg(t) = et
2

2
p̂2 + ne−t

2
q̂2 +

(
Ḣr(t)
Hr(t)

) (q̂p̂ + p̂q̂)
2

+ D(t)q̂ + E(t)p̂ + F(t), (49)

with variable mass µ(t) = e−t
2
, constant frequency ω2(t) = 2n, n = 0,1,2, . . ., and mixed term

parameter
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B(t) = Ḣr/Hr , where

Hr(t) = r!
⌊r/2⌋
k=0

(−1)k
k!(r − 2k)! (2t)r−2k, r = 0,1,2, . . .

are the standard Hermite polynomials, and external parameters D(t), E(t), and F(t). Then, the
classical equation of motion is a forced Hermite differential equation

ẍ − 2t ẋ + 2(n + r)x = − 1
µ

D + Ė +
(
µ̇

µ
+

Ḣr

Hr

)
E, −∞ < t < ∞, (50)

with time-variable damping Γ(t) = µ̇/µ = −2t, and modified frequency Ω2(t) = ω2(t) + Λ2(t) =
2(n + r), where r = 0 corresponds to the case B(t) = 0. Note that coefficients of the homogeneous
equation are continuous, despite that B(t) has singularities at the zeros of Hr(t). Then, essential
properties of the particular solution will depend on the total forcing term in Eq. (50). By special
choice of E(t), it is possible to remove the singularities in the total force, so that it also becomes
continuous. Then, solution of the quantum oscillator with Hamiltonian (49) can be written in terms
of two independent homogeneous solutions x1(t) and x2(t) of (50), satisfying the initial conditions

x1(t0) = x0 , 0, ẋ1(t0) = x0Ḣr(t0)/Hr(t0), Hr(t0) , 0,

x2(t0) = 0, ẋ2(t0) = 1/µ(t0)x0,

respectively, and a particular solution xp(t) of (50) satisfying xp(t0) = 0, ẋp(t0) = E(t0). When
these solutions are smooth, probability densities of the wave functions and the coherent states
(38) will be also smooth. However, singularities of B(t) will be reflected in momentum expec-
tation values (41) and fluctuations (44), and in the uncertainty relation (45), as we will show in
the examples. Before this, we recall that the solution of the homogeneous Eq. (50) with given
initial conditions, in general, will be a linear combination of Hermite polynomial and a confluent
hypergeometric function of first kind 1F1(a,b; t), which is represented by the series

1F1(a,b; t) =
∞
n=0

(a)n
(b)n

tn

n!
, b , 0,−1,−2, . . . ,

where (a)n and (b)n are Pochhammer symbols that are given by the relation (a)n = Γ(a + n)/Γ(a).
However, there are some cases which can be easily treated:

(i) when n is an odd positive integer and r is an even positive integer, that is, n = 2k + 1
and r = 2s, k, s = 0,1,2,3, . . ., t0 = 0, and x0 = 1/Ḣ2(k+s)+1(0), x1(t) = x0(1F1(−(2(k + s) +
1)/2,1/2; t2)) and second solution is the Hermite polynomial x2(t) = H2(k+s)+1(t);

(ii) when n and r are both positive even integers, that is, n = 2k and r = 2s, k, s = 0,1,2,3, . . .,
t0 = 0, and x0 = H2(k+s)(0), the first solution is the Hermite polynomial, x1(t) = H2(k+s)(t), and
the second linearly independent solution is x2(t) = t/x0(1F1(−(k + s − 1/2),3/2; t2)).

On the other hand, the particular solution of Eq. (50) will depend on the choice of the external
parameters. We write some special cases which could be of interest:

(a) When B(t) = Ḣr/Hr , D(t) = [(d/dt)(e−t2
HrE(t))]/Hr(t), and E(t0) = 0, the total force in (50)

is zero, so that xp(t) = 0, and pp(t) = −µ(t)E(t).
(b) When B(t) = 0 and D(t) = −µ(t)ω2(t)  t

t0
E(t ′)dt ′, xp(t) =

 t

t0
E(t ′)dt ′ and pp(t) = 0.

(c) When B(t) = Ḣr/Hr , D(t) , 0, E(t) = 0,

xp(t) = −x1(t)
 t 1

µ(s)x2
1(s)

 s

t0

D(ξ)x1(ξ)dξds, xp(t0) = 0.

