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Prof. Dr. Uğur TIRNAKLI
Department of Physics, Ege University

Prof. Dr. Halil ORUÇ
Department of Mathematics, Dokuz Eylül University

Prof. Dr. Ferit Acar SAVACI
Department of Electrical and Electronics Engineering, İzmir Institute of Technology
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Prof. Dr. Engin BÜYÜKAŞIK Prof. Dr. Aysun SOFUOĞLU
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ABSTRACT

QUANTUM CALCULUS OF CLASSICAL HEAT-BURGERS’

HIERARCHY AND QUANTUM COHERENT STATES

The purpose of this thesis is an application of quantum calculus to classical Heat-

Burgers’ hierarchy and quantum coherent states. First we construct random walk on q-lattice,

corresponding q-heat equation and exact solutions in terms of new family of q-exponential

functions. Then we introduce a new type of q-diffusive heat equation and q-viscous Burg-

ers’ equation, their polynomial solutions as generalized Kampe-de Feriet polynomials, corre-

sponding dynamical symmetry and description in terms of Bell polynomials. Shock soliton

solutions with fusion and fission of shocks are found and studied for different values of q.

The q-semiclassical expansion of these equations in terms of Bernoulli polynomials is de-

rived as corrections in power of ln q. A new class of complex valued function of complex

argument as q-analytic functions in terms of q-analytic binomials is introduced and shown

that these binomials are generalized analytic functions. As an application, we construct a

new type of quantum states as q-analytic coherent states and corresponding q-analytic Fock-

Bargmann representation. Then, we extend the concept of q-analytic function for two complex

arguments, called double q-analytic functions, which has q-Hermite binomial expansion. As

hyperbolic extension, we describe the q-analogue of traveling waves and find the D’Alembert

solution of q-wave equation. By introducing q-translation operators we obtain q-binomials,

q-analytic and q-anti analytic functions, q-travelling waves and non-commutative binomials.

New type of quantum states as Hermite coherent states and Kampe-de Feriet coherent states

are studied by generalization of the known Mehler formula. We introduce Golden quantum

calculus, and as an application we study Golden quantum oscillator and its angular momentum

representations.
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ÖZET

KLASİK ISI-BURGERS’ HİYERARŞİSİNİN VE KUANTUM

KOHERENT DURUMLARIN KUANTUM HESAPLAMASI

Bu tezin amacı, kuantum hesaplamanın klasik ısı-Burgers hiyerarşisine ve kuan-

tum coherent durumlara uygulanmasıdır. İlk olarak, q-latis(örgü) üzerinde rassal yürüyüş

inşa edip, ilgili q-ısı denklemini ve bunun tam çözümlerini q-üstel fonksiyonların yeni ailesi

cinsinden bulduk. Daha sonra yeni bir q-difüzyon ısı ve q-viskoz Burgers denklemlerini

tanıtıp, çözümlerini genelleştirilmiş Kampe-de Feriet polinomlar cinsinden yazıp, ilgili di-

namik simetri ve Bell polinomları cinsinden açıklamasını yaptık. Füzyon ve fisyon şoklardan

oluşan şok soliton çözümleri bulunup, bu çözümler farklı q değerleri için incelendi. Denklem-

lerin, Bernoulli polinomları cinsinden q-yarı klasik açılımı ln q nun kuvvetleri cinsinden yazıl-

dı. Kompleks parametreli kompleks değerli yeni bir fonksiyon sınıfı, q-analitik binomlar

cinsinden q-analitik fonksiyonlar olarak tanıtılmıştır ve bu binomların genelleştirilmiş anali-

tik fonksi-yonlar olduğu gösterilmiştir. Bunun uygulaması olarak q-analitik koherent durum-

lar olan yeni bir çeşit kuantum durumlar ve ilgili q-analitik Fock-Bargmann gösterimlerini

inşa ettik. Daha sonra q-analitik fonksiyon kavramını, çift q-analitik fonksiyonlar olarak ad-

landırdığımız iki kompleks parametreli fonksiyonlara genişletip, bunların q-Hermite polinom-

ları cinsinden açılımını bulduk. Bu fonksiyonların hiperbolik genişlemesi olarak, q-hareket

eden dalgaları tanımlayıp, q-dalga denkleminin D’Alembert çözümünü bulduk. q-öteleme

operatörleri tanıtılarak q-binomlar, q-analitik ve q-anti analitik fonksiyonlar, q-hareket eden

dalgalar ve sırabağımlı binomlar elde ettik. Bilinen Mehler formülünü genelleyerek, Her-

mite koherent ve Kampe-de Feriet koherent durumlar olan yeni kuantum durumlar bulundu.

Altın kuantum hesaplamayı tanıttık, ve uygulaması olarak Altın kuantum osilatörü ve açısal

momentum gösterimini çalıştık.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Heat-Burgers’ Hierarchy and q-Diffusive Equations . . . . . . . . . . . . . . . . . . . . 1

1.2. Complex Functions and Quantum States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1. q-Periodic Analytic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2. q-Analytic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Golden Quantum Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1. Generalized q-Deformed Fermion Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2. Hecke Condition for R Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3. Entangled N Qubit Spin Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2. RANDOM WALK ON Q-LATTICE AND Q-HEAT EQUATIONS . . . . . 12

2.1. Random Walk on Equidistant h-Lattice and Heat Equation . . . . . . . . . . . . . 12

2.1.1. Burger’s Equation and Cole-Hopf Transformation . . . . . . . . . . . . . . . . . 14

2.1.2. IVP for Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3. Shock Soliton Solutions of Burgers’ Equation. . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4. Initial Step Function to Shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Random Walk on q-Lattice and q-Heat equation . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1. Fermat Partition and q-Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2. From Fermat’s Approach to Jackson’s Integral . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3. q-Lattice and Symmetric Points in Two Concentric Circles . . . . . . . . 20

2.2.4. Random Walk on q-Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5. New Family of q-Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3. q-Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1. q-Oscillators Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2. Family of q-Heat Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3. Multiple q1, q2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

CHAPTER 3. Q-DIFFUSIVE HEAT EQUATION AND Q-VISCOUS BURGERS’

EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1. Q-Diffusive Heat Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1. Finite Interval Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



3.1.2. Infinite Interval Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2. The Generalized Kampe-De Feriet Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3. Dynamical Symmetry for q-Diffusive Heat Equation . . . . . . . . . . . . . . . . . . . 45

3.3.1. Bell Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2. Dynamical Symmetry and Generating Function . . . . . . . . . . . . . . . . . . . . . 51

3.4. q-Viscous Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5. q-Semiclassical Expansion of q-Diffusive Heat Equation . . . . . . . . . . . . . . . 62

3.5.1. Corrections to Burgers’ Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6. Bäcklund Transformation for q-Viscous Burgers’ Equation . . . . . . . . . . . . 68

CHAPTER 4. Q-ANALYTIC FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1. q-Analytic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1. q-Analytic Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.2. Negative Power q-Analytic Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2. q-Taylor Formula for q-Analytic Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3. q-Taylor Representation for q-Analytic Functions . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1. q-Analytic Function Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4. q-Laurent Expansion for q-Analytic Functions . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5. The q-Cauchy-Riemann Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5.1. Examples of q-Harmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6. q-Analytic Function as Generalized Analytic Function . . . . . . . . . . . . . . . . . 86

4.6.1. Complex q-Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7. Complex q-Analytic Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7.1. Examples of q-Periodic Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7.2. Double Mellin Series Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7.3. Examples of q-Analytic Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8. q-Analytic Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.9. q-Analytic Fock-Bargmann Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.10. Quantum q-Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CHAPTER 5. Q-ANALYTIC HERMITE BINOMIAL FORMULA . . . . . . . . . . . . . . . . . . . . . 104

5.1. Different Type of Analiticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2. Analytic Hermite Binomial Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3. q-Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4. Double q-Analytic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4.1. q-Binomial and q-Translation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vii



5.5. q-Traveling Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.1. Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5.2. q-Traveling Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5.4. q-Traveling Waves in terms of q-Hermite Polynomials . . . . . . . . . . . . . 129

CHAPTER 6. Q-BINOMIAL AND Q-TRANSLATION OPERATOR . . . . . . . . . . . . . . . . . . 133

6.1. Binomial and Translation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2. q-Binomial and q-Translation Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3. Non-Commutative Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

CHAPTER 7. COHERENT STATES AND GENERALIZED MEHLER FORMULA . . 143

7.1. Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2. Holomorphic Heat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3. Hermite Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4. Kampe-de Feriet Coherent State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.5. Bernoulli Coherent State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.6. q-Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.6.1. q-Translation Operators and q-Coherent States . . . . . . . . . . . . . . . . . . . . . . 164

CHAPTER 8. GOLDEN QUANTUM CALCULUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.1. Golden q-Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.1.1. Fibonacci and Golden Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8.1.2. Golden Leibnitz Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.1.3. Golden Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.1.4. Golden Binomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.1.5. Noncommutative Golden Ratio and Golden Binomials . . . . . . . . . . . . . 180

8.1.6. Golden Pascal Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.1.7. Remarkable Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.1.8. Golden Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1.8.1. Golden Antiderivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.1.8.2. Golden-Jackson Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8.2. Golden Quantum Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2.1. Golden Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2.2. Symmetrical suiϕ(2) Quantum Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.2.3. s̃uF(2) Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

viii



CHAPTER 9. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

APPENDIX A. D-BAR REPRESENTATION OF COMPLEX Q-BINOMIAL . . . . . . . . . . 202

ix



LIST OF FIGURES

Figure Page

Figure 2.1. One dimensional random walk on equidistant lattice with step-size Δx . . . . . . 12

Figure 2.2. Initial step function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.3. Shock soliton solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.4. Area on q-lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.5. Inversion of point a in circle R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.6. q-Lattice of hydrodynamic vortex images in annular domain, q = R2
2

R2
1

. . . . . . . 21

Figure 2.7. One dimensional random walk on q-lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.8. q-Exponential function eq(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.9. 1
2
-Weighted exponential function 1

2
eq(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.10. Solution of (q, q2)-heat equation at time t = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.1. Evolution of n = 1 solution at time t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.2. Evolution of n = 2 solution at time t = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.3. Phase velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.4. Group velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.5. Motion of zeros at t = −3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.6. Motion of zeros at t = −2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.7. One shock soliton for q = 1(blue), q = 0.5(red), q = 2(green) . . . . . . . . . . . . . . . . 59

Figure 3.8. Soliton velocity for q = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.9. Two shock solitons for q = 1(blue), q = 0.5(red), q = 2(green) . . . . . . . . . . . . . . 60

Figure 3.10. Shock fission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.11. Soliton fission for q = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.1. Contour plot of q-periodic q-harmonic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.2. 3D plot of q-periodic q-harmonic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.3. 3D plot of n = 2 q-harmonic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.4. 3D plot of n = 3 q-harmonic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.5. Contour plot of n = −1 q-harmonic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 4.6. 3D plot of n = −1 q-harmonic function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.1. Gaussian traveling wave at time t = 0, t = 0.5 and t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 5.2. q-Gaussian traveling wave at time t = 0, t = 0.5 and t = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 130

Figure 7.1. Squeezed Hermite state in coordinate representation . . . . . . . . . . . . . . . . . . . . . . . . . 151

Figure 7.2. Gaussian probability distribution of Kampe-de Feriet coherent state . . . . . . . . 159

Figure 8.1. Golden Pascal triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Figure 8.2. Quantum Fibonacci tree for Golden oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

x



CHAPTER 1

INTRODUCTION

The mathematical concepts of scale transformation and scale invariance have origin

in more fundamental concepts of human perception. As described by J. Piaget (Piaget and

Inhelder, 1971) in Chapter "Similarity and Proportions" of his paper "The Child’s Conception

of Space", the origin of the similarity idea is in the real perception of forms, starting from

childhood, and possibility to select the forms as an invariant objects of the size variations.

Penetrating to philosophical and religious systems, it produced mathematical analysis as pos-

sibility to split the world to hierarchy of scales with simple rules. The mathematical calculus

of scales and proportions is known as the q-calculus. It takes origin in works of Euler, Gauss,

Fermat, Pascale, and was developed at the end of XIX - beginning of XX- centuries by Jack-

son, Thomae, Heine, Ramanujan and others. At modern times, it has attracted the attention

of researchers in quantum theory of exactly solvable models and this is the reason why it is

also called also as the quantum calculus. This leaded to discovery of quantum algebras and

quantum groups as deformations of the usual Lie algebras and Lie groups with deformation

parameter q. As physical applications it includes quantum spin chains, anyons, conformal

and Chern-Simons field theory. Nonextensive statistical mechanics, Moyal’s quantization and

non-commutative geometry, q-special functions and q-difference equations, q-integrable mod-

els and q-quantum oscillators and q-deformed Poincare groups - are active field of research

now. The present thesis is devoted to study applications of quantum calculus to description

of new type of q-diffusive Heat-Burgers’ equations hierarchy, new type of complex functions

and applications to theory of special functions and quantum states.

1.1. Heat-Burgers’ Hierarchy and q-Diffusive Equations

The heat equation and its modifications are the simplest equations in mathematical

physics, modelling diffusion, the heat transfer and other phenomena. To model a more reach

class of diffusion phenomena, several extensions of the diffusion equation by fractional calcu-

lus (Miller and Ross, 1993), quantum or q-calculus (Nalci and Pashaev, 2010), (Pashaev and

Nalci, 2012), noncommutative calculus (Martina and Pashaev, 2013), etc. were proposed.

Described in terms of relative gradients, the heat equation appears in the form of nonlinear

Burgers’ equation. Solution of this Burgers’ equation as the shock solitons and their interac-
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tions play fundamental role in description of soliton phenomena. Extensions of this equation

by q-deformations lead to a new type of soliton solutions, like q-shock solitons (Nalci and

Pashaev, 2010), (Pashaev and Nalci, 2012), noncommutative shock solitons (Martina and

Pashaev, 2013), etc. This is the reason why, any exactly solvable extension of the heat and

Burgers’ equations play essential role in description of new type of soliton interactions, in

exact solvability of corresponding equations and in modelling a new physical phenomena

associated with them.

Recently, several extensions of diffusion equation by the q-deformation of partial

derivatives were proposed (Nalci and Pashaev, 2010), (Pashaev and Nalci, 2012) and ex-

act solutions in the form of q-shock solitons constructed and represented in terms of q-special

functions. By such an approach the q-deformation of classical damped oscillator as the q-

deformed oscillator was studied in (Nalci and Pashaev, 2011). The quantum versions of

q-oscillator have attracted attentions due to the relations with quantum groups and exact solv-

ability for different realizations of quantum symmetry, such as symmetrical (Biedenharn,

1989), (Macfarlane, 1989), non symmetrical (Arik and Coon, 1976), Fibonacci (Arik et al,

1992) and Golden calculus (Pashaev and Nalci, 2012), etc. In the set of papers by Man’ko

and coauthors (Man’ko et all, 1997) a physical approach to q-oscillator as a nonlinear os-

cillator was proposed. Then, as was shown in (Pashaev, 2015), every integrable system in

action-angle variables was described as a set of nonlinear oscillators and appeared in the form

of the q- or more generally, the f - oscillator. Motivated by this, in papers (Pashaev, 2015),

(Pashaev, 2016) the linear Schrödinger equation with q-modified dispersion was introduced

and the Madellung form of this equation as q-dispersive complex nonlinear Burgers’ equation

was derived.

In the present thesis, following similar ideas we propose a new type of heat equation

with modified non-symmetric q-diffusive term. This equation belongs to the heat hierarchy of

infinite order diffusive equations. Description of this equation in terms of relative gradients

leads to the q-viscous Burgers’ equation, which is a specific member of Burgers’ hierarchy.

We study several classes of exact solutions, polynomial and shock soliton type. The poly-

nomial solutions are generalizations of the Kampe de Feriet polynomials written in terms of

Bell polynomials. We derive generating function for these polynomials by using the dynam-

ical symmetry and the Zassenhaus formula. Generating exact solutions and the dynamical

symmetry, the generalized boost operator is constructed explicitly. Then we find one, two and

multiple shock soliton solutions and study their interactions. We show that the q-deformation

modifies the speed of our solitons, so that for q < 1 the speed is bounded above and as a re-

sult, fission of soliton takes place. Finally, we develop the ”q-semiclassical expansion” of our

equations in λ = ln q as higher order deformations, written in terms of Bernoulli polynomials.
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1.2. Complex Functions and Quantum States

1.2.1. q-Periodic Analytic Functions

Development of infinite dimensional group theory, conformal field theory and quan-

tum integrable systems, has illuminated from new direction the classical subject known as

q-calculus (Kac and Cheung, 2002). Besides quantum groups and anyon physics, this calcu-

lus found recently applications in old classical problem of hydrodynamics in circular multiple

connected domain (Pashaev and Yilmaz, 2008). Here q-periodic analytic functions allowed

us to formulate the two circle theorem for irrotational and incompressible flow in double con-

nected domain bounded by two circles (Pashaev and Nalci , 2014), (Pashaev, 2009). Let

f (z) be the complex potential of the flow in plane, then with addition of two concentric cir-

cular cylinders with cross sections C1 : |z| = r1 and C2 : |z| = r2, the flow between cylinders

becomes

F(z) =

∞∑
n=−∞

f (qnz) +

∞∑
n=−∞

f̄
(
qn r2

1

z

)
. (1.1)

Here parameter q has simple geometrical meaning q = r2
2/r

2
1 as a unique characteristic of the

double connected domain. This solution shows that complex potential is q-periodic analytic

function F(qz) = F(z). Corresponding complex velocity V̄(z) = dF(z)/dz is scale-invariant

analytic function V̄(qz) = q−1V̄(z) and admits representation V̄(z) = z−1Aq(z), where Aq(qz) =

Aq(z) is q-periodic analytic function. The form of scale-invariant function W(qt) = qdAq(t)

is characteristic of fractal self-similar functions. So the famous Mandelbrot-Weierstrass frac-

tal function is represented in this form. Besides of hydrodynamics, analytical extension of

this function in Fock-Bargman or in coherent state representation can be used for construc-

tion of quantum wave function analog of everywhere continuous but nowhere differentiable

function of Mandelbrot-Weierstrass fractal. This is the reason why naturally to consider it as

quantum fractal. The structure of quantum fractal is typical for hierarchical lattices and phase

transitions critical phenomena (Erzan, 1997).

1.2.2. q-Analytic Functions

The q-binomial formula as a main tool to develop q-Taylor series expansion, allows us

to introduce complex valued function of complex argument which we call q-analytic function.

The Glauber coherent states and corresponding Fock-Bargman representation in quantum the-
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ory give direct meaning to an entire analytic function as the wave function of quantum states.

Solutions of the planar electrons problem in magnetic field (Landau levels) and the Quantum

Hall effect (the Laughlin wave function) include an arbitrary analytic wave function, which

reflects degeneracy of the ground state.

Motivated by hydrodynamic problem mentioned above with q-periodic and self-similar

structure, in the present thesis we study complex functions under finite scaling transforma-

tions. This allows us to introduce a new class of complex functions of complex argument, de-

pending on real parameter q and reducible to analytic functions for a particular value of q = 1.

The construction is based on q-derivative extension of the Riemann holomorphicity equation.

As an example of this q-analytic function we treat in details the complex q-binomial. We

show that this q-analytic function, being non-analytic in the classical sense for q � 1, still is

the generalized analytic function. This function allows us to construct a new type of quantum

coherent states and quantum fractals.

As a hyperbolic version of q-analytic functions here we introduce the q-traveling wave

and q-wave equation. Also we derive the analytic Hermite binomial formula and the double

q-analytic q-Hermite binomial formulas.

All binomials formulas can be derived by specific translation operators which are

equivalent to the first order equations on q-analytic functions. As a next result we derive

the Hermite coherent states, the Kampe-de Feriet coherent states and the Bernoulli coher-

ent states. These states are related with squeezed coherent states, which have application in

quantum optics and with dynamical symmetry of quantum oscillator.

1.3. Golden Quantum Calculus

One more direction studied in present thesis is related with the so-called Fibonacci or

Golden quantum calculus. Fibonacci numbers are known from ancient times and have many

applications from human proportions, architecture (Golden section), natural plants (branches

of trees, arrangement of leaves) up to financial market (Koshy, 2001).

The Fibonacci numbers satisfy the recursion relation

F1 = F2 = 1 (Initial Condition), (1.2)

Fn = Fn−1 + Fn−2, for n ≥ 3 (Recursion Formula). (1.3)

First few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, ... For these numbers, starting from de

4



Moivre, Lame and Binet, next representation is known as the Binet formula (Koshy, 2001):

Fn =
ϕn − ϕ′n
ϕ − ϕ′ , (1.4)

where ϕ, ϕ′ are positive and negative roots of the equation

x2 − x − 1 = 0,

respectively. These roots are given explicitly as

ϕ =
1 +
√

5

2
, ϕ′ =

1 − √5

2
= −1

ϕ
. (1.5)

The number ϕ is known as the Golden ratio or the Golden section. There is a huge amount

of work devoted to the applications of Golden ratio in many fields from natural phenomena to

architecture and music.

Fibonacci numbers can be considered as a particular case of Fibonacci polynomials

Fn(a):

F1(a) = 1, F2(a) = a, (1.6)

Fn+1(a) = aFn(a) + Fn−1(a), for n ≥ 2, (1.7)

when a = 1: Fn(1) = Fn. The Binet representation for these polynomials is

Fn(a) =
qn − (− 1

q )
n

q − (−1
q )

, (1.8)

where parameter a = q − 1
q , so that q = a+

√
a2+4
2

and − 1
q =

a−√a2+4
2

are roots of quadratic

equation x2 = ax + 1.

Here we notice that Binet formula can be considered as a special case of the so-called

q-numbers in q-calculus with two basis q and Q, where Q = − 1
q . The pair (Q, q) calculus
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generalizes the q-calculus. In particular cases when Q = 1 it becomes non-symmetrical cal-

culus. In case Q = 1
q it becomes so-called symmetrical q-calculus. It appears in the study of

generalized quantum q-harmonic oscillator (Arik et al, 1992), (Chakrabarti and Jagannathan,

1991) and mentioned as a convenient form for generalization, generalization of the q-calculus

in (Kac and Cheung, 2002).

Recently, we found that it appears naturally in construction of q-Binomial formula for

noncommutative elements. Noncommutative q-binomials were considered in (Nalci Tumer

and Pashaev , in preparation ) for description q-Hermite polynomial solutions for q-Heat equa-

tion. From another side it appears also in description of AKNS Hierarchy of integrable sys-

tems where Q = R is recursion operator of AKNS Hierarchy and q is the spectral parameter

(Pashaev and Nalci , 2014).

In the present thesis we would like to explore the possibility to interpret Binet formula

for Fibonacci polynomials and Fibonacci numbers as q-numbers, and develop corresponding

q-calculus.

1.3.1. Generalized q-Deformed Fermion Algebra

In addition to q-bosonic quantum algebra several attempts were done to construct q-

deformed fermionic oscillators (Parthasarathy and Viswanathan, 1991). These fermionic

quantum algebras were applied to several problems: for the dynamic mass generation of

quarks and nuclear pairing (Tripodi and Lima, 1997), (Timoteo and Lima, 2006), as de-

scription of higher order effects in many-body interactions in nuclei (Sviratcheva et al. ,

2004), (Ballesteros et al. , 2002).

A non-trivial q-deformation of the fermion oscillator algebra has been proposed in

(Parthasarathy and Viswanathan, 1991):

fq f +q +
√

q f +q fq = q−
N
2 (1.9)

[N, f +q ] = f +q , [N, fq] = − fq; f 2
q � 0. (1.10)

In this q-deformed fermionic oscillator algebra, the Pauli exclusion principle is not valid any-

more. The oscillator allows more than two q-fermions in a given quantum state. For such q-

fermion algebra the Fock space construction requires to introduce the "fermionic q-numbers"
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(Parthasarathy and Viswanathan, 1991),

[n]F
q =

q−
n
2 − (−1)nq

n
2

q− 1
2 + q

1
2

. (1.11)

For generic q, this representation is infinite-dimensional. Though in the limit q → 1, the

Fock space reduces to two states: the vacuum state and one-fermion state, so that the Pauli

principle is recovered. Here we note that this fermionic q-number (1.11) under substitution

q→ 1√
q becomes Binet formula (1.8) for Fibonacci polynomials Fn( 1√

q −
√

q), and for Golden

Ratio base q = 1
ϕ2 , it gives Fibonacci numbers (1.4). This relation allows us to connect

Fibonacci polynomials and Fibonacci numbers considered as q-numbers, with fermionic q-

numbers (Parthasarathy and Viswanathan, 1991). Statistical properties of these q-deformed

fermions were investigated in (Chaichian et al. , 1993) for description of fractional statistics.

Later it was shown (Narayana , 2005) that the thermodynamics of these generalized fermions

should involve the q-calculus with Jackson type q-derivative in the form

Dx
q f (x) =

1

x
f (q−1x) − f (−qx)

q + q−1
(1.12)

Here we notice that under substitution q → 1
q this derivative becomes the Fibonacci deriva-

tive (8.21), and for q → 1
ϕ
, the Golden Derivative (8.22). The above consideration indicate

on emergency of the Fibonacci q-calculus in description of q-deformed fermions and their

statistics.

1.3.2. Hecke Condition for R Matrix

Another motivation is related with quantum integrable systems approach to the theory

of quantum groups via solution of the Yang-Baxter equation for the R-matrix (Faddeev et al.

, 1990). If one introduces the R̂ matrix, R̂ = P R, where P- is permutation matrix, then this

invertible R̂ matrix obeys a characteristic equation. For two roots, this equation is represented

in the form of the Hecke condition

(R̂ − qÎ)(R̂ +
1

q
Î) = 0 (1.13)
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or

R̂2 = aR̂ + Î. (1.14)

By studying representations of the braid group satisfying this quadratic relation, (Jones ,

1987) obtained a polynomial invariant in two variables for oriented links. If calculating higher

powers of matrix R̂, we repeatedly apply the Hecke condition (1.14) as a result we find

R̂n = Fn(a)R̂ + Fn−1(a)Î, (1.15)

where Fn(a) = aFn−1(a) + Fn−2(a) - are Fibonacci polynomials (1.8) with a = q − 1
q .

1.3.3. Entangled N Qubit Spin Coherent States

One more motivation is coming from quantum information theory. The unit of quan-

tum information, the qubit, in the spin coherent state representation

|ψ〉 = 1√
1 + |ψ|2

⎛⎜⎜⎜⎜⎜⎜⎝ 1

ψ

⎞⎟⎟⎟⎟⎟⎟⎠ (1.16)

is parametrized by complex number ψ ∈ C, given by the stereographic projection ψ = tan θ
2
eiφ

of the Bloch sphere for qubit

|θ, φ〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ |1〉 . (1.17)

For arbitrary representation j of S U(2), the scalar product of two coherent states is

〈φ|ψ〉 = (1 + φ̄ ψ)2 j

(1 + |φ|2) j(1 + |ψ|2) j
. (1.18)

The orthogonality condition 〈φ|ψ〉 = 0 implies 1 + φ̄ ψ = 0 or a two states at the inverse-

symmetric points in the unit circle ψ and φ = − 1
ψ̄

(Pashaev and Gurkan , 2011). These points
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correspond to antipodal points on Bloch sphere, M(x, y, z) and M ∗ (−x,−y,−z). According to

these points, recently we have constructed maximally entangled set of orthonormal two qubit

coherent states (Pashaev and Gurkan , 2011),

|P±〉 = 1√
2

(|ψ〉 |ψ〉 ±
∣∣∣∣∣∣− 1

ψ̄

〉 ∣∣∣∣∣∣− 1

ψ̄

〉
) (1.19)

|G±〉 = 1√
2

(|ψ〉 −
∣∣∣∣∣∣ 1ψ̄

〉
±

∣∣∣∣∣∣− 1

ψ̄

〉
|ψ〉) (1.20)

with concurrence C = 1. These states generalize the Bell states and reduce to the last ones

in the limit ψ → 0 and − 1
ψ̄
→ ∞. This construction can be extended to arbitrary N-qubit

coherent states. First set of entangled states expanded in computational basis is

|ψ〉N −
∣∣∣∣− 1

ψ̄

〉N

ψ + 1
ψ̄

= F1(α, β)(|10...0〉 + |01...0〉 + ... |00...1〉) (1.21)

+F2(α, β)(|110...0〉 + |101...0〉 + ... |00...11〉) (1.22)

... + FN(α, β)(|111...1〉 (1.23)

and is characterized by the set of complex Fibonacci polynomials Fn(a), where a = ψ − 1
ψ̄

.

Another set of entangled N-qubit coherent states is

|ψ〉N +
∣∣∣∣∣∣− 1

ψ̄

〉N

= |00...0〉 + L1(α, β)(|10...0〉 + |01...0〉 + ... |00...1〉) (1.24)

+L2(α, β)(|110...0〉 + |101...0〉 + ... |00...11〉) (1.25)

... + LN(α, β)(|111...1〉 (1.26)

and is characterized by complex Lucas polynomials Ln(α, β) = ψn + (− 1
ψ̄

)n. The inverse-

symmetric points ψ and − 1
ψ̄

are roots of complex quadratic equation z2 = αz + β, where

α = ψ− 1
ψ̄

and β = ψ

ψ̄
. From polar representation of complex numbers ψ = qeiφ and z = reiφ we

get r2 = ar + 1, where a = q− 1
q , and rn = rFn(a)+ Fn−1(a) with Fibonacci polynomials Fn(a)

(1.8). The interesting point here is that the symmetric points under the unit circle appear in

the problem of vortex images in circular domain (Pashaev and Yilmaz, 2008), where these

points correspond to the line vortex at ψ and its image in the circle at 1
ψ̄

. Then parameter a,

α = aeiφ in Fibonacci polynomials has simple geometrical meaning as the distance between

vortex and its image. In particular when this distance is equal to one, a = q − 1
q = 1, the

position of the vortex is at the Golden Ratio distance from origin r = ϕ = 1+
√

5
2

and Fibonacci
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polynomials turn to Fibonacci numbers. In this case the line interval connecting vortex and

the inverse-symmetric point intersects the unit circle at a point which divide this interval on

two parts of length φ and 1
φ
.

The above motivations show that Fibonacci q-calculus is interesting subject to develop

with fruitful potential applications.

The goal of the present thesis is to study quantum calculus of classical Heat-Burgers’

hierarchy and quantum coherent states.

The thesis is organized as follows.

In Chapter 2, we study random walk on q-lattice and q-deformed heat equation. After

introduction of the heat and Burgers’ equations by Cole Hopf transformation in Section 2.1

we discuss shock soliton solutions and IVP. Random walk on q-lattice as Fermat partition

and its relation with q-heat equation with specific q-dependence for time and space variables

are discussed in Section 2.2. To describe exact solutions of this equation here we introduce

and study a new type of q-exponential functions. Section 2.3 is devoted to solution of q-heat

equation in terms of these new q-exponential functions. This solution includes q-oscillator

hierarchy and allows extending to a family of q-heat equations. Then we show that specific

case of random walk on q-lattice is described by the symmetrical q-calculus.

In Chapter 3, a new type of heat equation with nonsymmetric q-extension of the diffu-

sion term is introduced, which we call q-diffusive heat equation. We find polynomial solutions

of this equation as generalized Kampe de Feriet polynomials (Section 3.3), corresponding dy-

namical symmetry and description in terms of Bell polynomials in Section 3.4. By using

the Cole Hopf transformation the q-viscous Burgers’ equation is derived in Section 3.5. Its

solutions as shock solitons and their interactions are constructed and analyzed for different

q values. Due to specific dependence of the group velocity on wave number, in addition to

fusion of the solitons as in usual Burgers equation, a new process of fission of shock solitons

with higher amplitude is shown. In Section 3.6 the semiclassical expansion of these equations

is obtained in terms of Bernoulli polynomials as corrections in power of ln q. The Bäcklund

transformations are subject of Section 3.7

In Chapter 4, we introduce a new class of complex valued function of complex argu-

ment which we call q-analytic functions (Sections 4.1-4.5), satisfying q-Cauchy-Riemann and

q-Laplace equations. We show that q-analytic functions are not the analytic functions in the

usual sense. However some of these complex functions fall to the class of the generalized an-

alytic functions (Section 4.6). A new type of quantum states as q-analytic coherent states and

corresponding q-analytic Fock-Bargmann representation are constructed in Sections 4.8-4.9.

