
1 3

Eur Food Res Technol (2017) 243:2035–2042
DOI 10.1007/s00217-017-2909-z

ORIGINAL PAPER

Discriminative capacities of infrared spectroscopy and e‑nose 
on Turkish olive oils

Olusola Samuel Jolayemi1 · Figen Tokatli1 · Susanna Buratti2 · Cristina Alamprese2 

Received: 16 March 2017 / Accepted: 6 May 2017 / Published online: 23 May 2017 
© Springer-Verlag Berlin Heidelberg 2017

Introduction

The non-ionizing regions of electromagnetic spectrum are 
capable of creating useful information when interact with 
biological materials. Mid- (MIR) and near- (NIR) infra-
red have been the most applied regions, especially when 
clear distinction is needed between structurally similar 
food matrices [1]. Olive oil is a food material that does not 
provide distinct visual differences regardless of its differ-
ent olive origin, variety, harvest time, or quality properties. 
Elaborate chemical analyses are usually needed to suffi-
ciently elucidate all the intrinsic differences in olive oils. 
However, olive oil, like all the other lipid-based foods, 
maintains a specific fingerprint pattern under MIR and NIR 
spectroscopy. Any form of modulation in this pattern pro-
vides hints that could be used in olive oil characterization 
[2]. Similarly, odor-responsive non-specific electronic nose 
(e-nose) sensors have found effective usage in the field of 
olive oil [3–5]. Apart from serving as an effective mimicker 
of human olfactory system, e-nose is a waste-free and rapid 
analytical technique like spectroscopy. With the advent of 
these techniques, expensive, technically demanding, and 
time-consuming classical chemical analyses of olive oil 
might be reduced.

Main areas of olive cultivation and olive oil production 
are in the west coast of Aegean region in Turkey. The most 
economically significant and highly distributed varieties 
include Ayvalik, Memecik, and Erkence. The oils obtained, 
especially from Ayvalik and Memecik, have some degrees of 
overlap in chemical characteristics, but also many differences 
[6]. Extensive chemical evaluations are required to establish 
these differences with absolute clarity. This is owing to the 
fact that oils obtained from the same geographical location 
present some difficulties during classification [7]. There are 
various attempts to confirm varietal, geographical origin, and 
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harvest season of olive oils using different chemical analyses 
or combination of methods. Some examples include the use 
of gas chromatography (GC), nuclear magnetic resonance 
(NMR), high-performance liquid chromatography (HPLC), 
electrophoresis, and differential scanning calorimetry (DSC) 
[8–12]. These studies have largely been successful, but the 
amount of time, energy, and resources invested on these ana-
lytical methods make them infeasible for online process mon-
itoring and quick decision making.

In reality, consumers basically rely on physical means of 
assessing olive oil before making a purchase. Color, appear-
ance, and labels are the only observable means for consumers 
to make the right choice. Adulteration, misrepresentation, and 
mislabeling of olive oils have become global phenomena and 
these have dwindled the confidence of consumers. However, 
it is almost impossible to have a single analytical method that 
can unequivocally determine the varietal, geographical, and 
even harvest time differences in olive oil at the same time. 
Oils of different varieties may still be wrongly classified if 
some of their chemical properties overlap. Therefore, atten-
tions have shifted toward more rapid, simple, cost-effective 
spectroscopic, and electronic sensing methods. There are 
reports about classification of olive oils with respect to sen-
sory qualities, varietal differences and geographical origins 
using MIR spectroscopy [13–15]. In the study of Inarejos-
García et al. [16], NIR spectroscopy was applied to classify 
olive oils of different varieties and sensory properties. Appli-
cation of e-nose in olive oil discrimination also cuts across 
sensorial, varietal, and geographical differences with reason-
able level of success [17–19].

There are relatively low numbers of reports on the com-
bined application of these methods in extra virgin olive oil 
classification. Sinelli et al. [20] classified extra virgin olive 
oils using NIR-MIR data fusion, while Forina et al. [21] and 
Oliveri et al. [22] combined NIR, UV, and e-nose to evaluate 
specific monovarietal extra virgin olive oils. Borràs et al. [23] 
used the spectroscopic data from different sources to predict 
the sensory state of olive oils. So far, there are no reports that 
combined or compared the performances of NIR, MIR, and 
e-nose techniques on the classification of olive oils produced 
in the Aegean coast of Turkey. Thus, this study aims at deter-
mining and comparing the discriminative abilities of NIR, 
MIR, and e-nose on different varieties of Turkish olive oil. 
The proposed methodology can provide a basis for effective 
and rapid methods for the differentiation of olive oils.

