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Abstract: The effect of alkali and nitric acid surface treat-
ments on the adhesion of Staphylococcus epidermidis to 
the surface of 60% porous open-cell Ti6Al4V foam was 
investigated. The resultant surface roughness of foam 
particles was determined from the ground flat surfaces of 
thin foam specimens. Alkali treatment formed a porous, 
rough Na2Ti5O11 surface layer on Ti6Al4V particles, while 
nitric acid treatment increased the number of undula-
tions on foam flat and particle surfaces, leading to the 
development of finer surface topographical features. 
Both surface treatments increased the nanometric-scale 
surface roughness of particles and the number of bacteria 
adhering to the surface, while the adhesion was found to 
be significantly higher in alkali-treated foam sample. The 
significant increase in the number of bacterial attach-
ment on the alkali-treated sample was attributed to the 
formation of a highly porous and nanorough Na2Ti5O11 
surface layer.

Keywords: bacterial adhesion; foam; Staphylococcus 
epidermidis; surface roughness; surface treatment.

Introduction
The biocompatible porous form of Ti and Ti6Al4V alloy 
implants are known to provide enhanced interactions 
with bone due to the higher degree of bone in-growth and 
body fluid transport through three-dimensional inter-
connected arrays of pores, leading to improved implant 

fixation [24]. In addition, the relatively low elastic moduli 
of porous implants reduce the extent of stress shielding, 
causing well-known implant loosening [18]. One poten-
tial application of Ti and Ti alloy foams has been identi-
fied in spinal surgery as the bone-fixating porous spinal 
interbody fusion cages [9, 36]. Titanium and Ti6Al4V alloy 
foams can be prepared by means of a relatively simple 
process known as the space holder method [27] with 
typical pore sizes of 200–500 μm and porosities up to 
80% [45]. Furthermore, calcium phosphate (CaP) coatings 
on porous surfaces including Ti mesh [39, 41] and sintered 
powder (beads) compacts [22, 32] were shown to have ben-
eficial effects on bone-generating properties, improving 
implant fixation to bone. Bone-like apatite coating on Ti 
essentially enhances the surface osteoblast cell adhesion 
and differentiation [11] and increases the bone bonding 
strength by allowing an early bone opposition to implant 
[47]. Basically, Ti metals have limited bioactivity due to 
their extremely thin passive oxide layer [12]. Previously, 
biomimetic CaP coating on porous Ti was shown to be 
very effective in developing a continuous and homogene-
ous coating layer. Various surface treatments were also 
applied to increase the bioactivity of Ti metal in conjunc-
tion with biomimetic CaP coating.

An effective way of increasing the bioactivity of Ti 
metal is to modify the surfaces with NaOH and HNO3 
at elevated temperatures. Kim et  al. [14] showed that 
alkali surface treatment and subsequent heat treat-
ment improved the bioactivity of Ti. When Ti metal is 
immersed in alkali solution, the surface passive TiO2 layer 
is partially dissolved due to the aggressive environment 
containing hydroxyl groups. This produces negatively 
charged hydrates, HTiO3

-⋅nH2O, then reacts with posi-
tively charged alkali ions in aqueous solution, resulting 
in a porous thin sodium titanate gel layer on the surface 
of Ti [14, 15, 17, 44]. It was recently shown that nitric acid 
treatment (NAT) in fact increased the surface energy of Ti 
implants by not significantly affecting the surface rough-
ness [19,  20]. A  homogeneous CaP coating layer formed 
only after 6  days of simulated body fluid (SBF) immer-
sion in an alkali-treated 40% porous sintered Ti powder 
compact [48]. A recent study showed a very thin layer of 
CaP formation on Ti6Al4V foams after alkali treatment 
(AT) and NAT [40].
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The increased use of prosthesis implants has raised an 
important problem of bacterial infection [8, 30]. The most 
effective approach to minimizing bacterial infections and 
their adhesion on implant surfaces involves chemically 
modifying the biomaterial surface. In this perspective, two 
facile approaches are of interest in applications. The former 
approach involves using materials that contain bactericidal 
substances capable of being incorporated into or bound to 
the biomaterial surfaces. The latter one is to modify the sub-
strate with the antiadhesive materials to prevent the adhe-
sion of bacteria [7]. A recent study showed that the surface 
treatment applied to Ti, including sandblasting, micro-arc 
oxidation, and SBF CaP coating promoted bacterial coloni-
zation in vitro, which was mainly attributed to the increased 
surface roughness, hence the increased surface area with 
the applied surface treatment [42]. There are essentially 
numerous studies and few review articles in the literature 
reporting the increased tendency of bacterial colonization 
with increasing surface roughness [1, 16, 26, 37, 42]. The bac-
terial colonization on Ti6Al4V alloy was reported to occur 
preferentially in vanadium-rich regions [10], while surface 
nitriding and berberine inhibited the bacterial adhesion to 
Ti6Al4V surfaces [28, 43]. Despite the experimental studies 
on bacterial adhesion to bulk Ti6Al4V alloy surfaces, there 
has been no investigation on the bacterial colonization of 
Ti6Al4V alloy foams, a group of materials that have been 
widely investigated for biomedical applications in the last 

