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Abstract: It is well known that many models in nonlinear 
science are described by fractional differential equations 
in which an unknown function appears under the opera-
tion of a derivative of fractional order. In this study, we 
propose a reaction-diffusion Brusselator model from the 
viewpoint of the Jumarie’s modified Riemann-Liouville 
fractional derivative. Based on the (G′/G)-expansion 
method, various kinds of exact solutions are obtained. 
Our results could be used as a starting point for numerical 
procedures as well.
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1 �Introduction
The usefulness of fractional calculus to solve various 
problems in nonlinear science is well known. Applica-
tions can be seen in various research areas such as electro 
analytical chemistry, electrochemical processes, porous 
media, bioengineering, transport processes, robotics, frac
tal theory, noise simulations, etc [1–5]. Consequently, the 
development of fractional derivatives has been of great 
interest recently. Depending upon the problem under in-
vestigation, quite a number of different definitions of frac-
tional derivatives are given in the literature. For instance, 
the commonly used fractional derivatives are the Riesz 
derivative, the Riemann-Liouville derivative, the Caputo 
derivative, the Sonin-Letnikov derivative, the Marchaud 
derivative, the Weyl derivative, the Grünwald-Letnikov de-
rivative and others. These fractional derivatives have their 
advantages and disadvantages. In recent years, fractional 
differential equations (FDEs) have played a crucial role in 
various fields such as chemistry, biology, control theory, 
mechanics, signal processing, economics, electricity and 

image processing. Up to now, there have been several 
numerical/analytical methods proposed for solving the 
space and/or time FDEs. For example, the variational 
iteration method [6], the homotopy perturbation method 
[7], the Adomian decomposition method [8], differential 
transform method [9], finite difference method [10], 
finite element method [11], first integral method [12] and 
fractional sub-equation method [13]. However, the just- 
mentioned methods are very restricted, so they cannot be 
used to tackle equations of numerous realistic scenarios.

Though several fields of fractional calculus are al
ready well established, there is plenty of substantial work 
still to be done for the extension of fractional calculus to 
distinct subjects such as the reaction-diffusion equations. 
These evolutionary type equations are inherent in many 
scientific areas such as heat conductivity in physics, 
chemical diffusion processes in chemistry, kinetics of 
enzyme in biology and so forth. Motivated by this idea, we 
shall be concerned with the following reaction-diffusion 
Brusselator model of fractional order
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where 0 1,  0 1α β< ≤ < ≤ ; tDα and 2
xD β  denote the Jumarie’s 

modified Riemann-Liouville fractional derivatives [14] (in 
time) of order α and (in space) of order 2β, respectively; B 
is a constant parameter and K is the diffusion coefficient; 
the quantities ( ),u x t  and ( ),v x t  describe the (positive) 
concentrations. The classical counterpart (that is, the case 

1α β= = ) of the fractional Brusselator model (1) arises in 
the modeling of certain chemical reaction-diffusion pro-
cesses. It was introduced by Prigogine and Lefever [15] as 
a model for an autocatalytic oscillating chemical reaction. 
The name comes from the hometown of the scientists who 
proposed it. It arises from the following four intermediate 
reaction steps
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where A and B are input chemicals, D and E are output 
chemicals, X and Y are intermediates [16–18]. It is well 
known that the Brusselator model has been applied to 
various problems in both chemistry and biology.

The main purpose of this study is to show how the 
so-called (G′/G)-expansion method [19], which is used for 
solving nonlinear evolution equations, can be extended to 
the Brusselator model (1) with the time-space fractional 
order. The (G′/G)-expansion method is an exact solution 
method which has proven to be a useful tool for construct-
ing exact solutions to FDEs [20, 21] as well. The basic idea 
of the (G′/G)-expansion method lies in the fact that it 
takes  full advantage of linear theory via a second order 
auxiliary equation as the ansatz. With the help of a sym-
bolic computation system such as MATHEMATICA, the 
(G′/G)-expansion method usually provides three types of 
exact solutions (hyperbolic, trigonometric and rational) 
with more arbitrary parameters.

The rest of this paper is organized as follows. In 
Section 2, some preliminaries are given. In Section 3, the 
method is described. In Section 4, the analytical treatment 
of our model is presented. In Section 5, some special solu-
tions are construted. Finally, Section 6 is devoted to a con-
cluding remark.

