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ABSTRACT 

 

DESIGN OF SINGLE DEGREE-OF-FREEDOM PLANAR 

LINKAGES WITH ANTIPARALLELOGRAM LOOPS 

USING LOOP ASSEMBLY METHOD 

 

 This research deals with the methodical derivation of single degree-of-freedom 

(dof) deployable and transformable linkages with antiparallelogram loops. The study 

starts with the review of literature on the mechanisms used in planar deployable 

structures, scissor mechanisms in particular. Scissor mechanisms have been subject of 

many research, including those that examine them in term of the loops formed. In this 

research, a summary of the loops observed in previous researches are mentioned. The 

simplest single-dof linkage is the four-bar linkage. Its loop geometry is quadrilateral. The 

loops defined formerly in the deployable structures literature are compared to the 

geometries classified under quadrilaterals and seen that use of antiparallelogram loops 

are yet to be discovered. While forming novel linkages with antiparallelogram loops, the 

loop assembly method that Hoberman utilized during his discovery of angulated scissor 

linkages is used. In order to lay out alternatives of loop arraying options, pattern 

generating methods are examined. Frieze group operations are found to be most suitable. 

Using those, loop assembly variations are formed. Later, links formed by these arrays are 

determined and linkages are formed, modelled and simulated using Solidworks®. Among 

many alternatives, five of them are chosen due to their novelties in specific aspects. In 

conclusion findings are compared to the previous research in the literature. Potentials of 

the novel linkages in terms of architecture are discussed and further research subjects are 

offered. 
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ÖZET 
 

 

DEVRE BİRLEŞTİRME YÖNTEMİ KULLANILARAK TERS 

PARALELKENAR DEVRELER İLE TEK SERBESTLİK DERECELİ 

DÜZLEMSEL MEKANİZMALARIN TASARIMI 

 

 Bu araştırma ters paralelkenar devreli tek serbestlik dereceli 

katlanabilir/dönüştürülebilir yapıların metodik eldesi üzerinedir. Çalışma literatürdeki 

düzlemsel katlanabilir yapılarda kullanılan mekanizmaların ve özellikle de makas 

mekanizmaların bir incelemesi ile başlar. Makas mekanizmalar, oluşturdukları devre 

tipleri açısından da çalışılmış pek çok araştırmaya konu olmuştur. Bu araştırmada da 

önceki çalışmalarda incelenmiş devreler kısaca anlatılmıştır. Tek serbestlik dereceli bir 

dört-çubuk mekanizması devresinin geometrisi dörtgendir. Katlanabilir yapılar 

literatüründe daha önce belirlenmiş olan devreler dörtgen olarak tanımlanmış geometrik 

formlar ile kıyaslanmış ve ters paralelkenarların devre tipi olarak henüz keşfedilmediği 

görülmüştür. Ters paralelkenarlar kullanılarak yeni mekanizmalar oluşturulurken, 

Hoberman’ın açılı makas elemanları buluşu sırasında kullandığı devre birleştirme metodu 

kullanılmıştır. Tüm devre türetme tiplerinin bir dökümünü elde etmek için, patern 

oluşturma metotları incelenmiştir. Bunların arasında Frieze grubu işlemleri en uygun 

bulunmuştur. Bu işlemler kullanılarak devre türetme varyasyonları oluşturulmuştur. Daha 

sonra her türevin uzuvları çizilmiş ve mekanizmalar oluşturularak modellenmiş ve 

Solidworks® kullanılarak benzetimleri gerçekleştirilmiştir. Elde edilen pek çok alternatif 

mekanizma arasından belli yönlerden yenilikleri olan beş tanesi seçilerek detaylı olarak 

incelenmiştir. Sonuç bölümünde bulgular önceki çalışmalar ile karşılaştırılmıştır. Yeni 

mekanizmaların mimari alanındaki potansiyelleri tartışılmış ve ileride yapılabilecek 

araştırmalar için önerilerde bulunulmuştur. 
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CHAPTER 1  

 

INTRODUCTION 

 

 

1.1. Definition of the Study 

 

 Even though the first examples of deployable structures are quite ancient, as a 

research field at the intersection of architecture, mechanical engineering, civil 

engineering and mathematics, deployable structures are a recent subject. Their 

architectural applications offer novel solutions to the most significant problems of present 

times, such as the ever-changing needs of occupants, depletion of resources and 

environmental considerations. As an architect to be able to generate sustainable and 

responsive built environments, understanding and utilizing the potential of the motion of 

such structures is crucial. 

 Scissor mechanisms are primary choice to construct deployable structures. They 

attract a substantial attention, due to their capacity of motion, the simplicity of their 

elements and stowing efficiency. This entails many research to be conducted on the 

subject. Scissor mechanisms used in large-scale architectural designs were first 

introduced by Spanish architect Emilio Perez Piñero in the early 1960s and many 

researchers followed his lead from then on. Despite the subject has been extensively 

studies, it is still possible to find new approaches to the design. 

 Common approach of designing scissor linkages is focusing on the scissor 

elements and treating them as modules to create linkages, as Escrig (1985), Glassner 

(1996), Gantes et al. (1989) and You and Pellegrino (1997) did.  

 As an alternative, a loop formed by two adjacent scissor element pair can be 

considered as a module. Previous works on the translational and polar scissor units laid 

out parallelogram, rhombus, kite and dart loops. It was Chuck Hoberman, an artist and a 

mechanical engineer, who first utilized this approach. In his patented work on reversibly 

expandable doubly-curved truss structures Hoberman (1990), first rhombus loops were 

placed along an arbitrary polygon and then the edges of these loops are used to create the 

links. As a result of his work, Hoberman came up with angulated scissor unit, which was 

a great contribution to the field. Following Hoberman, Liao and Li (2005) and Kiper and 
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Söylemez (2010) used rhombus loops for their works on loop assembly method. In her 

work, Yar et al. (2017) analyzed scissor linkages and the loops forming between them. 

Using kite loops and a derivative of it, dart loops, she formed a single degree-of-freedom 

(DoF) linkage that can transform between concave and convex forms. 

 In this study first, a literature review on scissor structures is presented. It has been 

observed that according to the location of scissor hinge, there are three main groups of 

scissor units; translational, polar and angulated scissor units. Later, loop types of these 

scissor structures are examined. A loop is formed when two scissor units are connected 

at their end points. In a single-DoF four-bar linkage, the loop is a quadrilateral. 

Quadrilaterals are named according to their geometric constraints such as equal edges and 

parallelisms. After laying out quadrilateral types, loops formed between each type of 

scissor unit is examined. It is revealed that there are eight quadrilateral types defined in 

the literature; parallelogram, rhombus and kite loops with their special cases rectangle, 

square, dart loops and also convex and concave loops without any special geometric 

constraint. It has been seen that there were no loop definitions using complex 

quadrilaterals. A complex quadrilateral is composed of four edges, two of which are 

nonadjacent edges crossing each other. In this research, a more geometrically constraint 

complex quadrilateral, the antiparallelogram, is used to form planar linkages with single 

DoF. 

 An antiparallelogram loop has two equal nonadjacent short edges and two equal 

nonadjacent long edges which cross each other. At an arbitrary configuration it has a 

symmetry axis (and as a special case two orthogonal symmetry axes when short edges are 

parallel). In this research, loop assembly method is used to form linkages with 

antiparallelogram loops. 

 In the literature, a systematical method to formulate loop arrays was not observed. 

Therefore a mathematical approach called “Symmetry Operations” was analyzed to 

devise a method. Since this research is focusing only on planar loop chains, Frieze Groups 

were compatible with the work at hand. After introducing Frieze Group symmetry 

operations, arrays using antiparallelogram loops have been formed. Using each array, 

linkages were defined.  

 In order to achieve single degree-of-freedom linkages, two links from each 

adjacent loop should be combined to form two common links. It has been observed that 

there was most commonly more than one possible configuration of links for each array, 

concluding over a hundred alternatives outlined throughout the study. All defined 
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configurations were later modelled in Solidworks® to observe motion. Few of the 

alternatives laid interesting results due to their motion capacity. Those highlights wider 

examined and explained in proceeding chapters of the research. 

 

1.2. Scope and Objectives of the Study 

 

 The aim of this thesis is to form single DoF linkages with antiparallelogram loops 

using the loop assembly method. In this process, primarily, a literature review on 

deployable scissor structures is conducted. The review is followed by a profound 

examination of the loops of the deployable structures. 

 Subsequently, the loop assembly method is explained. In order to produce 

assemblies with antiparallelogram loops, as a methodical way of loop multiplication, 

Frieze Group symmetry operations are proposed. 

 After explaining Frieze Group symmetry operations in detail, assembly variations 

using the method are laid out. Then, the links of the assemblies are defined to form 

alternative single degree-of-freedom mechanisms. 

 As the last step, novel mechanisms were chosen to be explained in detail. 

 

1.3. Methodology  

 

 A literature review was the key to understand the basic geometry of scissor 

structures and loop formations. After the systematic derivation of loop arrays utilizing 

Frieze Groups of symmetry operations, two-dimensional drawing software packages are 

used to visualize the linkages and Solidworks® is used to simulate their motions. 

Microsoft Excel is used to create parametric calculations and two dimensional graphics 

that visualize the position of the joints throughout the motion. 

 

1.4. Significance of the Study and Contributions 

 

 This study presents a novel methodology to form antiparallelogram loop arrays in 

order to form single degree-of-freedom linkages using the loop assembly method. As the 

outcome of the method, there are five novel linkages, four of which are able to transform 

and one able to deploy in a ring formation. 
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1.5. Organization of Thesis 

 

 This thesis is composed of six chapters: 

 In Chapter 1, definition of the study, scope and objectives, methodology, 

significance of the study and contributions and outline of the thesis are mentioned. 