decade [5, 6, 9, 23, 27, 33–36]. The aim of the present study 
is, therefore, to investigate the effect of the most widely 
used NAT and AT on Staphylococcus epidermidis adhesion 
to an open-cell Ti6Al4V foam. Staphylococci are one of the 
most common pathogens found in implant-related infec-
tions [49, 50]; for this reason, it was used in this study. The 
bacterial colonization is considered important as the foam 
samples are soaked into SBF solution for a relatively long 
period. To assess the effect of surface roughness on bacte-
rial adhesion, the roughness of the ground flat surfaces of 
foam particles was measured in nanometric scale before 
and after surface treatment.

Materials and methods
An open-cell Ti6Al4V alloy foam with ∼60% porosity was prepared 
through a space holder method using ammonium bicarbonate (Aldrich, 
St. Louis, MO, USA) as space holder. The chemical composition of the 
used gas atomized spherical Ti6Al4V powder (Crucible Research, 
Pittsburgh, PA, USA) complied with the ASTM 1580-1 standard [3]. The 
particle size of the Ti6Al4V powder ranged from 45 to 150 μm, with an 
average size of 94 μm. Figure 1A and B shows the SEM image of Ti6Al4V 
particles and particle size distribution, respectively. Nearly 80% of 
particles are  > 60 μm, showing a monomodal particle size distribution 
(Figure 1B). The details of Ti6Al4V foam preparation, the microstruc-
ture development after sintering, and the mechanical properties of pre-
pared foams are given elsewhere [9]. Briefly, the green powder compacts 
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Figure 1: (A) SEM micrographs of Ti6Al4V particles; (B) particle size distributions of powder; and (C) water jet cut foam sample plate and 
microbial foam test specimens.
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uniaxially pressed at 200  MPa were heat treated at 200°C for 2  h to 
remove the space holder; then, the compact was sintered at 1300°C for 
1 h under a high-purity (99.998%) Ar flux. The foams prepared with the 
above-mentioned method showed ∼60% porosity. Figure 1C shows a 
picture of a water jet-cut sintered foam plate and small square cross-sec-
tion plate-like bacterial adhesion foam test specimens (10 × 10 × 3 mm3) 
cut from sintered foam plates using a low-speed diamond saw. The 
foam specimens’ square cross-sections were then ground sequentially 
down to 2400 grit SiC paper. Therefore, the foam specimens’ surfaces 
are composed of ground flat regions and inner cells (pores). After grind-
ing, the foam specimens were cleaned ultrasonically in acetone, then 
in ethyl alcohol, and finally in deionized water for 15 min. NAT was per-
formed in a 1:1 volume ratio solution of HNO3 (65%) and H2O at 60°C for 
5 h. AT was performed in a 100 ml 10 M NaOH aqueous solution at 60°C 
for 24 h. Following the surface treatments, the specimens were cleaned 
ultrasonically in deionized water for 15 min. Nitric acid-treated speci-
mens were dried in air, while alkali-treated specimens were dried in an 
oven at 40°C for 24 h. The foam samples without surface treatment were 
also prepared and tested for comparison.

The crystal structure of the powder and surface-treated/
untreated foam specimens before the bacterial adhesion test was 
determined using a Philips Xpert X-ray diffractometer with a Cu-Kα 
x-ray (λ = 1.5404 for 8.05 keV) in grazing incidence (GIXRD) mode at 
an incident angle of ω = 0.5°. The effective depth (sin ω/μ) probed by 
Cu-Kα was calculated as 174 nm. Microscopic analyses of the sam-
ples were performed using a Philips XL30-SFEG scanning electron 
microscope (SEM). The surface topography, surface roughness (Ra), 
and surface area difference (SAD) of the foam specimens before and 
after the surface treatment were determined using a Nanoscope-IV 
atomic force microscope (AFM) using taping tips (Vecco otespa) with 
the spring constant of 20–100 N m-1. The scanned area was selected to 
be 1.5 × 1.5 μm, with vertical and lateral resolutions of 0.001 and 2 nm, 
respectively. At least three AFM surface scans were conducted on the 
randomly selected areas of foam specimen ground flat surfaces and 
were used to calculate the average surface roughness values.