Materials and methods

Olive oil samples

Sixty-three olive oil samples belonging to Ayvalik (A), 
Memecik (M), and Erkence (E) olive varieties grown 

in west coast of Turkey, obtained between 2012 and 
2015 harvest years, were analyzed (Table 1). Ayvalik, 
Memecik, and Erkence oils were obtained from Edre-
mit Bay area, Aydin, and Karaburun peninsula of Izmir, 
respectively. The defined growing and production areas 
are nearby and relatively small geographies with respect 
to whole Aegean coastal line; however, they are the main 
olive oil producing and exporting regions of Turkey. 
Olive oil samples were kept in dark glass containers and 
head spaces were flushed with nitrogen prior to refriger-
ated storage (4 °C).

FT‑NIR spectroscopy

Fourier transform (FT)-NIR spectra of the oil samples 
were collected in transmission mode with a FT-NIR spec-
trometer (MPA, Bruker Optics, Ettlingen, Germany), using 
disposable vials of 8 mm path length. A spectral range 
of 12,500–4000 cm−1 was used, with 8 cm−1 resolution, 
10 kHz scanner velocity, and 16 scans for both background 
and sample. Spectra were taken in duplicate, at room tem-
perature. Instrument control was performed by the OPUS 
software (v. 6.5 Bruker Optics, Ettlingen, Germany).

FT‑IR spectroscopy

A FT-IR spectrometer (VERTEX 70, Bruker Optics, 
Ettlingen, Germany), with an incorporated deuterated tri-
glycine sulphate (DTGS) detector, was used in the col-
lection of FT-IR data over the range 4000–700 cm−1. The 
operational conditions of the instrument were: 16 cm−1 
resolution; 7.5 kHz scanner velocity; 32 scans for both 
background and sample; room temperature. The sam-
ples were positioned on an Attenuated Total Reflectance 
(ATR) germanium crystal with multiple reflections and 
measurements were replicated twice. Instrument control 
and data acquisition were carried out using the Opus soft-
ware (v. 6.5, Bruker Optics, Ettlingen, Germany).

E‑nose data acquisition

The aroma fingerprints of olive oil samples were evaluated 
with the application of a Portable Electronic Nose, PEN2 
(Win Muster Air sense Analytics Inc., Schwerin, Germany). 
The system consists of a sampling/injection compartment, 

Table 1  Olive oil samples of 2012–2015 harvest years

Variety 2012 2014 2015 Total

Ayvalik (A) 18 4 5 27

Memecik (M) 18 6 24

Erkence (E) 12 12
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a sensors-embedded detector unit, and a pattern recognition 
analytical software (Win Muster v.1.6) for data acquisition. 
There are ten metal oxide semiconductors (MOS) sensors 
available in the system. The sensors are identified as: W1C 
(aromatic), W5S (broad-range), W3C (aromatic), W6S 
(hydrogen), W5C (aromatic-aliphatic), W1S (Sulphur-
organic), W2S (broad-alcohol), W2W (Sulphur-chloride), 
and W3S (methane-aliphatic) [24]. The numerical signal 
outputs of the system are expressed as resistivity Ω (ohms). 
The oil sample (2 g) is placed in 30 mL  Pyrex® vials fitted 
with pierceable Silicon/Teflon disk in the cap. After 10 min 
equilibration at 40 °C, the sample headspace is pumped 
over the sensor surfaces for 60 s (injection time) at a flow 
rate of 300 mL/min, and during this time, the sensor signals 
are recorded. After sample analysis, the system is purged 
for 180 s with filtered air prior to the next sample injection 
to allow reestablishment of the instrument baseline. The 
sensor drift was evaluated using a standard solution of 1% 
ethanol included in each measurement cycle. Each olive oil 
sample was analyzed in duplicate.

Data analysis

In the multivariate classification models, the following data 
matrices were used, each containing 63 oil samples:

(a) NIR data matrix included the range 9000–4000 cm−1 
that constituted the most informative segments of the 
spectrum.