In Chapter 5, the concept of q-analytic function is extended to expansion of q-binomial

in terms of q-Hermite polynomials (Sections 5.1-5.3), analytic in two complex arguments.

Based on this representation, we introduce a new class of complex functions of two complex
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arguments, which we call the double q-analytic functions (Section 5.4). As another hyperbolic

extension, in Section 5.5 we describe the q-analogue of traveling waves, which are not pre-

serving the shape during evolution. Then IVP for q-wave equation is solved in the q-Hermite

polynomial form.

In Chapter 6, we introduce q-translation operator acting on monomials, which pro-

duces q-binomials, q-analytic and q-anti analytic functions, and q-travelling waves. Another

type q-translation operator as q-commutative (non-commutative) translation operator is intro-

duced. This produces non-commutative binomials, functions for non-commutative coordi-

nates. All these translations can be described by first order q-difference equations.

In Chapter 7, applying evolution operator to Glauber coherent states, we introduce a

new type of quantum states as Hermite coherent states (Section 7.2) and Kampe-de Feriet

coherent states (Section 7.4), characterized by Hermite polynomials and Kampe-de Feriet

polynomials correspondingly. In Section 7.5, we find a generalization of the Mehler for-

mula. By this formula we normalize these Coherent states and construct corresponding

Fock Bargmann representation. In section 7.6, we introduce Bernoulli coherent states are

related Fock-Bargmann representation. By q-translation operator in Section 7.7, we discuss

q-coherent states.

In chapter 8, we introduce Golden quantum calculus. By Fibonacci and Golden deriva-

tives we derive main ingredients of these calculus as Golden Leibnitz rule, Taylor expansion,

Golden binomial and Golden integral. In Section 8.3 we study Golden quantum oscillator and

its angular momentum representations.

Conclusions of this thesis are given in Chapter 9.

11



CHAPTER 2

RANDOM WALK ON Q-LATTICE AND Q-HEAT

EQUATIONS

Here by considering random walk on q-lattice as Fermat partition we introduce a new

type of q-heat equation with specific q-dependence for time and space variables. In order to

find exact solutions of this equation a new type of q-exponential functions are introduced and

some properties are studied. These q-exponential functions are generalizations of Jackson’s q-

exponential functions. We obtain a solution of q-heat equation in terms of these q-exponential

functions. This solution includes q-oscillator hierarchy and allows extending to a family of

q-heat equations. Then we show that specific case of random walk on q-lattice is described

by symmetrical q-calculus.

2.1. Random Walk on Equidistant h-Lattice and Heat Equation

Consider a symmetric random walk on one dimensional lattice. Starting from the

origin, a particle moves one step to the right or the left with equal probabilities 1
2
.

Figure 2.1. One dimensional random walk on equidistant lattice with step-size Δx

The consecutive steps are independent and taken at times

tk = kΔt, k = 1, 2, 3, ...

12



with the step size (lattice distance) Δx, so that the set of possible positions of particle is

xk = kΔx.

The function X(t, x) indicates whether the side x is occupied (X = 1) or unoccupied

(X = 0) at time t and

u(tk, xk) = P{X(tk, xk) = 1}

shows the probability that at time tk the particle is at site xk. Then we can write

u(tk+1, xk) =
1

2
u(tk, xk−1) +

1

2
u(tk, xk+1). (2.1)

This equation can be rewritten as follows:

u(tk+1, xk) − u(tk, xk) =
1

2
(u(tk, xk−1) + u(tk, xk+1) − 2u(tk, xk)) . (2.2)

Let u(tk, xk) ≡ u(t, x) and expand both sides in Taylor at x, t :

u(tk+1, xk) = u(t + Δt, x) = u(t, x) +
∂u
∂t
Δt + O((Δt)2), (2.3)

u(tk, xk±1) = u(t, x ± Δx) = u(t, x) ± ∂u
∂x
Δx +

1

2

∂2u
∂x2

(Δx)2 + O((Δx)3). (2.4)

Substituting (8.33) and (8.34) into (2.2) we get

∂u
∂t
=

1

2

(Δx)2

Δt
∂2u
∂x2

.

We see that for (Δt → 0) and (Δx → 0) nontrivial dynamics only happen when (Δx)2

Δt = a is a

constant.

13



Thus we obtain the linear heat equation as

∂u
∂t
= ν

∂2u
∂x2

, (2.5)

where ν ≡ a
2
.

2.1.1. Burger’s Equation and Cole-Hopf Transformation

Nonlinear heat equation which is also known as Burger’s equation is

ut + uux = νuxx. (2.6)

By using the Cole-Hopf transformation

u(x, t) = −2ν
φx(x, t)
φ(x, t)

, (2.7)

the equation (2.6) reduces to the linear heat equation

φt = νφxx. (2.8)

Shock soliton solutions are particular solutions of this equation.

2.1.2. IVP for Burgers’ Equation

IVP for the Burgers’ equation defined in the following form

ut + uux = νuxx, t > 0,

u(x, 0) = F(x), −∞ < x < ∞,

14



can be transformed to IVP for the Heat equation

φt = νφxx,

φ(x, 0) = e
−1
2ν

∫ x
F(η)dη.

Solution of the IVP for heat equation

φ(x, t) =
1√
4πνt

∫ ∞

−∞
φ(η, 0)e−

(x−η)2

4νt dη

implies the solution of IVP for Burgers’ equation in the following form

u(x, t) = −2ν
φx

φ
=

∫ ∞
−∞

x−η
t e−

G
2ν dη∫ ∞

−∞ e−
G
2ν dη

,

where

G(η; x, t) ≡
∫ η

F(η′)dη′ +
(x − η)2

2t
.

2.1.3. Shock Soliton Solutions of Burgers’ Equation

One of the simplest solution of the heat equation

φt = νφxx (2.9)

is

φ = eη1 , η1 = k1x + ω1t + η0
1 (2.10)
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with ω1 = νk2
1. Parameterizing k1 = a1/2ν, we have

φ = e−
a1
2ν x+

a2
1

4ν t+η0
1 .

The corresponding solution of Burgers’ equation is

u(x, t) = −2ν
φx

φ
= a1. (2.11)

Since the heat equation is linear, any superposition of solutions is also a solution (su-

perposition principle). Then for

φ = eη1 + eη2 , ηi = − ai

2ν
x +

a2
i

4ν
t + η0

i , (i = 1, 2),

the corresponding solution of Burgers’ equation is in the form of shock solitons

u(x, t) =
a1eη1 + a2eη2

eη1 + eη2
, (2.12)

with asymptotics: u→ a1 if x→ −∞, u→ a2 if x→ +∞, where 0 < k1 < k2.

2.1.4. Initial Step Function to Shock

Importance of shock solitons follows from initial value problem with step function:

u(x, 0) = F(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ a1, x > 0

a2 > a1, x < 0.

Then at time t > 0 :

u(x, t) = a1 +
a2 − a1

1 + h(x, t)e
(a2−a1)

2ν (x−vt−x0)
(2.13)

where v = a1+a2

2
.
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Figure 2.2. Initial step function

When x→ ∞, t → ∞, so that x/t is fixed and we obtain shock soliton solution

h(x, t) =

∫ ∞
− (x−a1t)√

4νt

e−ζ
2

dζ∫ ∞
(x−a2t)√

4νt

e−ζ2dζ
→ 1. (2.14)

Figure 2.3. Shock soliton solution
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2.2. Random Walk on q-Lattice and q-Heat equation

2.2.1. Fermat Partition and q-Lattice

Pierre de Fermat (1601-1665), along with Descartes (1596-1650), invented xy− co-

ordinate system and analytic geometry. Besides developing analytic geometry, Fermat and

Descartes were also early researchers in the subject that we now call the q calculus.

Fermat evaluated the area under the graph of a power function y = xα, where α is a

rational number except −1, that is, how he determined what we now write as

∫ a

0

xα dx =
aα+1

α + 1
.

He approached the area by rectangular estimates.

Figure 2.4. Area on q-lattice

Fermat partitioned the interval [0, a] into subintervals which are not the same size, but

ordered in geometric progression.

Let us calculate the area under the curve of y = xα in interval [0,a] by Fermat’s upper

rectangular estimates. For 0 < q < 1, we divide the closed interval [0, a] into n-subintervals

of different lengths at the points q0a, q1 a, q2 a, q3 a, ..., qn a, then the partition is

P{a0, a1, a2, ..., an} = {a, qa, q2a, ...qna}.
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The width of the leftmost subinterval is Δa1 = a0 − a1 = a − qa = a(1 − q), the next one

Δa2 = a1 − a2 = qa(1 − q), and the last one is Δan = an−1 − an = qn−1a(1 − q). Then, the sum

of rectangular areas from right to the left is expressed in terms of the Riemann Sum S n
q as

S n
q =

n∑
k=1

f (ck)Δak

= aα+1(1 − q)

n∑
k=1

(
qα+1

)k−1

= aα+1(1 − q)

n∑
k=1

Qk−1

= aα+1(1 − q)
(
1 + Q2 + Q3 + ... + Qn−1

)
, (2.15)

where qα+1 ≡ Q.

The exact area is given by the limit

lim
n→∞ S n

q = aα+1(1 − q)
1

1 − qα+1
,

where Q = qα+1 < 1. Now if q→ 1, then S∞q → aα+1

α+1
, which is exact value of the integral.

2.2.2. From Fermat’s Approach to Jackson’s Integral

Let us evaluate the area under the curve y = f (x) in the interval [0, x] by using Fermat

partition

P{x0, x1, x2, ..., xn} = {x, qx, q2x, ..., qnx = 0},

where 0 < q < 1. The Riemann sum is obtained as

S n
q = x(1 − q)

n∑
k=1

f
(
qk−1x

)
qk−1

= x(1 − q)

n∑
j=0

f
(
qjx

)
qj. (2.16)
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When n→ ∞, we obtain the Jackson’s integral

lim
n→∞ S n

q = x(1 − q)

∞∑
j=0

f
(
qjx

)
qj

=

∫
f (x)dqx = F(x). (2.17)

2.2.3. q-Lattice and Symmetric Points in Two Concentric Circles

Inversion of point a in circle with radius R is R2

a

Figure 2.5. Inversion of point a in circle R

Inversion of point a in 2 circles with radiuses R1 and R2 is determined by infinite set

of points

...,
1

q2
a,

1

q
a, a, aq, aq2, ...

...,
1

q
R2

1

a
,

R2
1

a
, q

R2
1

a
, q2

R2
1

a
, ...

Boundary value problem corresponds infinite set of vortex images arranged as two

q-lattices with q = R2
2

R2
1

.
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Figure 2.6. q-Lattice of hydrodynamic vortex images in annular domain, q = R2
2

R2
1

2.2.4. Random Walk on q-Lattice

Now let us consider a non-equidistant random walk on the one dimensional lattice.

Starting from the origin, a particle moves one step to the right or the left with different prob-

abilities, which are inversely proportional to the distances. Here, the lattice constructed by

geometrical progression rule xk = qkx0, where q > 1 and k = 0,±1,±2, ..., and corresponding

probability moves one step to the right is 1
1+q and one step to the left is

q
1+q .

Figure 2.7. One dimensional random walk on q-lattice

The consecutive steps are independent and taken at times

tk = Qkt0, k = 1, 2, 3, ...
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with the step size (lattice distance) Δx, so that the set of possible positions of particle is

xk = qk x0.

The function X(t, x) indicates whether the side x is occupied (X = 1) or unoccupied

(X = 0) at time t, so that

u(tk, xk) = P{X(tk, xk) = 1}

shows the probability that at time tk the particle is at site xk. Then we can write

u(tk+1, xk) =
q

q + 1
u(tk, xk−1) +

1

q + 1
u(tk, xk+1).

This equation can be rewritten as follows

u(tk+1, xk) − u(tk, xk) =
q

q + 1
u(tk, xk−1) +

1

q + 1
u(tk, xk+1) − u(tk, xk). (2.18)

We denote u(tk, xk) ≡ u(t, x), t ≡ tk = Qkt0, x ≡ xk = qkx0. Then we can write

u(tk+1, xk) = u(Qt, x),

u(tk, xk+1) = u(t, qx),

u(tk, xk−1) = u(t,
x
q

),

and the equation (2.18) can be rewritten in the following form

u(Qt, x) − u(t, x) =
q

q + 1
u(t,

x
q

) +
1

q + 1
u(t, qx) − u(t, x)

(Q − 1)tDt
Qu(t, x) =

q
q + 1

u(t,
x
q

) +
1

q + 1
u(t, qx) − q

q + 1
u(t, x) − 1

q + 1
u(t, x)

(Q − 1)tDt
Qu(t, x) =

1

q + 1

(
qu(t,

x
q

) + u(t, qx) − (q + 1)u(t, x)

)
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(Q − 1)tDt
Qu(t, x) =

1

q + 1
Mx

1
q

(
q(q − 1)2x2(Dx

q)2u(t, x)
)

Qk(Q − 1)t0Dt
Qu(t, x) =

1

q + 1
Mx

1
q

(
q(q − 1)2q2kx2

0(Dx
q)2u(t, x)

)
, (2.19)

and we get

Mx
q Dt

Q u(t, x) =
(q − 1)2 q q2k

(q + 1)(Q − 1)Qk

x0

t0

(Dx
q)2u(t, x) (2.20)

where the partial q−derivatives are defined as

Dx
qu(t, x) =

u(t, qx) − u(t, x)

(q − 1)x
, Dt

Qu(t, x) =
u(Qt, x) − u(t, x)

(Q − 1)t
, (2.21)

and dilatation operator is Mx
qu(t, x) = u(t, qx).

By proper choice Q ≡ q2 in order to make equation (2.20) independent of steps number

k, we obtain the (q, q2)− heat equation

Dt
q2u(t, x) = νMx

1
q
(Dx

q)2u(t, x) (2.22)

or it can be written as

Dt
q2u(t, x) = νDx

1
q
Dx

qu(t, x),

where

x2
0

t0

≡ a,
q(q − 1)a

q + 1
≡ ν. (2.23)

Random walk on q-lattice produces different kind of Q-space difference q-time differ-

ence heat equations. As a special cases we mention :

In (Nalci and Pashaev, 2010), (Nalci and Pashaev, 2014) we studied the case Q = q : q-

Space-Time Difference Heat equation, its polynomial solutions and corresponding q-Burgers’

equation with q-shock soliton solutions.

Furthermore in (Pashaev and Nalci, 2012), (Nalci and Pashaev, 2014) the case Q = 1 :
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q-Space Difference and Time Differential Heat equation is studied with details.

In order to solve (q, q2)- heat equation (2.22) we need to introduce new type of q-

exponential functions.

2.2.5. New Family of q-Exponential Functions

Definition 2.1 N-Weighted q-exponential function is defined as

Neq(x) ≡
∞∑

n=0

qN n(n−1)
2

xn

[n]q!
(2.24)

The q-exponential function Neq(x) is entire function for N > 0 and q < 1, and N < 0

or 0 < N < 1 and q > 1.

Particular cases of this exponential function are:

1. For N = 0 it reduces to Jackson’s q-exponential function

0eq(x) ≡ eq(x) =

∞∑
n=0

xn

[n]q!
, (2.25)

which is an entire function of x for q > 1, and for q < 1 it converges for |x| < 1
|q−1| .

2. For N = 1 it is the second Jackson’s q-exponential function

1eq(x) ≡ Eq(x) =

∞∑
n=0

q
n(n−1)

2
xn

[n]q!
. (2.26)

It is easy to see that

e 1
q
(x) = Eq(x). (2.27)

Lemma 2.1 q-Derivative of the exponential function Neq(ax) is found as

Dx
q Neq(ax) = a Neq(aqN x). (2.28)
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Proof By direct application of q-derivative we find

Dx
q Neq(ax) =

∞∑
n=0

qN n(n−1)
2 Dx

q
axn

[n]q!
=

∞∑
n=1

qN n(n−1)
2

anxn−1

[n − 1]q!
=

∞∑
n=0

qN n(n−1)
2 qNnan+1 xn

[n]q!

= a Neq(aqN x).

�

Lemma 2.2 Due to the symmetry between q and 1
q , the q-exponential function Neq(x) satisfies

the following reciprocity relation

Ne 1
q
(x) =1−N eq(x). (2.29)

Proof By using the definition of q-numbers, the relation between q and 1
q -numbers is found

as

[n]q = qn−1[n] 1
q
, (2.30)

and the relation between q and 1
q -factorials is obtained in the form

[n]q! = q
n(n−1)

2 [n] 1
q
!. (2.31)

Then, by using the definition of N-weighted q-exponential function and the relation (2.31) we

get the desired result

Ne 1
q
(x) =

∞∑
n=0

(
1

q

)N n(n−1)
2 xn

[n] 1
q
!
=

∞∑
n=0

q−N n(n−1)
2 q

n(n−1)
2

xn

[n]q!
=

∞∑
n=0

q(1−N)
n(n−1)

2
xn

[n]q!
1−N

eq(x)

= 1−Neq(x).

�

For N = 0, we obtain the known relation between the first and the second Jackson’s

q-exponential functions

0e 1
q
(x) ≡ e 1

q
(x) =1 eq(x) ≡ Eq(x). (2.32)
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This reciprocity relation gives transition between two Jackson’s q-exponential functions or

gives transition between symmetric points in the unit circle, q and 1
q .

2.3. q-Heat Equation

After introducing a new type of q-exponential function Neq(x) , in order to solve the

(q, q2)-heat equation

Mx
q Dt

q2u(t, x) = ν(Dx
q)2u(t, x), (2.33)

we consider the separation of variable method u(t, x) = T (t)X(x). By taking corresponding

derivatives

Dt
q2T (t)

νT (t)
=

(Dx
q)2X(x)

X(qx)
= −κ2

we obtain two equations which only depends on t and x,

Dt
q2T (t) = −νκ2T (t), (2.34)

(Dx
q)2X(x) = −κ2X(qx). (2.35)

The solution for time dependent part (2.34) is found in terms of Jackson’s q-exponential

function eq(x) with base q2 as

T (t) = T (0)eq2(−νκ2t),

where T (0) is the initial condition. The solution of space dependent part (2.35) is obtained in

terms of new q-exponential function Neq(x) with N = 1
2

in the following form

X(x) = 1
2

eq

(
±i
κx

q
1
4

)
. (2.36)
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As a result, particular solution is obtained as

u±(x, t) = X(x)T (t) = 1
2

eq

(
±i
κx

q
1
4

)
eq2(−νκ2t). (2.37)

Definition 2.2 New family of q-trigonometric functions are defined in the following form

N cosq(x) ≡ Neq(ix) +N eq(−ix)

2
,

N sinq(x) ≡ Neq(ix) −N eq(−ix)

2i
, (2.38)

which satisfy the relations

N cos 1
q
(x) = 1−N cosq(x) (2.39)

N sin 1
q
(x) = 1−N sinq(x). (2.40)

Their derivatives are found as

Dx
q N sinq(ax) = a N cosq(qNax),

Dx
q N cosq(ax) = −a N sinq(qNax).

Then, a general solution is written in terms of new family of q-trigonometric functions in the

form

u(x, t) =
(
A 1

2
cosq(

κx
q1/4

) + B 1
2

sinq(
κx

q1/4
)

)
eq2(−νκ2t), (2.41)

in which we introduce Euler type formula

Neq(ix) =N cosq(x) + iN sinq(x). (2.42)

Here, A and B could be fixed by initial functions, but in order to fix κ we need to use boundary
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conditions, which requires to study zeros of 1
2

cosq(x) and 1
2

sinq(x) functions.

In Figures 2.8 and 2.9, we compare Jackson’s q-exponential function and 1
2
-weighted

q-exponential function 1
2
eq(x) with the standard exponential function ex for different values of

q.

Figure 2.8. q-Exponential function eq(x)

Figure 2.9. 1
2
-Weighted exponential function 1

2
eq(x)

If we consider the Dirichlet boundary conditions X(0) = X(L) = 0 for (q, q2)-heat

equation we obtain the solution as

u(x, t) = 1
2

sinq(
x

q1/4
)eq2(−t), (2.43)

where for simplicity we choose B = 1, κ = 1, ν = 1 and L = q
1
4 x0, x0 � 4.6 is a zero of

1
2

sinq(x)

In Figure 2.10 we see the solution of (q, q2)-heat equation at time t = 0.1 for q =

0.5, q = 1.2, and q = 1 with interval depending on q.
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Figure 2.10. Solution of (q, q2)-heat equation at time t = 0.1

2.3.1. q-Oscillators Hierarchy

The q-oscillator equation is defined as

(
Dt

q

)2
y(t) + ω2y(t) = 0, (2.44)

with the q-exponential solution as

y(t) = Aeq(iωt) + Beq(−iωt) = a cosq(ωt) + b sinq(ωt). (2.45)

But previous consideration implies the q-oscillator equation in the following time delateted

form

(
Dt

q

)2
y(t) + ω2y(qt) = 0. (2.46)

It has a solution as N-weighted q-exponential function with N = 1
2

y(t) = A 1
2
eq

(
iω

q1/4
t
)
+ B 1

2
eq

(
− iω

q1/4
t
)
= a 1

2
cosq(

ω

q1/4
t) + b 1

2
sinq(

ω

q1/4
t). (2.47)

For arbitrary N-weighted q-exponential function we introduce the q-oscillator hierar-
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chy

(
Dt

q

)2
y(t) + ω2y(qMt) = 0. (2.48)

The general solution for M-th member of family of q-oscillators is

y(t) = A M
2
eq

(
iω

qM/4 t
)
+ B M

2
eq

(
− iω

qM/4 t
)
= a M

2
cosq

(
ω

qM/4 t
)
+ b M

2
sinq

(
ω

qM/4 t
)
. (2.49)

2.3.2. Family of q-Heat Equations

The above hierarchy of q-oscillators suggests to introduce a family of q-heat equations

in the form

Dt
Qu(qM x, t) = (Dx

q)2u(x, t) (2.50)

whose general solution is given by

u(x, t) = eQ(−κ2t)
(
A M

2
eq(

iκ
qM/4 )x + B M

2
eq(− iκ

qM/4 x)

)
= eQ(−κ2t)

(
a M

2
cosq(

ω

qM/4 x) + b M
2

sinq(
ω

qM/4 x)

)
. (2.51)

Property: The eigenvalue problem for q-weighted q-exponential function is

(
(M 1

q
)N Dx

q

)
Neq(ax) = a Neq(ax). (2.52)

Property: The higher order equation

(Dx
q)k f (x) = λ f (qM x) (2.53)
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has solution in the following form

f (x) = M
k

eq

⎛⎜⎜⎜⎜⎝ λ1/k

qN k−1
2

x
⎞⎟⎟⎟⎟⎠ . (2.54)

2.3.3. Multiple q1, q2 Numbers

Definition 2.3 The q-number with two basis q1 and q2 is defined (Nalci and Pashaev, 2014)

as

[n]q1,q2
=

qn
1 − qn

2

q1 − q2

. (2.55)

By choosing q1 = qN and q2 = qN−1, the q-number with two basis (q1, q2) is written as

[n]qN ,qN−1 =
(qN)n − (qN−1)n

qN − qN−1
=

qNn(1 − q−n)

qN(1 − q−1)
= qN(n−1)[n] 1

q
, (2.56)

and the q-factorial with two basis (qN , qN−1) becomes

[n]qN ,qN−1! = qN n(n−1)
2 [n] 1

q
!. (2.57)

Definition 2.4 (q1, q2)-Exponential functions are defined (Nalci and Pashaev, 2014) in the

following form

eq1,q2
(x) ≡

∞∑
n=0

1

[n]q1,q2
!
xn (2.58)

Eq1,q2
(x) ≡

∞∑
n=0

1

[n]q1,q2
!
(q1 q2)

n(n−1)
2 xn. (2.59)

Proposition 2.1 N-weighted q-exponential function is written in terms of q-exponential func-
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tion with two basis (qN , qN−1) as follows

Neq(x) = EqN ,qN−1(x). (2.60)

Proof Using definition of (q1, q2)-exponential function (2.59) with bases q1 = qN and q2 =

qN−1 we have EqN ,qN−1(x) as follows

EqN ,qN−1(x) =

∞∑
N=0

1

[n]qN ,qN−1!
(qNqN−1)

n(n−1)
2 xn =

∞∑
n=0

1

qN n(n−1)
2 [n] 1

q
!
(qNqN−1)

n(n−1)
2 xn

=

∞∑
N=0

q
n(n−1)

2

qN n(n−1)
2 [n]q!

(qNqN−1)
n(n−1)

2 xn =

∞∑
n=0

qN n(n−1)
2

[n]q!
xn =N eq(x). (2.61)

�

Definition 2.5 The (q1, q2)-analogue of (x− a)n is the polynomial (Nalci and Pashaev, 2014)

(x − a)n
q1,q2
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1 if n = 0,

(x − qn−1
1

a)(x − qn−2
1

q2a)...(x − q1qn−2
2

a)(x − qn−1
2

a) if n ≥ 1

Proposition 2.2 The N-weighted q-exponential function has factorization formula

Neq(x + y)qN ,qN−1 =N e 1
q
(x) Neq(y). (2.62)

Proof By using the factorization formula (Nalci and Pashaev, 2014)

eqi,q j(x + y)qi,q j = eqi,q j(x)Eqi,q j(y) (2.63)

for qi = qN and qj = qN−1 we get

eqN ,qN−1(x + y)qN ,qN−1 = eqN ,qN−1(x)︸�����︷︷�����︸
Eq−N ,q1−N

EqN ,qN−1(y)

Neq(x + y)qN ,qN−1 = Ne 1
q
(x) Neq(y). (2.64)

�

For special choice N = 1
2
, the N-weighted q-exponential function with N = 1

2
is written
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in terms of exponential function (2.59) with base (
√

q, 1√
q )

1
2
eq(x) = E√q, 1√

q
(x). (2.65)

For base (
√

q, 1√
q ), it is easy to see from definition (2.4) that both exponential functions are

the same

1
2
eq(x) = E√q, 1√

q
(x) = e√q, 1√

q
(x) ≡ ẽ√q(x), (2.66)

which means that for symmetric basis, the exponential functions coincide. Here, ẽ√q(x) is the

symmetric q-exponential function which is defined as

ẽ√q(x) = Ẽ√q(x) =

∞∑
n=0

xn

[̃n]√q!
, (2.67)

where the symmetric [̃n]√q-number is

[̃n]√q =
(
√

q)n − ( 1√
q )n

√
q − 1√

q

. (2.68)

The factorization formula for N = 1
2

is

1
2
eq(x + y)√q, 1√

q
= 1

2
e 1

q
(x) 1

2
e 1

q
(y) = ẽ√q(x) ẽ√q(y), (2.69)

where

1
2
eq(x + y)√q, 1√

q
=

∞∑
n=0

q
n(n−1)

4

(x + y)n√
q, 1√

q

[n]q!
, (2.70)

and symmetrical binomial is

˜(x + y)
n√

q = (x + (
√

q)n−1y)(x + (
√

q)n−3y)...(x + (
√

1)3−ny)(x + (
√

q)1−ny). (2.71)
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As a result, the q-difference equation (2.35) has a general solution in terms of sym-

metric exponential functions as

X(x) = D 1
2
eq

(
±i
κx

q
1
4

)
= D ẽ√q

(
±i
κx

q
1
4

)
= = A c̃os√q

(
κx

q
1
4

)
+ B s̃in√q

(
κx

q
1
4

)
, (2.72)

where symmetric
√

q-trigonometric functions are

c̃os√q(x) =
ẽ√q(ix) + ẽ√q(−ix)

2
, (2.73)

s̃in√q(x) =
ẽ√q(ix) − ẽ√q(−ix)

2i
. (2.74)

Applying to the random walk on q-lattice, equation (2.20) can be written in the fol-

lowing form

(Q − 1)tDt
Qu(t, x) =

1

q + 1

(
qu(t,

x
q

) + u(t, qx) − (q + 1)u(t, x)

)
=

1

q + 1

(√
q − 1√

q

)2 √
qx2

(
D̃x√

q

)2

u(t, x), (2.75)

where symmetric
√

q-derivative is defined as

D̃x√
q f (x) =

f (
√

qx) − f
(

x√
q

)
(
√

q − 1√
q )x

. (2.76)

We denote t = t0Qk, x = x0qk. To get an equation independent of steps numbers k, we choose

Q = q2, and hence we find the following q-heat equation

Dt
q2u(t, x) = ν(D̃x√

q)2u(t, x), (2.77)
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where

ν ≡ (q − 1)a√
q(q + 1)2

,
x2

0

t0

≡ a.

By the method of separation of variables u(t, x) = T (t)X(x), particular solution is

found

u(t, x) = eq2(νk2t)̃e√q(kx), (2.78)

which is the generating function of new type of Kampe de Feriet polynomials

eq2(νk2t)̃e√q(kx) =

∞∑
N=0

kN

N!
KN(x, t; q), (2.79)

where

KN(x, t; q) =

[ N
2 ]∑

n=0

N!xN−2n(νt)n

[n]q2! ˜[N − 2n]√q!
. (2.80)
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CHAPTER 3

Q-DIFFUSIVE HEAT EQUATION AND Q-VISCOUS

BURGERS’ EQUATION

Here we propose a q-diffusive heat equation with nonsymmetric q-extension of the

diffusion term. Written in relative gradient variables, this system appears as the q-viscous

Burgers’ equation. Exact solutions of this equation in polynomial form of generalized Kampe

de Feriet polynomials, corresponding dynamical symmetry and description in terms of Bell

polynomials are derived. We find the generating function for these polynomials by applica-

tion of dynamical symmetry and the Zassenhaus formula. Shock soliton solutions and their

interactions are constructed and analyzed for different q. For q < 1 the soliton speed becomes

bounded from above and as a result, in addition to usual Burgers soliton process of fusion, we

found a new phenomena, when soliton with higher amplitude but smaller velocity is fissing

to two solitons. In terms of Bernoulli polynomials we develop the semiclassical expansion of

these equations. Finally, we obtain the Bäcklund transformation which relates two solutions

of q-viscous Burgers equation.

3.1. Q-Diffusive Heat Equation

We introduce q-diffusive deformation of the heat equation in the following form

∂

∂t
φ(x, t) =

[
ν
∂2

∂x2

]
q
φ(x, t), (3.1)

where ν is diffusion constant and the q-operator

[
ν
∂2

∂x2

]
q
=

qν
∂2

∂x2 − 1

q − 1
(3.2)

is defined as a formal power series. In the limiting case q → 1, equation (3.1) reduces to the

standard heat equation.

By the method of separation of variables we search solution of this equation in the
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form

φ(x, t) = X(x)T (t).

Substituting this into (3.1) we get

T
′
(t)

T (t)
=

[
ν ∂2

∂x2

]
q

X(x)

X(x)
= −λ.

As a result, we obtain two ordinary differential equations

T
′
(t) + λT (t) = 0, (3.3)[
ν
∂2

∂x2

]
q

X(x) + λX(x) = 0. (3.4)

Solution of the first equation in t is

T (t) = e−λtT (0),

where T (0) is a constant.

3.1.1. Finite Interval Case

For the space part we consider the following eigenvalue problem on finite interval with

the Dirichlet boundary conditions

[
ν
∂2

∂x2

]
q

X(x) = −λX(x), (3.5)

X(0) = X(l) = 0. (3.6)
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In order to solve this problem, we use the following boundary value problem

−X
′′
(x) = μX(x),

X(0) = X(l) = 0, (3.7)

with eigenvalues

μn =

(nπ
l

)2

, (3.8)

and the corresponding eigenfunctions

Xn(x) =

√
2

l
sin

nπ
l

x. (3.9)

This set of eigenfunctions is orthonormal and complete in L2. Then, substituting the last

equation to equation (3.5), and by using definition of the q-operator we obtain

[
ν
∂2

∂x2

]
q

X(x) =
qν

∂2

∂x2 X(x) − X(x)

q − 1

=
q−μν − 1

q − 1
X(x) =

[−μν]q X(x), (3.10)

which gives the following relation between the eigenvalues of q-equation (3.5) and equation

(3.7)

λ = − [−μν]q . (3.11)

Therefore, solution of the q-deformed initial value problem (3.5) is obtained in terms of solu-

tion of standard Sturm-Liouville problem (3.7) with eigenvalues as q-numbers

λn = −[−μnν]q = −
[
−

(nπ
l

)2

ν

]
q
,
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and the corresponding eigenfunctions as in (3.9).