Biofilm-forming S. epidermidis strain YT-169a was grown over-
night on tryptic soy agar (TSA) plates at 37°C. The bacterial suspension 
was prepared in sterile 0.9% (w/v) NaCl and adjusted to McFarland 
1.0 (3 × 108 cells ml-1). One hundred microliters of bacterial suspension 
was inoculated to 10 ml tryptic soy broth supplemented with 1% (w/v) 
sucrose-containing foam specimens in six-well culture plates. The 
specimens with bacteria were incubated at 37°C for 24 h with shak-
ing at 60 rpm. Following the incubation, the specimens were washed 
three times with sterile phosphate-buffered saline (PBS) in order to 
remove non-adherent bacteria and then transferred into 25 ml PBS. 
The adherent bacteria were removed from the foam specimens under 
sonication (15 min) and using sterile cell scrapers. The removed bac-
teria from surfaces were serially diluted to 10-4 and 10-5 with PBS, and 
100 μl of the diluted bacteria were spread onto duplicate TSA plates. 
The plates were incubated at 37°C for 24 h, and the number of S. epi-
dermidis colonies were counted and quantified as colony-forming 
units per milliliter (CFU ml-1). At least three samples were used herein, 
and the results were presented as mean±standard deviation.

Results
Figure 2 shows the GIXRD spectra of untreated and alkali- 
and nitric acid-treated Ti6Al4V foam particles. Although 

Figure 2: GIXRD pattern of untreated, nitric acid-treated and alkali-
treated foam samples.

the microstructure of as-received powders was composed 
of a needle-like α phase, referred as acicular α, sintering 
at 1300°C transformed the needle-like α into Widmanstät-
ten structure of β lathes (bcc and rich in V) and α plate-
lets (hcp and rich in Al), as seen in Figure 2. As marked 
with “*” in Figure 2, AT forms a thin layer of Na2Ti5O11 on 
Ti6Al4V particles.

The untreated foam cellular structure depicted in 
Figure 3A shows bimodal pore size distributions: macropo-
res (300–500 μm) and micropores (1–30 μm). Micropores 
resulted from the space in between the sintered Ti6Al4V 
particles on the cell walls and at the cell edges (marked 
by arrows in Figure 3A), while macropores resulted from 
the space holder removal. The thickness of Na2Ti5O11 layer 
is about 500 nm, measured from the SEM picture shown 
in the inset of Figure 3B. It is also noted in the same micro-
graphs that porous Na2Ti5O11 layer accommodates microc-
racks. Figure 4A shows an AFM micrograph (1.5 × 1.5 μm2) 
of the untreated foam flat surface. A major grinding line 
passing along the mid-section is clearly seen in this figure. 
Figure 4B,C shows sequentially the AFM micrographs 
of nitric acid- and alkali-treated foam flat surfaces. NAT 
essentially increases the number of nanometric-scale 
undulations on the foam flat surfaces, leading to the devel-
opment of finer surface topographical features (Figure 4B), 
while AT forms a rougher surface topography (Figure 4C) 
as compared with untreated and nitric acid-treated foam 
surfaces (Figure 4A). The measured Ra and SAD values of 
untreated and surface-treated foams are listed in Table 1. 
Both NAT and AT increase the foam specimen flat surface 
roughness in nanometric scale, while the increase is higher 
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Table 1: Surface roughness of foam flat surfaces before the micro-
bial test.

Treatment   Ra (nm)   SAD (%)

Untreated   10.715  1.279
NAT   12.012  3.832
AT   15.769  5.477

A B

Figure 3: SEM micrographs of (A) foam surfaces, showing micropores on the cell walls and (B) alkali-treated foam flat surfaces, showing a 
porous surface layer.
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Figure 4: Three-dimensional AFM micrographs of the surface topography of (A) untreated, (B) nitric acid-treated, and (C) alkali-treated foam 
specimen.

in the alkali-treated foam sample. The surface treatment 
essentially causes significant increase in the surface area, 
resulting from finer surface microstructure development.