 In Chapter 2, an introduction to the deployable scissor mechanisms and relevant 

studies in the literature is made. 

 Chapter 3 explains the planar scissor linkages, kinematic properties of their units 

in detail. The quadrilateral geometry is introduced and the loop types formed in these 

linkages are examined in correspondence with quadrilaterals yielding the lack of 

antiparallelograms loops in linkages used in modular deployable structures. Later the loop 

assembly method and properties of antiparallelogram as a loop are explained. 

 In Chapter 4 symmetry operations are explored. Frieze Group symmetries are 

examined. Then their applications with antiparallelogram loops are produced. After that, 

while producing linkages from loop arrays, the link formations are explained. 

 Chapter 5 consists of detailed explanations of five novel linkages among the 

results. 

 In Chapter 6 all the findings from previous chapters are summarized and 

contribution of the research is expressed. 
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CHAPTER 2  

 

REVIEW OF LITERATURE 

 

2.1. Deployable Pantograph Structures 

 

  “Deployable Structure” refers to mechanisms that can transform between a 

compact stowed and a deployed functional configuration (Merchan and Henrique, 1987). 

They are also known as erectable, expandable, extendible, developable or unfurlable 

structures (Jensen, 2004). As a field of research, deployable structures are recognized as 

a subject around 1960’s, however, the concept of transformable objects and spaces is as 

old as civilization itself. It is possible to find various applications: Hunter chairs and 

umbrellas in Egyptian civilization, Mongolian yurts, velum of Roman Coliseum and 

folding chairs… etc. In modern age, applications of deployable structures can be seen in 

many fields such as aerospace industry as space antennas and masts (Wang et al., 2015; 

Zheng and Chen, 2015; Qi et al., 2016), in architecture as retractable roofs (Mao and Luo, 

2008; Jiang and Wang, 2010; Cai et al., 2016) and kinetic building skins (Pesenti et al., 

2015), and in engineering as bridges (Ario et al., 2013; Lederman et al., 2014; Bouleau 

and Guscetti, 2016) and lifts. 

 Hanaor and Levy (2001) categorized deployable structures according to their 

structural-morphological properties (Figure 2.1.1). Focus of the review of literature in 

this thesis report is on the pantographic structures with rigid links and without cables as 

indicated with red frame in Figure 2.1.1. Pantographic elements, also called scissor-like 

elements (SLEs) are made up of two straight bars connected with an intermediate hinge, 

which is a revolute joint that allows the bars to pivot about an axis perpendicular to the 

common plane of the bars. If these units are connected at their end nodes, a two-

dimensional deployable linkage is achieved. The position of the intermediate hinge 

together with the shape of the bars lead to three different scissor units: translational, polar 

and angulated units. 
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Figure 2.1.1. Deployable structures classification chart; numerals indicate references 

given in the paper (Source: Hanaor and Levy, 2001) 

 

 It was Emilio Pérez Piñero who first published about the use of deployable 

structures in architecture. His movable theater (Figure 2.1.2) was composed of scissor-

like elements (SLEs) and was made up of rigid bars and cables. His application was not 
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stable after deployment and additional cables for stabilization were needed. Later on he 

developed his designs with deployable bar structures (Pinero, 1961; Pinero, 1961). 

 

 

Figure 2.1.2 Movable theatre by Piñero 

(Source: Cook, 1967) 

 

 Piñero’s latter works such as pavilions, retractable domes and temporary 

enclosure were developed using SLEs as well (Pinero, 1962; Perez, 1965). The foldable 

reticular dome he designed was made up of seven modules expanding from compact 

bundles (Figure 2.1.3). During the erection process, modules were expanded and stiffened 

on the ground later to be lifted up and locked together (Belda, 2013). However, the system 

was no longer deployable after the process.  

 

 

Figure 2.1.3. Foldable reticular dome 

 (Source: © Fundación Emilio Pérez Piñero, 2017) 

 

 Another pioneer in the field, Félix Escrig, worked extensively on deployable bar 

structures and laid out the geometric and deployability conditions of SLEs. He also 

studied the relation between the elements and the span of the structure (Escrig, 1984; 

Escrig, 1985). His works include generating three-dimensional structures using planar 

translational SLEs (Figure 2.1.4) in various directions to form grids (Figure 2.1.5). 
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Figure 2.1.4. Translational scissor unit 

 

 

Figure 2.1.5. Two-way grid composed of translational scissor units 

 (Source: Escrig, 1985) 

 

 With the unit formed by changing the location of the intermediate hinge of SLEs, 

which is called the polar unit (Figure 2.1.6) Escrig obtained curved grids (Figure 2.1.7). 

Polar units deploy along an arc, giving the opportunity to form curved surfaces that can 

be stowed in a compact form. 

 

 
Figure 2.1.6. Polar Scissor Unit 
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Figure 2.1.7. Expandable space-frame structure 

(Source: Escrig, 1985) 

 

 Escrig also developed spherical grid structures using two-way and three-way 

scissors (Escrig and Valcarcel, 1986; Escrig and Valcarcel, 1987). Some other works by 

him and together with Valcárcel are spherical and geodesic structures, an expandable 

umbrella, and deployable polyhedra and compactly folded cylinder (Escrig and Valcarcel, 

1986; Escrig and Valcarcel, 1993; Escrig, 1996).  

 One well-known real-life application by Escrig (1996) is the roof structure of the 

swimming pool of San Pablo Sports Centre in Seville  (Figure 2.1.8). The 30m by 60m 

roof structure consists of two identical rhomboid spherical scissor grids covered with 

fabric. Grids are made up of equal quadrilateral SLEs. 

  

 

Figure 2.1.8. Swimming pool in Seville 

 (Source: Kassabian et al., 1999) 

 

 Langbecker (1999) developed the foldability conditions of SLEs. He worked on 

the deployability and kinematics of translational, polar and angulated units. Using curved 

translational scissor units (De Temmerman, 2007) (Figure 2.1.9) he formed barrel vaults 
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(Langbecker and Albermani, 2001) and doubly-curved synclastic and anticlastic 

structures (Langbecker and Albermani, 2000) (Figure 2.1.10). 

 

 

Figure 2.1.9. Curved translational scissor unit 

 

 

Figure 2.1.10. Synclastic and anti-clastic structures 

 (Source: Langbecker & Albermani, 2000) 

 

 Although many researchers kept working on translational and polar scissors with 

straight bar links, in 1990 Chuck Hoberman discovered a third type of scissor link, the 

angulated link. The scissor pair he created was made up of two identical mirror symmetric 

angulated bars connected with a revolute joint at the kink point and the linkage he 

constructed expanded radially keeping a fixed center point (Figure 2.1.11).  
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Figure 2.1.11. Angulated scissor pair with identical links 

 

 Using the angulated scissors he developed many structures such as arches, domes 

and spheres; also some well-known structures such as his trademark toy sphere 

(Hoberman, 1990), Iris Dome at EXPO 2000 (Hoberman, 1991) and Hoberman Arch 

which was presented at 2002 Winter Olympics at Salt Lake City (Figure 2.1.12). 

 

 

Figure 2.1.12. Hoberman Sphere (up left), Expanding Geodesic Dome (up right), 

Hoberman Arch (down left), open and closed Iris Dome (down right) 

 (Source: Hoberman Assc. and Salt Lake Tribune webpages, 2017) 

 

 Hoberman’s angulated scissor unit was further examined in detail by You and 

Pellegrino (1997). They laid out the necessary geometric conditions of angulated scissors 

for radial deployment. They did not only worked on pairs of identical links but also 

different link pairs. They named the links they defined as generalized angulated elements 

(GAEs) (Figure 2.1.13). 
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Figure 2.1.13. Generalized angulated elements 

(Source: You and Pellegrino, 1997) 

 

 You and Pellegrino expanded their research forming rings of scissors and adding 

inner rings to achieve a structure that can radially close and retract like an iris. Their 

observations led them to form multi-angulated links which avoided complex joints and 

an excessive number of links (Figure 2.1.14).  
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Figure 2.1.14. Multi-angled ring structure developed by You and Pellegrino 

 (Source: Friedman, 2011) 

 

 Kassabian, You and Pellegrino (1999) developed a structure that rests on columns 

with pin joints (Figure 2.1.15).  They generated the dome form by projecting the hinges 

vertically on a sphrical surface. Although it had less complex joints, the structure was 

susceptible to wind effects due to its form in open configuration (Kovács and Tarnai, 

2004).  Kokawa took You and Pellegrino’s work one step further with his retractable 

dome structure by using non-parallel joint axes to form a deployable dome (Kokawa, 

2000). 

 

 

Figure 2.1.15. Retractable dome structure developed by You and Pellegrino 

 (Source: Deployable Structures Laboratory, 2017; Kovács & Tarnai, 2004) 

 

 Van Mele is another researcher who worked with angulated scissors. In his design 

to cover a tennis arena (Van Mele, 2008), he proposes a barrel vault made up of two 

angulated scissor arches carried by pin connected arches (Figure 2.1.16). The scissor 

arches are covered with a membrane and they are pinned to the spectator area at one end 

to form two halves of a barrel vault. 
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Figure 2.1.16 Deployable roof of a tennis hall by T. Van Mele 

(Source: Van Mele, 2008) 

 

 Rippmann and Sobek constructed curved structures using the scissor module with 

various intermediate hinge points they developed (Rippmann, 2007). By connecting the 

units at different intermediate hinge positions, they formed curved shapes as they desired. 