To get better insight into the problem, we give concrete examples.
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Example 1. (a) Let n = 2, r = 2, and B(t) = Ḣ2(t)/H2(t), but D(t) = E(t) = F(t) = 0, so that
there is no linear force. Then, the Hamiltonian is

Ĥg(t) = et
2

2
p̂2 + 2e−t

2
q̂2 +

(
Ḣ2(t)
H2(t)

) (q̂p̂ + p̂q̂)
2

,

and the corresponding classical equation of motion becomes ẍ − 2t ẋ + 8x = 0. For t0 = 0, two line-
arly independent homogeneous solutions, satisfying the initial conditions x1(0) = 12, ẋ1(0) = 0, and
x2(0) = 0, ẋ2(0) = 1/12, are

x1(t) = H4(t), x2(t) = t
12 1F1

(
−3
2
,
3
2

; t2
)
=

1
192


et

2
(
−H3(t)

2
+ 2H1(t)

)
+

√
π

4
H4(t)erfi(t)


,

where erfi(t) is the imaginary error function defined by erfi(t) = (2/√π)  t

0 es
2
ds, and

RB(t) =


144

H2
4(t) +

�
12mω0t

�
1F1

�−3
2 , 3

2 ; t2
���2 , (51)

which is smooth, oscillatory in a finite time-interval near t = 0, and RB(t) → 0 as t → ∞. Then, the
probability density ρn,r

k
(q, t) = |Ψn,r

k
(q, t)|2 for n = 2, r = 2 becomes

ρ2,2
k
(q, t) = N2

k RB(t) exp
(
−mω0

~
R2
B(t)q2

)
H2

k

(
mω0

~
RB(t)q

)
,

and in Fig. 1(a) we plot it for k = 2, where one can see that it is smooth, and since k = 2, it has two
moving zeros. Also, the essentially nontrivial localization of the particle takes place for |t | ≤ 2, and
for |t | ≥ 2 the probability density spreads along q-coordinate. The probability density in coherent
state ρn,rα (q, t) = |Φn,r

α (q, t)|2 for n = 2, r = 2 is

ρn,rα (q, t) =


mω0

π~
RB(t) exp


−

(mω0

~

)
R2
B(t)

(
q − ⟨q̂⟩α(t)

)2
(52)

and

⟨q̂⟩α(t) =


2~
mω0


α1

H4(t)
12
+ α2(mω0t)

(
1F1

(
−3
2
,
3
2

; t2
))

, (53)

⟨p̂⟩α(t) =


2~
mω0

e−t
2

α1

12

(
Ḣ4 −

Ḣ2

H2
H4(t)

)
+ α2(12mω0)

(
1 − t

Ḣ2(t)
H2(t)

) (
1F1

(−3
2
,
3
2

; t2
))
− t

(
1F1

(−1
2
,
5
2

; t2
))

. (54)

FIG. 1. Hermite type generalized oscillator, when D(t)= E(t)= F(t)= 0. (a) Probability density ρ2,2
2 (q, t)= |Ψ2,2

2 (q, t)|2,
n = r = k = 2. (b) Probability density in coherent state ρ2,2

α (q, t)= |Φ2,2
α (q, t)|2 for α = 1/

√
2+ i(1/√2), n = r = 2.
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In Fig. 1(b) we plot (52) for α = 1/
√

2 + i(1/√2). We observe that it is a Gaussian type wave packet
following the classical trajectory.

With RB(t) as found in (51), fluctuations for q̂ and p̂ and uncertainty relation at coherent states
take the form

(∆q̂)α(t) =

~

2mω0

1
RB(t) , (55)

(∆p̂)α(t) =


mω0~

2
RB(t)


*
,
1 +

e−2t2

(mω0R2
B(t))2

(
ṘB(t)
RB(t) +

Ḣ2(t)
H2(t)

)2
+
-
, (56)

(∆q̂)α(∆p̂)α(t) = ~2


1 +

e−2t2

(mω0R2
B(t))2

(
ṘB(t)
RB(t) +

Ḣ2(t)
H2(t)

)2

. (57)

Since coefficients of the classical equation are continuous, the expectations (53) and fluctuations
(55) of the position are smooth. In a finite time interval near the origin, (∆q̂)α(t) oscillates, and
for |t | → ∞ we have increasing (∆q̂)α(t), showing spreading in position. On the other hand, the
singularities of the coefficient B(t) at zeros of H2(t), are reflected in the expectations (54) and
fluctuations (56) of the momentum. Then, as shown in Fig. 2, the uncertainty (57) is oscillatory in a
finite time interval near the origin, but it has singularities at the two zeros of the Hermite polynomial
H2(t). As |t | → ∞, (∆q̂)α(∆p̂)α(t) → ∞, which shows that the uncertainties do not compensate each
other in the limiting case.

(b) Now, we consider the oscillator in part (a) under the influence of linear external terms.
That is, n = 2,r = 2, and we choose D(t) = tH2(t), E(t) = −((1 + 2t2)H2(t)et2)/4, F(t) = 0. Then,
the Hamiltonian becomes

Hg(t) = et
2

2
p̂2 + 2e−t

2
q̂2 +

(
Ḣ2(t)
H2(t)

) (q̂p̂ + p̂q̂)
2

+ tH2(t)q̂ − 1
4
(1 + 2t2)H2(t)et2

p̂,

and the corresponding classical equation is

ẍ − 2t ẋ + 8x = −
(
2tH2(t) + 1

2
(1 + 2t2)Ḣ2(t)

)
et

2
. (58)