2 Preliminaries
In this section, we give a brief background on the defini-
tion of the Jumarie’s modified Riemann-Liouville deriva-
tive. Now, let :f → , ( )t f t→ , denote a continuous 
(but not necessarily differentiable) function. Then the 
Jumarie’s modified Riemann-Liouville derivative of order 
α is defined as

1
0

1( ) ( ) ( ( ) (0)) , 0
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t
tD f t t f f dα α

ξ ξ ξ α
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− −= − − <
Γ − ∫ , (3)
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∫
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( ) ( )( ) ( ( )) , 1, 1n n
tD f t f t n n nα α

α
−= ≤ < + ≥ . (5)

This fractional derivative has been applied to fractional 
Laplace problems [22], fractional variational calculus 
[23] and probability calculus [24]. The Jumarie’s modified 
Riemann-Liouville derivative has some interesting pro
perties: (i) the α-order derivative of a constant is zero; 
(ii)  it can be applied to both differentiable and nondif
ferentiable functions. The following formulas are given in 
[14]:

(1 ) , 0
(1 )tD t tα γ γ α

γ
γ

γ α

−Γ +
= >
Γ + −

, (6)

( ( ) ( )) ( ) ( ) ( ) ( )t t tD f t g t g t D f t f t D g tα α α= + , (7)

( ( )) ( ( )) ( ) ( ( ))( )t g t g tD f g t f g t D g t D f g t gα α α α′ ′= = , (8)

These results can be directly derived from the equality 
( ) (1 ) ( )d x t dx tα

α=Γ + .

3 Methodology
In a previous work, Li and He [25] showed that FDEs with 
the Jumarie’s modified Riemann-Liouville derivative can 
be easily turned into ODEs. To this end, they proposed a 
fractional complex transform which reads

( ) ( )
, 0 1, 0 1

1 1
px qtβ α

ξ α β

β α

= + < ≤ < ≤
Γ + Γ +

, (9)

where p and q are constants to be determined. Keeping 
this fact in mind, let us proceed to recall the basic idea 
of the (G′/G)-expansion method. Consider a general frac-
tional differential equation for ( , )u u x t=  in the form

( )2 2, , , , , 0, 0 1, 0 1t x t xP u D u D u D u D uα β α β
α β= < ≤ < ≤ , (10)

where P is a polynomial of its arguments, while r
tD α and 

r
xD β  denote the collection of Jumarie’s modified Riemann- 

Liouville derivative terms (in time) of order rα and (in 
space) of order rβ, respectively. Then, by means of the 
fractional complex transform (9), Eq. (10) turns into an 
ordinary differential equation of the form

( )2 2,  ,  ,  ,   , 0P U qU pU q U p U′ ′ ′′ ′′ … = , (11)

where ( ) ( ),u x t U U ξ= =  and the primes denote ordinary 
derivatives with respect to ξ. We assume that the solu-
tion(s) of Eq. (11) can be expressed in the form

n

n
GU a
G

 ′
= + 

 
, (12)

where ( )G G ξ=  is the solution of the auxiliary linear 
second order ordinary differential equation

0G G Gλ μ′′ ′+ + = , (13)

in which /G dG dξ′ = , 2 2/G d G dξ′′ = , while 1 0, , , na a a  ( )0≠ , λ and μ are constants to be determined at the stage 
of solving the problem. The unwritten part in (12) is also a 
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polynomial in (G′/G), but the degree of which is generally 
equal to or less than n − 1. The positive integer n can 
be identified by the homogeneous balance method to the 
highest order derivatives and nonlinear terms appearing 
in Eq. (11). Then the substitution of (12) together with Eq. 
(13) into Eq. (11) yields a system of nonlinear algebraic 
equations for ai’s, λ, μ, p and q. Let us assume that these 
constants can be determined by solving the resultant si-
multaneous algebraic equations with the aid of a symbolic 
computation system such as MATHEMATICA. On the other 
hand, from the linear theory, the general solutions of Eq. 
(13) are well known to us. As a result, we obtain exact 
solutions for Eq. (10) provided they exist.

(Remark. In a previous work, Aslan [26] proved that one 
can set the constant λ to zero without loss of generality. 
This approach is more advantageous than the original 
assumption because the number of the parameters is 
minimized at the outset. Moreover, it provides equivalent 
results. To take advantage of this observation, we set λ = 0 
in our computations.)