When a different shape was needed, the units simply dismantled and assembled according 

to the new form once more. 

 

 

Figure 2.1.17 Scissor unit with various intermediate hinge points 

(Source: Rippmann, 2007) 
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CHAPTER 3  

 

SCISSOR LINKAGES 

 

3.1. Planar Scissor Mechanisms 

 

 As the most basic scissor unit, translational units, are made up of two straight bars 

connected by an intermediate hinge located at the midpoint of the bars. There are two 

types of translational scissor units. Plane translational units (De Temmerman, 2007) are 

made up of two identical bars connected whereas the second type, the curved unit, is made 

up of different length bars, both connected at midpoint. The imaginary line connecting 

the ends of the bars are called unit lines (De Temmerman, 2007). Unit lines of a 

translational scissor unit are parallel and stay as such during deployment. In order to 

deploy a scissor mechanism the angle between the bars called the deployment angle, 

shown as 𝜃 in Figure 3.1.1, is changed. When two translational units are connected at 

their end nodes the resulting linkage has single DoF. The simplest translational unit with 

equal length bars is called a plane unit (Figure 3.1.1). Well-known lazy-thong mechanism 

is made up of such units. 

 

 

Figure 3.1.1. Deployment of translational scissor linkage composed of plane unit 

(Source: Redrawn from De Temmerman, 2007) 

 

  Another type is the curved translational unit, which has different length 

links that are also connected from their midpoints. Depending on the array of units, 

whether they are repeated (Figure 3.1.2a) or mirrored (Figure 3.1.2b) along a line, the 

deployment direction changes. If more than one type curved unit is used, it is possible to 

form deployable curved linkages (Figure 3.1.2c).  
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Figure 3.1.2. Deployment of translational scissor linkages composed of curved units 

(Source: Redrawn from De Temmerman, 2007) 

 

 In a polar unit, the unit lines passing through the end points intersect (Figure 

3.1.3). The unit deploys along an arc without a fixed center point and radius. As the 

linkage deploys, the angle between the unit lines increase and the intersection of the unit 

lines move closer to the unit. The radius of the arc defined by the linkage gets smaller as 

well. 
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Figure 3.1.3. Deployment of polar scissor linkage 

(Source: Redrawn from De Temmerman, 2007) 

 

 In 1990 Hoberman introduced the first angulated scissor elements. Unlike straight 

bars of translational and polar units, angulated elements have a kink and they are attached 

with an intermediate hinge at this point (Figure 3.1.4). The simplest angulated element is 

made up of two identical kinked bars with equal arm lengths. Unit lines of an angulated 

element intersect at a point which is also the center of the arc defined by the linkage. The 

linkage deploys radially and the angle between the unit lines keeps unchanged during the 

deployment. This is called the subtended angle, shown as γ in Figure 3.1.4. 

 

 

Figure 3.1.4. Deployment of angulated scissor linkage 

(Source: Redrawn from De Temmerman, 2007) 

 

 Although scissor mechanisms are commonly preferred to form deployable 

mechanisms, they can also form transformable mechanisms. In Yar et al. (2017) angulated 

elements are used to generate transformable mechanisms that can take concave or convex 

forms (Figure 3.1.5). A detailed research on the geometric principles and design methods 

of scissor structures was conducted by Maden et al. (2011). 
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Figure 3.1.5. Transformable angulated scissor linkage 

 

3.2. Loop Types of Planar Scissor Linkages 

 

 The simplest planar single DoF linkage consists of four bars on the same plane 

connected to each other at their end nodes with revolute joints forming a quadrilateral 

loop, also named as quadrangle or tetragon (Coxeter, 1969; Leonard et al., 2014). In 

Euclidian geometry the name of a quadrilateral depends on its geometric conditions such 

as edge lengths, inner angles and parallelism. In Figure 3.2.1 parallel edges are marked 

with black arrows while equal length edges are drawn with same colors and grey dashed 

lines refer to mirror axes. The quadrilateral names in Figure 3.2.1 are well established in 

the literature (for ex. see Usiskin et al., 2008). 
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Figure 3.2.1. Quadrilateral specifications 

 

 In a linkage of plane translational units, since the bars are identical, the loop 

formed in between units have four equal length edges and defined as a rhombus loop. 

Square is a special case of a rhombus where the inner angles are all right-angles. During 

deployment, the inner angles change and at some point, a square loop is also formed 

(Figure 3.2.2). 
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Figure 3.2.2. Loops of translational linkage composed of plane units 

 

 Using curved translational units, there are two possible deployment forms. First 

one is a rectilinear deployment. In this configuration same pairs of scissors are repeated 

to form the linkage, which has two different length bars connected at their midpoints. The 

loop formed has two of the short and two of the long edges. Since unit lines always stay 

parallel in translational scissor linkage, the parallel relation of the edges is never broken. 

With two pairs of parallel edges, the loop is a parallelogram or a rectangle at one point, 

as a special case of parallelogram (Figure 3.2.3).  

 

 

Figure 3.2.3 Curved translational linkages with parallelogram and rectangle loops  

 

 If the linkage is formed with a mirror symmetric repetition of the unit, then a loop 

with adjacent equal edge pairs is obtained. In this case, the loop is either a kite loop or a 

dart loop as a special case (Figure 3.2.4).  
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Figure 3.2.4 Curved translational linkages with kite and dart loops 

 

 When more than one variation of curved scissor units is used, the edge lengths of 

the loop are all different, resulting in a concave or convex quadrilateral without any 

special geometric conditions (Figure 3.2.5).  

 

 

Figure 3.2.5. Curved translational linkage composed of convex and concave loops 

 

 In a polar unit since intermediate hinge is not located in the middle, two sides of 

a bar of a polar unit has different lengths. In one possible assembly, the loops formed in 

between polar units have two adjacent short and two adjacent long edges without any 

parallelism. The geometry of the loop is a kite (Figure 3.2.6).  
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Figure 3.2.6. Polar scissor linkage with kite loops 

 

 Another possible assembly of polar scissor units is to multiply the unit with glide 

symmetry. This time, short side of one link connects to the long side of the next link. The 

loop is composed of non-adjacent short and long edges, forming a parallelogram (Figure 

3.2.7). 

 

 

Figure 3.2.7 Polar scissor linkage with parallelogram and rectangle loops 

 

 In 1990 Hoberman introduced the angulated scissor units that are composed of 

angulated bars connected at their kink point. Angulated units yield a variety of loops with 

various arm lengths and kink angles. The general unit Hoberman identified had two 

identical bars. Use of such units forms rhombus loops which also take a square form 

momentarily during deployment (Figure 3.2.8). 
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Figure 3.2.8. Angulated linkage with rhombus loops made up of Hoberman’s units 

 

 You and Pellegrino’s further research yielded generalized angulated elements 

(GAE’s). The types of GAE’s defined by them had different arm lengths and kink angles. 

Using their units, it is possible to form parallelogram and rectangle loops within a linkage 

(Figure 3.2.9). 

 

 

Figure 3.2.9. Angulated linkage with parallelogram loops made up of GAE’s 

 

 Using GAE’s it is also possible to create transformable linkages. Such a linkage 

is presented by Yar et al. (2017) where kite and dart loops are formed within the linkage 

(Figure 3.2.10). 

 

 

Figure 3.2.10. Angulated linkage with kite and dart loops made up of GAE’s 

 

 Although many forms of concave and convex quadrilateral loops can be observed 

within scissor linkages, complex quadrilaterals are not specified as a loop type. In this 
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study, the potential of an antiparallelogram loop in the construction of single DoF 

deployable linkages will be explored. 

 

3.3. Loop Assembly Method 

 

 It was Hoberman who devised a method to form the links using loops. While 

designing the linkage, he aligns identical rhombus loops on a curve such as a circle to 

derive the links (Figure 3.3.1). This way, he is able to form units with identical suspended 

angles. The unit lines of units intersect at the center of the circle. 

 

 

Figure 3.3.1. Assembly of rhombi loops on a circle 

 (Source:(Hoberman et al., 2013) 

 

 The same method is also proved to be effective when used on curves with non-

constant curvature such as an ellipse (Figure 3.3.2). However, in this form, adjacent unit 

lines intersect at various points. 

 

 

Figure 3.3.2. Assembly of rhombi loops on an ellipse 

(Source:(Hoberman et al., 2013) 

 

 Expanding his research, Hoberman experimented with different scales of the same 

rhombus loop aligned on a polygon (Figure 3.3.3) which also yielded deployable 
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mechanisms. In this design, every edge of the polygon is made up of one rhombus loop 

scaled to fit. Since each rhombus is a different size, they are not stowed equally hence the 

linkage cannot be stowed efficiently. 

 

 

Figure 3.3.3. Drawing from Hoberman’s patent 

(Source: Hoberman, 1990) 

 

 Also the research conducted by Liao and Li (2005) and Kiper and Söylemez 

(2010) yielded similar results. Most recent research using this method is conducted by 

Yar et al. (2017) who used kite and dart loops to form transformable single DoF planar 

linkages (Figure 3.3.4). The linkages designed are able to transform from a linear form to 

concave and convex curves (Figure 3.1.54). 
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Figure 3.3.4. Dart loop assembly along a line and the resulting linkage 

 (Source: (Yar, 2016) 

 

3.4. Antiparallelogram Loop 

 

 In this thesis report, antiparallel loops will be used to form single DoF planar 

linkages. 