We note that, by above choice of D(t) and E(t), pp(t) is zero and E(t) compensates the singularities
coming from B(t), so that the forcing term in Eq. (58) is continuous. For t0 = 0, two homogeneous
solutions x1(t) and x2(t) of (58) are as given in part (a), and the particular solution satisfying

FIG. 2. Uncertainty relation for generalized Hermite oscillator, n = r = 2.
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FIG. 3. Hermite type generalized oscillator, when D(t)= tH2(t), E(t)=−((1+2t2)H2(t)et2)/4, F(t)= 0. (a) Probability
density ρ2,2

2 (q, t)= |Ψ2,2
2 (q, t)|2 , n = r = k = 2. (b) Probability density in coherent states ρ2,2

α (q, t)= |Φ2,2
α (q, t)|2 for α =

1/
√

2+ i(1/√2), n = r = 2.

xp(0) = 0, ẋp(0) = 1/2, is xp(t) = −(tH2(t)et2)/4. This gives new probability density

ρ2,2
k
(q, t) = N2

k RB(t) exp *
,
−
(

mω0

~
RB(t)

(
q +

1
4

tH2(t)et2
))2

+
-

×H2
k

(
mω0

~
RB(t)

(
q +

1
4

tH2(t)et2
))

,

with RB(t) as found in part (a), but position coordinate displaced by xp(t). The influence of this
displacement can be seen in Fig. 3(a). On the other hand, the new probability density in coherent
states is in the form of the Eq. (52) with

⟨q̂⟩α(t) =


2~
mω0


α1

H4(t)
12
+ α2(mω0t)

(
1F1

(
−3
2
,
3
2

; t2
))
− 1

4
tH2(t)et2

,

and its evolution is shown in Fig. 3(b). Clearly, expectation of position (53) is also displaced
by xp(t), but the expectation of momentum ⟨p̂⟩α(t) given by Eq. (54) does not change, since
in this example pp(t) = 0. From the general results we know that the fluctuations and uncer-
tainty relation obtained in part (a) does not change under the influence of the linear external
terms.

B. Associated Laguerre type generalized quantum oscillator

We define a generalized associated Laguerre type oscillator by the Hamiltonian

Ĥg(t) = et

2tm+1 p̂2 +
ntm

2et
q̂2 +

(
L̇m
r (t)

Lm
r (t)

) (q̂p̂ + p̂q̂)
2

+ D(t)q̂ + E(t)p̂ + F(t), (59)

with variable mass µ(t) = tm+1e−t, m > −1, variable frequency ω2(t) = n/t, n = 0,1,2, . . ., and
B(t) = L̇m

r (t)/Lm
r (t), r = 0,1,2, . . . , where Lm

r (t) = ett−m(r!)−1dr (e−ttr+m) /dtr are the associated
Laguerre polynomials. The corresponding classical oscillator is a forced associated Laguerre differ-
ential equation

ẍ +
(m + 1 − t)

t
ẋ +

(n + r)
t

x = − et

tm+1 D + Ė +
(

m + 1 − t
t

+
L̇m
r

Lm
r

)
E, 0 < t < ∞, (60)

with damping Γ(t) = (m + 1 − t)/t, and modified frequencyΩ2(t) = (n + r)/t.Here, we shall examine
and give example for the case when m = 0.



122107-15 Ş. A. Büyükaşık and Z. Çayiç J. Math. Phys. 57, 122107 (2016)

1. Laguerre type generalized quantum oscillator

For m = 0, the Hamiltonian for a Laguerre type generalized oscillator is

Ĥg(t) = et

2t
p̂2 +

n
2et

q̂2 +

(
L̇r(t)
Lr(t)

) (q̂p̂ + p̂q̂)
2

+ D(t)q̂ + E(t)p̂ + F(t), (61)

where µ(t) = te−t, ω2(t) = n/t, n = 0,1,2, . . . , t ∈ (0,∞), B(t) = L̇r(t)/Lr(t), and

Lr(t) =
r

k=0

( r
k

) (−1)k
k!

tk, r = 0,1,2, . . .

are the standard Laguerre polynomials. Then, the corresponding classical oscillator is a forced
Laguerre differential equation

ẍ +
(1 − t)

t
ẋ +

(n + r)
t

x = − et

t
D + Ė +

(
1 − t

t
+

L̇r

Lr

)
E, 0 < t < ∞, (62)

with Γ(t) = (1 − t)/t, and Ω2(t) = (n + r)/t. Since coefficients of the homogeneous equation are
continuous for t > 0, assuming the total force is also continuous for t > 0, the solution of the
quantum oscillator with Hamiltonian (61) can be written in terms of two independent homogeneous
solutions x1(t) and x2(t) of (62), satisfying the initial conditions

x1(t0) = x0 , 0, ẋ1(t0) = x0
L̇r(t0)
Lr(t0) , Lr(t0) , 0,

x2(t0) = 0, ẋ2(t0) = 1/µ(t0)x0,

respectively, and a particular solution xp(t) of (62) satisfying xp(t0) = 0, ẋp(t0) = E(t0).
Example 2. (a) Let n = r = 1, B(t) = L̇1(t)/L1(t) and D(t) = E(t) = F(t) = 0. Then, the Hamil-

tonian becomes

Ĥg(t) = et

2t
p̂2 +

1
2et

q̂2 +

(
L̇1(t)
L1(t)