Then, we find a particular solution of q-diffusive heat equation (3.1) in the form

φn(x, t) = Xn(x)Tn(t) = e−λntT (0)

√
2

l
sin

nπ
l

x,

where λn = −[−(nπ
l )2ν]q.

Figure 3.1. Evolution of n = 1 solution at time t = 1

Figure 3.2. Evolution of n = 2 solution at time t = 0.1

In Figures 3.1 and 3.2 we show particular solutions for n = 1 and n = 2 modes

correspondingly, in q > 1, q < 1 and q = 1 cases. As we can see, comparing with the usual

heat equation with q = 1, depending on q the decaying process is going faster for q < 1, or

slower for q > 1.

The general solution is a proper superposition of these solutions

φ(x, t) =
∞∑

n=1

Ane−λnt sin
nπ
l

x =
∞∑

n=1

Anet[−( nπ
l )2ν]q sin

nπ
l

x. (3.12)
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To fix the Fourier coefficients An we pose the following IVP

φ(x, 0) = f (x),

so that we get

φ(x, 0) = f (x) =

∞∑
n=0

An sin
nπ
l

x.

Then the coefficients are found as

Am =
2

l

∫ l

0

f (x) sin(
mπ
l

x) dx,

and solution is obtained in the form

φ(x, t) =
2

l

∞∑
n=0

∫ l

0

dy f (y) sin(
nπ
l

x) sin(
nπ
l

y) e−λnt. (3.13)

We define the Green function for equation (3.1) as

G(x, y; t) =
2

l

∞∑
n=0

sin(
nπ
l

x) sin(
nπ
l

y) et[−( nπ
l )2ν]q , (3.14)

so that solution of IBVP is

φ(x, t) =
∫ l

0

G(x, y; t) f (y)dy. (3.15)

The Green function (3.14) as evident, satisfies G(x, y; t) = G(y, x; t) and at initial time

t = 0 it is just the Dirac delta function

G(x, y; 0) =
2

l

∞∑
n=0

sin(
nπ
l

x) sin(
nπ
l

y) = δ(x − y). (3.16)
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Due to relation

F
(

d
dx

)
eikx = F(ik)eikx, (3.17)

where F is an analytic function, which implies

et[ν d2

dx2 ]qe±i nπ
l x = et[ν( inπ

l )2]qe±i nπ
l x,

we can rewrite (3.14) in an operator form by using the evolution operator

G(x − y ; t) = et[ν d2

dx2 ]qδ(x − y) =
2

l

∞∑
n=0

et[ν d2

dx2 ]q sin(
nπ
l

x) sin(
nπ
l

y)

=
2

l

∞∑
n=0

et[−ν( nπ
l )2]q sin(

nπ
l

x) sin(
nπ
l

y). (3.18)

3.1.2. Infinite Interval Case

Now we consider the initial value problem for q-diffusive heat equation in infinite

interval:

∂

∂t
φ(x, t) =

[
ν
∂2

∂x2

]
q
φ(x, t),

φ(x, 0) = f (x), (3.19)

−∞ < x < ∞.

By using the Fourier transform

φ(x, t) =
1√
2π

∫ ∞

−∞
eikx φ̃(k, t)dk, (3.20)
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and substituting into (3.19) we have

∫ ∞

−∞
eikx φ̃t(k, t)dk =

∫ ∞

−∞
φ̃(k, t)

[
ν
∂2

∂x2

]
q

eikxdk. (3.21)

Due to property (3.17)

[
ν

d2

dx2

]
q

eikx =
[
ν(ik)2

]
q

eikx =
[
−νk2

]
q

eikx. (3.22)

the integral (3.21) becomes

∫ ∞

−∞
eikx φ̃t(k, t)dk =

∫ ∞

−∞
φ̃(k, t)

[
−νk2

]
q

eikxdk (3.23)

and

∫ ∞

−∞
(φ̃t(k, t) −

[
−νk2

]
q
φ̃(k, t))eikxdk = 0, (3.24)

which implies

φ̃t(k, t) =
[
−νk2

]
q
φ̃(k, t).

The general solution of the last equation is found in the form

φ̃(k, t) = φ̃(k, 0) et[−νk2]q . (3.25)

Substituting (3.25) into Fourier transform (3.20) we get solution

φ(x, t) =
1√
2π

∫ ∞

−∞
eikx+t[−νk2]q φ̃(k, 0)dk.

By using the inverse Fourier transform, we can fix φ̃(k, 0) by the initial function

φ̃(k, 0) =
1√
2π

∫ ∞

−∞
φ(y, 0)e−ikydy.
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Then solution of the initial value problem for infinite interval is

φ(x, t) =
∫ ∞

−∞
G(x, y; t)φ(y, 0)dy , (3.26)

where the Green function is defined as

G(x, y; t) =
1

2π

∫ ∞

−∞
eik(x−y)+t[−νk2]qdk. (3.27)

Using property (3.22)

et[−νk2]qeik(x−y) = et[ν(ik)2]qeik(x−y) = et[ν d2

dx2 ]qeik(x−y),

the Green function becomes

G(x, y; t) =
1

2π

∫ ∞

−∞
et[ν d2

dx2 ]qeik(x−y)dk = et[ν d2

dx2 ]q 1

2π

∫ ∞

−∞
eik(x−y)dk.

As a result, the Green function for q-diffusive heat equation (3.19) can be expressed as time

evolution of the Dirac delta function

G(x − y ; t) = et[ν d2

dx2 ]qδ(x − y). (3.28)

Definition 3.1 The evolution operator is defined in terms of q-deformed operator as

U(t) = et[ν d2

dx2 ]q , (3.29)

and gives evolution of the initial function φ(x, 0)

φ(x, t) = et[ν d2

dx2 ]qφ(x, 0). (3.30)

As an example, we consider the q-diffusive heat equation with initial value as the Dirac Delta
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function:

∂

∂t
φ(x, t) =

[
ν
∂2

∂x2

]
q
φ(x, t),

φ(x, 0) = δ(x). (3.31)

Then the solution is

G(x, t) = et[ν d2

dx2 ]qδ(x) =
1

2π

∫ ∞

−∞
eikx+t[−νk2]q dk. (3.32)

3.2. The Generalized Kampe-De Feriet Polynomials

Here we are going to construct polynomial solutions of equation (3.1). For this reason

we consider the plane wave solution of (3.1) as the generating function for the Kampe de

Feriet type polynomials,

φ(x, t) = ekx+ω(k)t,

which implies the q-deformed dispersion ω(k) = [νk2]q and

φ(x, t) = ekx+t[νk2]q . (3.33)

The phase velocity of this plane wave solution is characterized by q :

vph =
ω(k)

k
=

[νk2]q

k
=

eνk
2 ln q − 1

k(q − 1)
.

In Figure 3.3 we show the phase velocity for different values of q. In contrast to the

linear dependence for q = 1 case, for q < 1 the velocity is bounded from above and reaches

the maximum value and then it starts to decline fast. As we show in Section 5, this leads

to a new process of soliton fissions. However, for q > 1 case the phase velocity is growing

infinitely, that is, it has no upper limit.

44



Figure 3.3. Phase velocity Figure 3.4. Group velocity

The group velocity of this solution also depends on q and is given by

vg =
dω(k)

dk
=

2νk ln q
q − 1

eνk
2 ln q.

In Figure 3.4 we show the group velocity for three different values of q. For q < 1 the

group velocity is bounded from the above function, taking maximal value

|vmax| =
√

2ν

e
ln

1

q
1

1 − q
(3.34)

for k = ±1/
√

2ν ln 1/q.

Definition 3.2 The generalized Kampe-de Feriet polynomials Kn(x, t) are defined as

ekx+t[νk2]q =

∞∑
n=0

kn

n!
Kn(x, t). (3.35)

Property of these polynomials can be studied in a similar way as the usual Hermite and

Kampe de Feriet polynomials. But in contrast to q = 1 case, our generating function contains

all powers of k2 and requires introduction of the Bell polynomials. Before to proceed with

this approach, in the next section we follow a more direct way by using dynamical symmetry

of q-diffusive heat equation.
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3.3. Dynamical Symmetry for q-Diffusive Heat Equation

For given differential equation Ŝφ = 0 with

Ŝ =
∂

∂t
− H(P1) (3.36)

exists the commuting operator K̂ in the following form (Pashaev, 2009),

K̂ = x + tH
′
(P1), (3.37)

where P1 =
d
dx , such that [Ŝ , K̂] = 0. This K̂ operator generates the dynamical symmetry for

differential equation Ŝφ = 0: from given solution φ of the equation it creates another solution

ψ = K̂φ of the same equation Ŝψ = 0. The K̂ operator in this form is linear in x and t and it

represents the generalized Boost operator.

For our q-diffusive heat equation

∂

∂t
φ =

[
ν
∂2

∂x2

]
q
φ,

we have H(P1) = [νP 2
1 ]q, and by taking derivative of H(P1) according to P1 we get

H
′
(P1) =

d
dP1

[νP 2
1 ]q =

d
dP1

eν ln qP 2
1 − 1

q − 1
=

2ν ln qP1

q − 1
eν ln qP 2

1 .

Substituting the result into definitions (3.36) and (3.37) we obtain the q-diffusive heat

operator and the q-boost operator in the following form

Ŝ =
∂

∂t
−

[
ν
∂2

∂x2

]
q
, (3.38)

K̂ = x +
2ν ln q
q − 1

t
d
dx

eν ln q d2

dx2 . (3.39)
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Algebra of symmetry operators is

[P̂0, P̂1] = 0, [P̂0, K̂] =
2ν ln q
q − 1

∂

∂x
eν ln q ∂2

∂x2 , [P̂1, K̂] = 1,

where P̂0 =
∂
∂t and P̂1 =

∂
∂x .

Proposition 3.1 The q-diffusive heat operator (3.38) and the q-boost operator (3.39) are

commutative [Ŝ , K̂] = 0.

Proof

[Ŝ , K̂] =

[
∂

∂t
− [ν

∂2

∂x2
]q, x +

2ν ln q
q − 1

t
d
dx

eν ln q ∂2

∂x2

]
=

2ν ln q
q − 1

d
dx

eν ln q ∂2

∂x2

[
∂

∂t
, t
]

︸︷︷︸
1

−
[
[ν
∂2

∂x2
]q, x

]
︸��������︷︷��������︸

*

. (3.40)

In order to find the commutator (∗), we use the following property:

For any real analytic function f (x) we have

[
f (

d
dx

), x
]
= f

′
(

d
dx

),

which implies that the commutator (∗) can be written in the form:

⎡⎢⎢⎢⎢⎣[ν ∂2

∂x2

]
q
, x

⎤⎥⎥⎥⎥⎦ = (
[ν
∂2

∂x2
]q

)′
. (3.41)

Calculating derivative of the operator

(
[ν
∂2

∂x2
]q

)′
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝qν
∂2

∂x2 −1

q − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
′

, (3.42)

and denoting P ≡ ∂
∂x we get

d
dP

⎛⎜⎜⎜⎜⎝eν ln qP2 − 1

q − 1

⎞⎟⎟⎟⎟⎠ = 2νP ln q
q − 1

eν ln qP2

=
2ν ln q
q − 1

∂

∂x
qν

∂2

∂x2 . (3.43)
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Substituting the result into (3.40), finally we proved that [Ŝ , K̂] = 0. �

Proposition 3.2 If φ(x, t) is a solution of q-diffusive heat equation (3.1) and [Ŝ , K̂] = 0, then

ψ(x, t) = K̂φ(x, t) is also solution of this equation, where Ŝ is the q-dispersive heat operator

(3.38) and K̂ is the q-boost operator (3.39).

According to this proposition: if φ(x, t) is a solution of the q-diffusive heat equation

∂
∂tφ(x, t) = [ν ∂2

∂x2 ]qφ(x, t), then

ψ =

(
x + t

2ν ln q
q − 1

∂

∂x
eν ln q ∂2

∂x2

)
φ(x, t) (3.44)

is also solution.

3.3.1. Bell Polynomials

The generating function of Bell polynomials with n-variables denoted by Bn(g1, ..., gn)

is defined as (Comtet, 1974)

exp

∞∑
n=1

gnzn

n!
=

∞∑
n=0

Bn(g1, q2, ..., gn)
zn

n!
. (3.45)

And a few Bell polynomials are given below

B0 = 1,

B1(g1) = g1,

B2(g1, g2) = g2 + g2
1,

B3(g1, g2, g3) = g3 + 3g1g2 + g3
1.

In particular case, when all independent variables are equal g1 = g2 = ... = gn = x, the corre-

sponding generating function (3.45) reduces to the generating function for Bell polynomials
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of one variable x defined in (Knuth et al, 1994) as

ex(ez−1) =

∞∑
n=0

Bn(x)
zn

n!
. (3.46)

A few Bell polynomials then are

B0(x) = 1, B1(x) = x, B2(x) = x + x2, B3(x) = x + 3x2 + x3, ... (3.47)

Proposition 3.3 The plane wave solution of equation (3.1) determines the q-Kampe-de Feriet

type polynomials KN(x, t; q)

ekxe[νk2]qt =

∞∑
N=0

kN

N!
KN(x, t; q), (3.48)

which can be represented in terms of the Bell polynomials Bn(t):

KN(x, t; q) =

[ N
2 ]∑

n=0

xN−2nN!

(N − 2n)!n!
Bn(

t
q − 1

)(ν ln q)n.

Proof By expanding the plane wave solution in k, we have

ekxe[νk2]qt =

⎛⎜⎜⎜⎜⎜⎝ ∞∑
m=0

km

m!
xm

⎞⎟⎟⎟⎟⎟⎠ e[νk2]qt. (3.49)

Then, e[νk2]qt can be expanded in terms of Bell polynomials as

e[νk2]qt = e
qνk

2−1
q−1 t = e

t
q−1 (eν ln qk2−1) =

∞∑
n=0

Bn

(
t

q − 1

)
(ν ln qk2)n

n!
, (3.50)

and the plane wave solution is written in the following form

ekxe[νk2]qt =

∞∑
m,n=0

km+2n

m!n!
xmBn(

t
q − 1

)(ν ln q)n. (3.51)
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By changing order of summation m + 2n = N,

ekxe[νk2]qt =

∞∑
N=0

[ N
2 ]∑

n=0

kN

(N − 2n)!n!
xN−2nBn

(
t

q − 1

)
(ν ln q)n

we obtain the plane wave solution in the form of q-Kampe de Feriet type polynomials

ekxe[νk2]qt =

∞∑
N=0

kN

N!
Kn(x, t; q), (3.52)

where

KN(x, t; q) =

[ N
2 ]∑

n=0

xN−2nN!

(N − 2n)!n!
Bn

(
t

q − 1

)
(ν ln q)n.

�

Using the first few Bell Polynomials (3.47) we can calculate q-Kampe de Feriet Poly-

nomials

K0(x, t; q) = 1

K1(x, t; q) = x

K2(x, t; q) = x2 +
2t

q − 1
νq

K3(x, t; q) = x3 +
6tνq

q − 1

K4(x, t; q) = x4 + 12t
νq

q − 1
x2 + 12(

νqt
q − 1

)2 + 12
t

q − 1
(νq)2,

where νq ≡ ν ln q. In the limit q → 1, these polynomials reduce to the standard Kampe-de

Feriet polynomials.

We can find the time evolution of zeros for these polynomials. For n = 2, we have two

zeros evolving as

x1,2 = ±
√

2tνq

1 − q
.

In Figures 3.5 and 3.6 we show the evolution of zeros, depending of values of q. For

q < 1, zeros are moving faster than q = 1 case, and for q > 1, the motion slow down.

In order to find the general form of these Kampe-de Feriet polynomials for arbitrary

n, we apply relation (3.44) and the boost operator (3.39). Starting from K0(x, t; q) = 1 by
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Figure 3.5. Motion of zeros at t = −3 Figure 3.6. Motion of zeros at t = −2

successive application of this formula we obtain

Kn(x, t; q) =

(
x +

2tνq

q − 1

∂

∂x
eνq

∂2

∂x2

)n

· 1. (3.53)

The polynomials result from evolution in time of monomials

Kn(x, 0; q) = xn

applying the evolution operator (3.30)

Kn(x, t; q) = et[ν d2

dx2 ]q xn. (3.54)

3.3.2. Dynamical Symmetry and Generating Function

Here we would like to find the generating function for our q-Kampe de Feriet polyno-

mials (3.35) by application of the boost operator

∞∑
n=0

kn

n!
Kn(x, t; q) =

∞∑
n=0

kn

n!

(
x +

2tνq

q − 1

d
dx

eνq
d2

dx2

)n

· 1 = ek(x+
2tνq
q−1

d
dx e

νq d2

dx2 ) · 1 (3.55)

and show that it gives the plane wave solution (3.33).
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Proposition 3.4 We have the following factorization formula

ek(x+
2tνq
q−1

d
dx e

νq d2

dx2 ) · 1 = ekx e[νk2]qt (3.56)

To show this we need to use the Zassenhaus formula.

Proposition 3.5 The Zassenhaus formula (Magnus, 1954) for two operators X and Y is given

by

eξ(X+Y) = eξXeξYe−
ξ2

2 [X,Y]e
ξ3

6 (2[Y,[X,Y]]+[X,[X,Y]]) · ·· (3.57)

where ξ is an arbitrary constant parameter.

In order to apply the Zassenhaus formula to our case, we denote P ≡ d
dx ,which satisfies

the following commutation relations:

[P, x] = 1, [P2, x] = 2P, · · ·[Pn, x] = nPn−1

and can be generalized in the following form

[ f (P), x] =
d

dP
f (P), (3.58)

for ∀ analytic function f (P).

In our formula (3.56) by changing variables

Y ≡ 2t
q − 1

νq
d
dx

eνq
d2

dx2 , Z ≡ eνq
d2

dx2 , X ≡ x

we obtain

ek(x+
2tνq
q−1

∂
∂x e

νq d2

dx2 ) · 1 = ek(X+Y) · 1. (3.59)

In order to factorize the exponential function we need to calculate the commutator relations:

[X,Y], [Y, [X,Y]], [X, [X,Y]], ...
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As easy to see all commutators are vanishing

[[X,Y],Y] = [[[X,Y],Y],Y] = ... = 0 (3.60)

and therefore the following commutator is zero

[P,Z] = [P, eeνqP2

] = 0.

Explicit calculation of Z and X commutator is obtained in terms of the commutators of X and

Y, which we need for the Zassenhaus formula

[Z, X] = [eνqP2

, X] = 2νqPeνqP2

=
q − 1

t
Y,

[[Z, X], X] =
q − 1

t
[Y, X] = −q − 1

t
[X,Y],

[[[Z, X], X], X] =
q − 1

t
[[Y, X], X] = (−1)2 q − 1

t
[X, [X,Y]],

.

.

.

[[Z, X], X, ..., X︸�������︷︷�������︸
n-times X

] =
q − 1

t
[[Y, X], X, ..., X︸�������︷︷�������︸

n-1 -times X

] =
q − 1

t
[X, [X, ..., [X︸��������︷︷��������︸

n-1-times X

,Y]. (3.61)

Now let us find commutator of operators Z and X.

Calculation of the following commutators give us derivatives

[Z, X] = [eνqP2

, X] =
d

dP
eνqP2

= 2PνqeνqP2

= 2PνqZ =
d

dP
Z

[[Z, X], X] = [2PνqZ, X] = 2νq(P[Z, X]+[P, X]Z) = 2νq(P
d

dP
+1)Z = 2νq(2P2νq+1)Z =

d2

dP2
Z

[[[Z, X], X], X] = 2νq([2P2νqZ + Z, X]) = 2νq(2νq[P2Z, X] + [Z, X])

= 2νq(2νq(P2[Z, X] + [P2, X]Z) + [Z, X])

= 2νq(4ν2
qP3Z + 4νqPZ + 2νqPZ) =

d3

dP3
Z, (3.62)
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which can be generalized in the following proposition:

Proposition 3.6 We present the following identity for commutators

[[[[Z, X], X], ...], X︸���������︷︷���������︸
n-times X

] =
dn

dPn Z =
dn

dPn eνqP2

(3.63)

Proposition 3.7 The commutation relation (3.63) can be expressed in terms of Hermite poly-

nomials with operator argument

[[Z, X], X, ...X︸�����︷︷�����︸
n-times X

] = (−i)n(νq)
n
2 Hn

(
i
√
νq

d
dx

)
eνq

d2

dx2 . (3.64)

Proof From definition of Hermite polynomials

Hn(ξ) = (−1)neξ
2 dn

dξn e−ξ
2

, (3.65)

we have

Hn(ξ)e−ξ
2

= (−1)n dn

dξn e−ξ
2

. (3.66)

By considering commutation relation (3.63)

[[Z, X], X, ..., X︸�������︷︷�������︸
n-times

] =
dn

dPn Z =
dn

dPn eνqP2

,

and by changing variables νqP2 ≡ −ξ2 ⇒ ξ = i√νqP⇒ dP
dξ =

−i√
νq
,

Hn(ξ)e−ξ
2

= (−1)n dn

dξn e−ξ
2

Hn(i
√
νqP)eνqP2

= (−1)n(
dP
dξ

d
dP

)neνqP2

=
in

(νq)
n
2

dn

dPn eνqP2

(3.67)
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(−i)n(νq)
n
2 Hn(i

√
νqP)eνqP2

=
dn

dPn eνqP2

,

we can express commutation relation in terms of Hermite polynomials of the operator argu-

ment

[[Z, X], X, ...X] =
dn

dPn eνqP2

= (−i)n(νq)
n
2 Hn(i

√
νqP)eνqP2

= (−i)n(νq)
n
2 Hn(i

√
νq

d
dx

)eνq
d2

dx2 . (3.68)

�

Using the Zassenhaus formula

eξ(X+Y) · 1 = eξXeξYe−
ξ2

2 [X,Y]e
ξ3

6 (2[Y,[X,Y]]+[X,[X,Y]])...e(−1)n+1 ξ
n

n! [X,[X,...,[X,Y]]]... · 1 (3.69)

and (3.61) we can factorize the following exponential function as

eξ(x+2t
νq

q−1
d
dx e

νq d2

dx2 ) · 1 = eξx eξ2t
νq

q−1
d
dx e

νq d2

dx2

e
∑∞

n=2(−1)n+1 ξ
n

n! [X,[X,...,[X,Y]]] · 1
= eξx eξ2t

νq
q−1

d
dx e

νq d2

dx2

e
∑∞

n=2
ξn
n!

t
q−1 (−i)nν

n
2
q Hn(i√νq

d
dx )e

νq d2

dx2 · 1
= eξx eξ2t

νq
q−1

d
dx e

νq d2

dx2
∞∏

n=2

e
ξn
n!

t
q−1 (−i)nν

n
2
q Hn(i√νq

d
dx )e

νq d2

dx2 · 1

= eξx
∞∏

n=2

e
ξn
n!

t
q−1 (−i)nν

n
2
q Hn(0). (3.70)

Due to relations for Hermite polynomials

H2n(0) = (−1)n (2n)!

n!
,

H2n+1(0) = 0,

we find that only the terms with even numbers survive

eξ(x+2t
νq

q−1
d
dx e

νq d2

dx2 ) · 1 = eξx
∞∏

k=1

e
ξ2k
k!

t
q−1 ν

k
q . (3.71)
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Replacing ξ by k and using νq = ν ln q we obtain

ek(x+2t
νq

q−1
d
dx eνq d2

dx2 ) · 1 = ekxe
t

q−1

∑∞
l=1

k2l
l! ν

l(ln q)l
. (3.72)

Finally we can factorize this expression in the form of the plane wave solution

ek(x+2t
νq

q−1
d
dx eνq d2

dx2 ) · 1 = ekx e[νk2]qt. (3.73)

3.4. q-Viscous Burgers’ Equation

We can relate our q-diffusive heat equation with nonlinear q-viscous Burgers’ equa-

tion. By dividing equation (3.1) with φ(x, t) we obtain

(ln φ(x, t))t =
1

φ(x, t)

[
ν
∂2

∂x2

]
q
φ(x, t) (3.74)

and taking the x derivative of both sides and denoting

(ln φ(x, t))x =
φx

φ
≡ u, (3.75)

we get

ut =

⎛⎜⎜⎜⎜⎝1

φ

[
ν
∂2

∂x2

]
q
φ(x, t)

⎞⎟⎟⎟⎟⎠
x

. (3.76)

56



Proposition 3.8 We present the following relation

1

φ

[
ν
∂2

∂x2

]
q
φ =

[
ν(

d
dx
+ u)2

]
q
· 1, (3.77)

where u = φx
φ

Proof Using definition of the q-operator number

1

φ

[
ν
∂2

∂x2

]
q
φ =

1

φ

qν
∂2

∂x2 −1

q − 1
φ =

1

φ

1

q − 1
(eν ln q ∂2

∂x2 − 1)φ

=
1

q − 1

1

φ

∞∑
n=1

(ν ln q)n

n!

∂2n

∂x2nφ (3.78)

and denoting φ ≡ e f , which implies

f = ln φ, fx = (ln φ)x =
φx

φ
≡ u,

we find

1

φ

[
ν
∂2

∂x2

]
q
φ =

1

q − 1

∞∑
n=1

(ν ln q)n

n!
(

d
dx
+ u)2n · 1 = 1

q − 1
(eν ln q( d

dx+u)2 − 1) · 1

=
qν(

d
dx+u)2 − 1

q − 1
· 1 =

⎡⎢⎢⎢⎢⎣ν (
d
dx
+ u

)2⎤⎥⎥⎥⎥⎦
q

· 1 (3.79)

�

Substituting (3.77) into equation (3.76) we obtain the q-viscous Burgers’ equation as

ut =

⎛⎜⎜⎜⎜⎝[ν( d
dx
+ u)2

]
q
· 1

⎞⎟⎟⎟⎟⎠
x

. (3.80)

By using solution of q-diffusive heat equation we can find the solution of q-viscous

Burgers’ equation. As a first particular solution of q-diffusive heat equation (3.1) we choose
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the traveling plane wave solution

φ(x, t) = ekx+[νk2]qt.

This plane wave is the generating function for Kampe de Feriet polynomials (3.48), being

polynomial solution of q-diffusive equation. Moving zeros of Kampe-de Feriet Polynomials

then correspond to moving poles of q-viscous Burgers’ equation (3.80).

By using the Cole-Hopf transformation, the plane wave solution gives the constant

solution of the q-viscous Burgers’ equation

u(x, t) =
φx

φ
= k.

By considering the superposition of two plane waves with different wave numbers k1, k2,

φ(x, t) = ek1 x+[νk2
1
]qt + ek2 x+[νk2

2
]qt, (3.81)

we get shock soliton solution in the following form

u(x, t) =
φx

φ
=

k1ek1 x+[νk2
1
]qt + k2ek2 x+[νk2

2
]qt

ek1 x+[νk2
1
]qt + ek2 x+[νk2

2
]qt

. (3.82)

In Figure 3.7 we show one shock soliton for different values of q. Depending on value

of q the soliton is moving faster (q < 1) or slower (q > 1) than in usual q = 1 case. By fixing

constants k2 > k1 > 0, at fixed time we have asymptotic

x→ +∞ ⇒ u→ k2

x→ −∞ ⇒ u→ k1.

Then our q-shock soliton solution can be written as
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u(x, t) =
(
k1 +

k2 − k1

1 + e(k2−k1)(x−vt)

)
, (3.83)

where the velocity of shock is

v = − [k2
1ν]q − [k2

2ν]q

k1 − k2

.

To analyze this expression we choose k1 = 0 and denote k2 ≡ k, so that the soliton velocity is

v =
2νk ln q
q − 1

eνk
2 ln q. (3.84)

For q < 1 this velocity is bounded from the above, and takes maximal value

|vmax| =
√

2ν

e
ln

1

q
1

1 − q
(3.85)

for k = ±1/
√

2ν ln 1/q.

Figure 3.7. One shock soliton for q = 1(blue), q = 0.5(red), q = 2(green)

We show graph of this velocity in Figure 3.8. This dependence creates a new property

of the shock soliton. Namely, for values of k bigger than the extremum point, and correspond-

ing amplitudes, the velocity is not growing, but decaying. It produces new type of shock

interaction. To see this we look for two shock soliton solutions.
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Figure 3.8. Soliton velocity for q = 0.5

Figure 3.9. Two shock solitons for q = 1(blue), q = 0.5(red), q = 2(green)

By taking superposition of 3-plane waves

φ(x, t) = ek1 x+[νk2
1
]qt + ek2 x+[νk2

2
]qt + ek3 x+[νk2

3
]qt, (3.86)

we find two shock soliton solution in the form

u(x, t) =
φx

φ
=

k1ek1 x+[νk2
1
]qt + k2ek2 x+[νk2

2
]qt + k3ek3 x+[νk2

3
]qt

ek1 x+[νk2
1
]qt + ek2 x+[νk2

2
]qt + ek3 x+[νk2

3
]qt

. (3.87)

In Figure 3.9 we show fusion of two shock solitons moving with speeds, depending

on values of q. For q > 1 they move slower and for q < 1 the speed of shocks collision is
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going faster than in q = 1 case. In addition to this, for q < 1 case here we have a new type of

phenomena. By choosing parameters k1 = 0, k2 < k0 and k3 > k0, where k0 > 0 is extremum

point with maximal speed, we find that the soliton with higher amplitude is moving slowly

and splits to two solitons, one of which with smaller amplitude is moving faster. We illustrate

this behavior as soliton fission in Figures 3.10 and 3.11.

Figure 3.10. Shock fission

Figure 3.11. Soliton fission for q = 0.5

Superposition of n + 1 plane waves with wave numbers k1, k2, ..., kn+1 and constants

η1, ..., ηk+1 gives n-shock soliton solution in the form

u(x, t) =
∑n+1

i=1 kieki x+[νk2
i ]qt+ηi∑n+1

i=1 eki x+[νk2
i ]qt+ηi

. (3.88)
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3.5. q-Semiclassical Expansion of q-Diffusive Heat Equation

If in q-diffusive heat equation (3.1) we expand the right hand side according to ν, then

we get infinite order equation with even order derivative in x,

∂φ

∂t
=

[
ν
∂2

∂x2

]
q
φ =

qν
∂2

∂x2 −1

q − 1
φ

=
1

q − 1
(eln qν ∂2

∂x2 − 1)φ

=
1

q − 1

∞∑
n=1

(ln q)nνn(
∂2

∂x2
)nφ

=
1

q − 1
(ν ln q

∂2

∂x2
+

(ν ln q)2

2!

∂4

∂x4
+ ...)φ, (3.89)

where the first order equation for ν � 1, is the standard heat equation, but with deformed

diffusion coefficient νq = ν
ln q
q−1

,

∂φ

∂t
= νq

∂2

∂x2
φ. (3.90)

As q→ 1, this gives standard heat equation with diffusion coefficient ν.

From another side, if we like to consider deformations of Heat equation for every

power of ln q, which we called the "q-semiclassical" expansion (since q = 1 case corresponds

to "classical case") we need to use the Bernoulli polynomials.

Proposition 3.9 Generating function for Bernoulli polynomials is defined as (Knuth et al,

1994)

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (3.91)

For x = 0 we have the generating function of Bernoulli numbers

t
et − 1

=

∞∑
n=0

Bn(0)
tn

n!
, (3.92)
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where Bn(0) = Bn-Bernoulli numbers.

In the generating function of Bernoulli numbers (8.33) by choosing et ≡ q we have

ln q
q − 1

=

∞∑
n=0

Bn
(ln q)n

n!
. (3.93)

This gives the modified diffusion coefficient as expansion with Bernoulli numbers in powers

of ln q

νq = ν

∞∑
n=0

Bn

n!
(ln q)n.