 Using the same links and connections, there can be more than one configuration 

to form a linkage. These are called assembly modes. A planar linkage may pass from one 

assembly mode to another during the motion by passing through the so-called dead-center 

position at which some links are aligned. In a parallelogram mechanism, there are four 

bars that don’t cross. The linkage can be folded into a line and if the motion is continued, 

the opposite long bars would cross, yielding an antiparallelogram loop. An 

antiparallelogram, therefore, is also referred as a crossed-parallelogram or a contra-

parallelogram. 

 The antiparallelogram has two equal nonadjacent short edges and two equal 

crossing long edges. A linkage forming an antiparallelogram loop has four hinges at the 

end points of the links but it has no hinge at the crossing point. It has single mirror-

symmetry about a line passing through the cross point (Figure 3.4.1). 
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Figure 3.4.1. A linkage with an antiparallelogram loop and its motion 

 

 While examining the geometry of an antiparallelogram, drawing guide lines, s1 

and s2 (Figure 3.4.2), connecting the upper and lower two corners would contribute 

understanding the geometry. The symmetry axis of the form passes through the midpoints 

of s1 to s2 (P and R respectively), passing through the crossing point (Q). This axis is also 

perpendicular to s1 and s2 lines. Then four sets of equal edges are obtained, which are 

𝐴𝐵 = 𝐶𝐷, 𝐴𝐷 = 𝐵𝐶 as conditions to form an antiparallelogram and 𝐵𝑄 = 𝐶𝑄,   𝐴𝑄 =

𝐷𝑄 as the result of symmetry on both sides of the cross point. Since 𝐴𝐵𝑄 and CDQ are 

identical triangles their inner angles are also same. 
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Figure 3.4.2. Geometrical analysis of an antiparallelogram 

 

 𝐴𝐵 edge is chosen as fixed link and 𝐷𝐴𝐵̂ is the deployment angle named as 𝜃. Let 

 𝐶𝐴𝐷̂ angle be 𝛼. Since 𝐴𝑄𝐶 is an isosceles triangle, 𝐴𝑄𝐵̂ is 2𝛼. Within 𝐴𝑄𝐶 triangle, 

inner angles of A and Q are 𝜃 and 2𝛼, respectively, leaving the 𝐴𝐵𝑄̂ angle 𝜋 − 2𝛼 − 𝜃. 

Since s1 and s2 lines are parallel, 𝐴𝐵𝑄̂ = 𝑄𝐵𝐷 ̂ =  𝛼. Z is the point where the extensions 

of 𝐴𝐵 and 𝐶𝐷 edges intersect with the symmetry axis. At point 𝐵, following 

counterclockwise, two angles are defined as 𝜋 − 2𝛼 − 𝜃 and 𝛼, that results as           

𝑃𝐵𝑍̂ =  𝜃 + 𝛼. Within 𝐵𝑃𝑍 triangle, two angles are known, B and P angles: 𝜃 + 𝛼 and 

𝜋/2 respectively. Therefore it is known that 𝐵𝑍𝑃̂ = 𝜋 2⁄ −  𝜃 − 𝛼. If edge 𝐴𝐵 is chosen 

to be perpendicular to the horizontal axis, then it can be seen that the angle between the 

horizontal axis and s2 is also 𝜋 2⁄ −  𝜃 − 𝛼. During the motion, at one point, 𝐴𝐵 and 𝐶𝐷 

edges become perpendicular and there is no intersection point Z available at that time. 

Depending on the value of 𝜃 the intersection point can be achieved on the other side of 

the mechanism. 



29 

CHAPTER 4  

 

SYMMETRY OPERATIONS 

 

4.1. Frieze Groups 

 

 In a scissor linkage, loops or units are multiplied to form a chain. The most basic 

way of doing that is to repeat the unit/loop many times one after another by translating it. 

In geometry, there are defined methods of multiplying a form, commonly named as 

symmetry operations and the resulting array of forms is a pattern. Although symmetries 

in a 2D plane may consist of multiplications on more than one direction, such as wallpaper 

groups, the aim of forming a curve-like linkage restricts the options with those that are 

multiplied in one direction only. This restriction led the research to Frieze groups (Pólya, 

1924). In architecture ‘frieze’ means “The part of an entablature between the architrave 

and the cornice” (Dictionary, 2007). In mathematics, a pattern that repeats regularly in 

one direction on 2D plane, hence has a translational symmetry, is called a Frieze pattern 

(Guy and Woodrow, 1994). A frieze pattern may have more than just translational 

symmetry. There are four main symmetry operations that can be conducted on a 2D plane. 

These are translation, rotation and reflection and glide-reflection (Figure 4.1.1).  

 

 

Figure 4.1.1. Basic array operations 
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 All other operations are generated combining these four, even multiple times over 

(Singh, 2015). There are 7 array types defined under Frieze symmetry groups (Figure 

4.1.12). 

 

 

Figure 4.1.2. Frieze symmetry groups  

(Source: Redrawn from(Glassner, 1996) 

 

 In the previous loop assembly studies, researchers have offered ways of 

multiplying the loops and examined the potentials of the resulting linkage. However, 

rhombus, square and rectangle loops with doubly-symmetrical forms do not yield much 

variety. If a rhombus loop is multiplied along one of the diagonals using Frieze groups, 

all end up being the same pattern. Also the kite and parallelogram loops possess more 

symmetries compared to antiparallelogram loops. This being so, a methodology to 

multiply the loops was not offered in previous studies. An antiparallelogram has a single 

symmetry axis and due to its rather complex form, the array operations yield various 

connections, therefore a method was needed to classify them. 
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 When designing polar linkages, loops or units are polar arrayed (Figure 3.2.6.) 

They are repeated while rotating around a point, which means they are aligned on a 

circular arc. Also rhombuses are multiplied in a rotational array around a point in Figure 

3.3.1. When the loops are aligned on a non-constant curvature curve, such as an ellipse 

(Figure 3.3.2), it is also a rotational array since each loop can be achieved by rotating the 

previous one at one point on a plane but not necessarily using a common point for all the 

loops. These array patterns along a curve can again be obtained by using Frieze groups 

(Figure 4.1.3).  
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Figure 4.1.3. Frieze groups on a curve 
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4.2. Symmetry Operations of Antiparallelogram Loop 

 

 The antiparallelogram is a shape with a single mirror symmetry axis, therefore 

reflection of it about an axis parallel to the symmetry axis is the same. The crossed-

rectangle is a special case of antiparallelogram with two symmetry axes, which makes 

reflections about vertical or horizontal axes result in the same shape as itself (Figure 

4.2.1).  

 

 

Figure 4.2.1. Reflections of antiparallelogram and cross-rectangle 

 

 An antiparallelogram has four corners which also represents joints of a linkage 

with such a loop. When the loop is multiplied, they are attached at these points. 

Depending on the direction of translation it is possible to formulate alternative arrays for 

each Frieze group operation. In the figure below, there are three alternatives for the Hop 

group; using horizontal, vertical and diagonal translations (Figure 4.2.2). However, a 

vertical array is not applicable since the loops cannot be connected at their corners. 

 

 

Figure 4.2.2. Hop group arrays of antiparallelogram 

 

 When a cross-rectangle, a special case of antiparallelogram, is used for array 

operations, Hop operation yields different possibilities (Figure 4.2.3). Its perpendicular 

edges make it possible to connect two corners at the same time, meaning they can share 
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and edge. In addition, a vertical multiplication becomes possible. Due to the double-

symmetry mentioned above, it also happens that Hop and Sidle group operations yield 

same results.  

 

 

Figure 4.2.3. Hop and Sidle group arrays of cross-rectangle 

 

 On the other hand, arrays produced with Sidle group operations are not the same 

with Hop group for the general antiparallelogram, except for the one marked with dotted 

lines (Figure 4.2.4). The one with dotted lines has a reflection axis parallel to the 

symmetry axis of the shape, making it same as the corresponding Hop array. 

 

 

Figure 4.2.4. Sidle group arrays of antiparallelogram 

 

 Two other Frieze groups are Step and Spinning Hop groups. These two arrays 

when constructed with cross-rectangle loops, they end up being the same (Figure 4.2.5). 

There are two alternatives; horizontal or vertical directions. 
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Figure 4.2.5. Step and Spinning Hop group arrays of cross-rectangle 

 

 Once again, the results of these groups are not the same for antiparallelogram 

loops, except for two (Figure 4.2.6). 

 

 

Figure 4.2.6. Step and Spinning Hop group arrays of antiparallelogram 

 

 When cross-rectangle loops are multiplied using Spinning Sidle group (Figure 

4.2.7), the result does not reflect the mirror and rotation operations of the group. Due to 

the double symmetry of the loop, the resulting array is rather perceived as a double 

repetition of the loop in an over and under fashion. Whereas, when antiparallelograms are 
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used, one less symmetry of the form lets the mirror operation to be perceived (Figure 

4.2.8). 

 

 

Figure 4.2.7 Spinning Sidle group array of cross-rectangle 

 

 

Figure 4.2.8 Spinning Sidle group array of antiparallelogram 

 

 Although Frieze groups consist of seven types, in this study five of the variations 

are examined and two are eliminated. The reason is, in Figure 4.1.2 f and g groups are 

made of two rows of items, which in this case would translate as two connected parallel 

linkages. Such a formation is not aimed in this study. 

 As mentioned before there are also rotational arrays already used in the literature, 

Hoberman’s rhombus assembly on a circle being one of them. Using the Frieze groups 

along a curve gave rise to new array options. Translation operations within each Frieze 
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operation is switched with a rotation, which is the center of a curve the loops array along. 

Using only this rotation, we get Hop group along a curve. Once again, while the results 

of Hop and Sidle groups are the same for cross-rectangle loops (Figure 4.2.9), they differ 

for antiparallelogram ones except for one that is shown with dotted lines (Figure 4.2.10, 

Figure 4.2.11). 