) (q̂p̂ + p̂q̂)
2

,

and the classical equation is ẍ + (1 − t)/t ẋ + 2/t x = 0. For t0 = 2, two solutions satisfying the
conditions x1(2) = 1, ẋ1(2) = 1 and x2(2) = 0, ẋ(2) = e2/2, respectively, are

x1(t) = 1
e2

�
et(t − 3) − 2L2(t)(e2 − Ei(2) + Ei(t))� (63)

and

x2(t) = 1
2
�
et(t − 3) − L2(t)(e2 − 2Ei(2) + 2Ei(t))�, (64)

where Ei(t) is the exponential integral defined by Ei(t) = −  ∞−t (e−s/s)ds. With above x1(t) and
x2(t), we have

RB(t) =


1
x2

1(t) + (mω0x2(t))2 , (65)

which is smooth for t > 0 and RB(t) → 0 as t → ∞. Then, the corresponding probability density for
n = 1, r = 1 is

ρ1,1
k
(q, t) = N2

k RB(t) exp
(
−mω0

~
R2
B(t)q2

)
H2

k

(
mω0

~
RB(t)q

)
,

and in Fig. 4(a) we plot it for k = 2. The probability density is a smooth function, which has two
moving zeros, since k = 2. It shows oscillatory behavior in a finite time interval near t = 0, and then
spreads along the q-coordinate. The probability density ρ1,1

α (q, t) has the form of Eq. (52) and the
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FIG. 4. Laguerre type generalized oscillator, when D(t)= E(t)= F(t)= 0. (a) Probability density ρ1,1
2 (q, t)= |Ψ1,1

2 (q, t)|2,
n = r = 1, and k = 2. (b) Probability density ρ1,1

α (q, t)= |Ψ1,1
α (q, t)|2 in coherent states for α = 1/

√
2+ i(1/√2), n = r = 1.

expectation values are

⟨q̂⟩α(t) =


2~
mω0

(
α1x1(t) + α2(mω0)x2(t)

)
, (66)

⟨p̂⟩α(t) =


2~
mω0

te−t

α1

(
ẋ1(t) − L̇1(t)

L1(t) x1(t)
)
+ α2(mω0)

(
ẋ2(t) − L̇1(t)

L1(t) x2(t)
)
, (67)

where x1(t), x2(t) are defined by (63) and (64). In Fig. 4(b) we plot ρ1,1
α (q, t). Also, (66) and (67)

show that the wave packet of the coherent state follows the trajectory of the classical particle. With
RB(t) calculated from (65), the fluctuations and uncertainty relation becomes

(∆q̂)α(t) =

~

2mω0

1
RB(t) , (68)

(∆p̂)α(t) =


mω0~

2
RB(t)


1 +

t2e−2t

(mω0R2
B(t))2

(
ṘB(t)
RB(t) +

L̇1(t)
L1(t)

)2

, (69)

(∆q̂)α(∆p̂)α = ~2


1 +

t2e−2t

(mω0R2
B(t))2

(
ṘB(t)
RB(t) +

L̇1(t)
L1(t)

)2

. (70)

Since the solution of the classical oscillator is given in terms of Laguerre polynomials and expo-
nential functions, (∆q̂)α(t) shows oscillatory behavior in a finite time interval near t = 0, while for
|t | → ∞, (∆q̂)α(t) goes to infinity, which confirms spreading in position coordinate. However, the
singularity in parameter B(t) at the zero of L1(t) appears both in the expectation (67) and fluctuation
(69) of the momentum, where it becomes undefined. Consequently, the uncertainty relation also has
singularity at finite time, where L1(t) = 0, and for t → 0 and t → ∞, one has (∆q̂)α(∆p̂)α → ∞, as
one can see in Fig. 5.

(b) Now, we consider the system in part (a) under the influence of linear external terms. That is,
let n = 1,r = 1, and D(t) = (t − 2)L2(t), E(t) = (1 − t)L2(t)et, F(t) = 0. Then, the corresponding
Hamiltonian is

Ĥg(t) = et

2t
p̂2 +

1
2et

q̂2 +

(
L̇1(t)
L1(t)

) (q̂p̂ + p̂q̂)
2

+ (t − 2)L2(t)q̂ + (1 − t)L2(t)et p̂,
and the classical equation becomes

ẍ +
1 − t

t
ẋ +

2
t

x =
et

t
(L2

1(t) − 1) + 3etL1(t)L̇1(t), 0 < t < ∞. (71)
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FIG. 5. Uncertainty relation for generalized Laguerre oscillator, n = r = 1.