Microscopically higher numbers of bacterial coloni-
zation are detected on the flat surfaces and interior of the 
cells of the surface-treated foams, as seen in Figure 5A–C. 
It is also noted that the preferential bacterial colonization 
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Figure 5: SEM micrographs of S. epidermidis bacteria attached to interior of cells in (A) untreated, (B) nitric acid-treated, and (C) alkali-
treated foams, and SEM micrographs of S. epidermidis bacteria on Ti6Al4V particles in (D) untreated, (E) nitric acid-treated, and (F) alkali-
treated foams.

occurs at the particle sintering necks marked with arrows 
in Figure 5A,B. The magnified SEM micrographs of Ti6Al4V 
particles of untreated and nitric acid- and alkali-treated 
foams are sequentially shown in Figure 5D–F. The fully 
bacteria-covered particle surface of the alkali-treated 
sample seen in Figure 5F also confirms higher bacterial 
adhesion to alkali-treated foam sample surfaces. Figure 6A 
shows the number of bacteria attached to the surface of 
untreated and treated foam specimens. As seen in the same 
graph, the surface treatment increases the number of bac-
teria attached to the foam surface over that of untreated 
foam specimen: the bacterial adhesion is tripled in nitric 
acid-treated foam, while the number of bacteria retained 
increases eight times in alkali-treated foam. In order to 

analyze the effect of nanometric-scale surface roughness 
on the bacterial colonization, CFU values of the investi-
gated untreated and treated foam specimens are drawn as 
function of nanometric-scale surface roughness values in 
Figure 6B. As seen in Figure 6B, a linear interpolation to log 
CFU vs. roughness data shows that the CFU values of foams 
increase with increasing roughness of foam flat surfaces.

Discussion
The factors influencing the bacterial adhesion to a 
solid surface and the interactions between bacteria and 

Figure 6: (A) Attached bacteria (CFU) and (B) CFU vs. surface roughness of untreated and treated foam specimens.
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nanometer surface topologies were reviewed in different 
studies [1, 2, 4]. Broadly, these included the characteris-
tics of bacteria, target surface, and the environment [1]. In 
an earlier study, no significant effect of surface roughness 
on S. epidermidis adhesion to Ti surface was reported for 
the surface roughness values of 0.44 and 1.25 μm [27]. The 
effects of nanometric-scale surface topographical features 
on Staphylococcus aureus and Pseudomonas aeruginosa 
adhesion to Ti surface have recently been experimentally 
investigated [25]. Four different surface topologies were 
explored: conventional, nanorough, nanotubular, and 
nanotextured. The results clearly indicated that nano-
metric surface topologies affected the bacterial adhesion. 
Nanometric-scale surface topographical features both 
increased the surface energy and altered the surface chem-
istry. Although conventional and nanorough Ti surfaces 
had the same surface chemistry, the increased surface area 
of nanorough Ti surface resulted in intensified fibronec-
tion adsorption, leading to reduced bacterial adhesion. 
The effect of nanometric-scale surface roughness on bac-
terial adhesion to an ultrafine crystalline (equal channel 
angular processed) Ti was also investigated [38]. The pol-
ished surface roughness of conventional and ultrafine 
crystalline Ti samples measured using AFM at differ-
ent scanning areas increased in nanometric scale with 
increasing scanning area. Ultrafine crystalline Ti samples 
with higher nanoroughness showed two times higher S. 
aureus adhesion than conventional Ti samples. Similar 
effects of nanoscale surface topologies on protein adsorp-
tion to polymer surfaces were also reported previously [13, 
46]. It is generally accepted that bacteria preferentially 
attach to rougher surfaces. A rough surface provides a 
larger surface area for bacterial adhesion and protects the 
bacteria form shear forces [29]. Bacterial colonization also 
occurs more preferentially on porous (foam) than smooth 
surfaces [21]. AT forms a porous and rough thin surface 
layer of sodium titanate on Ti metal [14, 15, 17, 44]. The 
morphology of this layer is altered with the surface treat-
ment conditions and the applied heat treatment [44].