Proposition 3.10 [n]q number can be expressed in terms of Bernoulli polynomials as

[n]q = n +
∞∑

m=1

(Bm+1(n) − Bm+1(0))
(ln q)m

(m + 1)!
(3.94)

Proof Using the definition of q-numbers

[n]q =
qn − 1

q − 1
=

en ln q

q − 1
− 1

q − 1
=

1

ln q

(
ln q en ln q

q − 1

)
− 1

ln q

(
ln q

q − 1

)
(3.95)

and denoting ln q = t, we obtain

[n]q =
1

t

(
tent

et − 1

)
− 1

t

( t
et − 1

)
. (3.96)

The generating function for Bernoulli polynomials (3.91) and (3.92) allow us to get

[n]q =
1

t
(B0(n) − B0(0)︸����������︷︷����������︸

*

) +

∞∑
m=0

(Bm+1(n) − Bm+1(0))
tm

(m + 1)!
. (3.97)

The term ∗ vanishes due to B0(x) = 1. And we can write

[n]q =

∞∑
m=0

(Bm+1(n) − Bm+1(0))
tm

(m + 1)!
= B1(n) − B1(0)︸����������︷︷����������︸

**

+

∞∑
m=1

(Bm+1(n) − Bm+1(0))
(ln q)m

(m + 1)!
.

The term ∗∗ becomes n since B1(x) = x − 1
2

and the desired result is obtained. �
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The q-number operator for an operator A written as a formal power series in terms of

Bernoulli polynomials is given as

[A]q = A +
∞∑

m=1

(Bm+1(A) − Bm+1(0))
(ln q)m

(m + 1)!
. (3.98)

By expansion of q-diffusive heat equation (3.1) in powers of ln q,we get higher deriva-

tive corrections to the Heat equation

∂φ

∂t
= ν

∂2

∂x2
φ +

∞∑
m=1

(
Bm+1

(
ν
∂2

∂x2

)
− Bm+1

)
(ln q)m

(m + 1)!
φ. (3.99)

For the q-Galilean boost operator we obtain

K = x + 2νt
d
dx
+ 2νt

∞∑
m=1

Bm

(
ν

d2

dx2

)
(ln q)m

m!
. (3.100)

The particular solution of q-diffusive heat equation for finite interval case can be ex-

panded in the following form

φn(x, t) = et[−ν( πn
l )2]q sin

nπ
l

x

= e−ν(
nπ
l

2)x sin
nπ
l

x
∞∏

m=1

e(Bm+1(−ν( nπ
t )2t)−Bm+1)

(ln q)m
(m+1)! , (3.101)

which shows how the solution of q-diffusive heat equation is modified by q-diffusivity.

We can expand the Green function of q-diffusive heat equation for infinite interval case

as

G(x, y; t) =
2

l

∞∑
n=0

sin (
nπ
l

x) sin (
nπ
l

y)et[−ν( nπ
l )2]q

=
2

l

∞∑
n=0

sin (
nπ
l

x) sin (
nπ
l

y)e−ν(
nπ
l

2)t
∞∏

m=1

e(Bm+1(−ν( nπ
t )2t)−Bm+1)

(ln q)m
(m+1)!
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showing modification due to q-diffusivity.

The q-viscous Burgers’ equation is also expandable in terms of higher order derivatives

as an arguments of Bernoulli polynomials

ut =

⎛⎜⎜⎜⎜⎝[ν( d
dx
+ u)2

]
q
· 1

⎞⎟⎟⎟⎟⎠
x

= νuxx + 2νuux +

⎛⎜⎜⎜⎜⎜⎝ ∞∑
m=1

(Bm+1

⎛⎜⎜⎜⎜⎝ν (
d
dx
+ u

)2⎞⎟⎟⎟⎟⎠ − Bm+1)
(ln q)m

(m + 1)!
· 1

⎞⎟⎟⎟⎟⎟⎠
x

First two terms of this expansion give the standard Burgers’ equation.

In a similar way we get expansion of the plane wave solution of q-diffusive heat equa-

tion in terms of powers of ln q,

φ(x, t) = ekx+[νk2]qt = ekx+νk2t
∞∏

m=1

e(Bm+1(νk2t)−Bm+1)
(ln q)m
(m+1)! , (3.102)

showing modification of the standard plane wave solution.

And by using the superposition of two travelling waves (3.82) with different wave

numbers k1, k2 as a solution of q-diffusive heat equation we obtain shock soliton solution of

q-viscous Burgers’ equation as q- modification of standard shock soliton solution

u(x, t) =
φx

φ
=

k1ek1 x+[νk2
1
]qt + k2ek2 x+[νk2

2
]qt

ek1 x+[νk2
1
]qt + ek2 x+[νk2

2
]qt

=
k1 + e(k2−k1)x+ν(k2

2
−k2

1
)t ∏∞

m=1 e(Bm+1(νk2
2
t)−Bm+1(νk2

1
t)) (ln q)m

(m+1)!

1 + e(k2−k1)x+ν(k2
2
−k2

1
)t ∏∞

m=1 e(Bm+1(νk2
2
t)−Bm+1(νk2

1
t)) (ln q)m

(m+1)!

For the speed of q-shock soliton,

v = − [k2
1ν]q − [k2

2ν]q

k1 − k2

,
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we have expansion

v = −
⎛⎜⎜⎜⎜⎜⎝ν(k1 + k2) +

∞∑
m=1

Bm+1(k2
1ν) − Bm+1(k2

2ν)

k1 − k2

(ln q)m

(m + 1)!

⎞⎟⎟⎟⎟⎟⎠ . (3.103)

By using explicit formula for Bernoulli polynomials for n ≥ 0

Bn(x) =

n∑
j=0

(
n
j

)
bjxn− j, (3.104)

where bj are Bernoulli numbers, the modified velocity is written as

v = −ν(k1 + k2)

⎛⎜⎜⎜⎜⎜⎝1 + ∞∑
m=1

(ln q)m

(m + 1)!
S m+1(k1, k2)

⎞⎟⎟⎟⎟⎟⎠ , (3.105)

where

S m+1 ≡
m+1∑
j=0

(
m + 1

j

)
bm+1− j[ j]νk2

1
,νk2

2
(3.106)

and the q-number with q1, q2 basis are defined as

[n]q1,q2
=

qn
1 − qn

2

q1 − q2

. (3.107)

This shows the modification of the standard velocity of shock soliton.

Now we consider finite ν, but expand in terms of ε = q − 1 � 1 in (3.89). Then for

q → 1, ε � 1, q = 1 + ε and ν-arbitrary finite, we obtain higher order derivative corrections

to heat equation

∂φ

∂t
= ν

∂2

∂x2
φ + ε(−ν

2

∂2

∂x2
+
ν2

2

∂4

∂x4
)φ + O(ε2)

= ν
(
1 − ε

2

)
∂2

∂x2
φ + ε

ν2

2

∂4

∂x4
φ + O(ε2), (3.108)

66



In the first term, for small q we have diffusion coefficient which is modified by ε.

In the next section we are going to construct q-viscous Burgers’ equation, related to

our q-diffusive heat equation. For this we need next proposition:

Proposition 3.11 For any f ∈ C∞ we have the identity

e− f dn

dxn e f =

(
d
dx
+ fx

)n

. (3.109)

Proof

e− f d
dx

e fψ = e− f d
dx

(e fψ) = e− f ( fxe fψ + e f d
dx
ψ) = ( fx +

d
dx

)ψ, (3.110)

so that

e− f d
dx

e f = fx +
d
dx

(3.111)

and then we can generalize it as follows

e− f dn

dxn e f = e− f d
dx

d
dx
...

d
dx

e f

= e− f d
dx

e f e− f d
dx

e f e− f ...e f e− f d
dx

e f

=

(
d
dx
+ fx

)n

. (3.112)

�
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3.5.1. Corrections to Burgers’ Equation

Expansion in ε = q − 1 provides higher derivative order corrections to the Burgers’

equation.

ut =

(
[ν(

d
dx
+ u)2]q

)
x
=

(
1

q − 1
(eν ln q( d

dx+u)2 − 1) · 1
)

x
=

⎛⎜⎜⎜⎜⎜⎝ 1

q − 1

∞∑
n=1

(ν ln q)n

n!
(

d
dx
+ u)2n · 1

⎞⎟⎟⎟⎟⎟⎠
x

=
1

q − 1

(
ν ln q

1!
(

d
dx
+ u)2 · 1 + (ν ln q)2

2!
(

d
dx
+ u)4 · 1 + ...

)
x

=
1

q − 1

(
ν ln q (ux + u2) +

(ν ln q)2

2!
(uxxx + 4uuxx + 3u2

x + 6u2ux + u4) + ...

)
x

=
ν ln q
q − 1

(uxx + 2uux) +
(ν ln q)2

(q − 1)2!
(...) + .... (3.113)

This gives the deformation of Burgers’ equation with parameter ν. In the limit q→ 1 it reduces

to standard Burgers’ equation

ut = νuxx + 2νuux.

For small q = 1 + ε, ε � 1 we write

ln q = ln(1 + ε) = ε − ε
2

2
+
ε3

3
− ... = ε(1 − ε

2
+
ε2

3
− ...)

and after substitution into (3.113) we get

ut = νuxx + 2νuux − νε
2

(uxx + 2uux) +
ν2

2!
ε(...) + O(ε2)

= (1 − ε
2

)νuxx + 2(1 − ε
2

)νuux + ... (3.114)

This shows lower order corrections to Burgers equation from q-deformed viscosity.
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3.6. Bäcklund Transformation for q-Viscous Burgers’ Equation

In this section we find the Bäcklund transformation which relates two solutions of

q-viscous Burgers equation (3.80).

Proposition 3.12 The Bäcklund transfomation relating a solution u to an another solution v

of q-viscous Burgers’ equation is written as

v =
ψx

ψ
=

1 + xu + 2ν ln q
q−1

t qν(
d
dx+u)2

(ux + u2)

x + 2ν ln q
q−1

t qν(
d
dx+u)2u

. (3.115)

By taking the logarithmic derivative of (3.44)

v ≡ (lnψ)x =
ψx

ψ
=
φ + xφx +

2ν ln q
q−1

t d2

dx2 eν ln q d2

dx2 φ

xφ + 2ν ln q
q−1

t d
dxeν ln q d2

dx2 φ
, (3.116)

and taking the φ parenthesis in RHS we have

ψx

ψ
=

1 + xφx
φ
+

2ν ln q
q−1

t 1
φ

d2

dx2 eν ln q d2

dx2 φ

x + 2ν ln q
q−1

t 1
φ

d
dxeν ln q d2

dx2 φ
. (3.117)

In order to write the above transformation in a proper form we need to find the follow-

ing expressions

I ≡ 1

φ

d
dx

eν ln q d2

dx2 φ (3.118)

II ≡ 1

φ

d2

dx2
eν ln q d2

dx2 φ. (3.119)

These expressions can be written in terms of Bell polynomials

Definition 3.3 The Bell polynomials are defined by the exponential generating function

Yn(−→y ) ≡ Yn(y1, y2, ..., yn) = e−y(x) dn

dxn ey(x), (3.120)
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where

yx ≡ y1, yxx = y2, yxxx = y3, ...

Proposition 3.13 The recursion formula for Bell polynomials is given as

Yn(y1, ..., yn) = e−y(x) dn

dxn ey(x) =

(
d
dx
+ y1

)n

· 1. (3.121)

Proof It can be proved by using mathematical induction:

For n = 1 we have

Y1(y1) = e−y(x) d
dx

ey(x) =

(
d
dx
+ y1

)
· 1 = y1,

for n = 2

Y2(y1, y2) = e−y(x) d2

dx2
ey(x) =

(
d
dx
+ y1

)2

· 1 = y2
1 + y2,

and we suppose that it is true for n :

Yn(y1, ..., yn) = e−y(x) dn

dxn ey(x) =

(
d
dx
+ y1

)n

· 1.

We need to prove it for n + 1 case:

Yn+1(y1, ..., yn, yn+1) = e−y(x) dn+1

dxn+1
ey(x) = e−y(x) d

dx
dn

dxn ey(x)

= e−y(x) d
dx

ey(x) e−y(x) dn

dxn ey(x)︸���������︷︷���������︸
Yn(y1, ..., yn)

=

(
d
dx
+ y1

)
Yn(y1, ..., yn)

=

(
d
dx
+ y1

) (
d
dx
+ y1

)n

· 1 =
(

d
dx
+ y1

)n+1

· 1, (3.122)

where y1 = yx. �

By using the above definition for y = ln φ, the first identity can be rewritten as infinitive

series of Bell polynomials

I =
1

φ

d
dx

eν ln q d2

dx2 φ =
1

φ

∞∑
n=0

(ν ln q)n

n!

d2n+1

dx2n+1
φ = e− ln φ

∞∑
n=0

(ν ln q)n

n!

d2n+1

dx2n+1
eln φ

= e− ln φ
∞∑

n=0

(ν ln q)n

n!
eln φ Y2n+1 ((ln φ)x, (ln φ)xx, ..., (ln φ)2n+1)
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I =
∞∑

n=0

(ν ln q)n

n!
Y2n+1 ((ln φ)x, (ln φ)xx, ..., (ln φ)2n+1) (3.123)

d2n+1

dx2n+1
eln φ = eln φ Y2n+1 ((ln φ)x, (ln φ)xx, ..., (ln φ)2n+1) . (3.124)

Similarly, the second identity is also expressed as infinite sum of Bell polynomials

II =
1

φ

d2

dx2
eν ln q d2

dx2 φ =

∞∑
n=0

(ν ln q)n

n!
Y2n+2 ((ln φ)x, (ln φ)xx, ..., (ln φ)2n+2) . (3.125)

By using Cole-Hopf transformation and its derivatives

(ln φ)x =
φx

φ
= u, (ln φ)xx = ux ≡ u1, (ln φ)xxx = uxx ≡ u2, ..., (ln φ)n = un−1,

the identities I and II can be written in terms of Bell polynomials with arguments of u and its

derivatives

I =
∞∑

n=0

(ν ln q)n

n!
Y2n+1(u, u1, u2, ..., u2n), (3.126)

II =
∞∑

n=0

(ν ln q)n

n!
Y2n+2(u, u1, u2, ..., u2n+1). (3.127)

By using the above proposition, we can write I in terms of covariant momentum in the

following form

I =
∞∑

n=0

(ν ln q)n

n!

(
d
dx
+ u

)2n+1

· 1 =
(

d
dx
+ u

) ∞∑
n=0

(ν ln q)n

n!

(
d
dx
+ u

)2n

· 1

=

(
d
dx
+ u

)
eν ln q( d

dx+u)
2 · 1 = eν ln q( d

dx+u)
2

(
d
dx
+ u

)
· 1 = eν ln q( d

dx+u)
2

u

= qν(
d
dx+u)

2

u. (3.128)
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Similarly we can write

II =
∞∑

n=0

(ν ln q)n

n!
(

d
dx
+ u)2n+2 · 1 = (

d
dx
+ u)2

∞∑
n=0

(ν ln q)n

n!
(

d
dx
+ u)2n · 1

= (
d
dx
+ u)2eν ln q( d

dx+u)2 · 1 = (
d
dx
+ u)eν ln q( d

dx+u)2

(
d
dx
+ u) · 1

= eν ln q( d
dx+u)2

(
d
dx
+ u)u = qν(

d
dx+u)2

(ux + u2). (3.129)

Finally, putting the results (3.128) and (3.129) into the (3.117) we get the Bäcklund

transformation between two solutions of q-viscous Burgers’ equation

v =
ψx

ψ
=

1 + xu + 2ν ln q
q−1

t qν(
d
dx+u)2

(ux + u2)

x + 2ν ln q
q−1

t qν(
d
dx+u)2u

.

As an example, we consider the constant solution φ(x, t) = C of q-diffusive heat equa-

tion (3.1), and the Cole Hopf transformation gives zero solution u = 0 for q-viscous Burgers

equation. By using the Bäcklund transformation (3.115) for the solution u = 0 we find rational

solution of the q-viscous Burgers equation in the form

v =
ψx

ψ
=

1

x
. (3.130)

It is instructive to prove this result by direct substitution to q-viscous Burgers’ equation

vt =

(
[ν(

d
dx
+ v)2]q · 1

)
x
.

Using the definition of q-operator (3.2) the above equation is written as

vt =
1

q − 1

(
qν(

d
dx+v)2 · 1

)
x
. (3.131)

Proposition 3.14 We present the following relation

qν(
d
dx+y1)2 · 1 = e−yqν

d2

dx2 ey, (3.132)
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where v = y1 = yx.

Proof Proof is easy by using the recursion operator for Bell polynomials (3.121),

qν(
d
dx+y1)2 · 1 = eν ln q( d

dx+y1)2 · 1 =
∞∑

n=0

(ν ln q)n

n!

(
d
dx
+ y1

)2n

· 1︸������������︷︷������������︸
e−y d2n

dx2n ey

= e−yqν
d2

dx2 ey. (3.133)

�

For v = y1 = yx =
1
x we have y = ln x, and the above proposition gives

qν(
d
dx+

1
x )2 · 1 = e− ln xqν

d2

dx2 eln x =
1

x
qν

d2

dx2 x.

As a result the equation (3.131) is written in the following form:

vt =
1

q − 1

(
1

x
qν

d2

dx2 x
)

x
=

1

q − 1

(
− 1

x2
qν

d2

dx2 x +
1

x

(
qν

d2

dx2 x
)

x

)

=
1

q − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝−
1

x2

∞∑
n=0

(ν ln q)n

n!

d2n

dx2n x︸�����������������︷︷�����������������︸
x

+
1

x

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(ν ln q)n

n!

d2n

dx2n x

⎞⎟⎟⎟⎟⎟⎠
x︸���������������������︷︷���������������������︸

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
0 = vt =

1

q − 1

(
− 1

x2
x +

1

x
1

)
= 0, (3.134)

which proves that the rational solution v = 1/x is solution for q-viscous Burgers’ equation.

As a next example, we consider the travelling wave solution φ(x, t) = ekx+[νk2]qt of

q-diffusive heat equation (3.1) which gives constant solution u(x, t) = φx
φ
= k of q-viscous

Burgers equation.

In order to find new solution for q-viscous Burgers’ equation we use Bäcklund trans-

formation (3.115) for u = k :

v = (lnψ)x =
1 + xk + 2ν ln q

q−1
tqν(

d
dx+k)2

k2

x + 2ν ln q
q−1

tqν(
d
dx+k)2k

(3.135)
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and y1 = yx = k implies y = kx. By using the proposition (6.1) we can calculate

qν(
d
dx+k)2

k = kqν(
d
dx+k)2 · 1 = ke−kxqν

d2

dx2 ekx = kqνk
2

qν(
d
dx+k)2

k2 = k2qν(
d
dx+k)2 · 1 = k2e−kxqν

d2

dx2 ekx = k2qνk
2

(3.136)

and putting the results into the equation (3.135) we find the rational solution of q-viscous

Burgers’ equation as

v = k +
1

x + 2ν ln q
q−1

kteν ln qk2
. (3.137)

This solution has pole singularity moving with constant speed, equal to the group velocity

(3.4).

Now we show in explicit form that the rational solution (3.137) satisfies the q-viscous

Burgers’ equation:

vt =

⎛⎜⎜⎜⎜⎝[ν( d
dx
+ v)2

]
q
· 1

⎞⎟⎟⎟⎟⎠
x

.

First we write the RHS of the equation in the following form:

⎛⎜⎜⎜⎜⎝[ν( d
dx
+ v)2

]
q
· 1

⎞⎟⎟⎟⎟⎠
x

=
1

q − 1

d
dx

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

(ν ln q)n

n!
(

d
dx
+ v)2n · 1

⎞⎟⎟⎟⎟⎟⎠
=

1

q − 1

d
dx

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

(ν ln q)n

n!
e−y d2n

dx2n ey

⎞⎟⎟⎟⎟⎟⎠
=

d
dx

(
e−yeν ln q d2

dx2 ey − 1
)

=
d
dx

(
1

ψ
eν ln q d2

dx2ψ

)
, (3.138)

where in the last line we substituted y = lnψ. By using the Boost operator K̂ we can rewrite ψ

in the form

ψ = K̂φ =
(
x +

2ν ln q
q − 1

t
d
dx

eν ln q d2

dx2

)
ekx+[νk2]qt,
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and substituting into the equation and using the following property:

eν ln q d2

dx2 xekx = eν ln q d2

dx2
d
dk

ekx =
d
dk

eν ln q d2

dx2 ekx =
d
dk

eν ln qk2

ekx

= (2ν ln qk + x)ekx+ν ln qk2

, (3.139)

we get

RHS =
1

q − 1

d
dx

(2νk ln q + x + 2ν ln q
q−1

kteν ln qk2

)eν ln qk2

x + 2ν ln q
q−1

kteν ln qk2

=
1

q − 1

−eν ln qk2

2νk ln q

(x + 2ν ln q
q−1

kteν ln qk2
)2

= vt. (3.140)

The last relation can be easily seen by taking derivative of (3.137) in t.
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CHAPTER 4

Q-ANALYTIC FUNCTIONS

We introduce a new class of complex functions of complex argument which we call

q-analytic functions. These functions satisfy q-Cauchy-Riemann equations and have real and

imaginary parts as q-harmonic functions. We show that q-analytic functions are not the ana-

lytic functions in the usual sense. q-deformation here shows deviation from analyticity. Some

of these complex functions, like q-analytic binomials, fall to the class of the generalized an-

alytic functions. As a main example we study the complex q-binomial functions and their

integral representation as a solution of the D-bar problem. In terms of these functions the com-

plex q-analytic fractal, satisfying the self-similar q-difference equation is derived. A new type

of quantum states as q-analytic coherent states and corresponding q-analytic Fock-Bargmann

representation are constructed. As an application, we solve quantum q-oscillator problem in

this representation, and show that the wave functions of quantum states are given by complex

q-binomials.

4.1. q-Analytic Function

The q-differential of finite scale transformation for real function of one variable is

defined as (Kac and Cheung, 2002)

dq f (x) = f (qx) − f (x) = (Dx
q f (x))dqx, (4.1)

where dqx = (q − 1)x, and q-derivative is

Dx
q f (x) =

f (qx) − f (x)

(q − 1)x
. (4.2)

For a complex-valued function f (x, y) of two real variables x and y, the q-differential of f

dq f (x, y) = f (qx, qy) − f (x, y), (4.3)
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can be rewritten as

dq f (x, y) = (My
qDx f (x, y)) dqx + (Dy f (x, y)) dqy, (4.4)

where dqx = (q − 1)x, dqy = (q − 1)y, Dx
q and Dy

q are partial q-derivatives in x and y variables.

Here My
q is the dilatation operator in y variable: My

qF(x, y) = F(x, qy). In operator form we

have My
q = qy d

dy , and Dy
q =

q
y d

dy −1

(q−1)y . In terms of complex coordinates z = x + iy, z̄ = x − iy we

can rewrite complex q-differentials dqz = dqx + idqy, dqz̄ = dqx − idqy as dqz = (q − 1)z and

dqz̄ = (q − 1)z̄. For q-differential of an arbitrary complex-valued function f (x, y) then we get

dq f (x, y) = (My
qDz f ) dqz + (My

qDz̄ f ) dqz̄, (4.5)

where we have introduced two linear operators of complex q-derivatives

Dz ≡ 1

2
(Dx

q − iDy
1
q
), Dz̄ ≡ 1

2
(Dx

q + iDy
1
q
). (4.6)

In the limiting q → 1, q-differential formula (4.5) is reduced the known differential formula

for a complex valued function f (x, y)

d f (x, y) =
∂ f
∂z

dz +
∂ f
∂z̄

dz̄. (4.7)

Definition 4.1 A complex-valued function f (x, y) of two real variables is called q-analytic in

a region if the following identity holds

Dz̄ f =
1

2
(Dx + iDy

1
q
) f = 0, (4.8)

in the region.

The q-differential of q-analytic function then is given by

dq f = (My
qDz

q f ) dqz. (4.9)
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In the limit q→ 1, this definition reduces to the standard analyticity condition

∂

∂z̄
f =

1

2

(
∂

∂x
+ i

∂

∂y

)
f = 0 (4.10)

leading to independence of z̄: d f = ∂ f
∂z dz.

In a similar way, we define q-anti-analytic function f as the one satisfying

Dz f =
1

2
(Dx

q − iDy
1
q
) f = 0, (4.11)

and

dq f = (My
qDz̄ f ) dqz̄. (4.12)

Notice that analytic function f (z), as a function of z, can depend on several constants.

In the case of q-holomorphic function (4.8) these constants could be arbitrary q-periodic func-

tions of z. For example Dz̄ f (z) = 0 determines f (z) not uniquely but up to f (z) + Aq(z̄), where

Dz̄Aq(z̄) = 0, and Aq(z̄)-is q-periodic function Aq(qz̄) = Aq(z̄).

4.1.1. q-Analytic Binomial

The simplest and most important set of q-analytic functions is given by complex q-

binomials

(x + iy)n
q ≡ (x + iy)(x + iqy)(x + iq2y)...(x + iqn−1y) =

n∑
k=0

[
n
k

]
q
qk(k−1)/2ikxn−kyk

expandable according to Gauss’ binomial formula. Here, we follow notations for real q-

binomial introduced in (Kac and Cheung, 2002). By direct calculation we have

Dz̄(x + iy)n
q = 0 (4.13)
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and

Dz(x + iy)n
q = [n]q(x + iy)n−1

q . (4.14)

Then for q-differential we get

dq(x + iy)n
q = (My

qDz(x + iy)n
q) dqz = [n]q(x + iqy)n−1

q dqz. (4.15)

In a similar way, it is easy to show that complex conjugate q-binomial (x − iy)n
q is q-anti-

analytic.

Here we notice an interesting limit of this binomial. For q < 1 and x = 1 the limit

n→ ∞ exists and is given by the q-analogue of the Euler Formula

(1 + iy)∞q = Eiy/(1−q)
q = Cosq

y
1 − q

+ iS inq
y

1 − q
,

where Ex
q is the second Jackson’s q-exponential function.

4.1.2. Negative Power q-Analytic Binomial

For n ∈ N, we define complex q-binomial of negative power as

(x + iy)−n
q =

1

(x + iq−ny)n
q
. (4.16)

For z � 0, it is an q-analytic function since

Dz̄(x + iy)−n
q = 0 (4.17)

and

Dz(x + iy)−n
q = [−n]q(x + iy)−(n+1)

q . (4.18)
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For its q-differential we have

dq(x + iy)−n
q = (My

qDz(x + iy)−n
q ) dqz = [−n]q(x + iqy)−(n+1)

q dqz. (4.19)

4.2. q-Taylor Formula for q-Analytic Polynomial

By taking linear combination of complex q-binomials, we get q-analytic polynomials.

Conversely, any complex-valued q-analytic polynomial function P(z; q) of degree N has the

following q-Taylor expansion

P(z; q) =

N∑
k=0

(Dk
z P)(0)

(x + iy)k
q

[k]!
. (4.20)

It follows from the expansion

P(z; q) =

N∑
k=0

ak(x + iy)k
q (4.21)

where polynomials {(x + iy), (x + iy)2
q, ..., (x + iy)N

q } are linearly independent. They constitute

a basis for the space of complex q-analytic polynomials degree of N. Due to q-analyticity

condition, the above expansion includes only (x + iy)k
q polynomials, and not the complex

conjugate ones. Then differentiating this expression k-times in z, and putting z = 0 we find

coefficients ak = (Dk
z P)(0)/[k]!.

4.3. q-Taylor Representation for q-Analytic Functions

In the limit N → ∞, the above Taylor formula for convergent series, represents q-

analytic function

f (z; q) =

∞∑
k=0

ak(x + iy)k
q =

∞∑
k=0

(Dk
z f )(0)

(x + iy)k
q

[k]!
. (4.22)
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It is clear that this q-analytic function satisfies the equation (4.8): Dz̄ f (z) = 0. If we fix base

|q| < 1, and n = 0, 1, 2, ... then we get the inequality

x2 + q2ny2 ≤ x2 + y2,

which implies

|(x + iy)n
q| ≤ |(x + iy)n| ⇒ |

∞∑
n=0

an(x + iy)n
q| ≤

∞∑
n=0

|an||(x + iy)n|.

Proposition 4.1 For a given complex-valued function f (z) analytic inside the disk of radius

R, CR : |z| < R, ∂ f (z)/∂z̄ = 0, with the Taylor expansion

f (z) =

∞∑
n=0

anzn, (4.23)

there exists a q-analytic function f (z; q), Dz̄ f (z; q) = 0 , |q| < 1, convergent in the same disk

CR with the q-Taylor expansion

f (z; q) =

∞∑
n=0

an(x + iy)n
q. (4.24)

According to this, every analytic function corresponds to a q-analytic function. For q = 1 a

q-analytic function becomes analytic as f (z; q = 1) = f (z) and parameter q shows deviation

from this analyticity.

4.3.1. q-Analytic Function Examples

From standard exponential and trigonometric functions we have the following entire

q-analytic functions with |q| < 1:

e(z; q) =

∞∑
n=0

(x + iy)n
q

n!
, (4.25)
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sin(z; q) =

∞∑
n=0

(−1)n
(x + iy)2n+1

q

(2n + 1)!
, (4.26)

cos(z; q) =

∞∑
n=0

(−1)n
(x + iy)2n

q

(2n)!
. (4.27)

From the definition of Jackson’s q-exponential function,

eq(z) ≡
∞∑

n=0

(x + iy)n

[n]!q
,

which is an entire function for q > 1, we have q-analytic q-exponential function

eq(z; q) ≡
∞∑

n=0

(x + iy)n
q

[n]!q
,

or in terms of z ≡ x + iy, zq ≡ x + iqy, ... zqn ≡ x + iqny, ...,

eq(z; q) =

∞∑
n=0

z zq ... zqn−1

[n]q!
.

This function eq(x+ iy; q) is q-analytic since Dz̄eq(z; q) = 0 for q > 1 in the strip −∞ < x < ∞,
|y| < q/(q − 1), and can be factorized in terms of Jackson’s q-exponential functions as

eq(x + iy; q) = eq(x)Eq(iy) = eq(x)
(
Cosq(y) + iS inq(y)

)
. (4.28)

This formula is q-analogue of Euler formula for analytic function ez = exeiy = ex(cos y +

i sin y).

Here we like to emphasize that q-analytic functions as complex valued functions are

not analytic functions in the usual sense, because arguments

zqn = x + iqny =
(1 + qn)

2
z +

(1 − qn)

2
z̄,
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include both z and z̄, so that ∂
∂z̄ eq(x + iy; q) � 0. The only exception for q � 1 is a linear

function f = az + b.

Geometrically, we can represent every complex variable zqn = x+iqny, n = 0,±1,±2, ...

in a complex plane with coordinates (x, qny) whose y coordinate is re-scaled. All these planes

are intersecting along the real axis x. Then, the q-analytic function depends on infinite set of

complex variables on these planes z, zq±1 , zq±2 , ... and not on z̄, z̄q±1 , z̄q±2 , .... In the limiting case

q → 1, all planes coincide with the complex plane z, and q-analytic function becomes the

standard analytic function.

4.4. q-Laurent Expansion for q-Analytic Functions

The Laurent formula for an analytic function in annular domain allows us to introduce

corresponding q-analytic function.

In (4.16) for the negative power q-binomial

(x + iy)−n
q =

1

(x + iq−ny)n
q
, (4.29)

we found that for z � 0 it is q-analytic function, Dz̄(x + iy)−n
q = 0. If we fix the base |q| < 1,

then we have inequality

1

|(x + iq−ny)n
q|
≤ 1

|(x + iy)n| (4.30)

and hence

∣∣∣∣∣∣∣
∞∑

n=1

bn

(x + iq−ny)n
q

∣∣∣∣∣∣∣ ≤
∞∑

n=1

|bn|
|(x + iy)n| . (4.31)

According to this relation we can extend class of q-analytic functions.