 

 

Figure 4.2.9. Curved Hop and Sidle group arrays of cross-rectangle 

 

 

Figure 4.2.10. Curved Hop group arrays of antiparallelogram 
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Figure 4.2.11. Curved Sidle group arrays of antiparallelogram 

 

 When Step and Spinning Hop groups applied along a curve, it is seen that a     

cross-rectangle yield only two options, same for both (Figure 4.2.12). However, an 

antiparallelogram loop can be arrayed in four ways to form Step group (Figure 4.2.13) 

and one more for Spinning Hop group together with the common one shown with dotted 

lines (Figure 4.2.14). 

 

 

Figure 4.2.12. Curved Step and Spinning Hop group arrays of cross-rectangle 
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Figure 4.2.13. Curved Step group arrays of antiparallelogram 

 

 

Figure 4.2.14. Curved Spinning Hop group arrays of antiparallelogram 

  

 When Spinning Sidle group is applied, for both cross-rectangle (Figure 4.2.15) 

and antiparallelogram (Figure 4.2.16) two options can be formed. In order to see all 

variations as a whole, an outline is given in Figure 4.2.17 and Figure 4.2.18. 
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Figure 4.2.15 Curved Spinning Sidle group array of cross-rectangle 

 

 

 

 

Figure 4.2.16 Curved Spinning Sidle group array of antiparallelogram 

 

 



 

 

4
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Figure 4.2.17 Outline of array alternatives according to Frieze groups 



 

 

4
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Figure 4.2.18 Outline of array alternatives with rotations 
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4.3. Linkage Formation from Loop Arrays 

 

 Once the arrays are formed, the next step to form the linkages is to draw the links 

following the edges of the loops. In order to form single degree-of-freedom linkages, 

there should be at least two common links between the loops. Therefore, at each 

connection, two edges from each loop should be considered as a single link common to 

both as shown in Figure 4.3.1.  

 

 

Figure 4.3.1 Common link formation 

 

 Since there are only two edges meeting at each corner, it is possible to conclude 

that, there are only two ways of forming the links. A rotational array example is given in 

Figure 4.3.2 and the possible links that can be formed for this array are shown in Figure 

4.3.3. 

 

 

Figure 4.3.2. A rotational array 

 

 Even though the common links seem to be the only source of alternative link 

forms, they are not. One other factor adding to variation is the rotation angle of the loops 

in the array. In Figure 4.3.2 none of the loop edges are collinear, but it is possible to array 

the so that some edges become collinear.  
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Figure 4.3.3. Link form alternatives for given array 

 

 In Figure 4.3.4 there are three more alternatives of the same array. The only 

difference is the curvature of the curve. These arrays make it possible to form linear links, 

therefore, yield linkages with different motion capabilities. A point to mention is that 

even these still have secondary options due to the choice of common links as mentioned 

at the beginning. There were over a hundred linkages that could be determined in total. 

All of them were drawn in Solidworks®, simulated and their motions were observed. 

 

 
Figure 4.3.4 Link form alternatives due to array angle  
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CHAPTER 5  

 

ANALYSIS OF SELECTED LINKAGES 

 

 When all array types and possible linkages formed with them are examined, five 

linkages stood out due to their motion and link types. In this chapter, the five novel 

linkages are examined in detail. 

 

5.1. Linkage 1 

 

 The array in Figure 5.1.1 is formed using the Step Frieze group. It consists of 

cross-rectangles which are repeated along a line in one-over, one-under formation. The 

loops are connected along their long side. Since there are no rotations, the only factor to 

form link variations is the choice of the common ones. 

 

 

Figure 5.1.1. Array type of the linkage-1 

 

 In Figure 5.1.2a one long edge is connected to one short edge of the adjacent loop, 

the links formed are identical angulated ternary links. On the other hand, in Figure 5.1.2b 

short edges are connected to short, and long edges are connected to long ones. In this 

alternative, since edges are collinear, the links formed are straight bars. When their 

motions are observed, it is seen that linkage with angulated links was able to transform 

from straight to concave and convex forms, while the one with straight bars was able only 

to lengthen and shorten in a linear form during rotation. To understand the motion of the 

linkage with angulated links a geometrical analysis is done. 
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Figure 5.1.2. Linkage alternatives of the array and their motion 

 

 Since the relation of the two adjacent loops come from the array typology, it is 

essential to see the relations at the start position (Figure 5.1.3). ABCD and DEFG are 

cross-rectangles; Short edges are 𝐴𝐵̅̅ ̅̅ = 𝐶𝐷̅̅ ̅̅ = 𝐷𝐸̅̅ ̅̅ = 𝐹𝐺̅̅ ̅̅ = a, they are all perpendicular 

to horizontal axis and parallel to each other. Long edges are 𝐵𝐶̅̅ ̅̅ = 𝐴𝐷̅̅ ̅̅ = 𝐷𝐹̅̅ ̅̅ = 𝐸𝐺̅̅ ̅̅ = b. 

Since a cross-rectangle is a doubly symmetric form all the inner angles at the corners are 

the same, 𝛼. In addition, the inner angles at crossing point are also equal, 𝜋 − 2𝛼. The 

links are formed by connecting a long edge and a short edge from each loop. Therefore, 

the kink angle of the links is, 𝐴𝐷𝐸̂ = 𝐶𝐷𝐹̂ = 𝜋 − 𝛼. When the link AB is chosen as the 

fixed link, ADE link is rotated to reconfigure the linkage. The amount the ADE link is 

rotated is noted as the rotation angle and named as 𝜃. 



 

47 

 

Figure 5.1.3. Geometry analysis at start position of the linkage-1 

 

 When the linkage is deployed by rotating ADE link counterclockwise by 𝜃, the 

whole linkage is also curved counterclockwise. In the new configuration, the loops are 

now regular antiparallelograms. When an antiparallelogram’s upper and lower corners 

are connected (as shown with blue dashed lines in Figure 5.1.4) they are parallel to each 

other. The line passing through the midpoint of these dashed lines is the symmetry axis 

which is perpendicular to them. Also when the short edges are extended to intersect, this 

intersection point is (W, X, Y points in Figure 5.1.4) on the symmetry axis. 

 The curve defined by the linkage is a circle which B, D, G and J points are located 

on. To prove that, method of finding the center of a circle should be considered. To locate 

the center of a given circle, two chords and their perpendiculars passing from the midpoint 

of the chord is drawn. The point where perpendiculars of the chords intersect gives the 

center of the circle. In order to prove that the points B, D, G and J are on a circle, one 

must trace back the steps of finding the center of a circle. There are two imaginary lines 

𝐵𝐷̅̅ ̅̅  and 𝐷𝐺̅̅ ̅̅  which have perpendicular symmetry axis passing from their midpoints. 

Therefore the intersection point of these axes is the center point of the circle (point Z). 

Since D is a common point, they are unavoidably on the same circle. If we consider 𝐷𝐺̅̅ ̅̅  

and 𝐺𝐽̅̅ ̅ lines, same reasoning apply to them, too. Hence B, D, G, J and so on are on the 

same circle. The length of the all line segments drawn to these points from the center is 

the radius. Since each antiparallelogram is symmetrical, the angles on either side of the 

symmetry axis are equal. 
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Figure 5.1.4. Geometric specifications of the linkage-1 

 

 One other point about the linkage is that 𝑊𝐷𝑍̂ = 𝐸𝐷𝑍̂. To observe this relation, 

first imaginary line 𝐶𝐸̅̅ ̅̅  should be drawn. Since 𝐷𝐶̅̅ ̅̅ = 𝐷𝐸̅̅ ̅̅ = a, then 𝐷𝐶𝐸̂ = 𝐷𝐸𝐶̂ = 𝜓. If 

an edge of length a was drawn on 𝑊𝐷̅̅ ̅̅ ̅ (the extension of 𝐶𝐷̅̅ ̅̅ ), then it would make an 

isosceles triangle with 𝐶′𝐷𝐸̂ = 2𝜓. If the bisector of the 𝐶′𝐷𝐸̂ is drawn it is perpendicular 

to 𝐶′𝐸̅̅ ̅̅̅. Following the same logic of finding the center of the circle, C’, E and F are proven 
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to be on a circle aith center at Z. Since 𝐸𝐷𝑍̂ is symmetric to 𝐹𝐺𝑍̂, the bisector of 𝐶′𝐷𝐸̂ 

passes through the point Z, the center of the linkage. 

 When the linkage is deployed by rotating ADE link by 𝜃 degrees, in the new 

configuration as seen in Figure 5.1.5, 𝐵𝐴𝐷̂ = 𝛼 − 𝜃. Using the edges 𝐴𝐵̅̅ ̅̅ = a and   𝐴𝐷̅̅ ̅̅ = 

b together with 𝐵𝐴𝐷̂ = 𝛼 − 𝜃, it is possible to determine the edge length of s1. Again 

with cosine theorem using s1 length, 𝐴𝐵̅̅ ̅̅  and 𝐴𝐷̅̅ ̅̅ ,  𝐵𝐷𝐴̂ angle can be found. Let 𝐵𝐷𝐴̂ =

𝐷𝐵𝐶̂ = 𝛽. Then the inner angle at cross point is 2𝛽 and  𝐴𝐵𝐶̂ = 𝜋 + 𝜃 − 𝛼 − 2𝛽. From 

here on, it is possible to calculate 𝐵𝐷𝑊̂ angle which is equal to 𝐷𝐵𝑊̂ = 𝛼 − 𝜃 + 𝛽. As 

we know the angle 𝐵𝐷𝑊̂, angle between the symmetry axis and 𝑊𝐷̅̅ ̅̅ ̅ can be calculated as 

𝜋/2 + 𝜃 − 𝛼 − 𝛽. Up to this point all the angles of the first loop are defined. 