In the determination of the number of adhered S. 
epidermidis cells, the cells on the materials’ surface were 
removed by sonication after washing non-adherent bac-
teria and then the remaining cells were scraped off by 
using sterile cell scrapers. By this way, almost all bacteria 
from the surface could be detached into the PBS solution. 
After serial dilution with PBS, they were inoculated onto 
TSA plates, and after growing at 37°C, the number of colo-
nies were counted and expressed as CFU ml-1. The present 
results indicate that both NAT and AT increase the bac-
terial adhesion to Ti6Al4V foam surfaces. The increased 
bacterial adhesion on alkali-treated foam samples 

compared to untreated foam samples is attributed to the 
formation of a highly porous and nanorough Na2Ti5O11 
surface layer and increased nanometric-scale surface 
roughness. Porous and nanorough Na2Ti5O11 surface layer 
increases the surface area, protecting the bacteria from 
shear forces. Previously, it was reported that NAT did not 
increase the surface roughness of Ti significantly [20, 31], 
while it increased the surface energy [19]. The results of 
the present study, however, also show that NAT increases 
the nanometric-scale surface roughness of Ti6Al4V foam. 
The increased bacterial adhesion on nitric acid-treated 
foam samples compared to untreated foam samples may 
be partly due to the increased nanometric-scale surface 
roughness.

The results of the present study, however, should be 
taken cautiously as the surface roughness of the particles 
in the interior of the cells cannot be measured directly 
using AFM. Therefore, the resultant surface roughness of 
the particles after surface treatment was determined indi-
rectly by measuring the roughness of the foam specimen’s 
ground flat surfaces. The SEM micrographs of the flat sur-
faces of untreated and treated foam samples are shown 
in Figure 7A–C. The major grinding lines at a distance of 
∼5 μm are clearly seen in Figure 7A,B in between the major 
grinding lines; the minor grinding lines are also detected 
in the same micrographs. The major grinding lines agree 
with the AFM surface topography shown in Figure 4A. NAT 
tends to remove minor grinding lines from the flat surface 
of foam, as seen in Figure 7B; however, it introduces small 
undulations on the surface, which is also detected in AFM 
surface topography image in Figure 4B. The surface mor-
phology of alkali-treated foam specimens is, however, 
dictated by the nature of Na2Ti5O11 layer as depicted in 
Figure  7C. The microcracks seen in the same figure are 
spaced at a distance of 3–5 μm. The particles in the interior 
of the cells of untreated foam contain thermal etch facets 
on the surface (Figure 7D). The heights of the thermal etch 
facets were further measured using the SEM micrographs 
of the particles. Thermal etch facet heights varied with the 
locations of particles’ surfaces; therefore, at least 15 meas-
urements were taken randomly from the selected parti-
cles, and the results were averaged. The thermal etch facet 
height was found to be 211 nm for untreated foam parti-
cles (Figure 7E). NAT has almost no effect on the thermal 
etch facet heights – 217 nm (Figure 7E). The development 
of nanosurface roughness following NAT are clearly seen 
on the thermal etch facets (Figure 7E). The sodium titanate 
layer resulting from AT completely covers the thermal etch 
facets on the particle surfaces, as shown in Figure 7F. The 
roughness measurements taken from the foam specimen’s 
flat surfaces reflect the surface roughness of the particles 
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Figure 7: SEM micrographs of the foam flat surfaces of (A) untreated, (B) nitric acid-treated, and (C) alkali-treated, and SEM micrographs of 
the surface of particles in the interior of cells of (D) untreated, (E) nitric acid-treated, and (F) alkali-treated foams.

in the interior of the cells. An effort to correlate the surface 
roughness resulting from thermal etch facets with the bac-
terial colonization essentially shows a decreasing number 
of bacterial retention with increasing thermal etch facet 
heights.

Conclusions
The effect of alkali and nitric acid surface treatments on 
S. epidermidis adhesion to the surface of a porous open-
cell Ti6Al4V foam (pore sizes of 300–500 μm), prepared 
by the space holder method using 94 μm average parti-
cle size powder, was investigated. The roughness of the 
ground flat surfaces of the relatively thin foam specimens 
was measured before and after the surface treatment in 
nanometric scale using an AFM. AT increased the nano-
metric-scale surface roughness significantly by develop-
ing a porous, rough Na2Ti5O11 surface layer on the Ti6Al4V 
particles, while NAT resulted in the formation of finer 
surface topographical features. In accordance with the 
surface roughness measurements, the highest number 
of bacterial retention was detected in the alkali-treated 
foam specimen, followed by the nitric acid-treated foam 
sample. A correlation between the nanometric-scale 
surface roughness and the associated bacterial adhesion 
was shown. The significant increase in the number of bac-
terial adhesion on alkali-treated samples was attributed to 
the formation of a highly porous and nanorough Na2Ti5O11 
surface layer.
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