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Abstract We search for theories, in general spacetime
dimensions, that would incorporate a dilaton and higher pow-
ers of the scalar Ricci curvature such that they have exact S- or
T-self-dualities. The theories we find are free of Ostrograd-
sky instabilities. We also show that within the framework
we are confining ourselves, a theory of the form mentioned
above cannot have both T- and S-dualities except for the case
where the action is linear in the scalar curvature.

1 Introduction

Theories that contain higher powers of the curvature scalar
have attracted much attention over the past years, after their
introduction some time ago [1,2], especially in view of
the accelerated expansion of the universe and the possible
avenues related to extra dimensions inspired by string the-
ory. The literature has become too voluminous to cite even
partially, so we refer to the reviews on the subject [3-9] and
the references therein.

As is well known the low energy string theory action is
that of Einstein gravity with a non-minimally coupled dila-
ton. This lowest order action has two important symmetries:
T- and S-dualities. In this work we investigate the conditions
on how to have S- or T-symmetries in f(R) type theories.
The reason to confine the study to actions that contain only
powers of the Ricci curvature scalar is the fact that pure f(R)
theories are free of Ostrogradsky instabilities [11]; as a con-
sequence related to this the models we find are also free of
the mentioned problem.

2 An observation

Let us consider the following action in d dimensions:
/ddx\/—f} e (T [R + A(%)z] : ey
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where A is a real number. It can be shown that the action is
form invariant under the following transformations:
Guw=e¢%Gp, (2a)

b=-9. (2b)
which are called S-duality transformations. If the action is
form invariant one may call the model S-self-dual.

However, to reach this conclusion one has to perform an
integration by parts and hence convert some of the terms to
boundary integrals which in turn, as is well known, will not
affect the Euler—Lagrange equations of motion since to find
them one assumes that the variations vanish at the boundary.

Furthermore as is also well known, one can represent the
theory in the Einstein frame as opposed to the original Jor-
dan frame by the following conformal transformation of the
metric:

Guv = e?G . (3)

This will transform the original action as follows:

/d"x\/z |:R + (A _@e-bd-2 liéd - 2)> (w?)z

_ uvz(f;} ) )
2

Here the non-tilde derivatives are those related to G. Here
we also realize the last term as a surface term and it can
thus be ignored from the perspective of getting the equations
of motion. Furthermore if one also requires the scalar field
kinetic term to be normalized to the canonical value of —1/2
one requires A = 4 for d = 10; the canonical numbers
of low energy string theory. Also, the original S-self-duality
presents itself here as the ¢ — —¢ invariance.

We see that in both instances a manipulation of the
lagrangian via integration by parts to get rid of the surface
terms that are not invariant is necessary. However, this will
not necessarily be possible if one has a theory that involves
higher powers of R and this may obstruct S-self-duality of the
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theory. Our aim is to find an algebraic realization of the men-
tioned symmetry which will circumvent this impediment.
That is, we seek ways to find lagrangian densities which are
exactly symmetric under Eq. (2).

3 S-self-dual theories
First of all let us note that one has
~ d—1)~,-~ d—1
[R—}—( 5 )v2¢]=e¢[[e+( 5 )v2¢] (5a)

A(VP)* = e? A(V)?, (5b)

under the S-duality transformations. These algebraic proper-
ties can be exploited to form theories that will involve higher
powers of R in such a way that the theory can be made S-
self-dual.

In fact one can further generalize the possible terms in (5)
by multiplying them with functions which are even in ¢. That
is, under (2), one still has

() [1% L@-b 5 D @243} = la(¢) [R + 5 D Vﬂ :
(6a)
A(P)(V)* = e? A(p)(V)?, (6b)

provided that ¢(—¢) = a(¢) and A(—¢) = A(¢). Further-
more one can also add a pure potential term for the scalar
field which has the same algebraic transformation rule

TPV (@) = e eV (9) ™)
provided again that one has V (—¢) = V(¢).

Thus the most general term that has the same algebraic
transformation rule is the following:

Ui (G, @) = @i(9) [1% e 5 2 W«%}

+A BT + e V(@) ®)
and it becomes
Ui (Guv, §) = Ui (G v, §) ©)
under the S-duality transformations, provided «;, A; and V;

are all even functions.
Now let us define the following measure object:

M(G,§) = —Ge @294, (10)

which, under S-duality, transforms as

M(G,d) = e P M(G, ¢). (11)
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With these ingredients one can form a density which is
S-self-dual and that contains higher powers of the curvature
scalar. All we have to do is to multiply terms of the type
in Eq. (8) that have different functions «;, A; and V;. To
this product we multiply the measure form in Eq. (10). To
compensate for the resulting powers of the scalar field we
shall need another factor. One readily arrives at the following
object:

LD Gy d) = MG §)e" 2T UG d). (12)
i=1

which is S-self-dual in the algebraic sense mentioned above.
That is, one has

LGy, @) = LG 1, $). (13)

The role of the factor e~ D¢/2 in Eq. (12) is to compensate
for factors of e? that come from the product of I; terms and
the factor e ~? that comes from the measure object in Eq. (10).