 When the angles around point D is examined, the kink angles of ADE and CDE 

links are the key to solving the angles of the second loop. Those are known due to their 

positions at the start configuration, 𝜋 − 𝛼 for both. From here on, to calculate          

𝑊𝐷𝐸̂ = 𝜋 + 𝜃 − 2𝛼 − 2𝛽, 𝐵𝐷𝐴̂ and 𝐵𝐷𝑊̂ angles are subtracted from the kink angle of 

ADE. Now, the only angle left around point D which is 𝐸𝐷𝐹̂ can be calculated as          

3𝛼 + 2𝛽 − 𝜋 − 𝜃. This is the only angle known in the second loop up to now. 

 As done in the first loop, with the cosine theorem using edges 𝐸𝐷̅̅ ̅̅  and 𝐷𝐹̅̅ ̅̅  together 

with 𝐸𝐷𝐹̂ angle, s2 edge length can be determined. Once more using the cosine theorem 

using edges s2, 𝐸𝐷̅̅ ̅̅  and 𝐷𝐹̅̅ ̅̅ , we may find 𝐸𝐹𝐷̂ to be let’s say 𝜑. Then the inner angle at 

the cross point of the second loop is 2𝜑 and 𝐷𝐸𝐺̂ = 2𝜋 + 𝜃 − 3𝛼 − 2𝛽 − 2𝜑. Following 

the same calculations as done in first loop, 𝐹𝐸𝑋̂ = 3𝛼 + 2𝛽 + 𝜑 − 𝜋 − 𝜃 and the angle 

between the symmetry axis of the second loop and 𝑋𝐹̅̅ ̅̅  is 3𝜋 2⁄ + 𝜃 − 3𝛼 − 2𝛽 − 𝜑. 

 As mentioned before, when a bisector is drawn dividing 𝑊𝐷𝐸̂, the bisector passes 

through the center point of the circle defined by the linkage. So as half of 𝑊𝐷𝐸̂, the angle 

𝑊𝐷𝑍̂ = 𝜋/2 + 𝜃/2 − 𝛼 − 𝛽. It can also be calculated as 𝐷𝑊𝑍̂ = 𝛼 + 𝛽 − 𝜋 2⁄ − 𝜃 

since it is a complementary of a known angle. When the triangle WDZ is examined, the 

only angle left is 𝑊𝑍𝐷̂, which comes up as 𝜃/2, half of the rotation angle. 

 Due to the symmetric placement of the loops within the array, when further 

calculated it is seen that the first and third loops are composed of same angles and s1 and 

s3 lengths are equal. Consequently, it can be seen that every other loop are similar. 
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Figure 5.1.5. Analysis of relations and angles of the linkage-1 

 

 The linkage can be transformed from convex to concave form. During deployment 

the curvature of the linkage changes and only at the start position the curvature is zero. 

This is a novel mechanism since such motion was observed only with angulated scissor 

units before.  

 A parametric model of the linkage, is implemented in a Microsoft Excel® sheet as 

seen in Figure 5.1.6. The method of calculating the positions of the joints of a mechanism 
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uses triangulation (Söylemez, 2010). In the method, edge lengths and kink angles are 

given as inputs (shown with blue cells). Cells without a color means they are derived from 

the input, and orange cells are the result of the analysis. 

 One of the links in the linkage is selected as fixed link. In the analysis below,  𝐴𝐵̅̅ ̅̅  

link is chosen to be fixed and ADE link is chosen to be rotated in order to transform the 

mechanism. Therefore, the angle 𝐵𝐴𝐷̂, denoted as 𝜃1 in the analysis, is changed using 

the buttons with arrows to move the linkage. 

 For each joint position, necessary angles named as 𝜃 and 𝛽 are calculated using 

trigonometric functions in correlation to the input parameters. Once an input parameter 

changes, so does the angle calculations. In the end, position of every joint as x and y value 

is gathered in a two-dimensional space. 

 In order to triangulate the geometry, imaginary lines are needed between some 

points. These are the edges named as s1, s2, s3… etc. and they are shown with blue dashed 

lines in the kinematic scheme within the analysis. These are the distances between joints 

and they change during the motion. They are calculated using the cosine theorem again 

in correlation with the input data. 

 

  



 

 

5
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Figure 5.1.6 Position Analysis of Linkage 1
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5.2. Linkage 2 

 

 The array in Figure 5.2.1 is formed using the Hop Frieze group. It consists of 

cross-rectangles which are repeated along a line in a diagonal formation.  

 

 
Figure 5.2.1. Array type of the linkage-2 

 

 In Figure 5.2.2a one long edge is connected to one short edge of the adjacent loop, 

the links formed are angulated. However in the diagonal configuration, one link of a loop 

is common to that of one before and one after it, turning it into a quaternary link. On the 

other hand, in Figure 5.2.2b short edges are connected to short, and long edges are 

connected to long ones. In this alternative, since edges are collinear, the links formed are 

straight bars. Being common with the loop before and after, the long bar becomes a single 

link continuing through the entire linkage, common to all loops, with many kinematic 

elements on it. When their motions are observed, it is seen that linkage with angulated 

links was able to transform from straight to concave and convex forms, while the one 

with straight bars was able only to flatten. To understand the motion of the linkage with 

angulated quaternary links a geometrical analysis is done. 
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Figure 5.2.2. Linkage alternatives of the array and their motion 

 

 Since the relation of the two adjacent loops come from the array typology, it is 

essential to see the relations at the start position (Figure 5.2.3). ABCD and DEFG are 

cross-rectangles; Short edges are 𝐴𝐵̅̅ ̅̅ = 𝐶𝐷̅̅ ̅̅ = 𝐷𝐸̅̅ ̅̅ = 𝐹𝐺̅̅ ̅̅ = a, they are all perpendicular 

to horizontal axis and parallel to each other. Long edges are 𝐵𝐶̅̅ ̅̅ = 𝐴𝐷̅̅ ̅̅ = 𝐷𝐹̅̅ ̅̅ = 𝐸𝐺̅̅ ̅̅ = b. 

Since cross-rectangle is a doubly symmetric form all the inner angles at the corners are 

the same, 𝛼. In addition, the inner angles at crossing point are also equal, 𝜋 − 2𝛼. The 

links are formed by connecting a long edge and a short edge from each loop. Therefore, 

the kink angle of the links is, 𝐴𝐷𝐸̂ = 𝐶𝐷𝐹̂ = 𝐷𝐺𝐻̂ = 𝜋 − 𝛼. The quaternary links formed 

have two kink angles that are equal. When the link AB is chosen as the fixed link, AC 

link is rotated to move the linkage. The amount the AC link is rotated is denoted as 𝜃. 
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Figure 5.2.3. Geometry analysis at start position of the linkage-2 

 

 When the linkage is deployed by rotating AC link counterclockwise by 𝜃, the 

linkage is also curved counterclockwise (Figure 5.2.4). In the new configuration, the 

loops are now antiparallelograms. When an antiparallelogram’s upper and lower corners 

are connected, as shown with blue dashed lines in Figure 5.2.4, they are parallel to each 

other. Since antiparallelogram is a symmetrical form, the line passing through the 

midpoint of these dashed lines is the symmetry axis which is perpendicular to them. Also 

when the short edges are extended to intersect, this intersection point is (W, X, Y points 

in Figure 5.2.4) on the symmetry axis. The intersection point of the symmetry axis is 

denoted by point Z. 
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Figure 5.2.4. Analysis of relations and angles of the linkage-2 

 

 When the linkage is deployed by rotating AC link by 𝜃 degrees, in the new 

configuration as seen in Figure 5.2.4, 𝐵𝐴𝐶̂ = 𝛼 − 𝜃. Using the edges 𝐴𝐵̅̅ ̅̅ = a and   𝐴𝐶̅̅ ̅̅ = 

b together with 𝐵𝐴𝐶̂ = 𝛼 − 𝜃, it is possible to determine the edge length of s1. Again 

with cosine theorem using s1 length, 𝐴𝐵̅̅ ̅̅  and 𝐴𝐶̅̅ ̅̅ ,  𝐵𝐶𝐴̂ angle can be found. Let 𝐵𝐶𝐴̂ =

𝐶𝐵𝐷̂ = 𝛽, then the inner angle at cross point is 2𝛽 and  𝐴𝐵𝐷̂ = 𝜋 − 𝛼 + 𝜃 − 2𝛽. From 

here on, it is possible to calculate 𝐵𝐶𝑊̂ angle which is equal to 𝐶𝐵𝑊̂ = 𝛼 − 𝜃 + 𝛽. As 

we know the angles 𝐵𝐶𝐴̂ and 𝐵𝐶𝑊̂, angle between the symmetry axis and 𝑊𝐶̅̅ ̅̅ ̅ can be 

calculated as 𝜋/2 − 𝛼 + 𝜃 − 𝛽. Up to this point all the angles of the first loop are defined. 
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 When the angles around point D is examined, the kink angles of BDE and CDF 

links are the key to solving the angles of the second loop. Those are known due to their 

positions at the start configuration, 𝜋 − 𝛼 for both. 𝐷𝑋̅̅ ̅̅  is the extension of 𝐸𝐷̅̅ ̅̅  edge. Since  

𝐵𝐷𝐸̂ and 𝐶𝐷𝐺̂ angles are known, it is possible to calculate 𝐶𝐷𝑋̂ = 𝜃, which is the rotation 

angle. From here on, we may find the 𝐸𝐷𝐺̂ angle by subtracting 𝐶𝐷𝐵̂ and two kink angles 

from 2𝜋, resulting as 𝛼 + 𝜃. This gives the first angle of the second loop. 