(b) MIR (4000–700 cm−1) and reduced MIR spectra 
(3090–2750 and 1874–700 cm−1) were considered sep-
arately.

(c) NIR-MIR matrix consisted of concatenated spectra 
created by merging NIR and MIR reduced data.

(d) E-nose data matrix composed of ten variables (MOS 
sensors).

The replicated spectra were averaged prior to the multivar-
iate analysis. All spectra matrices were subjected to standard 
normal variate (SNV) in conjunction with the second-order 
derivative (2der) filtering techniques. The selection of these 
methods was largely due to the nature of the data and prior 
experience on their abilities to successfully separate light 
scattering from light absorbance. SNV is a simple row-ori-
ented spectra transforming algorithm effective for scattering 
correction using centering and scaling of individual spectra. 
This helps to minimize spectra matrix dimensionality effects 
by normalizing the variables to the same scale [25]. The sec-
ond-order derivative is calculated by obtaining the differences 
between two consecutive points, by smoothing, specified 
gap distance, or Savitzky–Golay polynomial fitting with 15 
points. This procedure improves the signal-to-noise ratio by 
the removal of random noise [26].

PCA (Principal Component Analysis) was applied as a 
qualitative inspection tool to visualize possible patterns, clus-
ters, or trends among the samples. This usually precedes any 
form of class modelling or discriminant analysis that might 
come next. PCA applies mathematical principles to trans-
form a number of mutually correlated variables into smaller 
uncorrelated ones called principal components (PC). This is 
achieved using a vector space method to reduce data dimen-
sionality [27].

As supervised data classification technique, OPLS-DA 
(Orthogonal Projection to Latent Structure-Discriminant 
Analysis) was applied to classify the samples on the basis 
of varietal differences. OPLS-DA evaluates the relation-
ship between two data matrices (X and Y), where Y is a 
user-created class information for the oil samples defined 
as follows: class 1 (Ayvalik), class 2 (Memecik), and class 
3 (Erkence) for the varietal differences. OPLS-DA modi-
fies the classical partial least square model with its abil-
ity to separately categorize systematic variation in the X 
data matrix into two distinct parts: a predictive part corre-
lated to Y variable (class information in this case) and an 
orthogonal part uncorrelated to Y [28]. OPLS-DA models 
were validated using both a cross validation procedure with 
seven cancellation groups (five CV) and an external test set 
composed of 23 spectra (17 A, 15 M, and 8 E). The exter-
nal validation set was randomly selected and proportionate 
to the total number of observations in each varietal class. 
Details of the computed statistical outputs were reported in 
terms of number of PCs used (PC_p + PC_o, where p and 
o stand for predictive and orthogonal components, respec-
tively), coefficients of determination for calibration (R2

cal
), 

cross validation (R2

CV
), and percentage of correctly classi-

fied samples (confusion matrices) for both calibration and 
prediction models.

All the statistical analyses were carried out by SIMCA 
software (v. 13, Umetrics, Umea, Sweden) and model overfit-
ting was avoided by using autofit (automatic fitting) embed-
ded in the software.

Results and discussion

Spectra and e‑nose data interpretation

Representative FT-IR and FT-NIR spectra as well as 
e-nose signals of the olive oils are presented in Fig. 1. 
Each significant FT-IR spectral band (Fig. 1a) repre-
sents vibrational response of the chemical composi-
tion of the oil at molecular level. The two main bands 
(3006–2854 and 1746–1654 cm−1) as well as the fin-
gerprint region (1464–983 cm−1) represent a number of 
vibrational modes depending on the predominant and 
most responsive functional groups of that region. A small 
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Fig. 1  Representative FT-IR (a), FT-NIR (b), SNV+2der pretreated FT-NIR-IR spectra (c), and e-nose signals (d) of olive oil samples