Proposition 4.2 For a given complex-valued function f (z) analytic inside the annular domain

D : r < |z| < R, ∂ f (z)/∂z̄ = 0, and with the Laurent expansion

f (z) =

∞∑
n=−∞

bnzn. (4.32)
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Then there exists a q-analytic function f (z; q), Dz̄ f (z; q) = 0 , convergent in the same domain

D, with the q-Laurent expansion

f (z; q) =

∞∑
n=−∞

bn(x + iy)n
q. (4.33)

As an example we have

e
(
1

z
; q

)
=

∞∑
n=0

(x + iy)−n
q

n!
=

∞∑
n=0

1

n!(x + iq−ny)n
q

(4.34)

which is q-analytic everywhere except z = 0.

4.5. The q-Cauchy-Riemann Equations

Expanding a q-holomorphic function to real and imaginary parts f (x+iy; q) = u(x, y; q)+

iv(x, y; q) due to (4.8), (Dx
q + iDy

1
q
)(u + iv) = 0, and we get the system of q-Cauchy-Riemann

Equations

Dx
qu = Dy

1
q
v, Dx

qv = −Dy
1
q
u. (4.35)

The q-Laplace operator is defined in terms of q-holomorphic derivatives (4.6) as

Δq ≡ 4DzDz̄ =
(
Dx

q

)2
+

(
Dy

1
q

)2

= (Dx
q)2 +

1

q
(Dy

1
q
)2, (4.36)

where the order of My
q and Dy

q operators are interchanged according to Q-commutative formula

(Dy
qMy

Q) = Q(My
QDy

q).

Due to (4.8), the operator Dz acts on q-holomorphic function f (z; q) just as Dx
q deriva-

tive:

Dz f (z; q) =
1

2
(Dx

q − iDy
1
q
) f (z; q) = Dx

q f (z; q). (4.37)

Definition 4.2 The real function φ(x, y) is a q-harmonic function if it satisfies the q-Laplace
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equation

Δqφ(x, y) = 0. (4.38)

Due to factorization Δq f = 4DzDz̄ f = 0, the real and imaginary parts of a q-analytic function

are conjugate q-harmonic functions

Δqu(x, y) = 0, Δqv(x, y) = 0.

These functions can be used for solution of two-dimensional q-heat and q-Schrödinger equa-

tions. Recently we have studied the q-heat equations in a line (Nalci and Pashaev, 2010),

(Pashaev and Nalci, 2012). Different forms of these equations can be derived in the prob-

lems of random walk on quantum group (Protogenov, 2015) and gauge theory of self-similar

systems (Olemskoi, 2000). Two dimensional version of stationary heat distribution in such

systems is described by the q-Laplace equation Δqu = 0 with general solution in terms of

q-harmonic functions.

4.5.1. Examples of q-Harmonic Functions

From q-binomial for n = 2

(x + iy)2
q = (x + iy)(x + iqy) = x2 − qy2 + (1 + q)ixy

we have q-harmonically conjugate functions u(x, y) = x2 − qy2, v(x, y) = (1 + q)xy.

For arbitrary n = 1, 2, 3..., polynomial q-harmonic functions are

u(x, y) =
1

2
[(x + iy)n

q + (x − iy)n
q], v(x, y) =

1

2i
[(x + iy)n

q − (x − iy)n
q]. (4.39)

Simplest non-polynomial q-harmonic functions follow from (4.28) as

u(x, y) = eq(x)Cosq(y), v(x, y) = eq(x)S inq(y). (4.40)
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4.6. q-Analytic Function as Generalized Analytic Function

In previous sections we have seen that q-analytic functions depend on both z and z̄

variables and are not analytic. Nevertheless, here we are going to show that some of q-analytic

functions are generalized analytic functions (Vekua, 1962). This class of functions is related

with the ∂̄-problem (D-Bar Problem). The scalar equation

∂Φ(z, z̄)

∂z̄
= f (z, z̄) (4.41)

for simple connected domain in complex z-plane called ∂̄-problem (Ablowitz and Fokas,

1997). For complex functions

Φ = u + iv, f =
g + ih

2
, z = x + iy

it is equivalent to the system of a generalized Cauchy-Riemann equations

∂u
∂x
− ∂v
∂y
= g(x, y),

∂u
∂y
+
∂v
∂x
= h(x, y). (4.42)

In case of analytic functions, g(x, y) = h(x, y) = 0 → f (x, y) = 0 it recovers the Cauchy-

Riemann equations.

Definition 4.3 Complex function Φ(z, z̄) in a region R, satisfying equation

∂Φ

∂z̄
= A(z, z̄)Φ + B(z, z̄)Φ̄ (4.43)

is called generalized analytic function.

The particular case B = 0, the last equation reduces to D-Bar equation

∂Φ

∂z̄
= A(z, z̄)Φ (4.44)
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which can be solved in closed form (Vekua, 1962), (Ablowitz and Fokas, 1997) as:

Φ(z, z̄) = ω(z)e
1

2πi

∫ ∫
D

A(ζ,ζ̄)
ζ−z dζ∧dζ̄ , (4.45)

where ω(z) is an arbitrary analytic function. This solution was first obtained by N. Theodor-

esco in 1931, (Theodoresco, 1936).

4.6.1. Complex q-Binomial

Here we intend to show that complex q-binomials Φ(z, z̄) = (x + iy)n
q are generalized

analytic functions. Calculating the partial derivatives

∂
∂x (x + iy)n

q

(x + iy)n
q
=

∂

∂x

n−1∑
k=0

ln(x + iqky) =

n−1∑
k=0

1

x + iqky
(4.46)

we get

∂

∂x
(x + iy)n

q = (x + iy)n
q

n−1∑
k=0

1

x + iqky
,

∂

∂y
(x + iy)n

q = (x + iy)n
q

n−1∑
k=0

iqk

x + iqky
, (4.47)

and

∂

∂z̄
(x + iy)n

q =
1 − q

2
(x + iy)n

q

n−1∑
k=0

[k]q

x + iqky
(4.48)

Therefore Φ(z, z̄) = (x + iy)n
q is the generalized analytic function satisfying ∂̄-equation (4.44)

∂

∂z̄
Φ(z, z̄) = Φ(z, z̄)(1 − q)

n−1∑
k=0

[k]q

(1 + qk)z + (1 − qk)z̄
, (4.49)
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where

A(z, z̄) = (1 − q)

n−1∑
k=1

[k]q

(1 + qk)z + (1 − qk)z̄
.

Here parameter q expresses deviation from analyticity, and for q = 1 we have A(z, z̄) ≡
0 and D-Bar Equation (∂-problem) reduces to the holomorphicity condition ∂

∂z̄ zn = 0. By

using (4.44) and (4.45) we find a new representation for q-Binomial:

(x + iy)n
q = ω(z) exp

⎡⎢⎢⎢⎢⎢⎣ 1

2πi

∫ ∫
D

1 − q
ζ − z

n−1∑
k=1

[k]q

(1 + qk)ζ + (1 − qk)ζ̄
dζ ∧ dζ̄

⎤⎥⎥⎥⎥⎥⎦, (4.50)

where

ω(z) =
( z
2

)n n−1∏
k=0

(1 + qk). (4.51)

Details of these calculations are given in Appendix. This representation shows explicit relation

between complex q-binomial (x + iy)n
q and complex binomial (x + iy)n = zn.

4.7. Complex q-Analytic Fractals

In this section we are going to construct self-similar fractal surface as a q-analytic

function. In papers (Erzan, 1997), (Erzan and Eckmann, 1997) it was shown how gener-

ators of fractal and multi-fractal sets with discrete dilatation symmetries can be related to

q-derivative operator. It was applied then to free energy of spin systems on hierarchical lat-

tices (Erzan, 1997), (Erzan and Eckmann, 1997) and irreversible dynamics on such lattices

(Erzan and Gorbon, 1999). Key point is that singular part of critical spin systems on hierar-

chical lattices possesses discrete dilatation symmetry and satisfies the homogeneity relation.

Following similar arguments here we consider complex q-derivative and q-analytic functions

to obtain new type of fractal sets.

We introduce complex valued function f (x, y), as homogeneous function of degree d:

f (qx, qy) = qd f (x, y). (4.52)

88



The q-differential of this function is

dq f = f (qx, qy) − f (x, y) = (qd − 1) f (x, y) (4.53)

and from (4.5), it can be rewritten as

(qd − 1) f (x, y) = (My
qDz f ) dqz + (My

qDz̄ f ) dqz̄. (4.54)

For q-analytic function Dz̄ f = 0 the last term vanishes and we have the homogeneous q-

difference equation

zMy
qDz f =

qd − 1

q − 1
f . (4.55)

Below we consider only the case d = n as a positive integer. To find a solution of this equation,

first we notice that complex q-binomial (x + iy)n
q is a homogenous function of degree n

(λx + iλy)n
q = λ

n(x + iy)n
q. (4.56)

Combining this condition for λ = q with q-analyticity condition Dz̄(x + iy)n
q = 0, we find that

it satisfies the equation (4.55). That is

zMy
qDz(x + iy)n

q = [n]q(x + iy)n
q. (4.57)

Then the general q-analytic fractal solution is

f (x, y) = (x + iy)n
q Aq(x, y), (4.58)

where Aq(qx, qy) = Aq(qx, y) = Aq(x, qy) = Aq(x, y) is complex valued q-periodic function in

both x and y.
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By choosing Aq(x, y) as a real q-periodic function, we get the q-harmonic fractals as

U(x, y) = u(x, y) Aq(x, y), V(x, y) = v(x, y) Aq(x, y), (4.59)

where u and v are q-harmonic functions (4.39). Specific form of these fractals depend on

structure of Aq(x, y). To fix it we have next Proposition.

Proposition 4.3 A q-periodic function can be represented in the general form

Aq(x, y) = (xy)−s
∞∑

k=−∞

∞∑
l=−∞

q−s(k+l) G(qkx, qly) (4.60)

Proof Consider

Aq(qx, y) = (qxy)−s
∞∑

k=−∞

∞∑
l=−∞

q−s(k+l) G(qk+1x, qly)

By replacing k by k − 1, it is obvious that Aq(qx, y) = Aq(x, y). Similarly, it is easy to see that

Aq(x, y) is q-periodic in y argument as well. �

According to the above proposition, the general q-analytic fractal solution of q-difference

self-similarity equation (4.57) is

f (x, y) = (xy)−s(x + iy)n
q

∞∑
k=−∞

∞∑
l=−∞

q−s(k+l) G(qkx, qly). (4.61)

4.7.1. Examples of q-Periodic Functions

For G(x, y) = sin x sin y, from (4.60) we find

Aq(x, y) = (xy)−s
∞∑

k=−∞

∞∑
l=−∞

sin(qkx) sin(qly)

qs(k+l) . (4.62)

With another choice G(x, y) = (1 − eix) (1 − eiy), we get
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Aq(x, y) = (xy)−s
∞∑

k=−∞

∞∑
l=−∞

(1 − eiqk x) (1 − eiqly)

qs(k+l) .

This function can be written as a product of one dimensional q-periodic functions A(x) and

B(y),

Aq(x, y) = x−s
∞∑

k=−∞

1 − eiqk x

qsk y−s
∞∑

l=−∞

1 − eiqly

qsl = A(x) B(y),

representing the q-periodic parts of the Weierstrass-Mandelbrot function, and a canonical ex-

ample of a fractal curve.

4.7.2. Double Mellin Series Expansion

Below we restrict our consideration to Aq(x, y) = Aq(x) Bq(y), where Aq(qx) = Aq(x),

Bq(qx) = Bq(x) are q-periodic functions. Without loss of generality we consider Aq(x) case

only in details. By changing argument ln x = t and ln q = T we have

Aq(qx) = Aq(x)⇒ Aq(eT et) = Aq(et).

Denoting Aq(et) ≡ F(t) we find that it is T-periodic, F(t + T ) = F(T ), and can be expanded to

Fourier series

F(t) =
∞∑

n=−∞
cne

i2πnt
T ,

with Fourier coefficients

cn =
1

T

∫ T

0

F(t)e
−i2πnt

T dt.
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According to this, q-periodic function Aq(x) can be represented by complex series (the Mellin

series)

Aq(x) = F(ln x) =

∞∑
n=−∞

cnx
i2πn
ln q , (4.63)

where

cn =
1

ln q

∫ q

1

Aq(x) x
−i2πn
ln q

dx
x
.

In a similar way for Bq(y) we have

Bq(y) =

∞∑
n=−∞

dny
i2πn
ln q , (4.64)

with coefficients

dn =
1

ln q

∫ q

1

Bq(y) y
−i2πn
ln q

dy
y
.

Combining together we get the double-Mellin series representation of q-periodic function in

the following form

Aq(x, y) =

∞∑
n=−∞

∞∑
m=−∞

cn dm x
i2πn
ln q y

i2πn
ln q . (4.65)

By substituting to (4.58) and expanding q-binomial according to Gauss’s Binomial

formula, we obtain expansion of self-similar q-analytic function (q-analytic fractal) to double-

Mellin series

f (x, y) =

∞∑
k=−∞

∞∑
m=−∞

ck dm

n∑
l=0

[
n
l

]
q

il q
l(l−1)

2 xn−l+ i2πk
ln q yl+ i2πm

ln q . (4.66)

In case of fractal (4.62) the expansion is
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f (x, y) = Aq(x, y)(x + iy)n
q

=

∞∑
k=−∞

∞∑
m=−∞

n∑
l=0

[
n
l

]
q

il q
l(l−1)

2 xn−l−s yl−s sin(qkx) sin(qmy)

qs(k+m)
.

4.7.3. Examples of q-Analytic Fractals

By choosing function

Aq(x, y) = sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
, (4.67)

as q-periodic in x and y, we obtain the following set of homogenous self-similar q-analytic

fractals of degree n,

fn(x, y) = sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
· (x + iy)n

q, (4.68)

and for Re fn(x, y) ≡ un and Im fn(x, y) ≡ vn the set of self-similar q-harmonic functions.

For n = 0, the simplest q-harmonic and q-periodic function is f0(x, y) = Aq(x, y)

from (4.67). In Figure 4.1 and Figure 4.2, we plot f0(x, y) for q = 2 and −0.5 ≤ x ≤ 0.5,

−0.5 ≤ y ≤ 0.5. By changing scale (x, y) → (qnx, qny), or in our example magnifying our

figure in scales ..., 1
4
, 1

2
, 2, 4, 8, ..., etc. we find that the figure shows the self-similar character

remaining in the same form.

For n = 2, we have

u2(x, y) = (x2 − qy2) · sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
,

v2(x, y) = [2]q(x y) · sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
. (4.69)

In Figure 4.3 we show 3D plot of u2(x, y) at q = 2 and −10 ≤ x ≤ 10, −10 ≤ y ≤ 10. By

re-scaling coordinates in 2n scale we get the same figures, showing self-similar structure of

our q-harmonic function.
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Figure 4.1. Contour plot of q-periodic q-harmonic function

Figure 4.2. 3D plot of q-periodic q-harmonic function

For n = 3, we get

u(x, y) = x(x2 − qy2 − [2]qq2y2) · sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
,

v(x, y) = y([2]qx2 + q2(x2 − qy2)) · sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
. (4.70)

In Figure 4.4 we show 3D plot of q-harmonic fractal u3(x, y) at q = 2 and −1 ≤ x ≤ 1,

−1 ≤ y ≤ 1. This figure also shows self-similar structure at 2n scale.

For n = −1, we have

f−1(x, y) = sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
· (x + iy)−1

q . (4.71)
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Figure 4.3. 3D plot of n = 2 q-harmonic function

Figure 4.4. 3D plot of n = 3 q-harmonic function

and corresponding self-similar q-harmonic functions for (x + iy � 0) are

u(x, y) =
q2x

x2q2 + y2
· sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
v(x, y) =

−qy
x2q2 + y2

· sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
(4.72)

In Figure 4.5 and 4.6 we show contour plot and 3D plot of this q-harmonic fractal u(x, y) at

q = 2.
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Figure 4.5. Contour plot of n = −1 q-harmonic function

Figure 4.6. 3D plot of n = −1 q-harmonic function

4.8. q-Analytic Coherent States

In this section, we apply our q-analytic functions to construct quantum states of har-

monic oscillator. We consider bosonic operators

[a, a+] = I, [a, I] = 0, [a+, I] = 0 (4.73)

and the vacuum state |0〉:

a |0〉 = 0, 〈0|0〉 = 1. (4.74)
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The orthonormal set of n-particle states, n = 0, 1, 2, ...,

|n〉 = (a+)n

√
n!
|0〉 , 〈n|m〉 = δnm, (4.75)

generates the normalized Glauber coherent states, with complex α (Perelomov, 1986),

|α〉 = e−
1
2 |α|2

∞∑
n=0

αn

√
n!
|n〉 . (4.76)

By analogy with these coherent states we introduce a new set of q-analytic coherent states,

parameterized by complex number α = α1 + iα2:

|α; q〉 = C
∞∑

n=0

(α1 + iα2)n
q√

[n]q!
|n〉 . (4.77)

Normalization condition gives

1 = 〈α; q|α; q〉 = |C|2
∞∑

n=0

(α2
1 + α

2
2)n

q2

[n]q!
= |C|2eq(α2

1 + α
2
2)q2 ,

where we denoted

eq(α2
1 + α

2
2)q2 =

∞∑
n=0

(α2
1 + α

2
2)n

q2

[n]q!
(4.78)

in Hahn’s notations (Hahn, 1949), see also (Ernst, 2001). Then the normalized q-analytic

coherent states are given by

|α; q〉 =
(
eq(α2

1 + α
2
2))q2

)− 1
2

∞∑
n=0

(α1 + iα2)n
q√

[n]q!
|n〉 . (4.79)

For |q| < 1, due to evident relation (α2
1 + α

2
2)n

q2 ≤ (α2
1 + α

2
2)n, we get inequality

eq(α2
1 + α

2
2)q2 ≤ eq(α2

1 + α
2
2), (4.80)
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where on the r.h.s we have the Jackson q-exponential function. From infinite product repre-

sentation (Kac and Cheung, 2002) of the last function

eq(|α|2) =
1

(1 − (1 − q)|α|2)∞q
, (4.81)

we can see that singularities of this function are located on the set of concentric circles with

radiuses given by growing geometric progression rn = r0q−n/2 , r0 = 1/
√

1 − q. Then both

functions convergent in the disc D : |α|2 ≤ 1/(1 − q). This is the region where normalization

of our q-analytic coherent states is defined.

When q → 1 these states reduce to the Glauber coherent states (4.76) and radius

of convergency r0 → ∞. Here we emphasize that our q-analytic coherent states are also

different from the q-coherent states appearing in representation of q-deformed Heisenberg-

Weyl algebra (Vitiello, 2012), (Vitiello, 2009), (Vitiello, 2008). The last ones are analytic

in α, while our states are not analytic but the q-analytic.

4.9. q-Analytic Fock-Bargmann Representation

The standard Fock-Bargman representation of an arbitrary state

|ψ〉 =
∞∑

n=0

cn |n〉 , < ψ|ψ >=
∞∑

n=0

|cn|2 = 1,

is given by the scalar product of this state with Glauber’s coherent state (4.76):

〈α|ψ〉 = e−
1
2 |α|2ψ(ᾱ), (4.82)

where the wave function

ψ(α) =

∞∑
n=0

cn
αn

√
n!

(4.83)

is an entire analytic function (Perelomov, 1986).
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Analytic q-coherent state is defined (Arik and Coon, 1976) as

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
[n]q!

|n〉 , (4.84)

and corresponding analytic q-Fock-Bargmann representation of an arbitrary state |ψ〉 is

〈α|ψ〉 = e−
|α|2

2 ψ(ᾱ), (4.85)

where the wave function

ψ(α) =

∞∑
n=0

cn
αn√
[n]q!

(4.86)

is an analytic function.

As an example, our q-analytic coherent state (4.79) in Fock-Bargman representation

< z|α; q > is characterized by analytic function in z:

ψα(z) =
(
eq(α2

1 + α
2
2)q2

)− 1
2

∞∑
n=0

(α1 + iα2)n
q zn√

[n]q! n!
. (4.87)

By using our q-analytic coherent states (4.79), now we introduce new representation

of these states which we call q-analytic Fock-Bargman representation. By taking the scalar

product of |ψ > with (4.79) we get

〈α; q|ψ〉 =
(
eq(α2

1 + α
2
2)q2

)− 1
2

∞∑
n=0

cn
(α1 − iα2)n

q√
[n]q!

(4.88)

=
(
eq(α2

1 + α
2
2)q2

)− 1
2
ψ(ᾱ; q), (4.89)

where the wave function

ψ(α; q) =

∞∑
n=0

cn
(α1 + iα2)n

q√
[n]q!

, (4.90)
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is complex q-analytic function. Therefore, every complex q-analytic function, Dz̄ψ(x + iy)q =

0, determines quantum state in our q-analytic Fock-Bargmann representation.

Proposition 4.1 allows us to compare two wave functions in Fock-Bargman represen-

tation (4.83) and in q-analytic Fock-Bargman representation (4.90). Entire character of the

first one implies existence of the second one for |q| < 1.

As the simplest example we find representation of the orthonormal basis {|n〉}, which

is given just by complex q-analytic binomial

|n〉 → ψn(α; q) =
(α1 + iα2)n

q√
[n]q!

. (4.91)

It is not analytic, but as we have seen in Section 4.6.1, it represents the generalized analytic

function.

As a next example, we find the Glauber coherent state |α〉 (4.76) in our q-analytic

Fock-Bargmann representation < z; q|α >:

ψα(z; q) = e−
1
2 |α|2

∞∑
n=0

(x + iy)n
q√

[n]q!

αn

√
n!
= e−

1
2 |α|2

∞∑
n=0

(αx + iαy)n
q√

[n]q! n!
, (4.92)

which is q-analytic in z = x + iy.

4.10. Quantum q-Oscillator

We consider q-bosons with creation and annihilation operators

b+ = a+
√

[N + I]q

N + I
=

√
[N]q

N
a+, (4.93)

b =

√
[N + I]q

N + I
a = a

√
[N]q

N
, (4.94)
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where operators a+, a are given by (4.73), N = a+ a, [N]q =
qN−1

q−1
. The commutation relations

are

b b+ − b+ b = qN , (4.95)

b b+ − q b+ b = I, (4.96)

and for q-number operators we have

b+ b = [N]q, b b+ = [N + I]q. (4.97)

As easy to see, n-particle states for b and a operators are the same

|n〉 = (a+)n

√
n!
|0〉 = (b+)n√

[n]q!
|0〉 , (4.98)

where vacuum state is a |0〉 = b |0〉 = 0. Then for b, b+ operators we have

b |n〉 =
√

[n]q |n − 1〉 , b+ |n〉 =
√

[n + 1]q |n + 1〉 . (4.99)

By using last relations we find action of these operators in q-analytic Fock-Bargman repre-

sentation:

b → Dz, b+ → zMy
q, (4.100)

where Dz is complex derivative operator defined in (4.6). For q-number operator we get

representation

[N]q → zMy
q Dz. (4.101)
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This representation shows interesting connection with self-similarity condition discussed in

Section 4.7.3. The eigenvalue problem

[N]q |n〉 = [n]q |n〉 , (4.102)

in q-analytic Fock-Bargman representation

zMy
qDz

(x + iy)n
q√

[n]q!
= [n]q

(x + iy)n
q√

[n]q!
, (4.103)

is equivalent to the self-similarity q-difference equation (4.57).

Quantum q-oscillator is described by Hamiltonian operator

H = �ω(b b+ + b+ b). (4.104)

The Hamiltonian in q-analytic Fock Bargmann representation becomes the operator as in

H = �ω(Dz z My
q + z My

q Dz), (4.105)

and the Schrödinger equation

H |n〉 = En |n〉 , (4.106)

takes the form of q-difference equation

�ω(Dz z My
q + z My

q Dz)ψn(z; q) = Enψn(z; q), (4.107)

with q-analytic solution

ψn(z; q) =
(x + iy)n

q√
[n]q!

, En = �ω([n]q + [n + 1]q). (4.108)
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The above consideration shows that our q-analytic functions even non-analytic func-

tions could describe quantum states. Moreover, fractal q-analytic functions discussed in Sec-

tion 4.7.3 describe quantum states with fractal properties.
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CHAPTER 5

Q-ANALYTIC HERMITE BINOMIAL FORMULA

We extend the concept of q-analytic function in two different directions. First moti-

vated by derivation of the Dirac type δ-function for quantum states in Fock-Bargmann repre-

sentation, we find expansion of q-binomial in terms of q-Hermite polynomials, analytic in two

complex arguments. Based on this representation, we introduce a new class of complex func-

tions of two complex arguments, which we call the double q-analytic functions. As another

direction, by the hyperbolic version of q-analytic functions, we describe q-analogue of trav-

eling waves, which does not preserve the shape during evolution. The IVP for corresponding

q-wave equation is solved in the q-D’Alembert form.

5.1. Different Type of Analiticity

Definition 5.1 Complex function f (z) of one complex variable z (or two real variables x and

y) is analytic if it satisfies

∂

∂z̄
f (z) =

1

2

(
∂

∂x
+ i

∂

∂y

)
f (z) = 0. (5.1)

We now define its q-analogue.

Definition 5.2 A complex function f (z; q) of one complex variable(two real variables) is q-

analytic if

Dz̄
q f (z; q) =

1

2

(
Dx

q + iDy
1
q

)
f (z; q) = 0. (5.2)

Example: Complex q-binomial z = (x+iy)2
q = (x+iy)(x+iqy) = z.

(
1
2
(1 + q)z + (1 − q)z̄

)
is not analytic since, ( ∂

∂z̄ (x + iy)2
q � 0) but it is q-analytic Dz̄

q(x + iy)2
q = 0.
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Definition 5.3 Complex function f (z,w) of two complex variables z,w is analytic if

∂

∂z̄
f (z,w) =

∂

∂w̄
f (z,w) = 0. (5.3)

Definition 5.4 Complex function f (z,w) of two complex variables z and w is double analytic

if it satisfies

∂z,w f (z,w) =
1

2

(
∂

∂z
+ i

∂

∂w

)
f (z,w) = 0. (5.4)

Definition 5.5 Complex function f (z,w; q) of two complex variables z and w is double q-

analytic if it satisfies

Dz,w f (z,w) =
1

2

(
Dz

q + iDw
1
q

)
f (z,w) = 0. (5.5)

Example: For z = x+iy and w = u+iv complex q-binomial (z+iw)2
q = z2+[2]qiwz−qw2

is analytic in z,w ( ∂
∂z̄ (z + iw)2

q =
∂
∂w̄ (z + iw)2

q = 0) and double q-analytic (D̄z,w(z + iw)2
q = 0).

As is well known, states of a quantum system in Fock-Bargmann representation are

described by complex analytic function f (z) and visa versa (Perelomov, 1986). In this repre-

sentation , due to the formula

∫
dμ(z)eξz̄ f (z) = f (ξ) (5.6)

where a measure dμ(z) = dzdz̄e−zz̄, the exponential function plays the role of Dirac type δ

function (Floratos , 1991). Proof of this formula is based on following identity

∫
dμ(z)eξz̄zn = ξn. (5.7)

Motivated by derivation of Dirac type δ- function for quantum states, in Fock-Bargmann

representation we find holomorphic Newton binomial of two complex variables z and w ex-
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panded in terms of holomorphic Hermite polynomials (Nalci and Pashaev, 2010)

(z + iw)n =
1

2n

n∑
k=0

(
n
k

)
ikHn−k(z)Hk(w). (5.8)

In this chapter, q-analogue of this formula for complex q-binomial is obtained in terms

of q-Hermite polynomials

(z + iw)n
q =

1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(z; q)Hk(qw,

1

q
), (5.9)

which is double q-analytic function function Dz̄,w̄(z + iw)n
q =

1
2
(Dz

q + iDw
1
q
)(z + iw)n

q = 0.

It shows expansion of double q-analytic function of two complex variables in z and w,

in terms of standard analytic functions as q-Hermite polynomials. This formula can be used

for description of double q-analytic functions and corresponding Fock-Bargmann representa-

tion.

This representation allow us to introduce q-analogue of travelling waves (x±ct)n
q which

can be expressed in terms of q-Hermite polynomials and corresponding q-travelling wave

equation (
(Dt

1
q
)2 − c2(Dx

q)2
)

u(x, t) = 0

and its general solution in q-D’Alembert form.

5.2. Analytic Hermite Binomial Formula

We start with the following Lemma

Lemma 5.1 For all ξ, η-complex numbers, we have

n∑
k=0

(
n
k

)
(−1)k dn−k

dξn−k

dk

dηk eξ
2/4−η2/4 =

(
ξ + η

2

)n

eξ
2/4−η2/4. (5.10)

Proof Consider left hand side of (5.10)

n∑
k=0

(
n
k

)
(−1)k dn−k

dξn−k

dk

dηk eξ
2/4−η2/4 =

(
d
dξ
− d

dη

)n

eξ
2/4−η2/4 (5.11)
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By changing variables ξ and η to λ and μ respectively according to

λ + μ = ξ, λ − μ = η

we have

λ μ =
ξ2 − η2

4
= (

ξ − η
2

)(
ξ + η

2
)

and

(
d
dξ
− d

dη

)n

eλμ =
(

d
dμ

)n

eλμ = λneλμ =
(
ξ + η

2

)n

eξ
2/4−η2/4. (5.12)

�

Corollary 5.1 We have

n∑
k=0

(
n
k

)
(−1)k dn−k

dξn−k eξ
2/4 dk

dξk e−ξ
2/4 = ξn. (5.13)

Proof By taking the limit of expression (5.10) as η→ ξ ⇒ μ→ 0, λ→ ξ, we get

lim
η→ξ

n∑
k=0

(
n
k

)
(−1)k dn−k

dξn−k

dk

dηk eξ
2/4−η2/4 = lim

μ→0,λ→ξ
λneλμ = ξn. (5.14)

�

Lemma 5.2 For n = 1, 2, ... f (z) = zn, the below equation holds

∫
dzdz̄e−zz̄eξz̄zn = ξn. (5.15)

Proof By changing complex coordinates to cartesian coordinates the integral is expressed

in terms of summation formula

∫
dzdz̄e−zz̄eξz̄zn =

1

π

∫
dxdyeξ(x−iy)e−(x2+y2)(x + iy)n

=
1

π

n∑
k=0

(
n
k

)
ik

∫
dx xn−ke−x2

eξx
∫

dy yke−y2

e−iξy
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=
1

π

n∑
k=0

(
n
k

)
ik dn−k

dξn−k

∫
dx e−x2+ξx dk

d(−iξ)k

∫
dy e−y2−iξy

=

n∑
k=0

(
n
k

)
(−1)k dn−k

dξn−k eξ
2/4 dk

dξk e−ξ
2/4, (5.16)

where we have used the results of Gaussian integrals

∫
e−x2+axdx =

√
πea2/4

and

∫
e−x2+ibxdx =

√
πe−b2/4.

By using Corollary 5.1 we find the desired result

∫
dzdz̄e−zz̄eξz̄zn = ξn. (5.17)

�

Now as evident we can generalize this result for any analytic functions f (z) =
∑∞

n=0 anzn

as

∫
dμ(z)eξz̄ f (z) = f (ξ).

The above proof implies some interesting binomial identity formula for Hermite poly-

nomials. For this, we need Rodrigues formula for Hermite polynomials:

Definition 5.6 Rodrigues formula for Hermite polynomials of complex argument is defined

by

Hn(z) = (−1)nez2 dn

dzn e−z2

(5.18)
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and replacing z→ iz we get

Hn(iz) = ine−z2 dn

dzn ez2

. (5.19)

Identity 5.1 The following identity

1

2n

n∑
k=0

(
n
k

)
(−i)n−kHn−k(

i
2
ξ)Hk(

ξ

2
) = ξn (5.20)

holds.