For t0 = 2, solutions x1(t) and x2(t) of Eq. (71) are same as in part (a), and the particular solu-
tion satisfying the initial conditions xp(2) = 0, ẋp(2) = e2, is xp(t) = (2 − t)L1(t)et. Thus, the new
probability density is

ρ1,1
k
(q, t) = N2

k RB(t) exp
(
−mω0

~
R2
B(t)

�
q + (t − 2)L1(t)et�2

)
×H2

k

(
mω0

~
RB(t) �q + (t − 2)L1(t)et�

)
(72)

with RB(t) as found in part (a), and position coordinate displaced by xp(t), see Fig. 6(a).

The new probability density follows the classical trajectory

⟨q̂⟩α(t) =


2~
mω0

(
α1x1(t) + α2(mω0)x2(t)

)
+ (2 − t)L1(t)et,

and it is plotted in Fig. 6(b). Comparing the probability densities, found in part (a) and part (b)
of this example, one can explicitly see the change in the evolution of the wave packets under the
displacement of the position coordinate by xp(t).

FIG. 6. Laguerre type generalized oscillator, when D(t)= (t −2)L2(t), E(t)= (1− t)L2(t)et . (a) Probability density
ρ1,1

2 (q, t)= |Ψ1,1
2 (q, t)|2, n = r = 1, and k = 2. (b) Probability density ρ1,1

α (q, t)= |Ψ1,1
α (q, t)|2 in coherent states for α =

1/
√

2+ i(1/√2), n = r = 1.
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C. Jacobi type generalized quantum oscillator

We define a generalized Jacobi type oscillator by a Hamiltonian of the form

Ĥg(t) = p̂2

2(1 − t)a+1(1 + t)a+1 +
[n (n + a + b + 1)] (1 − t)a(1 + t)b

2
q̂2 + *

,

Ṗa,b
r (t)

Pa,b
r (t)

+
-

(q̂p̂ + p̂q̂)
2

+ D(t)q̂ + E(t)p̂ + F(t), (73)

with mass µ(t) = (1 − t)a+1(1 + t)b+1, a,b > −1, frequency ω2(t) = [n (n + a + b + 1)]/(1 − t2),
−1 < t < 1, and B(t) = Ṗa,b

r (t)/Pa,b
r (t), where

Pa,b
n (t) = (−1)n

2nn!
(1 − t)−a(1 + t)−b dn

dtn
�(1 − t)a+n(1 + t)b+n� ,

are the Jacobi polynomials. Then, the corresponding classical oscillator is a forced Jacobi differen-
tial equation

ẍ +
(b − a − (a + b + 2)t)

1 − t2 ẋ +
n(n + a + b + 1) + r(r + a + b + 1)

1 − t2 x

= − 1
µ

D + Ė + *
,

(b − a − (a + b + 2)t)
(1 − t2) +

Ṗa,b
r (t)

Pa,b
r (t)

+
-

E, −1 < t < 1,

where Γ(t) = [(b − a − (a + b + 2)t)]/(1 − t2) is the damping coefficient, and

Ω
2(t) = n(n + a + b + 1)

1 − t2 +
r(r + a + b + 1)

1 − t2

is the modified frequency. Thus, to preserve the structure after the modification, for given n,r =
0,1,2, . . . and a,b > −1, we need to find nonnegative integer m, for which the equation n(n +
a + b + 1) + r(r + a + b + 1) = m(m + a + b + 1) holds. We shall treat explicitly two special cases:
for a = b = 0 the Legendre generalized oscillators and for a = b = −1/2 the first-kind Chebyshev
(FKC) oscillator.

1. Legendre type generalized quantum oscillator

The Hamiltonian for a Legendre type generalized oscillator is

Ĥg(t) = 1
2(1 − t2) p̂2 +

n(n + 1)
2

q̂2 +

(
Ṗr(t)
Pr(t)

) (q̂p̂ + p̂q̂)
2

+ D(t)q̂ + E(t)p̂ + F(t), (74)

where µ(t) = (1 − t2), ω2(t) = n(n + 1)/ �1 − t2� , n = 0,1,2, . . ., t ∈ (−1,1), B(t) = Ṗr(t)/Pr(t), and

Pr(t) = 1
2r

⌊r/2⌋
k=0

(−1)k (2r − 2k)!
k!(r − k)!(r − 2k)! tr−2k, r = 0,1,2, . . .

are the Legendre polynomials. Then, the classical equation is a forced Legendre differential equa-
tion

ẍ − 2t
1 − t2 ẋ +

n(n + 1) + r(r + 1)
1 − t2 x = − 1

µ
D + Ė +

(
− 2t

1 − t2 +
Ṗr(t)
Pr(t)

)
E, −1 < t < 1, (75)

with Γ(t) = −2t/(1 − t2) and Ω2(t) = [n(n + 1) + r(r + 1)]/(1 − t2). Here, if for given n and r (r ,
1), m is a positive integer satisfying the equation n(n + 1) + r(r + 1) = m(m + 1), then the homoge-
neous part of Eq. (75) has a solution of the form

x(t) = c1Pm(t) + c2Qm(t), t ∈ (−1,1),
where Pm(t) are Legendre polynomials, and Qm(t) are the Legendre functions of the second kind
given by the formula