Fig. 2  Score plots of PCA models of FT-IR (a), FT-NIR (b), combined FT-NIR-IR (c), and e-nose (d) data sets
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shoulder-like band at 3006 cm−1 is due to the stretching 
vibration of cis double-bond, as expected in any natural 
edible oil. Asymmetric and symmetric stretching vibra-
tion of  CH2 aliphatic functional group is responsible 
for the bands at 2924 and 2854 cm−1. Oils are esters of 
unsaturated fatty acids and the bands representing ester 
carbonyl functional group are found at 1746 cm−1, while 
the weak band at 1654 cm−1 is associated with C=C 
vibration. Bending and rocking vibrations are the com-
mon modes of vibration within the fingerprint regions 
(1464–983 cm−1) [29]. There are four major informative 
regions in the FT-NIR spectra (Fig. 1b). The range 4800–
4500 cm−1 indicates a combined CH stretching vibration 
in conjunction with other vibrational modes. Two con-
joined peaks within 6000–5300 cm−1 represent methyl, 
methylene, and ethylene first overtone stretching vibra-
tion. Variation in the frequency of this region is an index 
of oxidative quality of olive oil. In 7400–6250 cm−1 
region, there are CH stretching vibrations. Finally, 8700–
8100 cm−1 band is the second overtone of CH stretching 
vibration of methyl; methylene and ethylene interrupted; 
or conjugated groups [30].

Three e-nose sensors (W5S, W1S and W2S) are relevant 
in the discrimination of oil samples (Fig. 1d). These sensors 
are responsive to broad-range, broad-methane and broad-
alcohol flavor compounds, respectively. Other important 
groups of sensors that enhance the discriminant ability of 
e-nose data matrix are aromatic-based compounds as W1C, 
W3C, and W5C and sulphur-organic compounds as W1W 
and W2W [31].

PCA and OPLS‑DA results

PCA score plots of the four data matrices, revealing pat-
terns of projection of observations, are shown in Fig. 2. 
The common observation to all models is the sufficiency of 
PCA to clearly distinguish oils of Erkence variety, whereas 
there are varying degrees of overlap between Ayvalik and 
Memecik olive oil samples. PCA model of FT-IR data with 
ten PCs explained 57% of the total variance with clear sep-
aration of E olive oils. A similar output was obtained with 
FT-NIR spectra, where the first seven PCs explained 83% 
of the data variation. FT-NIR sparingly showed some dis-
crepancy between M and A oils compared to inseparable 

Table 2  OPLS-DA calibration and validation model results: correct classification rates of the oil samples

A Ayvalik, M Memecik, E Erkence, %CC percent correct classification rate

Model Member MIR NIR

A M E % CC A M E % CC

Calibration

 A 17 16 1 0 94 17 0 0 100

 M 15 0 15 0 100 0 15 0 100

 E 8 0 0 8 100 0 0 8 100

 Average 40 16 16 8 98 17 15 8 100

Validation

 A 10 9 1 0 90 9 1 0 90

 M 9 0 9 0 100 0 9 0 100

 E 4 0 0 4 100 0 0 4 100

 Average 23 9 10 4 97 9 10 4 97

Model Member NIR+MIR E-nose

A M E % CC A M E % CC

Calibration

 A 17 17 0 0 100 16 0 1 94

 M 15 0 15 0 100 3 12 0 80

 E 8 0 0 8 100 0 0 8 100

 Average 40 17 15 8 100 19 12 9 91

Validation

 A 10 10 0 0 100 9 0 1 90

 M 9 0 8 1 89 0 5 4 56

 E 4 0 0 4 100 0 0 4 100

 Average 23 10 8 5 96 9 5 9 82
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cluster in FT-IR model. The model of combined FT-NIR-IR 
spectra was very similar to the one obtained with FT-NIR 
spectra alone, explaining 81% total variance using six PCs. 
This is similar to the result of PCA model of concatenated 
NIR and MIR spectra reported in literature [32]. Alamprese 
et al. [33] observed NIR region as the most significant part 
in fused signals evaluation for meat species discrimination. 
E-nose data showed somewhat different projection with E 
oils partially grouped in the positive part of PC1. In spite 
of PCA model with a good explained variance (98%, five 
PCs), e-nose data failed to provide a distinct separation 
among the samples unlike the spectral models. The failure 
clustering of Ayvalik and Memecik oils can be explained 
by the close threshold response in their volatiles.