Proof According to the previous proof we have

ξn =

∫
dzdz̄e−zz̄eξz̄zn =

n∑
k=0

(
n
k

)
(−1)k dn−k

dξn−k eξ
2/4 dk

dξk e−ξ
2/4 (5.21)

In order to use the Rodrigues formula we multiply the above expression by eξ
2/4e−ξ

2/4

n∑
k=0

(
n
k

)
(−1)k eξ

2/4

(
e−ξ

2/4 dn−k

dξn−k eξ
2/4

) (
dk

dξk e−ξ
2/4

)

=

n∑
k=0

(
n
k

)
(−1)k

(
1

2i

)n−k

Hn−k(
i
2
ξ)

(
eξ

2/4 dk

dξk e−ξ
2/4

)

=

n∑
k=0

(
n
k

)
(−1)k

(
1

2i

)n−k

Hn−k(i
ξ

2
)

(
−1

2

)k

Hk(
ξ

2
)

=
1

2n

n∑
k=0

(
n
k

)
(−1)n−kin−kHn−k(i

ξ

2
)Hk(

ξ

2
)

= ξn. (5.22)

�

Particular case: By simple change of variable ξ → −2iz in (5.20), we obtain

1

22n

n∑
k=0

(
n
k

)
ikHn−k(z)Hk(−iz) = zn, (5.23)
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and by reductions ξ = x and ξ = iy we get

1

2n

n∑
k=0

(
n
k

)
in−kHn−k(

ix
2

)Hk(
x
2

) = xn, (5.24)

1

2n

n∑
k=0

(
n
k

)
in−kHn−k(

−y
2

)Hk(i
y
2

) = inyn. (5.25)

Identity 5.2 More general identity is given as

(z + iw)n =
1

2n

n∑
k=0

(
n
k

)
ikHn−k(z)Hk(w). (5.26)

The proof can be done by generating functions for Hermite polynomials.

Proof Generating function for Hermite polynomials is defined as follows

g(z, t) = e−t2+2tz =

∞∑
n=0

Hn(z)
tn

n!
(5.27)

and

g(w, τ) = e−τ
2+2τw =

∞∑
k=0

Hk(w)
τk

k!
(5.28)

by changing variable τ = it and multiplying (5.27) and (5.28) we have

g(z, t) g(w, it) = e2t(z+iw) =

∞∑
l=0

∞∑
k=0

Hl(z)

l!
Hk(w)ik

k!
tl+k. (5.29)

In order to change the order of double sum we choose l + k = n, and by expanding the left

hand side in t we get

g(z, t) g(w, it) =
∞∑

n=0

2ntn(z + iw)

n!
=

∞∑
n=0

tn

n!

n∑
k=0

(
n
k

)
Hn−k(z)Hk(w)ik. (5.30)
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By equating the term of tn we obtain the desired result (5.26):

(z + iw)n =
1

2n

n∑
k=0

(
n
k

)
ikHn−k(z)Hk(w).

�

Another proof can be done by using the complex Laplace equation.

Proof ζn = (z + iw)n is analytic function of two complex variables z and w. Therefore it

satisfies complex Laplace equation Δζn = 0, where Δ ≡ d2

dz2 +
d2

dw2 which implies Δkζn = 0 for

k = 0, 1, 2... As evident,

e−
1
4Δ(z + iw)n =

⎛⎜⎜⎜⎜⎝1 − 1

4
Δ +

(−1
4
Δ)2

2!
+ ... +

(− 1
4
Δ)n

n!
+ ...

⎞⎟⎟⎟⎟⎠ (z + iw)n = (z + iw)n (5.31)

or explicitly

e−
1
4Δ(z + iw)n = e−

1
4

d2

dz2 e−
1
4

d2

dw2

n∑
k=0

(
n
k

)
zn−kikwk

=

n∑
k=0

(
n
k

)
ik

(
e−

1
4

d2

dz2 zn−k
) (

e−
1
4

d2

dw2 wk
)
. (5.32)

By using the identity for Hermite Polynomials:

Hn(x) = 2ne−
1
4

d2

dx2 xn

we get

(z + iw)n =
1

2n

n∑
k=0

(
n
k

)
Hn−k(z)Hk(w)ik. (5.33)

�
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5.3. q-Hermite Polynomials

In paper (Nalci and Pashaev, 2010), we define q−Hermite polynomials according to

generating function

eq(−t2)eq([2]qtx) =

∞∑
n=0

Hn(x; q)
tn

[n]q!
, (5.34)

where

eq(x) =

∞∑
n=0

xn

[n]q!
, Eq(x) =

∞∑
n=0

q
n(n−1)

2
xn

[n]q!

are Jackson’s q-exponential functions and q-numbers and q-factorials are defined as follows:

[n]q =
qn − 1

q − 1
, [n]q! = [1]q[2]q...[n]q.

From this generating function we have the special values

H2n(0; q) = (−1)n [2n]q!

[n]q!
, (5.35)

H2n+1(0; q) = 0, (5.36)

and the parity relation

Hn(−x; q) = (−1)nHn(x; q). (5.37)

By q-differentiating the generating function (5.34) according to x and t we have the recurrence

relations correspondingly

DxHn(x; q) = [2]q[n]qHn−1(x; q), (5.38)
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Hn+1(x; q) = [2]q xHn(x; q) − [n]q Hn−1(qx; q)

−[n]q q
n+1

2 Hn−1(
√

qx; q). (5.39)

We notice that the generating function and the form of our q-Hermite polynomials are

different from the known ones in the literature.

First few polynomials are

H0(x; q) = 1

H1(x; q) = [2]q x

H2(x; q) = [2]2
q x2 − [2]q

H3(x; q) = [2]3
q x3 − [2]2

q[3]q x

H4(x; q) = [2]4
q x4 − [2]2

q[3]q[4]q x2 + [2]q[3]q[2]q2 .

When q→ 1 these polynomials reduce to the standard Hermite polynomials.

In generating function (5.34) for t = 1 it gives expansion of q-exponential function in

terms of q-Hermite polynomials

∞∑
n=0

Hn(x; q)

[n]q!
=

eq([2]qx)

Eq(1)
. (5.40)

In the limit q→ 1

e2x−1 =

∞∑
n=0

Hn(x)

n!

For x = 1 and x = 0 case:

e =
∞∑

n=0

Hn(1)

n!
,

1

e
=

∞∑
n=0

Hn(0)

n!
=

∞∑
n=0

H2n(0)

(2n)!
=

∞∑
n=0

(−1)n

n!
.
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Identity 5.3 q-Analogue of identity (5.26) is as follows

(z + iw)n
q =

1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(z; q)Hk(qw,

1

q
), (5.41)

where Hi stands for q-Hermite polynomials.

Proof By using the generating function for q-Hermite polynomials (5.34) by replacing

x→ Z we obtain

eq(−t2)eq([2]qZt) =
∞∑

n=0

Hn(Z; q)
tn

[n]q!
(5.42)

and then replacing t → it, Z → W and q→ 1/q we have

e 1
q
(t2)e 1

q
([2] 1

q
iWt) =

∞∑
n=0

Hn(W;
1

q
)in tn

[n] 1
q
!
. (5.43)

Multiplying (5.42), (5.43) and using the factorization of q-exponential functions

eq(x)e 1
q
(y) = eq(x + y)q (5.44)

and eq(0)q = 1 we get

eq

(
t([2]qZ + [2] 1

q
iW)

)
q
=

∞∑
l=0

∞∑
k=0

Hl(Z; q)

[l]q!

Hk(W; 1
q )ik

[k] 1
q
!

tl+k. (5.45)

For the right hand side, by changing the order of double sum we choose k+l = n and expanding

left hand side in t, we derive

∞∑
n=0

tn
(
[2]qZ + [2] 1

q
iW

)n

q

[n]q!
=

∞∑
n=0

tn

[n]q!

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 Hn−k(Z; q)Hk(W;

1

q
)ik, (5.46)

for every power tn we have identity
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(
Z + i

W
q

)n

q
=

1

[2]n
q

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 Hn−k(Z; q)Hk(W;

1

q
)ik, (5.47)

where

[k] 1
q
=

1

qk−1
[k]q, [k] 1

q
=

1

q
k(k−1)

2

[k]q! (5.48)

Replacing Z = z and W
q = w the desired result is obtained

(z + iw)n
q =

1

[2]n
q

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 Hn−k(z; q)Hk(qw;

1

q
)ik.

�

Another proof can be done by using the following identity and using complex q-

Laplace equation.

Identity 5.4 Following identity

eq

(
− 1

[2]2
q
Δq

)
q

(z + iw)n
q = (z + iw)n

q, (5.49)

holds.

Proof (z + iw)n
q is q-analytic function. Therefore, it satisfies q-Laplace equation

Δq(z + iw)n
q = 0.

Furthermore, we have

eq

(
− 1

[2]2
q
Δq

)
q

(z + iw)n
q = eq

(
− 1

[2]2
q

(
(Dz

q)2 + (Dw
1
q
)2
))

q

(z + iw)n
q

=

∞∑
n=0

1

[n]q!

(
− 1

[2]2
q

)n (
(Dz

q)2 + (Dw
1
q
)2
)n

q
(z + iw)n

q
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=

∞∑
n=0

1

[n]q!

(
− 1

[2]2
q

)n (
Δq

)n

q
(z + iw)n

q, (5.50)

where
(
Δq

)n

q
= Δq · Δ(1)

q · Δ(2)
q · ... · Δ(n−1)

q and

Δq = (Dz
q)2 + (Dw

1
q
)2, Δ(1)

q = (Dz
q)2 + q(Dw

1
q
)2, ..., Δ(n−1)

q = (Dz
q)2 + qn−1(Dw

1
q
)2.

Using the fact that
(
Δq

)m

q
(z + iw)n

q = 0,∀m = 1, 2, ..., only the first term in expansion survives

then we get desired result.

Using the factorization of q-exponential function

eq

(
− 1

[2]2
q
Δq

)
q

(z + iw)n
q

= eq

(
− 1

[2]2
q
(Dz

q)2

)
e 1

q

(
− 1

[2]2
q
(Dw

1
q
)2

)
(z + iw)n

q

=

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 ikeq

(
− 1

[2]2
q
(Dz

q)2

)
zn−ke 1

q

(
− 1

[2]2
q
(Dw

1
q
)2

)
wk (5.51)

By using the generating function of q-Hermite Polynomials (5.42) we have the follow-

ing identity:

Hn(x; q) = [2]n
qeq

(
− 1

[2]2
q
(Dx

q)2

)
xn, (5.52)

which gives

eq

(
− 1

[2]2
q
(Dz

q)2

)
zn−k =

1

[2]n−k
q

Hn−k(z; q) (5.53)

and

e 1
q

(
− 1

[2]2
q
(Dw

1
q
)2

)
wk =

1

[2]k
1
q
qk

Hk(qw;
1

q
) (5.54)
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where Dqw
1
q
= 1

q Dw
1
q
. Substituting these results into equation 5.51, we get

eq

(
− 1

[2]2
q
Δq

)
q

(z + iw)n
q =

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 ik 1

[2]n−k
q

Hn−k(z; q)
1

[2]k
1
q
qk

Hk(qw;
1

q
)

According to identity 5.4 we get the desired result as

(z + iw)n
q =

1

[2]n
q

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 Hn−k(z; q)Hk(qw;

1

q
)ik. (5.55)

�

5.4. Double q-Analytic Function

Here we consider a class of complex valued functions of two complex variables, z and

w, (or four real variables), analytic in these variables ∂
∂z̄ f = ∂

∂w̄ f = 0.

Definition 5.7 A complex-valued function f (z,w) of four real variables is called the double

analytic in a region if the following identity holds in the region:

∂̄z,w f ≡ 1

2
(∂z + i∂w) f = 0, (5.56)

where

∂z f =
1

2
(∂x − i∂y), ∂w f =

1

2
(∂u − i∂v)

and z = x + iy, w = u + iv.

Definition 5.8 A complex-valued function f (z,w) of four real variables is called the double

q-analytic in a region if the following identity holds in the region:

D̄z,w f =
1

2
(Dz

q + iDw
1
q
) f = 0, (5.57)
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where

Dz
q f (z,w) =

f (qz,w) − f (z,w)

(q − 1)z
, Dw

1
q

f (z,w) =
f (z, w

q ) − f (z,w)

( 1
q − 1)w

and z = x + iy, w = u + iv.

Here we should notice that

Dz
q �

1

2
(Dx

q − iDy
q), Dw

q �
1

2
(Du

q − iDv
q).

The simplest set of double q-analytic functions is given by complex q-binomials

(z + iw)n
q ≡ (z + iw)(z + iqw)(z + iq2w)...(z + iqn−1w) =

n∑
k=0

[
n
k

]
q
qk(k−1)/2ikzn−kwk

satisfying

1

2
(Dz

q + iDw
1
q
)(z + iw)n

q = 0.

Proposition 5.1 Complex q-binomials satisfy following relation

1

2
(Dz

q − iDw
1
q
)(z + iw)n

q = [n]q(z + iw)n−1
q .

Proof We have

1

2
(Dz

q − iDw
1
q
)(z + iw)n

q

=
1

2

⎛⎜⎜⎜⎜⎜⎝ n∑
k=0

[
n
k

]
q
qk(k−1)/2ik

(
Dz

q zn−k
)

wk − i
n∑

k=0

[
n
k

]
q
qk(k−1)/2ikzn−k

(
Dw

1
q

wk
)⎞⎟⎟⎟⎟⎟⎠

=
1

2

⎛⎜⎜⎜⎜⎜⎝ n−1∑
k=0

[
n
k

]
q
qk(k−1)/2[n − k]qzn−k−1ikwk − i

n∑
k′=1

[
n
k′

]
q
qk′(k′−1)/2ik′zn−k′w

k′−1

qk′−1
[k′]q

⎞⎟⎟⎟⎟⎟⎠
=

1

2

⎛⎜⎜⎜⎜⎜⎝ n−1∑
k=0

[
n
k

]
q
qk(k−1)/2[n − k]qzn−k−1ikwk − i

n−1∑
k=0

[
n

k + 1

]
q
qk(k+1)/2ik+1zn−k−1 wk

qk [k + 1]q

⎞⎟⎟⎟⎟⎟⎠
=

1

2

n−1∑
k=0

⎛⎜⎜⎜⎜⎝[nk
]

q
qk(k−1)/2[n − k]q − i

[
n

k + 1

]
q
qk(k+1)/2i

1

qk [k + 1]q

⎞⎟⎟⎟⎟⎠ zn−k−1ikwk
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=
1

2

n−1∑
k=0

2

(
[n]!

[n − k − 1]![k]!
qk(k−1)/2

)
zn−k−1ikwk

= [n]

n−1∑
k=0

[
n − 1

k

]
q
qk(k−1)/2zn−k−1ikwk

= [n](z + iw)n−1
q .

�

From the above result follows that any convergent power series

f (z + iw)q =

∞∑
n=0

an(z + iw)n
q

determines a double q-analytic function. Since our relation (5.41) shows expansion of double

q-analytic q-binomials in terms of q-Hermite polynomials, it also gives expansion of any

double q-analytic function in terms of the analytic polynomials.

Examples: For n = 1 :

(z + iw)1
q = z + iw =

1

[2]q

1∑
k=0

[
1

k

]
q
q

k(k−1)
2 H1−k(z; q)Hk(qw;

1

q
)ik

=
1

[2]q

⎛⎜⎜⎜⎜⎝[1
0

]
q
H1(z; q)H0(qw;

1

q
) +

[
1

1

]
q
H0(z; q)H1(qw;

1

q
)i
⎞⎟⎟⎟⎟⎠ .

(5.58)

For n = 2 :

(z + iw)2
q = (z + iw)(z + iqw) = z2 + i[2]qzw − qw2

=
1

[2]2
q

2∑
k=0

[
2

k

]
q
q

k(k−1)
2 H2−k(z; q)Hk(qw;

1

q
)ik

=
1

[2]2
q

⎛⎜⎜⎜⎜⎝[2
0

]
q
H2(z; q)H0(qw;

1

q
) +

[
2

1

]
q
H1(z; q)H1(qw;

1

q
)i +

[
2

2

]
q
qH0(z; q)H2(qw;

1

q
)i2

⎞⎟⎟⎟⎟⎠
q-Holomorphic Laplacian: Another proof of identity (5.41) can be done by noticing

that q-binomial (z+ iw)n
q is double q-analytic function. Then we can use the following identity

and complex q-Laplace equation.
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Theorem 5.1 The following identity holds

eq(− 1

[2]2
q
Δq)q(z + iw)n

q = (z + iw)n
q (5.59)

Proof

Since (z + iw)n
q is q-analytic function, it satisfies the q-Laplace equation

Δq(z + iw)n
q = 0

and

eq(− 1

[2]2
q
Δq)q(z + iw)n

q = eq(− 1

[2]2
q

(
(Dz

q)2 + (Dw
1
q
)2
)
)q(z + iw)n

q

=

∞∑
n=0

1

[n]q!

(
− 1

[2]2
q

)n (
(Dz

q)2 + (Dw
1
q
)2
)n

q
(z + iw)n

q

=

∞∑
n=0

1

[n]q!

(
− 1

[2]2
q

)n (
Δq

)n

q
(z + iw)n

q, (5.60)

where
(
Δq

)n

q
= Δq · Δ(1)

q · Δ(2)
q · ... · Δ(n−1)

q and

Δq = (Dz
q)2 + (Dw

1
q
)2, Δ(1)

q = (Dz
q)2 + q(Dw

1
q
)2, ..., Δ(n−1)

q = (Dz
q)2 + qn−1(Dw

1
q
)2.

Using the fact that
(
Δq

)m

q
(z+ iw)n

q = 0,∀m = 1, 2, ..., only the first term in expansion survives,

then we get desired result. �

Due to (5.44) we can factorize q-exponential operator function as

eq

(
− 1

[2]2
q
Δq

)
q

(z + iw)n
q

= eq

(
− 1

[2]2
q
(Dz

q)2

)
e 1

q

(
− 1

[2]2
q
(Dw

1
q
)2

)
(z + iw)n

q

=

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 ikeq

(
− 1

[2]2
q
(Dz

q)2

)
zn−ke 1

q

(
− 1

[2]2
q
(Dw

1
q
)2

)
wk. (5.61)
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By using the generating function of q-Hermite Polynomials (5.42) we have the follow-

ing identity:

Hn(x; q) = [2]n
qeq

(
− 1

[2]2
q
(Dx

q)2

)
xn, (5.62)

which gives

eq

(
− 1

[2]2
q
(Dz

q)2

)
zn−k =

1

[2]n−k
q

Hn−k(z; q), (5.63)

and

e 1
q

(
− 1

[2]2
q
(Dw

1
q
)2

)
wk =

1

[2]k
1
q
qk

Hk(qw;
1

q
), (5.64)

where Dqw
1
q
= 1

q Dw
1
q
. Substituting into (5.51), we get

eq(− 1

[2]2
q
Δq)q(z + iw)n

q =

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 ik 1

[2]n−k
q

Hn−k(z; q)
1

[2]k
1
q
qk

Hk(qw;
1

q
).

Then, according to identity (5.59) we obtain desired result

(z + iw)n
q =

1

[2]n
q

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 Hn−k(z; q)Hk(qw;

1

q
)ik. (5.65)

Theorem 5.2 Double q-analytic Kampe-de Feriet binomial expansion is given by

(z + iw)n
q =

1(
[2]q
√−νt

)n

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 Kn−k([2]q

√−νtz, νt; q)Kk([2] 1
q

√−νtqw, νt;
1

q
)ik.(5.66)

Proof Using the definition of q-Kampe-de Feriet polynomials (Nalci and Pashaev, 2010)

Kn(x, νt; q) = (−νt) n
2 Hn

⎛⎜⎜⎜⎜⎝ x

[2]q
√−νt ; q

⎞⎟⎟⎟⎟⎠ (5.67)
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and changing arguments as x
[2]q
√−νt ≡ z we get

Kn−k([2]q
√−νtz, νt; q)(−νt)− n−k

2 = Hn−k(z ; q)

and replacing by n − k → k, z→ qw, q→ 1
q

Kk([2] 1
q

√−νtqw, νt;
1

q
)(−νt)− k

2 = Hk(qw ;
1

q
).

Using the above relations into the q-binomial expansion in terms of q-Hermite binomial for-

mula (5.65) the desired result is obtained. �

As a particular case of our binomial formula, we can find q-Hermite binomial expan-

sion for the q-analytic binomial (x + iy)n as well. If in (5.41) we replace z → x and w → y,

then we get

(x + iy)n
q =

1

[2]n
q

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 Hn−k(x; q)Hk(qy;

1

q
)ik. (5.68)

Since a q-analytic function is determined by power series in q-binomials (Pashaev and Nalci

, 2014), this formula allows us to get expansion of an arbitrary q-analytic function in terms of

real q-Hermite polynomials.

5.4.1. q-Binomial and q-Translation Operator

Our proof is based on representation of q-binomial as a q-translation:

e
aDx

q
1
q

xn = (x + a)n
q. (5.69)

This formula can be proved by expanding q-exponential function as follows
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e
aDx

q
1
q

xn =

∞∑
k=0

ak(Dx
q)k

[k] 1
q
!

xn =

n∑
k=0

ak(Dx
q)k

[k] 1
q
!

xn =

n∑
k=0

ak [n]q[n − 1]q...[n − k + 1]q

[k]q!
q

k(k−1)
2 xn−k

=

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 xn−kak = (x + a)n

q, (5.70)

where (Dx
q)k = [n]q[n − 1]q...[n − k + 1]xn−k, [k] 1

q
! = 1

q
k(k−1)

2

[k]q!.

q-Binomial Expansion in terms of q-Hermite Polynomials

Complex q-binomial expansion in terms of q-Hermite polynomials we find in the next

form:

e
iyDx

q
1
q

xn = (x + iy)n
q =

1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(x; q)Hk(qy;

1

q
). (5.71)

In order to prove this formula, from the generating function for q-Hermite polynomial (5.34)

we get

Hn(x; q) = eq(− 1

[2]2
q
(Dx

q)2)[2]n
qxn. (5.72)

By replacing n→ k, x→ qy, q→ 1
q we obtain

Hk(qy;
1

q
) = e 1

q
(− 1

[2]2
1
q

(Dqy
1
q

)2)[2]k
1
q
(qy)k. (5.73)

As the next step, to both sides of Gauss’ binomial formula (5.71) we apply the operator

1

[2]n
q
eq(− 1

[2]2
q
(Dx

q)2)[2]n−k
q e 1

q
(− 1

[2]2
1
q

(Dqy
1
q

)2)[2]k
1
q
qk. (5.74)

Then, by using (5.72) and (5.73), from the RHS of (5.71) we obtain

1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(x; q)Hk(qy;

1

q
). (5.75)
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From another side the LHS of (5.71) becomes

eq(− 1

[2]2
q
(Dx

q)2)e 1
q
(− 1

[2]2
1
q

(Dqy
1
q

)2)e
iyDx

q
1
q

xn,

and due to (Dqy
1
q

)2e
iyDx

q
1
q

xn = ( i
q )2(Dx

q)2e
iyDx

q
1
q

xn and as follows

e 1
q
(− 1

[2]2
1
q

(Dqy
1
q

)2)e
iyDx

q
1
q

xn = e 1
q
(

1

[2]2
q
(Dx

q)2)e
iyDx

q
1
q

xn,

finally we find

e
iyDx

q
1
q

eq(− 1

[2]2
q
(Dx

q)2 +
1

[2]2
q
(Dx

q)2)qxn = e
iyDx

q
1
q

xn = (x + iy)n
q. (5.76)

By changing real variables to the complex ones x→ z and y→ w, we obtain the expansion of

double q-analytic q-binomial in terms of q-Hermite polynomials (5.9).

5.5. q-Traveling Waves

Here as another, hyperbolic extension of q-analytic functions, we consider the q-

analogue of traveling waves as a solution of the q-wave equation. Direct extension of trav-

eling waves to q-traveling waves is not possible. This happens due to the lack of the chain

rule in q-calculus and as follows, impossibility to use moving frame as an argument of the

wave function. Moreover, if in the Fourier harmonics f (x, t) = ei(kx−ωt), we try naively to

replace the exponential function by Jackson’s q-exponential, fq(x, t) = eq(i(kx − ωt)), then

we find that it doesn’t work due to the absence of factorization for q-exponential function

eq(i(kx − ωt)) � eq(ikx) eq(iωt).

5.5.1. Traveling Waves

Real functions of two real variables F(x, t) = F(x ± ct) called the traveling waves,

satisfy the following first order equations
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(
∂

∂t
∓ c

∂

∂x

)
F(x ± ct) = 0. (5.77)

It describes waves with fixed shape, prorogating with constant speed c in the left and in the

right direction correspondingly. The general solution of the wave equation

∂2u
∂t2
= c2∂

2u
∂x2

, (5.78)

can be written as an arbitrary superposition of these traveling waves

u(x, t) = F(x + ct) +G(x − ct). (5.79)

5.5.2. q-Traveling Waves

Direct extension of traveling waves to q-traveling waves is not possible. This happens

due to the absence of chain rule in q-calculus and as follows, impossibility to use moving

frame as an argument of the wave function. Moreover, if we try in the Fourier harmonics

f (x, t) = ei(kx−ωt), replace exponential function by Jackson’s q-exponential function f (x, t) =

eq(i(kx − ωt)), then we find that it doesn’t work due to the absence of factorization for q-

exponential function eq(i(kx − ωt)) � eq(ikx) eq(iωt).

That is why, here we propose another way. First we observe that q-binomials

(x ± ct)n
q = (x ± ct)(x ± qct)...(x ± qn−1ct) (5.80)

for n = 0,±1,±2, ..., satisfy the first order one-directional q-wave equations

(
Dt

1
q
∓ cDx

q

)
(x ± ct)n

q = 0, (5.81)

which are hyperbolic analogs of q-analyticity (and anti-analyticity). Then, the Laurent series
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expansion in terms of these q-binomials determines the q-analog of traveling waves

f (x ± ct)q =

∞∑
n=−∞

an(x ± ct)n
q.

Due to (5.81) the q-binomials (5.80) satisfy the q-wave equation

(
(Dt

1
q
)2 − c2(Dx

q)2
)

u(x, t) = 0 (5.82)

and the general solution of this equation is expressed in the form of q-traveling waves

u(x, t) = F(x + ct)q +G(x − ct)q (5.83)

where

F(x + ct)q =

∞∑
n=−∞

an(x + ct)n
q

and

G(x − ct)q =

∞∑
n=−∞

bn(x − ct)n
q.

This allows us to solve IVP for the q-wave equation

[(
Dt

1
q

)2

− c2(Dx
q)2

]
u(x, t) = 0, (5.84)

u(x, 0) = f (x), (5.85)

Dt
1
q
u(x, 0) = g(x), (5.86)

where −∞ < x < ∞, in the D’Alembert form:

u(x, t) =
f (x + ct)q + f (x − ct)q

2
+

1

2c

∫ (x+ct)q

(x−ct)q

g(x′)dqx′, (5.87)
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where the Jackson integral is

∫ (x+ct)q

(x−ct)q

g(x′)dqx′ = (1 − q)(x + ct)
∞∑
j=0

qjg(qj(x + ct))q

− (1 − q)(x − ct)
∞∑
j=0

qjg(qj(x − ct))q. (5.88)

If the initial velocity is zero, g(x) = 0, the formula reduces to

u(x, t) =
1

2

(
f (x + ct)q + f (x − ct)q

)
. (5.89)

It should be noted here that q-traveling wave is not traveling wave in the standard sense and

it is not preserving shape during evolution. It can be seen from simple observation. The

traveling wave polynomial (x−ct)n
q = (x−ct)(x−qct)(x−q2ct)...(x−qn−1ct) includes the set of

moving frames (as zeros of this polynomial) with re-scaled set of speeds (c, qc, q2c, ..., qn−1c).

It means that zeros of this polynomial are moving with different speeds and therefore the

shape of polynomial wave does not preserve. Only in the linear case and in the case q = 1,

when speeds of all frames coincide, we get standard traveling wave.

5.5.3. Examples

In this section we are going to illustrate our results by several explicit solutions.

Example 1: We consider I.V.P. for the q-wave equation (5.84) with initial functions

u(x, 0) = x2,

Dt
1
q
u(x, 0) = 0. (5.90)

Then the solution of the given I.V.P. for q-wave equation in D’Alembert form is found as

u(x, t) = x2 + qc2t2. (5.91)

When q = 1, it reduces to well-known one as superposition of two traveling wave parabolas

(x ± ct)2 moving to the right and to the left with speed c. Geometrically, the meaning of q is
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the acceleration of our parabolas in vertical direction.

Example 2: The q-traveling wave

u(x, t) = (x − ct)2
q = (x − ct)(x − qct)

=

(
x − [2]

2
ct

)2

− (q − 1)2

4
c2t2 (5.92)

gives solution of I.V.P. for the q-wave equation (5.84) with initial functions

u(x, 0) = x2

Dt
1
q
u(x, 0) = −[2]qcx. (5.93)

If q = 1 in this solution, we have two degenerate zeros moving with the same speed

c. In the case q � 1, two zeros are moving with different speeds c and qc. It means that,

the distance between zeros is growing linearly with time as (q − 1)ct. The solution is the

parabola, moving in vertical direction with acceleration
(q−1)2

4
c2, and in horizontal direction

with constant speed
[2]q

2
c. The area under the curve between moving zeros x = ct and x = qct

∫ qct

ct
(x − ct)2

qdx = − (q − 1)3c3

6
t3

is changing according to time as t3.

For more general initial function f (x) = xn, n = 2, 3, ... we get q-traveling wave

u(x, t) = (x − ct)n
q = (x − ct)(x − qct)...(x − qn−1ct)

with n-zeros moving with speeds c, qc, ..., qn−1c. The distance between two zeros is growing

as (qm − qn)ct, and the shape of wave is changing. In parabolic case with n = 2, the shape of

curve is not changing, but moving in horizontal direction with constant speed, and in vertical

direction with constant acceleration. In contrast to this, for n > 2, the motion of zeros with

different speeds changes the shape of the wave, and it can not be reduced to simple translation

and acceleration.

Example 3: Given IVP for the q-wave equation (5.84) with initial functions as q-
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trigonometric functions (Kac and Cheung, 2002)

u(x, 0) = cosqx,

Dt
1
q
u(x, 0) = sinqx. (5.94)

By using the D’Alembert form (5.87), after q-integration , we get

u(x, t) =
1

2

[
cosq(x + ct)q + cosq(x − ct)q

]
+

1

2c

∫ (x+ct)q

(x−ct)q

sinq(x′)dqx′

=
1

2

[(
1 +

1

c

)
cosq(x − ct)q +

(
1 − 1

c

)
cosq(x + ct)q

]
. (5.95)

Example 4: q-Gaussian Traveling Wave For the initial function in the Gaussian

form: u(x, 0) = e−x2

in the standard case q = 1 we have the Gaussian traveling wave with the

same shape u(x, t) = e−(x−ct)2

(see Figure 5.1). For the q-traveling wave with the same initial

condition u(x, 0) = e−x2

, we have solution

u(x, t) =
(
e−(x−ct)2

)
q
≡
∞∑

n=0

(−1)n

n!
(x − ct)2n

q

(see Figure 5.2). As we can see, during evolution the shape of the wave is changing as an

amplitude is growing.

Figure 5.1. Gaussian traveling wave at time t = 0, t = 0.5 and t = 1

129



Figure 5.2. q-Gaussian traveling wave at time t = 0, t = 0.5 and t = 1

5.5.4. q-Traveling Waves in terms of q-Hermite Polynomials

Identity(5.26) allows us to rewrite the traveling wave binomial in terms of Hermite

polynomials as

(x + ct)n =
1

2n

n∑
k=0

(
n
k

)
ikHn−k(x)Hk(−ict).

Its q-analogue for q-traveling wave binomial follows from (5.41)

(x + ct)n
q =

1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(x; q)Hk(−iqct,

1

q
).

Then, the general solution of q-wave equation (5.82) can be expressed in the form of

q-Hermite polynomials

u(x, t) = F(x + ct)q +G(x − ct)q, (5.96)
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where

F(x + ct)q =

∞∑
n=−∞

an(x + ct)n
q =

∞∑
n=−∞

an
1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(x; q)Hk(−iqct,

1

q
),

G(x − ct)q =

∞∑
n=−∞

an(x − ct)n
q =

∞∑
n=−∞

an
1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(x; q)Hk(iqct,

1

q
).