Qm(t) = 1
2

Pm(t) ln
1 + t
1 − t

−
m
k=1

1
k

Pk−1(t)Pm−k(t).
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Example 3. Let n = 2, r = 2, and B(t) = Ṗ2(t)/P2(t), D(t) = tP2(t), E(t) = −P2(t)/6, F(t) = 0.
Then the Hamiltonian becomes

Ĥg(t) = 1
2(1 − t2) p̂2 + 3q̂2 +

(
Ṗ2(t)
P2(t)

) (q̂p̂ + p̂q̂)
2

+ tP2(t)q̂ − P2(t)
6

p̂,

and the corresponding classical equation is

ẍ +
−2t

1 − t2 ẋ +
12

1 − t2 x =
−1
3

(
2t

1 − t2 P2(t) + Ṗ2(t)
)
. (76)

For t0 = 0, two homogeneous solutions x1(t) and x2(t) of Eq. (76), satisfying the initial conditions
x1(0) = −2/3, ẋ1(0) = 0 and x2(0) = 0, ẋ2(0) = −3/2, are

x1(t) = −Q3(t) = 5t3 − 3t
4

ln
(

1 − t
1 + t

)
+

5t2

2
− 2

3
, x2(t) = P3(t) = 1

2
(5t3 − 3t),

since for n = 2, r = 2 we have m = 3. Then the particular solution satisfying the initial conditions
xp(0) = 0, ẋp(0) = 1/12, is

xp(t) = − t
6

P2(t) = − t
12

(3t2 − 1),
and we calculate

RB(t) = 2
3


1

Q2
3(t) +

( 4mω0
9 P2

3(t)
)2 , (77)

which is bounded and has oscillatory behavior for t ∈ (−1,1), and RB(t) → 0, when t → ±1.
Then, the probability density in state Ψ2,2

k
(q, t) is

ρ2,2
k
(q, t) = N2

k RB(t) exp *
,
−mω0

~
R2
B(t)

(
q +

tP2(t)
6

)2
+
-

H2
k

(
mω0

~
RB(t)

(
q +

tP2(t)
6

))
,

which is plotted for k = 2 in Fig. 7(a). Here

⟨q̂⟩α(t) =


2~
mω0


α1

3Q3(t)
2
− α2

(
2mω0

3

)
P3(t)


− tP2(t)

6
, (78)

⟨p̂⟩α(t) =


2~
mω0

(1 − t2)
3
2
α1

(
Q̇3(t) − Ṗ2(t)

P2(t)Q3(t)
)

(79)

+ α2

(
2mω0

3

) (
Ṗ3(t) − Ṗ2(t)

P2(t)P3(t)
)
,

and we plot the probability density ρ2,2
α (q, t) in Fig. 7(b). With RB(t) given by (77) we get the

fluctuation for q̂ and p̂, and uncertainty relation at coherent states as follows:

(∆q̂)α(t) =

~

2mω0

1
RB(t) , (80)

(∆p̂)α(t) =


mω0~

2
RB(t)


1 +

(1 − t2)2
(mω0R2

B(t))2
(

ṘB(t)
RB(t) +

Ṗ2(t)
P2(t)

)2

, (81)

(∆q̂)α(∆p̂)α = ~2


1 +

(1 − t2)2
(mω0R2

B(t))2
(

ṘB(t)
RB(t) +

Ṗ2(t)
P2(t)

)2

. (82)

Because the coefficients of the forced oscillator (76) are continuous, the expectations (78) and
fluctuations (80) of the position are smooth on the interval t ∈ (−1,1). But the expectations (79)
and fluctuations (81) of the momentum are not defined at zeros of P2(t). The uncertainty relation is
bounded on (−1,1), except in the neighborhoods of the zeros of P2(t), where it tends to infinity, see
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FIG. 7. Legendre type generalized oscillator, when D(t)= tP2(t), E(t)=−P2(t)/6,F(t)= 0. (a) Probability density
ρ2,2

2 (q, t)= |Ψ2,2
2 (q, t)|2. (b) Probability density ρ2,2

α (q, t)= |Φ2,2
α (q, t)|2 in coherent states for α = 1/

√
2+ i(1/√2).

Fig. 8. Clearly, if the parameter B(t) was taken to be zero, then the uncertainty relation would have
been bounded for all t ∈ (−1,1).