4 Analysis of Eq. (1)
To obtain exact solutions for Eq. (1), let us first make the 
fractional complex transform

( , ) ( ), ( , ) ( )u x t U v x t Vξ ξ= = ,

( ) ( )1 1
kx wtβ α

ξ χ

β α

= − +
Γ + Γ +

, (14)

where k and w are real parameters to be specified, while χ 
denotes the phase shift. On substituting (14) into Eq. (1), 
one gets
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(15)

where ( )U U ξ= , ( )V V ξ= , and the primes denote deriva-
tives with respect to ξ. Then our procedure suggests a solu-
tion for Eq. (15) in the form

0 1 1
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, 0,

, 0,
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(16)

where ( )G G ξ=  satisfies Eq. (13), while the arbitrary con-
stants a0, a1, b0 and b1 will be determined later. Substitut-
ing Eq. (16) together with Eq. (13) into Eq. (15), setting the 

coefficients of ( ) ( )/ 0,1, 2, 3
i

G G i′ =  to zero, we derive a 
system of nonlinear algebraic equations for a0, a1, b0, b1, λ, 
μ, k and w. Solving the resulting system simultaneously, 
we get the relations
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As a result, the relations (17)–(20) lead to the following 
solutions for Eq. (1):

4.1 Hyperbolic function solutions
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,

while k, χ, μ(< 0), C1 and C2 remain arbitrary (here and 
henceforth, the signs ( )±  and ( )  are ordered vertically);
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where
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while k, χ, μ(< 0), C1 and C2 remain arbitrary;
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while k, χ, μ(< 0), C1 and C2 remain arbitrary;
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while k, χ, μ(< 0), C1 and C2 remain arbitrary.

4.2 Trigonometric function solutions
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while k, χ, μ(> 0), C1 and C2 remain arbitrary;
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Γ +

,

while k, χ, μ(> 0), C1 and C2 remain arbitrary.

4.3 Rational function solutions

( )

( ) ( )

1
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,
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2

2
1
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k
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C Ck Kx B tβ α

α

χ

β
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=
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( )

( ) ( )

1
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1

2

2
1
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±
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where k, χ, C1 and C2 remain arbitrary;

( )

( ) ( )

1

1 2

,

1

2

2
1

k KCB
k BK

u x t
k xC Ctβ α

χ

β α

±

+
Γ +

=
 
 − +
 Γ + 

 , (35)

( )

( ) ( )

1

1 2

,

1

2

2
1

k KCB
k

v x t

C Ck Kx B tβ α

α

χ

β

+
Γ +

=
 
 − +
 Γ + 

  , (36)

where k, χ, C1 and C2 remain arbitrary.

5 Further discussion

The expressions (21)–(36) provide abundant exact solu-
tions for Eq. (1) containing more arbitrary parameters. If 
desired, one can construct some special solutions of phys-
ical interest.

For a first example, if we set “ 1 0C ≠  and 2 0C = ” or  
“ 1 0C =  and 2 0C ≠ ” in Eqs. (21) and (22), respectively, 
then we get formal topological solitons for Eq. (1) which 
read

( ) ( )
( )
( )

2
2

2 2
2, ,

1
2 o

1
c th

k K Bku x t
k K

B k K k K x tβ α
χ

β α

μ

μ μ μ

 − − − −   
 

 
 = + + Γ + Γ + 
 

  (37)

( ) ( )
( )
( )

2
2

2 2
2, ,

1
2 o

1
c th

k K Bkv x t
k K

B k K k K x tβ α
χ

β α

μ

μ μ μ

 − − ± − −   
 

 
 = + + Γ + Γ + 
 

 (38)

where k, χ and μ(< 0) remain arbitrary;

( ) ( )
( )
( )

2
2

2 2
2, ,

1
2 a

1
t nh

k K Bku x t
k K

B k K k K x tβ α
χ

β α

μ

μ μ μ

 − − − −   
 

 
 = + + Γ + Γ + 
 

  (39)

( ) ( )
( )
( )

2
2

2 2
2, ,

1
2 a

1
t nh

k K Bkv x t
k K

B k K k K x tβ α
χ

β α

μ

μ μ μ

 − − ± − −   
 

 
 = + + Γ + Γ + 
 

 (40)

where k, χ and μ(< 0) remain arbitrary.
For a second example, if we set “ 1 0C ≠  and 2 0C = ”  

or “ 1 0C =  and 2 0C ≠ ” in Eqs. (29) and (30), respectively, 
then we get singular periodic solutions for Eq. (1) which 
read