It is instructive to prove the q-traveling wave solution

(
Dt

1
q
− cDx

q

)
(x + ct)n

q = 0

by using q- Hermite binomial. We have

(Dt
1
q
− cDx

q)(x + ct)n
q =

(
Dt

1
q
− cDx

q

)
1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(x; q)Hk(−iqct,

1

q
)

=
1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Hn−k(x; q)Dt

1
q
Hk(−iqct,

1

q
)

−c
1

[2]n
q

n∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 Dx

qHn−k(x; q)Hk(−iqct,
1

q
)

By recursion formula for q-Hermite polynomials

Dx
qHn(x; q) = [2]q[n]qHn−1(x; q)

we get

(Dt
1
q
− cDx

q)(x + ct)n
q =

1

[2]n
q

n∑
k′=1

[
n
k′

]
q
ik′q

k′(k′−1)
2 Hn−k′(x; q)[2] 1

q
[k′] 1

q
Hk′−1(−iqct,

1

q
)(−iqc)

−c
1

[2]n
q

n−1∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 [2]q[n − k]qHn−k−1(x; q)Hk(−iqct,

1

q
)

=
1

[2]n
q

n−1∑
k=0

[
n

k + 1

]
q
ik+1q

k(k+1)
2 Hn−k−1(x; q)[2] 1

q
[k + 1] 1

q
Hk(−iqct,

1

q
)(−iqc)

−c
1

[2]n
q

n−1∑
k=0

[
n
k

]
q
ikq

k(k−1)
2 [2]q[n − k]qHn−k−1(x; q)Hk(−iqct,

1

q
)
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= cik 1

[2]n
q

n−1∑
k=0

⎛⎜⎜⎜⎜⎝[ n
k + 1

]
q
iq

k(k+1)
2 [2] 1

q
[k + 1] 1

q
q −

[
n
k

]
q
q

k(k−1)
2 [2]q[n − k]q

⎞⎟⎟⎟⎟⎠ Hn−k−1(x; q)Hk(−iqct,
1

q
)

= 0.

The expression in parenthesis is zero due to q-combinatorial formula and [n] 1
q
=

[n]q

qn−1 .

As a potential application of our results we should mention that an analytic function of

two complex variables can be related to the tensor product of Glauber coherent states. Then,

the double analytic functions, as well as the q-double analytic functions correspond to some

symmetry restrictions on these states. Expansion of these states in binomial and Hermite

binomials form would reflect some entanglement properties of these states. These questions

are under the study now. Interesting problem also is to find the symmetry group of the q-wave

equation as a q-deformation of the Lorentz group.

132



CHAPTER 6

Q-BINOMIAL AND Q-TRANSLATION OPERATOR

Here we introduce q-translation operator, which produces q-binomials, q-analytic and

q-anti analytic functions, and q-travelling waves. A second type of q-translation operator as

q-commutative (non-commutative) translation operator is also given, which produces non-

commutative binomials, functions for non-commutative coordinates. We generalize these q-

translations to q, p-translations for two bases. By specific choice of bases as Golden ratio

we obtain Golden binomials as translation of monomials. Finally we show that all these

translations can be described by first order q-difference equations.

6.1. Binomial and Translation Operator

As is well known, the translation operator ea d
dx , with real number coefficient a, acting

on monomial xn, denoted by ea d
dx xn produces binomial expansion

ea d
dx xn = (x + a)n =

n∑
k=0

(
n
k

)
xn−kak. (6.1)

According to this, application of translation operator to any analytic function f (x) =
∑∞

n=0 anxn

gives translation of the argument

ea d
dx f (x) = f (x + a). (6.2)

If the translation coefficient is related to time variable t as a = ±ct,we get the travelling

waves

e±ct d
dx f (x) = f (x ± ct), (6.3)

as a solution of wave equations ( ∂
2

∂t2 ∓ c2 ∂2

∂x2 ) f (x ± ct) = 0, which are moving to the left and

right direction correspondingly with speed c.
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The translation operator with complex translation coefficient a = ±iy produces com-

plex analytic and complex anti-analytic binomials respectively

e±iy d
dx xn = (x ± iy)n. (6.4)

As a result, any analytic or anti-analytic complex functions can be written as the translation

of real analytic function f (x) =
∑∞

n=0 anxn

e±iy d
dx f (x) = f (x ± iy). (6.5)

By differentiating this relation in y we get the analyticity and anti-analyticity conditions cor-

respondingly

(
∂

∂x
± i

∂

∂y

)
f (x ± iy) = 0.

6.2. q-Binomial and q-Translation Operator

Definition 6.1 The q-translation operator of the first kind is defined as

e
aDx

q
q , (6.6)

where eq(x) is first Jackson’s q-exponential function (2.25).

Definition 6.2 The q-translation operator of the second kind is defined as

e
aDx

q
1
q
= E

aDx
q

q , (6.7)

where Eq(x) is second Jackson’s q-exponential function (2.26)

Proposition 6.1 The first kind q-translation operator (6.6) acting on monomial xn produces
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the binomial

e
aDx

q
q xn =

n∑
k=0

[
n
k

]
q
xn−kak (6.8)

Proof Using the definition of the first Jackson’s q-exponential function we get

e
aDx

q
q xn =

∞∑
k=0

(aDx
q)k

[k]q!
xn =

n∑
k=0

ak

[k]q!
[n]q...[n − k + 1]qxn−k

=

n∑
k=0

[
n
k

]
q
xn−kak. (6.9)

�

Proposition 6.2 The second kind q-translation operator (6.7) acting on monomial xn pro-

duces q-binomial

e
aDx

q
1
q

xn = (x + a)n
q, (6.10)

where

(x + a)n
q = (x + a)(x + qa)...(x + qn−1a) =

n∑
n=0

[
n
k

]
q
q

k(k−1)
2 xn−kak

and yx = xy.

Proof Using the definition of the second Jackson’s q-exponential function we get

e
aDx

q
1
q

xn =

∞∑
k=0

(aDx
q)k

[k] 1
q
!

xn =

n∑
k=0

ak

[k] 1
q
!
[n]q...[n − k + 1]qxn−k

=

n∑
k=0

[
n
k

]
q
q

k(k−1)
2 xn−kak = (x + a)n

q, (6.11)

where we used

q
k(k−1)

2 [k] 1
q ! = [k]q!.

�

According to proposition (6.1), the application of first kind of translation operator

(6.6) to any function f (x) =
∑∞

n=0 anxn we obtain q-function as
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e
aDx

q
q f (x) =

∞∑
n=0

n∑
k=0

an

[
n
k

]
q
xn−kak, (6.12)

which can not be written in simplest form of zeros of polynomial.

For a = ±iy in first kind of q-translation operator and application to monomial xn,

gives q-analytic and q-anti-analytic complex q-binomial

e
±iyDx

q
q xn =

n∑
k=0

[
n
k

]
q
xn−k(±iy)k ≡1 (x ± iy)n

q. (6.13)

Therefore, the application of first kind of q-translation operator to any function f (x) =
∑∞

n=0 anxn,

produces the q-analytic and q-anti-analytic functions

e
±iyDx

q
q f (x) =

∞∑
n=0

an

n∑
k=0

[
n
k

]
q
xn−k(±iy)k =

∞∑
n=0

an 1(x ± iy)n
q ≡1 fq(x ± iy). (6.14)

These functions satisfy the q-analyticity and q-anti-analyticity conditions

1

2

(
Dx

q ± iDy
q

)
fq(x, iy) = 0, (6.15)

and corresponding q-Cauchy Riemann equations

Dx
qu = Dy

qv, Dx
qv = −Dy

qu, (6.16)

where fq(x, y) = uq(x, y) + ivq(x, y).

A more interesting case is the application of second kind q-translation operator (6.7)

to any function f (x) =
∑∞

n=0 anxn. This yields a q-function f as an expansion in q-binomials

e
aDx

q
1
q

f (x) = f (x + a)q =

∞∑
n=0

an(x + a)n
q. (6.17)

By choosing a = ±ct in q-translation operator and applying this to any function f (x) =

136



∑∞
n=0 anxn, we get the q-travelling waves,

e
±ctDx

q
1
q

f (x) = f (x ± ct)q. (6.18)

These q-travelling waves give the general solution of the q-wave equation studied in (Nalci

Tumer and Pashaev , 2016)

((
Dt

1
q

)2

− c2
(
Dx

q

)2
)

u(x, t; q) = 0,

in the following form u(x, t; q) = f (x + ct)q + g(x − ct)q.

For a = ±iy in q-translation operator and application to monomial xn, gives q-analytic

and q-anti-analytic binomials (Pashaev and Nalci , 2014)

e
±iyDx

q
1
q

xn = (x ± iy)n
q. (6.19)

As a result, the application of q-translation operator to any function f (x) =
∑∞

n=0 anxn, pro-

duces the q-analytic and q-anti-analytic functions

e
±iyDx

q
1
q

f (x) = f (x ± iy)q. (6.20)

These functions satisfy the q-analyticity and q-anti-analyticity conditions

1

2

(
Dx

q ± iDy
1
q

)
f (x ± iy)q = 0, (6.21)

and corresponding q-Cauchy Riemann equations

Dx
qu = Dy

1
q
v, Dx

qv = −Dy
1
q
u, (6.22)

where f (x + iy; q) = u(x, y; q) + iv(x, y; q).

We can generalize the above results in the following definition:
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Definition 6.3 The q, p-translation operator is defined as

E
yDx

q,p
q,p = e

yDx
q,p

1
q ,

1
p

, (6.23)

where (q, p)-Jackson’s exponential is

Eq,p(x) =

∞∑
n=0

1

[n]q,p!
(qp)

n(n−1)
2 xn (6.24)

and (q, p)-number is

[n]q,p =
qn − pn

q − p
= [n]p,q.

Proposition 6.3 Action of q, p-translation operator (6.23) to monomial xn produces (q, p)-

polynomial in the form

e
yDx

q,p
1
q ,

1
p

xn = (x + y)n
q,p, (6.25)

where (q, p) polynomial is defined in the form

(x + y)n
q,p =

n∑
k=0

(q p)
k(k−1)

2

[
n
k

]
q,p

xn−kyk

= (x + qn−1y)(x + qn−2 py)...(x + qpn−2y)(x + pn−1y). (6.26)

As a special case when q = ϕ, p = ϕ′ = − 1
ϕ
, where ϕ is the Golden ratio, we obtain

Fibonomial (Pashaev and Nalci, 2012) as translation of monomial

e
yD

ϕ,− 1
ϕ

1
ϕ ,−ϕ

xn = (x + y)n
ϕ,− 1

ϕ

, (6.27)

where

e x
1
ϕ ,−ϕ
=

∞∑
n=0

xn

[n] 1
ϕ ,−ϕ!
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(x + y)F ≡ (x + y)n
ϕ,− 1

ϕ

=

n∑
k=0

(−1)
k(k−1)

2

[
n
k

]
ϕ,− 1

ϕ

xn−kyk,

and q-binomial coefficients are Fibonomial

[
n
k

]
ϕ,− 1

ϕ

=
Fn!

Fn−k!Fk!
,

where Fn ≡ [n]F =
ϕn−(ϕ

′
)n

ϕ−ϕ′ .

6.3. Non-Commutative Translations

Definition 6.4 q-commutative translation operator is defined as

e
aDx

1
q

q , (6.28)

where ax = qxa.

Proposition 6.4 Application of q-commutative translation operator to monomial xn gives

non-commutative binomial

e
aDx

1
q

q xn = (x + a)n =

n∑
k=0

[
n
k

]
q
xn−kak, (6.29)

where ax = qxa.

Proof By using the definition of q-exponential function we have

e
aDx

1
q

q xn =

∞∑
k=0

(aDx
1
q
)k

[k]q!
xn (6.30)
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and using the non-commutativity of coordinates ax = qxa, we obtain the k-th derivative as

(aDx
1
q
)kxn = (aDx

1
q
)(aDx

1
q
)...(aDx

1
q
)︸�������������������︷︷�������������������︸

k-times

xn

= (aDx
1
q
)(aDx

1
q
)...(aDx

1
q
)︸�������������������︷︷�������������������︸

k-1 times

[n]qxn−1a

= [n]q[n − 1]q...[n − k + 1]qxn−kak. (6.31)

Putting this into the definition of q-exponential function we get the desired result. �

The q-commutative translation operator with complex translation coefficient a = ±iy

produces q-analytic and q-anti-analytic binomials respectively for non-commutative coordi-

nates yx = qxy

e
±iyDx

1
q

q xn = (x ± iy)n =

n∑
k=0

[
n
k

]
q
xn−k(±iy)k. (6.32)

Thus any q-analytic or q-anti-analytic complex functions of q-commutative coordi-

nates yx = qxy can be written as the translation of real analytic function f (x) =
∑∞

n=0 anxn

e
±iyDx

1
q

q f (x) = f (x ± iy) =

∞∑
n=0

an(x ± iy)n. (6.33)

By taking Dy
q derivative of this relation, we get the q-analyticity and q-anti-analyticity condi-

tions for q-commutative coordinates correspondingly

(
Dx

1
q
± iDy

q

)
f (x ± iy) = 0, yx = qxy, (6.34)

where the q-derivatives are acting on non commutative complex q-binomial as follows

Dx
1
q
(x + iy)n = [n]q

(
x
q
+ iy

)n−1

Dy
q(x + iy)n = i[n] 1

q
(x + iqy)n−1. (6.35)
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The commutator relation of corresponding q-derivatives for function f (x + iy) =
∑∞

n=0 an(x +

iy)n is found as

[
Dy

q,D
x
1
q

]
= Dy

qDx
1
q
− qDx

1
q
Dy

q = 0 (6.36)

By choosing a = ±ct in q-commutative translation operator and applying this to the

monomial xn we get q-travelling binomial of non-commutative time t and space x : tx = qxt

e
±ctDx

1
q

q xn = (x ± ct)n. (6.37)

As a result, the application of q-commutative translation operator to any function f (x) =∑∞
n=0 anxn, produces the general solution of q-wave equation of q-commutative variables x, t :

((
Dt

q

)2 − q
(
cDx

1
q

)2
)

u(x, t) = 0 (6.38)

as superposition of travelling waves with tx = qxt

u(x, t) = F(x + ct) +G(x − ct) (6.39)

where

F(x + ct) =
∞∑

n=0

an(x + ct)n, G(x − ct) =
∞∑

n=0

an(x − ct)n.

We can generalize the above results in the following definition:

Definition 6.5 The qp-commutative translation operator is defined as

e
iyD 1

q ,
1
p

q,p (6.40)
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where (q, p)-Jackson’s exponential is

eq,p(x) =

∞∑
n=0

1

[n]q,p!
xn (6.41)

and (q, p)-number is

[n]q,p =
qn − pn

q − p
.

Proposition 6.5 Action of qp-noncommutative translation operator (6.41) to monomial xn

produces complex (q, p)-polynomial with yx = qpxy in the form

e
iyD 1

q ,
1
p

q,p xn = (x + iy)n, (6.42)

where

(x + iy)n =

n∑
k=0

[
n
k

]
q,p

xn−k(iy)k, yx = q p x y. (6.43)

As a special case when q = ϕ and p = ϕ′ = − 1
ϕ
, where ϕ is the Golden ratio, we obtain

Fibonomial as translation of monomial with yx = −xy

e
iyD 1

ϕ
,−ϕ

ϕ,−ϕ′ xn = (x + iy)n
ϕ,− 1

ϕ

=

n∑
k=0

[
n
k

]
ϕ,− 1

ϕ

xn−k(iy)k, (6.44)

and q-binomial coefficients are

[
n
k

]
ϕ,− 1

ϕ

=
Fn!

Fn−k!Fk!
,

where Fn ≡ [n]ϕ,ϕ′ = [n]F =
ϕn−(ϕ

′
)n

ϕ−ϕ′ .
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CHAPTER 7

COHERENT STATES AND GENERALIZED MEHLER

FORMULA

Here by applying evolution operator at time t = 1 to Glauber coherent states we in-

troduce a new type of quantum states as Hermite coherent states, characterized by Hermite

polynomials, which can be normalized by using the known Mehler formula. Then the evo-

lution operator at arbitrary time t generates more general Kampe-de Feriet coherent states,

characterized by Kampe-de Feriet polynomials. In order to normalize Kampe-de Feriet co-

herent states we introduce the generalization of the known Mehler formula. Then we intro-

duce corresponding Fock-Bargmann representation for these new coherent states. By using

the generating function of Bernoulli polynomials we construct Bernoulli coherent states and

related Fock-Bargmann representation. By using q-evolution operator for q-holomorphic heat

equation we obtain q-analogues of Hermite and Kampe-de Feriet coherent states and corre-

sponding Fock- Bargmann representations. The q-translation operator allows us to get double

q-analytic q-Coherent states from analytic q-Coherent states.

7.1. Coherent States

Definition 7.1 The Glauber coherent state in the basis of Fock states |n〉 is defined as (Perelo-

mov, 1986)

|α〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n〉 , (7.1)

where α is an arbitrary complex number and |n〉 = (a+)n√
n!
|0〉 .

The Fock-Bargmann representation of coherent state |α〉 is defined by scalar product

of this state with coherent state |z〉 :

〈z|α〉 = e−
(|z|2+|α|2)

2

∞∑
m=0

z̄m

√
m!
〈m|

∞∑
n=0

αn

√
n!
|n〉 = e−

(|z|2+|α|2)
2

∞∑
n=0

(z̄α)

n!
= e−

(|z|2+|α|2)
2 ez̄α = e−

(|z|2+|α|2)
2 G(α, z̄),
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where G(α, z) = ezα analytic in z and α.

7.2. Holomorphic Heat Equation

Definition 7.2 For complex α, the holomorphic heat equation in space of analytic functions

is defined as

(
∂

∂t
+

1

4

∂2

∂α2

)
Φ(α, t) = 0 (7.2)

with evolution operator

U(t) = e−
1
4 t d2

dα2 (7.3)

so that

Φ(α, t) = U(t)Φ(α, 0).

7.3. Hermite Coherent States

Proposition 7.1 Applying evolution operator U(1) to monomial (2α)n we get the Hermite

polynomials Hn(α) :

Hn(α) = e−
1
4

d2

dα2 (2α)n. (7.4)

In this section, we consider the coherent states which are not normalized

|α〉 =
∞∑

n=0

αn

√
n!
|n〉 . (7.5)

Definition 7.3 Applying evolution operator U(1) to not normalized coherent state |α〉 we de-
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fine Hermite coherent state |H(α)〉 as

e−
1
4

d2

dα2 |α〉 =
∞∑

n=0

Hn(α)

2n
√

n!
|n〉 ≡ |H(α)〉 , (7.6)

characterized by analytic Hermite polynomials in α,

Proposition 7.2 The action of bosonic operators a, a+,which satisfy the commutation relation

[a, a+] = 1, to Hermite coherent state is expressed in the following form:

a |H(α)〉 =
(
α − 1

2

d
dα

)
|H(α)〉 , (7.7)

a+ |H(α)〉 = d
dα
|H(α)〉 . (7.8)

Proof Action of annihilation operator to n-particle states a |n〉 = √n |n − 1〉 gives

a |H(α)〉 = a
∞∑

n=0

Hn(α)

2n
√

n!
|n〉 =

∞∑
n=0

Hn(α)

2n
√

n!

√
n |n − 1〉 =

∞∑
n=0

Hn+1(α)

2n+1
√

n!
|n〉 , (7.9)

by using two and three term recurrence relation for Hermite polynomials

d
dα

Hn(α) = 2nHn−1(α) (7.10)

Hn+1(α) = 2αHn(α) − 2nHn−1(α) (7.11)

we get desired result

a |H(α)〉 =
∞∑

n=0

αHn(α)

2n
√

n!
|n〉 −

∞∑
n=0

d
dαHn(α)

2n+1
√

n!
|n〉

= α |H(α)〉 − 1

2

d
dα
|H(α)〉 . (7.12)

Another way to prove this proposition is starting with eigenvalue problem for annihi-

lation operator

a |α〉 = α |α〉 (7.13)
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and multiplying both sides by evolution operator U(1) = e−
1
4

d2

dα2 so that we have

e−
1
4

d2

dα2 a |α〉 = e−
1
4

d2

dα2 α |α〉
a |H(α)〉 =

[
e−

1
4

d2

dα2 , α
]

︸������︷︷������︸
*

|α〉 + α e−
1
4

d2

dα2 |α〉︸�����︷︷�����︸
|H(α)〉

(7.14)

We need to calculate commutator ∗

∗ =
⎡⎢⎢⎢⎢⎢⎣ ∞∑

n=0

(
−1

4

)n
1

n!

(
d2

dα2

)n

, α

⎤⎥⎥⎥⎥⎥⎦ = ∞∑
n=0

(
−1

4

)n
1

n!

[(
d2

dα2

)n

, α

]
(7.15)

by using the known commutation relation [ d
dx , x] = 1,

[
d
dx
, x

]
= 1

[
d2

dx2
, x

]
= 2

d
dx
, ...,

[
dn

dxn , x
]
= n

dn−1

dxn−1
, (7.16)

so the commutator ∗ becomes

[
e−

1
4

d2

dα2 , α
]
=

∞∑
n=1

(
−1

4

)n
1

n!
2n

d2n−1

dα2n−1

= 2

∞∑
n=0

(
−1

4

)n+1
1

n!

d2n+1

dα2n+1
= −1

2

d
dα

e−
1
4

d2

dα2 . (7.17)

As a final result in (7.14) we obtain

a |H(α)〉 =
(
α − 1

2

d
dα

)
|H(α)〉 . (7.18)

Similarly, using the action of creation operator to n-particle state a+ |n〉 = √n + 1 |n + 1〉 ,
and the recurrence relations we have

146



a+ |H(α)〉 =
∞∑

n=0

Hn(α)

2n
√

n!
a+ |n〉 =

∞∑
n=0

Hn(α)

2n
√

n!

√
n + 1 |n + 1〉

∞∑
n=1

Hn−1(α)

2n−1
√

(n − 1)!

√
n |n〉 =

∞∑
n=1

d
dαHn(α)

2n
√

n!
|n〉

=
d

dα
|H(α)〉 . (7.19)

�

As a result, we obtain the eigenvalue problem for Hermite coherent state with eigen-

value α, which are eigenvectors of a superposition of bosonic operators

B |H(α)〉 = 2√
3
α |H(α)〉 , (7.20)

where

B ≡ 2√
3

(
a +

1

2
a+

)
and [B, B+] = 1.

The Hamiltonian for Hermite coherent states is obtained as

H =
�ω

2
(B+B + BB+) =

1

6m

(
(3mωx)2 + p2

)
, (7.21)

where

B =
3mωx + ip√

6�mω

B+ =
3mωx − ip√

6�mω
(7.22)

and p = −i d
dx .

We find the fluctuation deviation in x and p in the following form:
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Δx =
√〈

x2
〉 − 〈x〉2 = √

�

6mω
, (7.23)

Δp =
√〈

p2
〉 − 〈p〉2 = √

3�mω
2

, (7.24)

where 〈x〉 = 〈H(α)|x|H(α)〉 .
As an important result, Hermite coherent state has minimal Heisenberg uncertainty

relation

ΔxΔp =
�

2
(7.25)

If we compare Hermite coherent states with Glauber coherent states, then we note that

both states minimize the Heisenberg uncertainty relation (7.25). But for the coherent states

we have

Δx =

√
�

2mω

Δp =

√
�mω

2

Comparing with (7.23), (7.24) we find that position uncertainty in Hermite state is squeezed

by factor
√

3. This indicate that Hermite coherent states are the squeezed states.

In order to find the normalized Hermite coherent state we use the Mehler Identity

(Mehler, 1866).

Identity 7.1 The Mehler formula is defined as

E(x, y) =
1√

1 − u2
e
−u2(x2+y2)+2uxy

1−u2 =

∞∑
n=0

Hn(x)Hn(y)

n!

(u
2

)n
, (7.26)

where |u| < 1.

Proof Using the Gaussian integral

∫ ∞

−∞
e−ξ

2

dξ =
√
π (7.27)

we can write

e−x2

=
1√
π

∫ ∞

−∞
e−ξ

2+2iξxdξ. (7.28)

148



By substituting this relation into the Rodrigues’ formula for the Hermite polynomials we

obtain integral representation for Hermite polynomials

Hn(x) = ex2

(
− d

dx

)n

e−x2

= ex2

(
− d

dx

)n
1√
π

∫ ∞

−∞
e−ξ

2+2iξxdξ

=
1√
π

ex2

∫ ∞

−∞
(−1)n(2iξ)ne−ξ

2+2iξxdξ

=
1√
π

∫ ∞

−∞
(−1)n(2iξ)ne−(ξ−ix)2

dξ. (7.29)

So, by using the integral representation of Hermite polynomials we have

∞∑
n=0

Hn(x)Hn(y)

n!

(u
2

)n
=

1

π

∫ ∞

−∞
dξ

∫ ∞

−∞
dη e−(ξ−ix)2−(η−iy)2

∞∑
n=0

(−2uξη)n

n!

=
1

π

∫ ∞

−∞
dξ

∫ ∞

−∞
dη e−(ξ−ix)2−(η−iy)2

e−2uξη

=
1

π

∫ ∞

−∞
dξ e−(ξ−ix)2−2iuξy+u2ξ2

∫ ∞

−∞
dη e−((η−iy)+uξ)2

︸������������������︷︷������������������︸√
π

=
1√
π

∫ ∞

−∞
e−(1−u2)ξ2+2iξ(x−uy)+x2

dξ

=
1√
π

√
π

1 − u2
e
−(x−uy)2+x2(1−u2)

1−u2 =
1√

1 − u2
e
−u2(x2+y2)+2uxy

1−u2 (7.30)

where we have used the Gaussian integral

∫ ∞

−∞
e−ax2+bx+cdx =

√
π

a
e

b2

4a+c.

�

Using the Mehler formula for u = 1
2
, x = β̄ and y = α , we find inner product of two

Hermite coherent states in the following form

〈H(β)|H(α)〉 =
∞∑

n=0

Hn(β̄)Hn(α)

n!

(
1

22

)n

=
2√
3

e−
1
3 (α2+β̄2−4αβ̄) � 0. (7.31)

This form shows that Hermite coherent states are not orthogonal.
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By putting α = β, as a result we find normalized Hermite Coherent state as

|H(α)〉 =
4
√

3√
2

e
1
6 (α2+ᾱ2−4|α|2)

∞∑
n=0

Hn(α)

2n
√

n!
|n〉 , (7.32)

where 〈H(α)|H(α)〉 = 1.

The probability of Hermite coherent state |H(α)〉 being in the state |n〉 is

P(n) = | 〈n|H(α)〉 |2 =
√

3

2

∣∣∣∣e 1
3 (α2+ᾱ2)−4|α|2

∣∣∣∣ Hn(α)Hn(ᾱ)

22nn!
. (7.33)

The Fidelity for Hermite Coherent states, which measure the closeness of two quantum

states is found as

| 〈H(β)|H(α)〉 |2 = 4

3
e−

1
3 ((α−β̄)2+(ᾱ−β)2−2(αβ̄+ᾱβ), (7.34)

By applying bra vector 〈x| to the normalized Hermite coherent state (7.32) we obtain

〈x|H(α)〉 =
4
√

3√
2

e
1
6 (α2+ᾱ2−4|α|2)

∞∑
n=0

Hn(α)

2n
√

n!
〈x|n〉 , (7.35)

and writing the coordinate representation of n particle state

〈x|n〉 = ψn(x) =
(
ω

π�

) 1
4 1√

2n n!
Hn

(√
ω

�
x
)

e−
ω
2� x2

(7.36)

we get the wave function

〈x|H(α)〉 =
4
√

3√
2

e
1
6 (α2+ᾱ2−4|α|2)

(
ω

π�

) 1
4

e−
ω
2� x2

∞∑
n=0

1

2n
√

2nn!
Hn

(√
ω

�
x
)

Hn(α). (7.37)

By using Mehler formula (7.26) with u = 1√
2

the normalized Hermite coherent state in

coordinate representation is obtained as Gaussian function with origin determined by complex
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α

〈x|H(α)〉 =
(
3ω

π�

) 1
4

e
1
6 (3α2+ᾱ2−4|α|2)e−

3ω
2�

(
x− 2

3

√
2�
ω α

)2

. (7.38)

Figure 7.1. Squeezed Hermite state in coordinate representation

We have indicated above and now we can see that the Hermite coherent state is the

squeezed coherent state

〈x|H(α)〉 = (
√

3)x d
dx︸��︷︷��︸

Mx√
3

〈x|α〉,

where squeezing factor is written in terms of dilatation operator Mx
q with q =

√
3.

Definition 7.4 The generating function for Hermite polynomials is defined as (Arfken and

Weber, 2005)

e−t2+2xt =

∞∑
n=0

Hn(x)
tn

n!
(7.39)

Proposition 7.3 We have the following identity

e−
(

a+
2

)2
∣∣∣∣∣α2

〉
= |H(α)〉 (7.40)

Proof Using the definition of Hermite coherent state (7.6) and the generating function for

Hermite polynomials (7.39), we get desired results as follows
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|H(α)〉 =
∞∑

n=0

Hn(α)

2n
√

n!
|n〉 =

∞∑
n=0

Hn(α)

2n
√

n!

(a+)n

√
n!
|0〉 =

∞∑
n=0

Hn(α)

n!

(
a+

2

)n

|0〉

= e−
(

a+
2

)2
+α a+

2 |0〉 = e−
(

a+
2

)2

eα
a+
2 |0〉 = e−

(
a+
2

)2
∞∑

n=0

αn

2n

(a+)n

n!
|0〉

= e−
(

a+
2

)2
∞∑

n=0

αn

2n
√

n!

(a+)n

√
n!
|0〉 = e−

(
a+
2

)2
∞∑

n=0

αn

2n
√

n!
|n〉 = e−

(
a+
2

)2
∣∣∣∣∣α2

〉
. (7.41)

�

Proposition 7.4 The eigenvalue problem for Hermite coherent state is found as

2e−
(

a+
2

)2

a e
(

a+
2

)2

|H(α)〉 = α |H(α)〉 . (7.42)

Proof Applying operator e
(

a+
2

)2

to both sides of equation (7.40),

∣∣∣∣∣α2
〉
= e

(
a+
2

)2

|H(α)〉 (7.43)

and then annihilation operator a

a
∣∣∣∣∣α2

〉
= a e

(
a+
2

)2

|H(α)〉
α

2

∣∣∣∣∣α2
〉
= a e

(
a+
2

)2

|H(α)〉

e−
(

a+
2

)2 α

2

∣∣∣∣∣α2
〉
= e−

(
a+
2

)2

a e
(

a+
2

)2

|H(α)〉

α |H(α)〉 = 2e−
(

a+
2

)2

a e
(

a+
2

)2

|H(α)〉 . (7.44)

�

Definition 7.5 Another definition for the Glauber coherent state is application of unitary dis-

placement operator D(α) = eαa+−ᾱa to the vacuum state |0〉

|α〉 = D(α) |0〉 . (7.45)
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Definition 7.6 The displacement operator for the Hermite coherent state is defined as

|H(α)〉 = D(H(α)) |0〉 ≡ e−
(

a+
2

)2

e
α
2 a+− ᾱ2 a |0〉 . (7.46)

Proof Using the definition of coherent state D(α) |0〉 = |α〉 we write

D
(
α

2

)
|0〉 =

∣∣∣∣∣α2
〉

e−
(

a+
2

)2

e
α
2 a+− ᾱ2 a |0〉 = e−

(
a+
2

)2
∣∣∣∣∣α2

〉
e−

(
a+
2

)2

e
α
2 a+− ᾱ2 a︸����������︷︷����������︸

D(H(α))

|0〉 = |H(α)〉 (7.47)

�

By using the definition of Hermite coherent states and the unitary displacement oper-

ator D(α)

|H(α)〉 = e−
1
4

d2

dα2 |α〉 = e−
1
4

d2

dα2 D(α) |0〉
= e−

1
4

d2

dα2 eα(− ᾱ2+a+)e−ᾱa |0〉 (7.48)

and the property

e−
1
4

d2

dα2 eαk = e−
1
4 k2

eαk (7.49)

we get our Hermite coherent states as squeezed states

|H(α)〉 = e−
1
4 (a+− ᾱ2 )2︸����︷︷����︸
S (ξ)

|α〉 , (7.50)

where S (ξ) ≡ e−
1
4 (a+− ᾱ2 )2

. (This squezing operator is not unitary, but can be extended to the

unitary one.) If we denote b, b+ in terms of boson creation and annihilation operators as

follows

b+ ≡ a+ − ᾱ
2
, b ≡ a − α

,
2 (7.51)

153



the it satisfies the same commutation relation [a, a+] = [b, b+] = 1. As a result we get the

S U(1, 1) algebra

K− =
b2

2
, K+ =

(b+)2

2
, K0 =

1

4
(b+b + bb+)

[K0,K±] = ±K±, [K+,K−] = −2K0 (7.52)

wiht Casimir operator

C = K2
0 − K2

1 − K2
2 = K0(K0 + I) + K−K+ (7.53)

where

K± = K1 ± iK2, K1 =
K+ + K−

2
, K2 =

K+ − K−
2i

, (7.54)

[K1,K2] = −iK0, [K2,K0] = iK1, [K0,K1] = iK2. (7.55)

This shows that our Hermite coherent states are S U(1, 1) generalized coherent states,

representing squeezed coherent states.