2. First-kind Chebyshev type generalized quantum oscillator

The Hamiltonian for a FKC generalized oscillator is

Ĥg(t) = p̂2

2
√

1 − t2
+

n2

2
√

1 − t2
q̂2 +

(
Ṫr(t)
Tr(t)

) (q̂p̂ + p̂q̂)
2

+ D(t)q̂ + E(t)p̂ + F(t), (83)

where µ(t) = √1 − t2, ω2(t) = n2/
�
1 − t2� , n = 0,1,2, . . ., t ∈ (−1,1), B(t) = Ṫr(t)/Tr(t), and

Tr(t) = r
2

⌊r/2⌋
k=0

(−1)k (r − k − 1)!
k!(r − 2k)! (2t)r−2k, r = 0,1,2, . . .

are the first-kind Chebyshev polynomials. Then, the classical equation is a forced FKC differential
equation

ẍ − t
1 − t2 ẋ +

(n2 + r2)
1 − t2 x = − 1

µ
D + Ė +

(
− t

1 − t2 +
Ṫr(t)
Tr(t)

)
E, −1 < t < 1, (84)

FIG. 8. Uncertainty relation for generalized Legendre oscillator, n = r = 2.
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FIG. 9. FKC type generalized oscillator, when D(t)= tT4(t), E(t)=T6(t)(2t2−1)/(64
√

1− t2), F(t)= 0. (a) Probability
density ρ3,4

2 (q, t)= |Ψ3,4
2 (q, t)|2. (b) Probability density ρ3,4

α (q, t)= |Φ3,4
α (q, t)|2 in coherent states for α = 1/

√
2+ i(1/√2).

with Γ(t) = −t/(1 − t2) and Ω2(t) = (n2 + r2)/(1 − t2). We note that, when n2 + r2 = m2, where m is
also a positive integer, that is when (n,r,m) are Pythagorean triples, the corresponding homoge-
neous equation has a solution of the form

x(t) = c1Tm(t) + c2

√
1 − t2Um−1(t),

where

Um(t) =
⌊m/2⌋
k=0

(−1)k (m − k)!
k!(m − 2k)! (2t)m−2k, m = 0,1,2, . . .

are the Chebyshev polynomials of the second kind.

Example 4. Let n = 3,r = 4, B(t) = Ṫ4(t)/T4(t), D(t) = tT4(t),E(t) = T6(t)(2t2 − 1)/(64
√

1 − t2),
F(t) = 0. Then, the Hamiltonian becomes

Ĥg(t) = p̂2

2
√

1 − t2
+

9

2
√

1 − t2
q̂2 +

(
Ṫ4(t)
T4(t)

) (q̂p̂ + p̂q̂)
2

+ tT4(t)q̂ + T4(t)
9

(2t2 − 1)
√

1 − t2
p̂,

and the corresponding classical equation is

ẍ − t
1 − t2 ẋ +

5
1 − t2 x =

1

9
√

1 − t2

�
5tT4(t) + 2(2t2 − 1)Ṫ4(t)�, (85)

where by the above choice of E(t), the singularities in B(t) are removed, so that the forcing in
Eq. (85) becomes continuous. For t0 = 0, homogeneous solutions x1(t) and x2(t) of the Eq. (85),
satisfying the initial conditions x1(0) = 1/5, ẋ1(0) = 0, and x2(0) = 0, ẋ2(0) = 5, respectively, are

x1(t) = 1
5

√
1 − t2U4(t) = 1

5

√
1 − t2

�
16t4 − 12t2 + 1

�
, x2(t) = T5(t) = 16t5 − 20t3 + 5t,

and the particular solution satisfying the initial conditions xp(0) = 0, ẋp(0) = −1/9 is

xp(t) = − t
9

√
1 − t2T4(t) = − t

9

√
1 − t2

�
8t4 − 8t2 + 1

�
.

Then, we calculate

RB(t) =


1
(1 − t2)U2

4 (t) + 1
25 (mω0T5(t))2

, (86)

where RB(t) is bounded and oscillating in t ∈ (−1,1), but does not approach zero for t → ±1, as in
the case of the Legendre oscillator, since Chebyshev polynomials are defined at t = ±1. Then, the
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FIG. 10. Uncertainty relation for generalized FKC oscillator, n = 3, r = 4.

probability density for n = 3, r = 4 is in the form

ρ3,4
k
(q, t) = N2

k RB(t) exp *.
,
−*
,


mω0

~
RB(t) *

,
q +

t
√

1 − t2

9
T4(t)+

-
+
-

2
+/
-

×H2
k
*
,


mω0

~
RB(t) *

,
q +

t
√

1 − t2

9
T4(t)+

-
+
-
,

and in Fig. 9(a) we plot it for k = 2. In this example, we found the expectation values as

⟨q̂⟩α(t) =


2~
mω0


α1

√
1 − t2U4(t) + α2

(mω0

5

)
T5(t)


− t
√

1 − t2

9
T4(t), (87)

⟨p̂⟩α(t) =


2~
mω0


α1

5


(1 − t2)U̇4(t) −

(
t + (1 − t2) Ṫ4(t)

T4(t)
)
U4(t)


(88)

+ α2

(mω0

5

) √
1 − t2

(
Ṫ5(t) − Ṫ4(t)