OPLS‑DA results

In Tables 2 and 3, the varietal classification rates (as per-
centages), number of PCs used, and coefficients of deter-
mination of OPLS-DA models are given for FT-IR and FT-
NIR spectra (separately or combined), as well as for e-nose 
data. The varietal discrimination (A, M and E) with FT-IR 
and FT-NIR spectra shows at least 90% correct classifica-
tion in each class for both calibration and external valida-
tion models. In calibration, FT-NIR spectra gave 100% 
correct classification of samples for each varietal class, 
compared to 94% of Ayvalik variety obtained with FT-IR 
spectra, with one misclassified sample. Similar observa-
tions exist in literature, where NIR was found to give bet-
ter overall model outcomes compared to MIR [34]. In any 
case, results obtained in prediction are equal for the two 
spectroscopic techniques, with A variety being the more 
difficult to fully discriminate. A common observation to 
both calibration and prediction models of all the data matri-
ces is that there was no misclassification of oils of Erk-
ence variety. This is consistent with the previous observa-
tions about PCA models. In spite of the unequal number 
of observations in E class compare to A and M, FT-NIR, 
FT-IR, combined FT-NIR-IR spectra and e-nose data were 

Table 3  Individual and fused matrix OPLS-DA calibration model 
parameters

OPLS-DA models PC R
2

cal
R
2

CV

FT-IR_SNV+2der 2 + 1 0.86 0.40

FT-NIR_SNV+2der 2 + 3 0.83 0.48

E-nose 2 + 3 0.61 0.48

FT-NIR-IR_SNV+2der 2 + 6 0.95 0.67

Fig. 3  Score plots of OPLS-DA models: FT-IR (a), FT-NIR (b), and combined FT-NIR-IR (c) spectra
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consistent in correctly differentiating E samples. Coeffi-
cients of determination were relatively similar in both FT-
NIR and FT-IR models (Table 3), whereas they were higher 
for the combined FT-NIR-IR spectra. Actually, as it can be 
seen in Fig. 3, the combination of FT-NIR and FT-IR spec-
tra resulted in a more distinctive class separation compared 
to the models of FT-NIR and FT-IR spectra separately. 
Even though the results of combined spectra are the same 
as those of FT-NIR in terms of correct classification in 
both calibration, cross validation, and prediction, it can be 
resolved that modelling the most informative details com-
ing from both FT-NIR and FT-IR spectroscopy improves 
the separation of different olive oils, as also stated in the 
work of Borràs et al. [15].

Satisfactory class modelling and prediction outcomes 
were obtained from OPLS-DA models of e-nose data 
(Table 2). In calibration, correct classification rates for 
A (94%) and E (100%) samples were similar to those 
obtained with FT-IR spectra. In prediction, better results 
were obtained for A (90%) and E (100%) compared to M 
(56%). This observation further confirms the quality char-
acteristics of the oil samples. Considering the e-nose score 
plot (Fig. 4a), Ayvalik olive oils are localized at the lower 
right corner of the control ellipse with slight overlap with 

Memecik and Erkence varieties near the origin. The vari-
ables corresponding to the observation projection on the 
score plane are shown in the loading plot (Fig. 4b). W1S, 
W2S, and W3S sensors, which are specific for partially aro-
matic, alcoholic, methane, and sulphur-organic compounds, 
are largely responsible for the discrimination of Ayvalik 
olive oils. Similarly, W6S, W2W, and W5S sensors, which 
are sensitive to hydrogen, sulphur-organic compounds, and 
broad-range volatiles seem significant for the characteriza-
tion of Memecik oil samples located in the first quadrant of 
the score plot. Erkence samples located in the negative part 
of PC1 (Fig. 4a) are discriminated by the response of W1C, 
W3C, and W5C sensors sensitive to aromatic compounds.

The capability of OPLS-DA model of e-nose was com-
paratively lower than those of FT-NIR and FT-IR spectra. 
However, it should be added that e-nose results are impor-
tant in the consideration of sensory attributes of olive oils, 
which are equally important to the chemical characteristics.

Conclusion

The results of varietal classification of Turkish olive oils 
with rapid and non-destructive spectroscopic (FT-IR and 
FT-NIR) and e-nose techniques combined with chemomet-
ric analysis are considerably satisfactory. The best perfor-
mances in terms of correct classification of samples were 
observed for FT-NIR spectra and combined FT-IR-NIR 
spectra. Discriminative capacity of e-nose is comparatively 
low, but could be a useful substitute or complimentary step 
to human subjective method in sensory analysis. Applica-
tions of these techniques are recommended for rapid inex-
pensive, non-specific, and waste-free authentication of 
olive oils, which can span through varietal, harvest time, 
geographical origin, and quality differences.
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