( ) ( )
( )
( )

2
2

2 2
2 2 tan, ,

1 1
k k K B k K

B k K k Ku x t x tβ α
χ

β

μ

μ μ μ

α

 − − ±  

 
 = + + Γ + 
 

Γ + 
 

 (41)

( ) ( )
( )
( )

2
2

2 2
2 2 tan, ,

1 1
k k K B k K

B k K k Kv x t x tβ α
χ

β

μ

μ μ μ

α

 − −  Γ + 

 
 = + + Γ + 
  

  (42)

where k, χ and μ(> 0) remain arbitrary;

( ) ( )
( )
( )

2
2

2 2
2 2 cot, ,

1 1
k k K B k K

B k K k Ku x t x tβ α
χ

β

μ

μ μ μ

α

 − −  Γ + 

 
 = + + Γ + 
  

  (43)

( ) ( )
( )
( )

2
2

2 2
2 2 cot, ,

1 1
k k K B k K

B k K k Kv x t x tβ α
χ

β

μ

μ μ μ

α

 − − ±  

 
 = + + Γ + 
 

Γ + 
 

 (44)

where k, χ and μ(> 0) remain arbitrary.
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For a third example, if we set ( )2/ 4 0B k Kμ = − <  in 
Eqs. (25) and (26) or ( )2/ 2 0B k Kμ = >  in Eqs. (29) and (30), 

respectively, then we get non-constant steady-state solu-
tions for Eq. (1) which read

( )
( ) ( )

( ) ( )

1 22 2

1 22 2

sinh
1 1

,

sinh c

cosh
4 4

,
2 2

4
os

1 4
h

1

k kx x

u x t
k kx x

B BC C
k K k KB B

B BC C
k K k K

β β

β β

χ χ

β β

χ χ

β β

       
       +
      

       
       
       +
      

    

+ +
Γ + Γ +

= ±

+


+


Γ +


Γ +

 (45)

( )
( ) ( )

( ) ( )

1 22 2

1 22 2

sinh
1 1

,

sinh c

cosh
4 4

2 ,
2

4
os

1 4
h

1

k kx x

v x t
k kx x

B BC C
k K k KBB
B BC C

k K k K

β β

β β

χ χ

β β

χ χ

β β

       
       +
      

       ±
       
       +
      

    

+ +
Γ + Γ +

= ±

+
 

+
Γ +


Γ


+

(46)

where k, χ, C1 and C2 remain arbitrary;

( )
( ) ( )

( ) ( )

1 22 2

1 22 2

sin cos
1 1

,

cos sin
1

2 2

2 2 1

k kx x

u x t
k kx x

B BC C
k K k K

B
B BC C

k K k K

β β

β β

χ χ

β β

χ χ

β β

       
       − +
    

+ +
Γ + Γ +

=

+ +

 
       

       
      

Γ + Γ +
+

      
       

 , (47)

( )
( ) ( )

( ) ( )

1 22 2

1 22 2

sin cos
1 1

,

cos sin
1

2 2

2 2 1

k kx x

v x t
k kx x

B BC C
k K k K

B
B BC C

k K k K

β β

β β

χ χ

β β

χ χ

β β

       
       − +
    

+ +
Γ + Γ +

=

+ +

 
       ±

       
       +
      

       
Γ + Γ +

, (48)

where k, χ, C1 and C2 remain arbitrary.
Like manner, we can extract some other non-constant 

steady-state solutions for Eq. (1) from the expressions (27) 
and (28) as well (31) and (32). We skip this procedure for 
the sake of brevity.

6 Conclusion
In recent years, FDEs have been received much attention 
due to their numerous applications in the areas of physics, 
biology and engineering. In this paper, a generalization 
of the Brusselator model to fractional order (in the sense 
of Jumarie) is proposed. By using the (G′/G)-expansion 
method we have successfully obtained three types of exact 
solutions with arbitrary parameters; hyperbolic, trigono-
metric and rational. We have also obtained exact solutions 
in terms of topological solitons and singular periodic func
tions as well as non-constant steady-states. Our results are 

subject to some adequate physical interpretations in the 
future.
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