T4(t)T5(t)
)
,

and we plot ρ3,4
α (q, t) in Fig. 9(b). Also, with RB(t) given by (86) we have

(∆q̂)α(t) =

~

2mω0

1
RB(t) , (89)

(∆p̂)α(t) =


mω0~

2
RB(t)


1 +

1 − t2

(mω0R2
B(t))2

(
ṘB(t)
RB(t) +

Ṫ4(t)
T4(t)

)2

, (90)

(∆q̂)α(∆p̂)α = ~2


1 +

1 − t2

(mω0R2
B(t))2

(
ṘB(t)
RB(t) +

Ṫ4(t)
T4(t)

)2

. (91)

We see that the expectations (87) and fluctuations (89) of the position are smooth, but at the singu-
larities of B(t) the expectations (88) and fluctuations (90) of momentum are not defined. Since
B(t) has singularities at the four zeros of the FKC polynomial T4(t), the uncertainty relation is also
singular at these points. On the other hand, when |t | → ±1, uncertainty approaches minimum, that is
(∆q̂)α(∆p̂)α(t) → ~/2, see Fig. 10.

IV. SUMMARY AND DISCUSSION

Quantum system with the most general quadratic Hamiltonian and time-variable parameters
was solved using Wei-Norman algebraic approach. We found the exact form of the evolution
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operator in terms of two linearly independent homogeneous solutions and a particular solution of
the corresponding forced classical oscillator. Using the evolution operator we were able to obtain
wave functions, coherent states, probability densities, expectations, and uncertainties. These general
results can be directly used to study many limiting cases and various variable parametric oscillators.

To understand better the behavior of such systems, it is always important to have exactly solv-
able models. A large class of exactly solvable harmonic oscillator models related with the classical
orthogonal polynomials and special functions was introduced in Ref. 33. As an extension and gener-
alization of these results, in the present work we have investigated quantum parametric oscillators
of Hermite, Laguerre, and Jacobi type, under the influence of external forces. By a special choice
of the mixed term parameter B(t), which modifies the original frequency, we were able to preserve
the structure of the original oscillator. However, as we have seen in Hermite, Laguerre, and Jacobi
type oscillators, this choice of B(t) develops finite time singularities at the zeros of the related
orthogonal polynomials. In that case, we observed that probability densities and expectations of
position remain smooth, but singularities of B(t) are reflected in the expectations of momentum
and the uncertainty relation. Precisely, momentum is not defined at these points, and when time
approaches these singularities, uncertainty relation tends to infinity.

The probability densities of all models in consideration are showing oscillatory behavior in
some finite time interval near the initial point, due to finite number of oscillations in the corre-
sponding classical oscillator. When time increases, we have studied the contribution of B(t) to the
amplitude and the spreading coefficient RB(t) of the wave packets, corresponding to wave func-
tions Ψk(q, t) and coherent states Φα(q, t). For the Hermite and Laguerre oscillators, which are
defined on infinite time intervals, the amplitude of the wave packets is decreasing and approaching
zero with increasing time, and wave packets are spreading along q-coordinate, since RB(t) → 0 as
|t | → ∞. So, we can say that Hermite and Laguerre oscillators exhibit the opposite behavior to the
Caldirola-Kanai oscillator with positive damping coefficient, for which probability density ampli-
tudes increase without bound, and wave packets are squeezing as time increases, since RB(t) → ∞
as t → ∞.45 For the Legendre oscillator, defined on finite time interval (−1,1), we have RB(t) → 0,
as t → ±1, so that wave amplitudes approach zero in the neighborhood of t = ±1, and wave packets
are spreading with respect to q. However, for the first-kind Chebyshev model, RB(t) is bounded in
t ∈ (−1,1), but does not approach zero for t → ±1, as in the case of the Legendre oscillator.

On the other hand, we have confirmed that the parameters D(t) and E(t) of the linear terms lead
to displacement in the position coordinate of the wave packets, so that expectation values of position
and momentum are shifted by the particular solutions xp(t) and pp(t), of the classical oscillators. In
order to see the influence of the external terms and make comparison, we have constructed several
examples with and without external forces. The probability densities for each case were obtained,
and their evolution was illustrated graphically. As we have seen in Hermite and Laguerre oscillators,
the influence of the external linear terms can change the evolution of the wave packets essentially.
The forces in the given models were chosen to be continuous, but it could be interesting to consider
discontinuous and Dirac-delta like forces as well. The work in this direction is in progress.

Clearly, the problems elaborated in this work can provide a basis for investigation of various
generalized parametric oscillators related with other orthogonal polynomials and hypergeometric
functions. Moreover, the representation of the complex wave functions in terms of modulus and
phase, Ψ =

√
ρ exp(iS/~), transforms the linear Schrödinger equation into a system of nonlinear

hydrodynamic-like equations, known as the Madelung fluid equations.45–47 Then, the Madelung
representation of the generalized parametric oscillators can be used also as a fundamental tool for
description of quantum fluids and nonlinear evolution equations with variable parameters. Such
problems are now under investigation.
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