So the most general S-self-dual action that contains higher
powers of the scalar curvature can be formed via summing
various forms of the type in Eq. (12);

S = /ddx Z L™ (G, ). (14)

We note again that this action is S-self-dual in an alge-
braic sense; no integration by parts is necessary to make
non-invariant terms surface terms.

3.1 Ostrogradski instabilities

Whenever one has a theory with a lagrangian that contains
higher derivative terms one is facing the troublesome Ostro-
gradski instabilities. Since the S-self-dual theories we have
introduced has a generic lagrangian which depends on the
second derivatives of the dilaton field we have to assess if
one truly has this problem.

It is a well-known fact that pure f(R) theories are free
of Ostrogradski instabilities even though they contain higher
derivatives of the metric. Now let us switch to the Einstein
frame via (3). This will result in the following:

Ui(Grivs @) = e 92V (G v §). (15)

where
Vi(G v, #) = ai(P)R

- -~ d-1d-2
+|:Ai(¢)+ai(¢)¢

2] (v8) + v,

(16)
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Consequently the original lagrangians of the form (14)
do not have higher derivatives of the scalar field in the Ein-
stein frame. We therefore conclude that the theories we have
introduced will be free of Ostrogradskian instabilities.

One can understand this absence also in the original Jordan
frame. In that case, one has double derivatives of the scalar
field in the action but they always come accompanied by the
curvature term in the form R+ (d —1)V2¢ /2 and thus always
get mixed with the degrees of the geometry and hence do not
create a truly independent canonical momentum.

The fact that Ostrogradskian instabilities are absent for
the dilaton field does not necessarily mean that none of the
equations of motion involves higher derivatives of it. It simply
means that there is at least an equation of motion that depends
only on its derivatives of second or first degree. To expose
this let us evaluate the full equations of motion in the Einstein
frame. Without loss of generality we use a simplified form
for the action

f dx V=g f(V) (17)
with
V=a(OR+BX) (VX)*+ V() (18)

with B(x) = [A(x) + a(x)(d — 1)(d — 2)/8]. Note that we
have set ¢ = x and got rid of the tildes.

One can show that the variation of the action with respect
to the metric gives the following equation:

1
Off/ Ry — Eg;Wf + (glwvz
ViV @af) + Bf (Vux)(Vux) =0 (19)

where primes indicate derivatives with respect to the full
argument of the corresponding function. This equation obvi-
ously incorporates derivative of the scalar field to third order.
But the variation of the action with respect to the scalar field
yields

[ R+ 0+ V] =V, 28/ V5] QD)

and thus it is manifestly clear from the above that the equa-
tions of motion for the scalar field involve only up to and
including the second derivative. Therefor third order deriva-
tive is fixed by this equation.

3.2 Pure f(R) theories in the Einstein frame

One by-product of our discussion is that a pure f(R) theory
can be thought of as an Einstein frame representation of an
S-self-dual dilatonic theory, provided one has all «;, A; and
V; as constants and satisfying the following condition:

d-Dd-2)

Ai +ai 3

0. 2D

This condition is quite non-trivial in the sense that it binds
the coefficients of the scalar curvature to those of the coef-
ficient of the kinetic term for the scalar field in the Jor-
dan frame. The resulting theory in the Jordan frame, though
by construction S-self-dual, may have instabilities due to a
wrong signature.

In fact, one can envisage a more general framework. If we
require an originally S-self-dual theory to end up in a pure
f(R) theory in the Einstein frame one does not necessarily
require the coefficients «;, A; and V; to be constants. We may
still require them to be functions of the field ¢. In this case
the condition above becomes

d-hd-2) _,

Ai($) + () 5 22)

These conditions of the field ¢ should be simultaneously
satisfied. The simplest way for this to happen is to assume
that the theory in the original Jordan frame takes, modulo the

measure term, the form of f(U/) where

U=a@) (1% + d%%z?) +A@) (VP2 + e P12V ()
(23)

and (22) becomes a single equation and may more easily be
accommodated. Thus in this generalized case the dilaton in
the Jordan frame must have already been stabilized in a subtle
way: A quite different and somewhat richer condition than
(21). If this is realized somehow the stable point of the dilaton
field must obey this condition. In view of the equations of
motion presented in the previous subsection this will also
mandate a constant Ricci scalar curvature.

4 T-duality

Let us go back to the original action (1) and study the effect
of T-duality on it. T-duality is a symmetry that acts on the
internal dimensions; so a separation of what is compactified
and what is not is mandatory. This is accomplished via the
following separation of the metric:

ds® = G,,dX"dX"
200y (n)dy' dy, (24)

which can be called the compactification or warped ansatz:
The metric is assumed to be block diagonal with respect to the
co-ordinates y of the compactified extra dimensions and the
co-ordinates x of the observed dimensions, which include
time. Here (:‘(x) is called the radion field and y (y);; is a

= g (X)dx"dx" + e
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metric for the manifold of extra dimensions which does not
depend on the co-ordinates of the observed dimensions. We
set the number of the extra dimensions to be p. In view of
this ansatz we also assume that the dilaton field ¢ does not
depend on the co-ordinates of the internal dimensions.