 Similar to the first loop, using cosine theorem, 𝐷𝐺𝐸̂ angle can be calculated with 

the help of imaginary s2 line. 𝐷𝐺𝐸̂ angle is equal to 𝐹𝐸𝐺̂, 𝐷𝐹𝐸̂, 𝐹𝐷𝐺̂ angles, let’s say 𝜑. 

Then 𝐹𝐷𝑋̂ angle being complementary angle of FDE triangle, can be solved to be            

𝜋 − 𝛼 − 𝜃 − 𝜑. From here on angle between the symmetry axis of the second loop and 

𝑋𝐷̅̅ ̅̅  can also be calculated as 𝛼 + 𝜃 + 𝜑 − 𝜋/2. With the methods used for second loop, 

third loop angles can be identified. 

 The intersection point of the symmetry axis of loops is point Z. This point is also 

the center of the spiral defined by the linkage when deployed (Figure 5.2.5). This point 

goes to infinite when the linkage is as the start configuration and the loops are parallel. 

This mechanism is novel because such motion was observed only with angulated scissor 

units with ternary links before. 

 

 

Figure 5.2.5 Spiral form of Linkage 2 

 

5.3. Linkage 3 
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 The array in Figure 5.3.1 is formed using the Hop Frieze group with rotation. It 

consists of antiparallelograms which are repeated along a circular arc.  

 

 
Figure 5.3.1. Array type of the linkage-3 

 

 Using this array type there are many linkage alternatives to be formed. The 

rotation angle of the loops in the array leads to straight bars at specific points, such as in 

c, d, e and f in Figure 5.3.2. As the forms of the links differ, so does the motion capabilities 

of the linkages. 

 

 
Figure 5.3.2. Linkage alternatives of the array 

 

 Within the alternatives of the array, one stands out due to its motion and link type. 

In Figure 5.3.2d the linkage is made up of identical straight bars. They are connected with 
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an eccentrically placed intermediate hinge, just like the polar unit (Figure 5.3.3). However 

unlike a polar scissor chain (Figure 5.3.3a), when two units come together in this novel 

linkage, the short side is attached to the long side of the next unit (Figure 5.3.3b).  

 

 

Figure 5.3.3 Polar unit vs Linkage 3 unit 

 

 When the linkage is deployed, it is seen that it can transform from convex to the 

concave configuration as in Figure 5.3.4. This kind of movement hasn’t been observed in 

linkages with straight bars before.  

  

 

Figure 5.3.4. Motion of the linkage-3 

 

 At the start position, the loops are aligned such that short edge of the second loop 

is collinear with the long edge of the first loop. This way, one long edge connect with one 

short edge and form straight links.  
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 At the start position, the loops are aligned along a curve whose radius is known. 

Since the loops are equal, the curve is divided equally, making the loops symmetric on 

the radius passing through the joints connecting them, as seen with pink dotted lines in 

Figure 5.3.5. 

 

 
Figure 5.3.5. Geometry analysis at start position of the linkage-3 

 

 In the first loop, the angles 𝐵𝐴𝐶̂ = 𝐶𝐷𝐵̂ = 𝛼, 𝐵𝐶𝐴̂ = 𝐶𝐵𝐷̂ = 𝐶𝐴𝐷̂ = 𝐵𝐷𝐴̂ = 𝛽 

as found in Linkage 1&2 and 𝐴𝐵𝐷̂ = 𝐴𝐶𝐷̂ = 𝜋 − 𝛼 − 2𝛽. Because of the symmetrical 

array, it is known that 𝐴𝐷𝑍̂ = 𝑍𝐷𝐺̂. Since 𝐵𝐷̅̅ ̅̅  and 𝐷𝐸̅̅ ̅̅  are collinear and 𝐵𝐷𝐴̂, 𝐺𝐷𝐹̂, 𝐹𝐷𝐸̂ 

are known, then 𝐴𝐷𝑍̂ = 𝑍𝐷𝐺̂ = (𝜋 − 𝛼) 2⁄ − 𝛽. Using this angle 𝐷𝑍𝑊̂ can be calculated 

as (𝛼 + 2𝛽)/2. Being complementary to BCD triangle 𝐵𝐶𝑊̂ angle is 𝛼 + 𝛽 and      

𝐶𝑊𝑍̂ = 𝜋 2⁄ − 𝛼 − 𝛽. 
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 When AC link is rotated clockwise by 𝜃, then 𝐵𝐴𝐶̂ = 𝐶𝐷𝐵̂ = 𝛼 + 𝜃 in the new 

configuration shown in Figure 5.3.6. The new length of s1 is calculated with cosine 

theorem again, and 𝐵𝐶𝐴̂ = 𝐶𝐵𝐷̂ = 𝐶𝐴𝐷̂ = 𝐵𝐷𝐴̂ are notated as 𝜑. Following the same 

steps as start position calculations, all other angles can be found for the first loop. Since 

the system is symmetric, the angles of the first loop are the same for all the other loops. 

 During the motion, while transforming from concave to convex form, at one point 

all the links become collinear, which might result in assembly mode change. Although 

same motion is observed in other linkages examined in this research, only this linkage 

faces this situation. The cause for this is the form of the loops at the point between concave 

and convex, at the linear position. In other linkages, their loops are not compacted so that 

the joints are not at the dead center. However in this linkage, at the linear position, all 

links are aligned so that it is at the same time the dead center. 
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Figure 5.3.6. Analysis of relations and angles of the linkage-3 

 

5.4. Linkage 4 
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 The array in Figure 5.4.1 is formed using the Step Frieze group with rotation. It 

consists of cross-rectangles which are repeated along a circular arc in one-over, one-under 

formation. 

 

 
Figure 5.4.1. Array type of the linkage-4 

 

 In Figure 5.4.2a one long edge is connected to one short edge of the adjacent loop, 

the links formed are angulated. When the linkage is deployed it is able to transform from 

straight to concave and convex forms just like Linkage 1, with ternary links. Differing 

from Linkage 1 is that, the links are not identical. They both have the same arm lengths 

but different kink angles. 

 On the other hand in Figure 5.4.2b short edges are connected to short, and long 

edges are connected to long ones. Both links are angulated ternary links with equal arms 

but the lengths are different for each link. The novel aspect of this linkage is in its motion. 

It can form a ring that can be expanded and stowed. 

 At the start position, the rotation angle of the loops along the curve, which is 𝛽 in 

the Figure 5.4.3, is a given. Also at the start, the cross-rectangles are perpendicular and 

short edges are parallel to each other. Therefore, if 𝐵𝐴𝐶̂ = 𝛼 then 𝐴𝐵𝐷̂, 𝐴𝐶𝐷̂, 𝐵𝐷𝐶̂, 𝐸𝐷𝐹̂, 

𝐷𝐸𝐺̂, 𝐸𝐺𝐹̂ and 𝐷𝐹𝐺̂ are all equal to 𝛼. Also 𝐷𝐴𝐶̂, 𝐴𝐷𝐵̂, 𝐶𝐵𝐷̂, 𝐵𝐶𝐴̂, 𝐺𝐷𝐹̂, 𝐷𝐺𝐸̂, 𝐸𝐹𝐷̂ 

and 𝐹𝐸𝐺̂ are all equal to 𝜋 2⁄ − 𝛼 because of the perpendicularity. 
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Figure 5.4.2 Linkage alternatives of the array and their motion 

 

 Edges 𝐴𝐷̅̅ ̅̅  and 𝐷𝐺̅̅ ̅̅ , drawn with blue dashed lines, are equal in length and 

perpendicular lines drawn from their midpoint intersect at point Z, which is the center of 

the curve. ZD line is the radius of the curve. The symmetry axis of the first loop and 𝐶𝐷̅̅ ̅̅  

edge are parallel. Therefore, when ZD line is traced, the angle between it and the 

symmetry axis is equal to the angle between it and 𝐶𝐷̅̅ ̅̅  edge, which is 𝛽/2. 

  Second loop is rotated by 𝛽 in the array at around the point D. The imaginary line 

s3 is equal to s1 and s2 at the start position. To help understanding the kink angles, an 

imaginary second loop is drawn above the original, defined with D, E’, F’ and G. In this 

geometry, the angle between the symmetry axis and ZD line is equal to 𝛽/2 and since 

𝐷𝐸′̅̅ ̅̅ ̅ is collinear with 𝐸𝐷̅̅ ̅̅ , 𝐸𝐷𝑍̂ is also equal to 𝛽/2. After this it is possible to calculate 

the angle 𝐴𝐷𝐸̂ = 𝜋 2⁄ − 𝛽. Now all the angles to calculate the kink angles of BDF and 

CDE links exist. When the calculation is done, it is seen that both kink angles are equal, 

𝜋 − 𝛽. 
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Figure 5.4.3. Geometry analysis at start position of the linkage-4 

 

  When AC link is rotated clockwise by 𝜃, linkage also rotates clockwise (Figure 

5.4.4). Now 𝐵𝐴𝐶̂ = 𝐵𝐷𝐶̂ = 𝛼 + 𝜃. Using the cosine theorem, as in the linkages before, 

s1 length and 𝐵𝐶𝐴̂ = 𝐶𝐵𝐷̂ = 𝐶𝐴𝐷̂ = 𝐵𝐷𝐴̂ = 𝜑 is found. 