As is well known, this ansatz allows us to evaluate the
Ricci scalar of the full spacetime as follows [13,14]:

R = RIG] = Rigl+ e R[y]
—2pe € g""V,,V,eC
—p(p = De g™ (Ve€) (VieC). ©5)

where the covariant derivatives V are now those of the metric
gmn- We also have

V=G e~ =284 — /=% fi7 oPC—(d=D/4 (26)

and
A(VP)? = AG*™ (V) (V) = Ag™ (Vi) (Vad), (27)

following directly from the ansatz.
Now let us define the following transformation rules:

(28a)
(28b)

which automatically leave the measure in (26) invariant.
These are called T-duality transformations and one can show
that the action (1) is form invariant under them provided one
fixes

d—2

2
A:(T> — A=4ford = 10, (29a)

R[y] = 0. (29b)

However, one must realize, in view of the form in (25),
which involves double derivatives of C, that again a manipu-
lation involving integration by parts is required. This works
in a similar way to that of S-duality: some terms are non-
invariant but they are surface terms. So in conclusion the
action in (1) is both S- and T-self-dual provided the coef-
ficient of A is fixed to be predetermined constant in (29).
These are of course well-known properties of the low energy
action of string theory. The general point we make is that
manipulations of it via integration by parts is necessary for
both symmetries. We were able to generalize S-self-duality
to actions that are required to involve higher powers of the
scalar curvature that circumvent this impediment. We now
look for generalizing T-self-duality. That is, we shall now
seek to find lagrangian densities which involve higher pow-
ers of the curvature scalar that are exactly symmetric under
T-duality.

@ Springer

4.1 T-self-dual theories

Let us remember that the measure prefactor is invariant under
the T-duality transformations. Thus, it is clear that if we are
to get an algebraic invariance similar to what happened in the
generalization of S-duality transformations, we need to add
aterm to R[G] that would compensate for the appearance of
the double derivative of C.

The only term that can be added in the original variables
is the following:

G, 9,8,

Using the compactification ansatz (24) we can simply infer
that the inverse metric G is also block diagonal. This,
along with the assumption that the dilaton field is blind to
co-ordinates y’ of the extra dimensional metric, means that
one has

G996 = g™ (Vi Vad + pVnCVa) (30)

where the covariant derivatives on the right hand side are
those related to the metric g;,,. With these considerations,
after a slightly tedious calculation, one can show that the
object

R[G]1+ A(V$)? + o V3¢ (31)

after the metric compactification ansatz is T-self-dual, pro-
vided the following conditions are met:

2
Az_(_";2> , (320)
R[y] =0, (32b)
d—2
o= — (320)

2

The difference in the value of A in the above as opposed
to the one in (29) is to be attributed to the fact that in (29) an
integration by parts is incorporated to show the T-self-duality
of the action linear in R. Thus they are not actually different
conditions if one considers only the action (1). We also see
that in view of its somewhat contrived form, T-duality forbids
a potential term for the dilaton.!

It is now possible to take powers of the object in Eq. (31)
to form lagrangians that involve higher powers of the scalar
curvature such that the theory is exactly T-self-dual in the
sense we have previously described.

! This is generically true, however, one can envisage a periodic potential
for the dilaton field and this may end up being T-self-dual provided the
dilaton and radion are both stabilized somehow.
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5 Incompatibility of T- and S-self-dualities for f(R, ¢)
theories

Note that the coefficients of the term 6243 are found to
be different for S-self-duality and T-self-duality conditions:
(d —1)/2 in the former case and (d —2)/2 in the latter. To get
a resolution, fixing the functions «; (<73) and A; (q}) to be con-
stants and V; (¢) = 0in (12) is necessary of course but cannot
save the situation. This discrepancy can be attributed to the
fact that S-duality transformations act on the full spacetime
defined by the general metric G wv> Whereas for T-duality
transformations one must first assume the compactification
ansatz. These two are very different symmetries and the dila-
ton simply becomes overworked especially in the absence
of help from “integrating by parts and ignoring the surface
terms” strategies. One can show that using two dilaton fields,
one responsible for T-duality and one for S-duality, does not
work either; nor contemplating a workaround by the 3-form
field of string theory will help, since it cannot produce a
laplacian of the dilaton, to compensate for the mismatch.

Furthermore this is not the whole issue. Even we could
have found an algebraic TS-self-dual combination of fields
whichis linear in the curvature we cannot use its powers as the
form of S-duality we found for theories that involve higher
powers of the curvature needs powers of the exponential of
the dilaton to compensate for the conformal factors arising
from the transformations and T-duality transformations will
mess these up. Thus we can state the following.

There are no both S- and T-self-dual categories of theories,
in the algebraic sense defined in this work, which are free of
Ostrogradski instabilities containing a single dilaton field and
incorporating higher powers of the scalar curvature.

However, we must remind the reader that for instance
relaxing the condition on the non-existence of Ostrogradski
instabilities may yield theories that involve higher powers of
curvature objects, not necessarily the Ricci scalar, and still
incorporate both T- and S-dualities.
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