 In order to continue to second loop, kink angles are used. On CDE link, kink angle 

is known to be 𝜋 − 𝛽. When angles 𝐶𝐷𝐵̂ and 𝐵𝐷𝐴̂ are subtracted, 𝐴𝐷𝐸̂ = 𝜋 − 𝛽 − 𝛼 −

𝜃 − 𝜑 is found. Now if BDF link is observed, 𝐵𝐷𝐴̂ and 𝐴𝐷𝐸̂ angles are known, so that 

𝐸𝐷𝐹̂ = 𝐸𝐺𝐹̂ can be calculated as 𝛼 + 𝜃. Using the cosine theorem, since edges are same 

length as the first loop, it can be proven that s4 is equal to s1, s3 is equal to s2 and 𝐺𝐷𝐹̂ =

𝐷𝐺𝐸̂ = 𝐺𝐸𝐹̂ = 𝐸𝐹𝐷̂ = 𝜑. 
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Figure 5.4.4. Analysis of relations and angles of the linkage-4 

 

 When the quadrilateral formed between the symmetry axis and D point, it is seen 

that the form is a kite with two equal short and two equal long edges. 𝐴𝐷𝐺̂ = 𝜋 − 𝛽 which 

is same as the kink angle, therefore the angle between the symmetry axis is 𝛽, which is 

the array rotation angle. This proves that during motion, the symmetry axes preserve their 

relative positions and the joints remain on the axis making an angle of 𝛽/2 to the 

symmetry axis and the subtended angles of the linkage remain constant while the radius 

of the curve changes. 

In the light of these findings, a ring assembly seemed plausible. When such an 

assembly was made as in Figure 5.4.5, it was seen that the linkage was indeed deployable. 

When the joints are placed on radial axes and the mechanism is simulated in Solidworks® 

the linkage expands and contracts radially. At the fully-expanded state, the linkage forms 
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a polygon, short and long links aligning on top of each other. At this state, the edge length 

of the polygon is the sum of half-length of the short and long links. 

 

 

Figure 5.4.5 Ring assembly of cross-rectangle loops 

 

The links formed in this linkage are one short and one long ternary angulated links 

with same kink angle and equal arms, connected by an intermediate hinge at the kink 

point. They are similar to the angulated scissors but as in Linkage 3, they connect 

differently than the other assemblies with angulated scissor unit in the literature. The links 

can be classified as Type II GAE defined by You & Pellegrino (Figure 2.1.13). 

   In his rhombus assemblies, Hoberman uses not only identical loops, but similar 

loops at different scales, such as in his patent (Figure 3.3.3) His work proves such 

assemblies can also deploy. Using the same principle, another assembly has been made 
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with different scale loops (Figure 5.4.6). Simulation of the linkage in Solidworks® shows 

that with cross-rectangle loops such a mechanism is also deployable. 

 

 

Figure 5.4.6 Ring assembly with different scale similar loops 

 

 The use of scaled loops lead to various angles between the joint axes, and the links 

formed are not the same either. In the figure below (Figure 5.4.7), each color represent 

one type of link. There are 6 pairs of links in this linkage; green-orange, cyan-purple, 

pink-light green, yellow-magenta, red-blue, and grey-maroon. 
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Figure 5.4.7 Link types of the assembly with similar loops 

 

 At start position, as seen in Figure 5.4.8 each loop have same inner angles since 

they are similar. When the axis passing from joint E is followed, it can be seen that it 

intersect with the symmetry axis of the first loop with a 𝜃/2 angle. Since 𝐸𝐷̅̅ ̅̅  edge is 

parallel to the symmetry axis, it intersects with 𝜃/2 angle with the edge, too.  

For the next loop, an extension of the edge 𝐸𝐹̅̅ ̅̅  should be drawn. This extension is 

also parallel to the second loops symmetry axis, which bisects the angle 𝜓. So the angle 

between the axis passing through point E and the extension of 𝐸𝐹̅̅ ̅̅  is equal to 𝜓/2. 

To find the kink angles, DEF link can be observed. On the extension of the edge 

𝐸𝐹̅̅ ̅̅ , two angles are known and kink angle of DEF is the complementary of those, that is 

𝜋 − 𝜓 2⁄ − 𝜃/2. As it was proven for the start position, it can be proven that the kink 

angles of DEF and AEI are equal. Kink angles for all other link pairs can be found 

similarly. It is seen that the kink angle is equal to the sum of half of each loops rotation 

angles the links connect subtracted from 𝜋. 

 



 

70 

 

Figure 5.4.8 Geometric analysis of the assembly with similar loops 

 

 The assembly of similar cross-rectangles once again confirms that Hoberman’s 

loop assembly method. The links formed in the linkage are again classified as Type II 

GAE defined by You & Pellegrino. 

 The findings on the deployability of linkages with similar loops as in the ring 

assembly case suggest that all the linkages examined in the previous cases could also be 

formed with similar loops. However they were not studied in the scope of this research. 

 

5.5. Linkage 5 

 

 The last linkage is composed of antiparallelogram loops using the array Spinning 

Sidle as seen in Figure 5.5.1. This array is formed when a loop is vertically mirrored and 

then afterwards rotated by 180°. However, this formation is mistaken for repeating the 

loop twice in a row, due to the vertical symmetry axis of the loop itself.  
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Figure 5.5.1 Array type of linkage-5 

 

 As in the cases before, there are two possible options to form the common links 

between the loops; either short edge connects with long one (Figure 5.5.2a), or short edges 

and long edges connect among themselves (Figure 5.5.2b).  

 

 

Figure 5.5.2 Linkage alternatives of the array and their motion 

 

 In Figure 5.5.2a, it is seen that the linkage is capable of transforming between 

concave and convex configurations like the linkages before. Up to this point, all of the 

arrays used to form the linkages led to either one or two types of common links. However, 

in this array only, there are four types of links formed. In Figure 5.5.3 these links are 

shown in dark red, grey, dark blue and lila colors. The geometrical relations are also 

shown on the figure for the start position. 

 



 

72 

 

Figure 5.5.3 Geometry analysis at start position of the linkage-5 

 

 As done in previous linkages, one of the links is rotated by 𝜃 degrees to deploy 

the linkage. Using the same methods as in the previous linkages, all angles are possible 

to calculate. They are shown in Figure 5.5.4. The first and second loops deploy oppositely 

with the third and fourth loops. It is seen that the system forms a regular curve. 

 

 

Figure 5.5.4 Analysis of relations and angles of the linkage-5 
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CHAPTER 6  

 

CONCLUSIONS 

 

 Aim of this thesis research was to create novel deployable and transformable 

planar structural mechanisms using loop assembly method. Loop assembly method was 

formerly used with scissor mechanisms. Therefore, previous works on deployable and 

transformable scissor mechanisms were reviewed. The loops used in these mechanisms 

were examined and the antiparallelogram loop was not observed among them. Hence 

antiparallelogram loop was chosen for this research. 

 Producing various arrays is the primary step to form loop assemblies. To be able 

to produce arrays in a methodical way, geometrical approaches of unit multiplying 

methods, called symmetry operations, were examined. Among these methods Frieze 

Group operations found to be suitable for the aim of the research and were adopted to 

produce the arrays. After this step, single DoF linkages were formed. Within the many 

linkages produced, five of them were selected due to their novel aspects. 

 The analysis of the selected linkages shows that antiparallelogram linkages 

present novel motions with mostly known link types. For the first time in the literature, 

Frieze groups are used for the systematical classification of modular planar deployable 

structures composed of SLEs. As a result, 39 different loop assemblies comprising 

antiparallelogram loops were found (Figure 4.2.17). For each type, several different 

linkages can be obtained by fixing different portions of the loops to each other in order to 

form links. Kinematics of five of the hence obtained linkages are examined in detail. 

Although Linkages 1, 2, 3 and 5 all perform a transformation from convex to 

straight and then to concave form, all have different types of links. Linkage 1 has 

angulated ternary links, but unlike the research of Yar et al. (2017), the loops are not 

connected in a linear fashion but rather in a one-over one-under order along a line. Also 

the links do not form scissor units. Linkage 2 has quaternary links, which is not common 

in the literature to do transformation motion. The quaternary links have two equal kink 

angles. Linkage 3 has straight bars very much like polar units. The links are connected 

with an intermediate hinge which is located eccentrically. However, each link pair is 

connected to the next in a reverse fashion than regular polar units. This connection makes 

the transformation motion possible, which was not observed with polar scissor units 
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before. Linkage 5 does not have special link forms, but the fact that there are four types 

of common links used in the linkage still resulting in the same motion makes it unique. 

 In linkage 4, there is a different motion compared to the rest. The linkage expands 

and contracts while maintaining the curvature. This specification is the key to form a ring-

like mechanism. One short and one long ternary links both have equal arms with identical 

kink angles. As in Linkage 2, this pair of links is similar to angulated scissor units but the 

connection of the pairs to each other is different than the ones in the literature. 

 As the starting point of the research was loop assembly method utilized by 

Hoberman, another variation in his study was also examined. The ring assembly of 

Linkage 4 is composed again, this time with different scales of the same loop. It is seen 

that, such an assembly was also deployable. This time there were more than one type of 

link pair with same kink angles in each pair but differing from the rest. 

 The linkages observed with the ability to transform might be considered to be used 

in architectural applications such as building skin components, space covers, gates and 

more. As there are many other linkages composed of antiparallelogram loops that are not 

examined and analyzed as a case in the study, there are yet many characteristics and 

potentials to be explored. 

 Future studies may involve exploring more of the linkages defined in this study 

in detail. Seeking potential uses in architectural applications may also be considered as 

next step. In a kinematic point of view, exploration of possible linkages in three 

dimensional space could be another field to be studied. 
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