Fock-Bargmann Representation of Hermite Coherent State By using scalar prod-

uct of coherent state |z〉 with Hermite coherent state |H(α)〉 , and the generating function for

Hermite polynomials (7.39) we get

〈z|H(α)〉 =
4
√

3√
2

e−
|z|2
2 e

1
6 (α2+ᾱ2−4|α|2)

∞∑
m=0

z̄m

√
m!
〈m|

∞∑
n=0

Hn(α)

2n
√

n!
|n〉

∞∑
n=0

z̄nHn(α)

2nn!

=

4
√

3√
2

e−
|z|2
2 e

1
6 (α2+ᾱ2−4|α|2)e−

z̄2

4 +αz̄, (7.56)

which gives Fock-Bargmann representation of Hermite coherent states, where G(α, z) = e−
z2

4 +αz

is analytic in α, z. This representation can be considered as generating function of analytic

Hermite polynomials and is a function of two complex variables.
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7.4. Kampe-de Feriet Coherent State

Proposition 7.5 The Kampe-de Feriet polynomials are found acting by the operator U(t) =

e−
1
4 t d2

dα2 to monomial (2α)n as follows:

Kn(α, t) = e−
1
4 t d2

dα2 (2α)n. (7.57)

Definition 7.7 Applying operator U(t) to coherent state |α〉 , we introduce the Kampe-de

Feriet Coherent states

e−
1
4 t d2

dα2 |α〉 =
∞∑

n=0

Kn(α, t)

2n
√

n!
|n〉 ≡ |K(α, t)〉 . (7.58)

We obtain the eigenvalue problem for Kampe-de Feriet coherent states in the following

form

b |K(α, t)〉 = 1√
1 − t2

4

α |K(α, t)〉 (7.59)

where

b =
1√

1 − t2
4

(
a +

t
2

a+
)

[b, b+] = 1

The Hamiltonian for harmonic oscillator determined by b operators is written as har-

monic oscillator with variable mass μ(t) ≡ m 2+t
2−t

H = �ω(b+b +
1

2
) =

p2

2μ(t)
+
μ(t)ω2x2

2
,

or with parametric frequency ω(t) ≡ ω2+t
2−t

H = �ω(t)(b+b +
1

2
) =

p2

2m
+

mω2(t)x2

2
.
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Fluctuation deviations in x and p are

Δx =
√
〈x2〉 − 〈x〉2 = 1

2Aω(1 + t
2
)
,

Δp =
√
〈p2〉 − 〈p〉2 = m

2A(1 − t
2
)

where

A ≡
√

m

2�ω(1 − t2
4

)
.

As an important result, Kampe-de Feriet coherent states minimize Heisenberg uncer-

tainty relation

ΔxΔp =
�

2
.

Comparison with Glauber coherent states shows that in both cases we have the minimal un-

certainty relation, but for the Kampe-de Feriet states the coordinate uncertainty is squeezed

by factor
√

2−t
2+t , depending on parameter t and it vanishes for t → 2.

In order to find normalized Kampe-de Feriet coherent states and their coordinate rep-

resentation we introduce the generalized Mehler Formula.

Theorem 7.1 Generalized Mehler formula is introduced as bilinear generating function for

two Kampe-de Feriet polynomials

∞∑
n=0

(v
2

)n Kn(x, t)Kn(y, τ)

n!
=

1√
1 − tτv2

e
−v2(τx2+ty2)+2vxy

1−tτv2 , (7.60)

where |v| < 1√
tτ
.

Proof By using the relation between Hermite and Kampe-de Feriet polynomials

Kn(x, t) =
(√

t
)n

Hn

(
x√
t

)
Kn(y, τ) =

(√
τ
)n

Hn

(
y√
τ

)
, (7.61)

and replacing by x√
t
≡ ξ y√

τ
≡ η, the Mehler formula is written as

∞∑
n=0

(u
2

)n Hn(ξ)Hn(η)

n!
=

∞∑
n=0

(u
2

)n
(tτ)−

n
2

Kn(
√

tξ, t)Kn(
√
τη, τ)

n!
=

1√
1 − u2

e
−u2(ξ2+η2)+2uξη

1−u2 . (7.62)
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If we rewrite the above formula in terms of x and y variables, we obtain

∞∑
n=0

(
u

2
√

tτ

)n Kn(x, t)Kn(y, τ)

n!
=

1√
1 − u2

e
−u2

(
x2
t +

y2

τ

)
+2u xy√

tτ
1−u2 . (7.63)

and by denoting u =
√

tτv we get the desired result. �

Special Cases:

i. If we choose t = τ = 1 in the generalized Mehler formula and use the relation

Kn(x, t) =
(√

t
)n

Hn

(
x√
t

)
(7.64)

we obtain the Mehler formula (7.26)

∞∑
n=0

(v
2

)n Hn(x)Hn(y)

n!
=

1√
1 − v2

e
−v2(x2+y2)+2vxy

1−v2 . (7.65)

ii. If we choose t = τ = 0, the application of evolution operator to monomials produces

monomials and the generalized Mehler formula transforms into exponential function

∞∑
n=0

(v
2

)n xnyn

n!
= e2vxy. (7.66)

iii. For t = 0 and τ = 1 the generalized Mehler formula produces the generating function of

Hermite polynomials

∞∑
n=0

(v
2

)n xnHn(y, τ)

2nn!
=

∞∑
n=0

znHn(y)

n!
= e−4z2+4zy, (7.67)

where U(1)(2y)n = Hn(y) and vx
2
≡ z.

iv. For τ = 0 and t-arbitrary we get generating function of Kampe-de Feriet polynomials

∞∑
n=0

(v
2

)n ynKn(x, t)
n!

= e−(vy)2t+2vxy =

∞∑
n=0

zn

n!
Kn(x, t) = e−4z2t+4xz, (7.68)

157



where
vy
2
≡ z.

v. For τ = 1 and t-arbitrary we have

∞∑
n=0

(v
2

)n Kn(x, t)Hn(y)

n!
=

1

1 − tv2
e
−v2(x2+y2)+2vxy

1−tv2 . (7.69)

vi. For x = y we have

∞∑
n=0

(v
2

)n Kn(x, t)Kn(x, τ)

n!
=

1√
1 − tτv2

e
−(vx)2(τ+t)+2vx2

1−tτv2 . (7.70)

vii. For t = τ we get

∞∑
n=0

(v
2

)n Kn(x, t)Kn(y, t)
n!

=
1√

1 − (tv)2
e
−v2t(x2+y2)+2vxy

1−(tv)2 . (7.71)

viii. For x = y and t = τ we have

∞∑
n=0

(v
2

)n (Kn(x, t))2

n!
=

1√
1 − (tv)2

e
−2t(vx)2+2vx2

1−(tv)2 . (7.72)

Applying bra vector 〈x| to Kampe-de Feriet coherent state (7.58) and using (7.36) we

obtain

〈x|K(α, t)〉 = C
(
ω

π�

) 1
4
∞∑

n=0

(
1

2
√

2

)n Hn

( √
ω
�

x
)

Kn(α, t)

n!
. (7.73)

Using the special case of generalized Mehler formula (7.69) for v = 1√
2

we get coor-

dinate representation of Kampe-de Feriet coherent state

〈x|K(α, t)〉 =
(mω
π�

)1/4

e
α2

2+t e−
2+t
2−t

mω
2�

(
x−
√

2�
mω

2α
2+t

)2

where |t| < 2.
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For α = α1 + iα2, the Gaussian probability distribution function is

| 〈x|K(α, t)〉 |2 =
(mω
π�

)1/2

e
2

(
α2

1
−α2

2
2+t +

4α2
2

4−t2

)
e−

2+t
2−t

mω
�

(x−
√

2�
mω

2
2+tα1)2

.

Figure 7.2. Gaussian probability distribution of Kampe-de Feriet coherent state

Normalized Kampe-De Feriet Coherent States

For v = 1
2
, x = ᾱ and y = β, the generalized Mehler formula allows us to get the inner

product of two different Kampe-de Feriet coherent states

〈K(α, t)|K(β, τ)〉 =
∞∑

n=0

Kn(ᾱ, t)Kn(β, τ)

22nn!
=

1√
1 − tτ 1

4

e
− 1

4
(τᾱ2+tβ2)+ᾱβ

1−tτ 1
4 . (7.74)

If τ = t and β = α , the inner product is written in the form

〈K(α, t)|K(α, t)〉 =
∞∑

n=0

Kn(ᾱ, t)Kn(α, t)
22nn!

=
1√

1 −
(

t
2

)2
e
− t

4
(ᾱ2+α2)+|α|2

1−( 1
2

)2 . (7.75)

As a result, the normalized Kampe-de Feriet coherent state is defined in the following

form

|K(α, t)〉 = C
∞∑

n=0

Kn(α, t)

2n
√

n!
|n〉 , (7.76)
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where

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝e
− t

4
(α2+ᾱ2)+|α|2

1− t2
4√

1 − t2
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1/2

. (7.77)

Fock-Bargmann Representation of Kampe-De Feriet Coherent State

The Fock-Bargmann representation of Kampe-de Feriet coherent state |K(α, t)〉 is

〈z|K(α, t)〉 = e−
|z|2
2 C

∞∑
n=0

z̄nKn(α, t)
n!

= Cez̄2t+z̄α = CG(z̄, α; t) (7.78)

where the corresponding analytic Fock Bargmann representation of Kampe de Feriet Coherent

state

G(z, α; t) = ez2t+zα

depends on two complex variables z, α.

This function satisfies the holomorphic heat equation is found in the following form

∂

∂t
〈z|K(α, t)〉 = ∂2

∂α2
〈z|K(α, t)〉 (7.79)

as the plane wave solution in the form

G(z, α; t) = ez2t+zα.

7.5. Bernoulli Coherent State

The generating function of Bernoulli polynomials is

tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
. (7.80)
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By using the relation for Bernoulli polynomials

Bn+1(x + 1) − Bn(x) = nxn−1, (7.81)

we find the following representation

Bn(x) =
(
e

d
dx − 1

)−1 d
dx

xn. (7.82)

Then, by application of Bernoulli operator
(
e

d
dα − 1

)−1 d
dα to coherent state |α〉 we in-

troduce Bernoulli coherent states

(
e

d
dα − 1

)−1 d
dα
|α〉 =

∞∑
n=0

1√
n!

(
e

d
dα − 1

)−1 d
dα
αn︸���������������︷︷���������������︸

Bn(α)

|n〉 =
∞∑

n=0

Bn(α)√
n!
|n〉 ≡ |B(α)〉 . (7.83)

In order to normalize the state, we use the normalization condition 〈B(α)|B(α)〉 = 1 which

gives C = 1√∑∞
n=0

Bn(ᾱ)Bn(α)
n!

. Finally the normalized Bernoulli coherent state is found as

|B(α)〉 = 1√∑∞
n=0

Bn(ᾱ)Bn(α)

n!

∞∑
n=0

Bn(α)√
n!
|n〉 (7.84)

Fock-Bargmann Representation of Bernoulli Coherent State The Fock-Bargmann

representation of Bernoulli coherent state is

〈z|B(α)〉 = e−
|z|2
2√∑∞

n=0
Bn(ᾱ)Bn(α)

n!

∞∑
m=0

z̄m

√
m!
〈m|

∞∑
n=0

Bn(α)√
n!
|n〉 = e−

|z|2
2√∑∞

n=0
Bn(ᾱ)Bn(α)

n!

∞∑
n=0

z̄nBn(α)

n!

=
e−
|z|2
2√∑∞

n=0
Bn(ᾱ)Bn(α)

n!

z̄eαz̄

ez̄ − 1
=

e−
|z|2
2√∑∞

n=0
Bn(ᾱ)Bn(α)

n!

G(z̄, α), (7.85)

where the corresponding analytic function in α, z is found as

G(α, z) =
zeαz

ez − 1
,
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which is generating function of analytic Bernoulli polynomials as function of two complex

variables α, z.

7.6. q-Coherent States

Definition 7.8 q-Holomorphic heat equation is defined as

(
Dt

q +
1

[2]2
q
(Dα

q )2

)
φ(α, t) = 0, (7.86)

with q-evolution operator (Nalci and Pashaev, 2010)

U(t; q) = eq

(
− 1

[2]2
q
t(Dα

q )2

)
. (7.87)

Proposition 7.6 Applying evolution operator U(1; q) to monomial with q-numbers coeffi-

cients ([2]qα)n we get the q-Hermite polynomials Hn(α; q) : (Nalci and Pashaev, 2010)

Hn(α; q) = eq

(
− 1

[2]2
q
(Dα

q )2

)
([2]qα)n. (7.88)

Proposition 7.7 Applying evolution operator U(t; q) to monomial with q-numbers coefficients

([2]qα)n we get the q-Kampe-de Feriet polynomials

Kn(α, t; q) = eq

(
− 1

[2]2
q
t(Dα

q )2

)
([2]qα)n. (7.89)

Definition 7.9 Analytic q-coherent state (Arik and Coon, 1976), (Vitiello, 2012), (Vitiello,

2009) and (Vitiello, 2008) is defined as

|α; q〉 = e−
|α|2

2

∞∑
n=0

αn√
[n]q!

|n〉 . (7.90)

Definition 7.10 Applying q-evolution operator to analytic q-coherent state we introduce q-

Hermite coherent state, which is analytic in α, in the following form
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|H(α; q)〉 ≡ eq

(
− 1

[2]2
q
(Dα

q )2

)
|α; q〉 = C

∞∑
n=0

eq

(
− 1

[2]2
q
(Dα

q )2

)
αn√
[n]q!

|n〉 = C
∞∑

n=0

Hn(α; q)

[2]2
q

√
[n]q!

|n〉 ,

where the normalization constant is

C =
1√∑∞

n=0
Hn(ᾱ;q)Hn(α;q)

[2]2n
q [n]q!

.

The Fock-Bargmann representation of this state is |H(α; q)〉

〈z; q|H(α; q)〉 = e−
|z̄|2
2√∑∞

n=0
Hn(ᾱ;q)Hn(α;q)

[2]2n
q [n]q!

eq

(
− z̄2

[2]2
q

)
eq(z̄α),

where the corresponding analytic Fock-Bargmann representation is found as generating func-

tion of q-Hermite polynomials with two complex variables z, α

G(z, α; q) = eq

(
− z2

[2]2
q

)
eq(zα).

Definition 7.11 Action of q-evolution operator U(t; q) to analytic q-coherent state |α; q〉 pro-

duces q-Kampe-de Feriet coherent state

eq

(
− 1

[2]2
q
t(Dα

q )2

)
|α; q〉 =

∞∑
n=0

eq(t(Dα
q )2)

αn√
[n]q!

|n〉 =
∞∑

n=0

Kn(α, t; q)√
[n]q!

|n〉 ≡ |K(α, t; q)〉 . (7.91)

The Fock-Bargmann representation of this state is

〈z ; q|K(α, t ; q)〉 = C
∞∑

m=0

z̄m√
[m]q!

〈m|
∞∑

n=0

Kn(α, t ; q)√
[n]q!

|n〉 = C
∞∑

n=0

z̄nKn(α, t; q)

[n]q!
|n〉 = Ceq(z̄2t)eq(z̄α).
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The corresponding Fock-Bargmann representation is written

G(z, α, t) = eq(z2t)eq(zα) (7.92)

as generating function of q-Kampe de Feriet polynomials with two complex variables z, α.

And the normalization constant is calculated

C =
e−
|z|2
2√∑∞

n=0
Kn(ᾱ,t;q)Kn(α,t ;q)

[n]!

. (7.93)

As an application we write q-Heat equation with q-Kampe de Feriet q-coherent states

solution

Dt
q 〈z ; q|K(α, t ; q)〉 = (Dα

q )2 〈z ; q|K(α, t ; q)〉 . (7.94)

7.6.1. q-Translation Operators and q-Coherent States

Definition 7.12 Action of the translation operator eiβ d
dα of complex α and β on complex mono-

mial αn produces the double analytic binomial

eiβ d
dα αn = (α + iβ)n, (7.95)

where (α + iβ)n is analytic in both α, β and it is a double analytic function

1

2

(
∂

∂α
+ i

∂

∂β

)
(α + iβ)n = 0.

Definition 7.13 Applying the q-commutative translation operator e
iβDα

1
q

q to complex monomial

αn gives q-commutative binomial

e
iβDα

1
q

q αn = (α + iβ)n, (7.96)
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where q-commutative binomial is defined as

(α + iβ)n =

n∑
k=0

[
n
k

]
q
αn−k(iβ)k, (7.97)

which is q-commutative (βα = qαβ) double analytic binomial.

Example 1: Action of this operator to analytic coherent state |α〉 produces double analytic

coherent state with q-commutativity of α and β :

e
iβDα

1
q

q |α〉 =
∞∑

n=0

(α + iβ)n

√
n!
|n〉 = |α + iβ〉 . (7.98)

Example 2: Action of this operator to analytic q-coherent state |α; q〉 produces double analytic

q-coherent state with q-commutative α and β :

e
iβDα

1
q

q |α; q〉 =
∞∑

n=0

(α + iβ)n√
[n]q!

|n〉 = |α + iβ; q〉 . (7.99)

Definition 7.14 The second kind q-translation operator (6.7) is defined as

e iβD q
α

1
q

. (7.100)

Action of this operator on monomial αn gives

e
iβDα

q
1
q

αn = (α + iβ)n
q, (7.101)

where (α + iβ)n
q is double q-analytic binomial

1

2

(
Dα

q + iDβ
1
q

)
(α + iβ)n

q = 0.

Proposition 7.8 Application of q-translation operator to analytic coherent state |α〉 produces
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double q-analytic coherent state

e iβD q
α

1
q
|α〉 =

∞∑
n=0

e iβD q
α

1
q

αn

√
n!
|n〉 =

∞∑
n=0

(α + iβ)n
q√

n!
|n〉 . (7.102)

This double q-analytic coherent state in Fock-Bargmann representation is written as

follows

〈
z|(α + iβ)q

〉
=

∞∑
n=0

z̄n(α + iβ)n
q

n!
, (7.103)

and corresponding q-analytic Fock-Bargmann representation is constructed as

〈
z̄|(α + iβ)q

〉
=

∞∑
n=0

(zα + izβ)n
q

n!
= e(zα + izβ)q. (7.104)

Proposition 7.9 Application of q-translation operator to analytic q-coherent state |α; q〉 pro-

duces double q-analytic coherent state

e iβD q
α

1
q
|α; q〉 =

∞∑
n=0

e iβD q
α

1
q

αn√
[n]q!

|n〉 =
∞∑

n=0

(α + iβ)n
q√

[n]q!
|n〉 ≡

∣∣∣(α + iβ)q; q
〉
. (7.105)

This double q-analytic coherent state |α; q〉 in Fock-Bargmann representation is written as

follows

〈
z ; q|(α + iβ)q ; q

〉
=

∞∑
n=0

z̄n(α + iβ)n
q

[n]q!
= eq(z̄α + iz̄β)q, (7.106)

and corresponding double q-analytic q-coherent state in q-Fock Bargmann representation is

constructed as

〈
z̄ ; q|(α + iβ)q ; q

〉
=

∞∑
n=0

(zα + izβ)n
q

[n]!
= eq(zα + izβ)q = eq(zα)e 1

q
(izβ). (7.107)

As a result, we obtain double q-analytic function from analytic q-coherent state.
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CHAPTER 8

GOLDEN QUANTUM CALCULUS

The Binet-Fibonacci formula for Fibonacci numbers is treated as a q-number (and q-

operator) with Golden ratio bases q = ϕ and Q = −1/ϕ, and the corresponding Fibonacci or

Golden quantum calculus is introduced. Quantum harmonic oscillator for this Golden calculus

is derived so that its spectrum is given just by Fibonacci numbers. The ratio of successive

energy levels is found as the Golden sequence and for asymptotic states in the limit n → ∞
it appears as the Golden ratio. That is why we call this oscillator as the Golden oscillator.

By double Golden bosons, the Golden angular momentum and its representation in terms of

Fibonacci numbers and the Golden ratio are derived.

8.1. Golden q-Calculus

In (Q, q) calculus we have the number

[n]Q,q =
Qn − qn

Q − q
. (8.1)

If we choose Q = ϕ = 1+
√

5
2

and q = ϕ′ = 1−√5
2
= − 1

ϕ
. Then (8.1) becomes Binet’s formula for

Fibonacci numbers as (ϕ, ϕ′)-numbers :

Fn =
ϕn − ϕ′n
ϕ − ϕ′ = [n]ϕ,ϕ′ ≡ [n]F . (8.2)

This definition can be extended to arbitrary real number x,

Fx ≡ [x]ϕ,ϕ′ ≡ [x]F =
ϕx − ϕ′x
ϕ − ϕ′ =

ϕx − (− 1
ϕ
)x

ϕ + 1
ϕ

, (8.3)
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though due to negative sign for the second base, it is not a real number for general x

Fx =
1

ϕ + 1
ϕ

(
ϕx − eiπx 1

ϕx

)
=

1√
5

(
ϕx − eiπx 1

ϕx

)
. (8.4)

Instead of real number x we can also consider complex numbers z = x + iy,

Example : It is easy to see that

lim
n→∞

[n + 1]F

[n]F
= lim

n→∞
Fn+1

Fn
= ϕ. (8.5)

The addition formula for Golden numbers is given in the form

[n + m]F = Fn+m = ϕ
nFm +

(
−1

ϕ

)m

Fn. (8.6)

By using (8.2) we can get

ϕN = ϕFN + FN−1, ϕ′N = ϕ′FN + FN−1, (8.7)

and the above formula (8.6) can be rewritten as

Fn+m = FnFm−1 + Fn+1Fm

= Fn−1Fm + FnFm+1. (8.8)

The substraction formula can be obtained from it by changing m by −m as

Fn−m = [n − m]F = ϕ
n[−m]F +

(
−1

ϕ

)−m

[n]F (8.9)

or by using the equality

[−n]F = −(−1)−n[n]F (8.10)
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it can be also written

[n − m]F =

(
−1

ϕ

)−m

([n]F − ϕn−m[m]F)

=

(
−1

ϕ

)−m

Fn − ϕn

(−1)m Fm. (8.11)

or

Fn−m =

(
−1

ϕ

)−m

Fn − ϕn

(−1)m Fm. (8.12)

Definition 8.1 Higher Fibonacci Numbers are

F(m)
n ≡

(ϕm)n − (ϕ′m)n

ϕm − ϕ′m = [n]ϕm,ϕ′m (8.13)

and F(1)
n ≡ Fn.

By definition, the multiplication rule for Golden numbers is given by next formula

[nm]ϕ,− 1
ϕ
= Fnm = [n]ϕ,− 1

ϕ
[m]ϕn,(− 1

ϕ )
n = FnF(n)

m , (8.14)

and the division rule is

[m
n

]
ϕ,ϕ′

=
[m]ϕ,ϕ′

[n]ϕm/n,ϕ′m/n
=

[m]ϕ1/n,ϕ′1/n

[n]ϕ1/n,ϕ′1/n

F m
n
=

Fm

F( m
n )

n

=
F( 1

n )
m

F( 1
n )

n

. (8.15)

Higher Fibonacci numbers can be written in terms of ratio of Fibonacci numbers as

follows

F(m)
n =

Fmn

Fm
. (8.16)
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From definition (8.2) we have the following relation

F−n = (−1)n+1Fn. (8.17)

For any real x, y

[x + y]F = ϕx[y]F +

(
−1

ϕ

)y

[x]F

= ϕy[x]F +

(
−1

ϕ

)x

[y]F (8.18)

which are written in terms of Fibonacci numbers as follows

Fx+y = ϕxFy + (−1

ϕ
)yFx

= ϕyFx +

(
−1

ϕ

)x

Fy. (8.19)

For real x, we have the Fibonacci recurrence relation

[x]F = [x − 1]F + [x − 2]F ⇒ Fx = Fx−1 + Fx−2. (8.20)

Example : Golden π is

Fπ = [π]F �= 4, 73068 + 0, 0939706i.

8.1.1. Fibonacci and Golden Derivative

We define the Fibonacci derivative operator

Fx d
dx
=

qx d
dx − (−1

q )x d
dx

q + q−1
= [x

d
dx

]F . (8.21)
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and the Golden derivative operator as

Fx d
dx
=
ϕx d

dx − ϕ′x d
dx

ϕ − ϕ′ = [x
d
dx

]F . (8.22)

Then the Golden derivative of arbitrary function f (x) is given by

Fx d
dx

f (x) = DF f (x) =
f (ϕx) − f (− x

ϕ
)

(ϕ + 1
ϕ
)x

=

(
Mϕ − M− 1

ϕ

)
f (x)

(ϕ + 1
ϕ

x)
. (8.23)

Here, arguments are scaled by the Golden ratio: x → ϕx and x → − x
ϕ
. This scaling can be

written in terms of Golden dilatation operator

Mϕ f (x) = f (ϕx), (8.24)

where f (x)- smooth function. Its operator form can also be written as

Mϕ = ϕ
x d

dx =

⎛⎜⎜⎜⎜⎝1 +
√

5

2

⎞⎟⎟⎟⎟⎠x d
dx

. (8.25)

A function A(x) is called Golden periodic function if

DF A(x) = 0. (8.26)

This implies

A(ϕx) = A(−1

ϕ
x). (8.27)

As an example we have:

A(x) = sin

(
π

lnϕ
ln |x|

)
(8.28)
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Example 1: Application of Golden derivative operator DF on xn gives

DF xn = Fnxn−1

or

Fn =
DF xn

xn−1
,

so it generates Fibonacci numbers.

Example 2:

DFex =

∞∑
n=0

Fn

n!
xn

or

DFex =
eϕx − e−

x
ϕ

ϕ + 1
ϕ

=
2e

x
2 sinh

√
5

2
x√

5x
=

∞∑
n=0

Fn

n!
xn.

For x = 1 it gives next summation formula

∞∑
n=0

Fn

n!
= e

1
2

sinh
√

5
2√

5
2

. (8.29)

8.1.2. Golden Leibnitz Rule

We derive the Golden Leibnitz rule

DF( f (x)g(x)) = DF f (x)g(ϕx) + f (− x
ϕ

)DFg(x). (8.30)

By symmetry, the second form of the Leibnitz rule can be derived as

DF( f (x)g(x)) = DF f (x)g(− x
ϕ

) + f (ϕx)DFg(x). (8.31)
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These formulas can be rewritten in explicitly symmetrical form :

DF( f (x)g(x)) = DF f (x)

⎛⎜⎜⎜⎜⎝g(ϕx) + g(− x
ϕ
)

2

⎞⎟⎟⎟⎟⎠ + DFg(x)

⎛⎜⎜⎜⎜⎝ f (ϕx) + f (− x
ϕ
)

2

⎞⎟⎟⎟⎟⎠ . (8.32)

More general form of Golden Leibnitz formula is given with arbitrary α ,

DF( f (x)g(x)) =

(
α f (− x

ϕ
)) + (1 − α) f (ϕx)

)
DFg(x) +

(
αg(ϕx) + (1 − α)g(− x

ϕ
))

)
DF f (x).

Now we may compute the golden derivative of the quotient of f (x) and g(x). From

(8.30) we have

DF

(
f (x)

g(x)

)
=

DF f (x)g(ϕx) − DFg(x) f (ϕx)

g(ϕx)g(− x
ϕ
)

. (8.33)

However, if we use (8.31), we get

DF

(
f (x)

g(x)

)
=

DF f (x)g(− x
ϕ
) − DFg(x) f (− x

ϕ
)

g(ϕx)g(− x
ϕ
)

. (8.34)

In addition to the formulas (8.33) and (8.34) one may determine one more representa-

tion in symmetrical form

DF

(
f (x)

g(x)

)
=

1

2

DF f (x)(g(− x
ϕ
) + g(ϕx)) − DFg(x)( f (− x

ϕ
) + f (ϕx))

g(ϕx)g(− x
ϕ
)

. (8.35)

In particular applications one of these forms could be more useful than others.

8.1.3. Golden Taylor Expansion

Theorem 8.1 Let the Golden derivative operator DF is a linear operator on the space of

polynomials, and

Pn(x) ≡ xn

Fn!
≡ xn

F1F2...Fn
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satisfy the following conditions :

(i) P0(0) = 1 and Pn(0) = 0 for any n ≥ 1 ;

(ii) deg Pn = n ;

(iii) DF Pn(x) = Pn−1(x) for any n ≥ 1 , and DF(1) = 0. Then, for any polynomial f (x) of

degree N,one has the following Taylor formula :

f (x) =

N∑
n=0

(Dn
F f )(0)Pn(x) =

N∑
n=0

(Dn
F f )(0)

xn

Fn!
.

In the limit N → ∞ (when it exists) this formula can determine some new function

fF(x) =

∞∑
n=0

(Dn
F f )(0)

xn

Fn!
(8.36)

which we can call the Golden (or Fibonacci) function.

Example : (Golden Exponential) The Golden exponential functions are

ex
F ≡

∞∑
n=0

xn

Fn!
; Ex

F ≡
∞∑

n=0

(−1)
n(n−1)

2
xn

Fn!
, (8.37)

and for x = 1, we get the Fibonacci natural base as follows

ex
F ≡

∞∑
n=0

1

Fn!
≡ eF .

These functions are entire analytic functions. For the second function explicitly we have

Ex
F = 1 +

x
F1!
− x2

F2!
− x3

F3!
+

x4

F4!
+

x5

F5!
− x6

F6!
− x7

F7!
+

x8

F8!
+

x9

F9!
− ... (8.38)

The Golden derivative of these exponential functions are found

DFekx
F = kekx

F ,
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DF Ekx
F = kE−kx

F

for arbitrary constant k (or F-periodic function). Then these two functions give the general

solution of the hyperbolic F-oscillator

(D2
F − k2)φ(x) = 0, (8.39)

as

φ(x) = Aekx
F + Be−kx

F , (8.40)

and elliptic F-oscillator

(D2
F + k2)φ(x) = 0, (8.41)

φ(x) = AEkx
F + BE−kx

F . (8.42)

We have next Euler formulas

eix
F = cosF x + i sinF x, (8.43)

Eix
F = coshF x + i sinhF x, (8.44)

and relations

CoshF x = cosF x, (8.45)
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S inhF x = sinF x, (8.46)

where

CoshF x ≡ Ex
F + E−x

F

2
, S inhF x ≡ Ex

F − E−x
F

2
. (8.47)

We notice here that these relations are valid due to alternating character of second exponential

function.

Example : (F-Oscillator)

For F-oscillator

D2
F x + ω2x = 0 (8.48)

the general solution is

x(t) = aEωt
F + bE−ωt

F = a′CoshFωt + b′S inhFωt = a′ cosF ωt + b′ sinF ωt (8.49)

8.1.4. Golden Binomial

Golden Binomial we define as

(x + y)n
F = (x + ϕn−1y)(x − ϕn−3y)...(x + (−1)n−1ϕ−n+1y) (8.50)

and it has n-zeros at the Golden ratio powers

x
y
= −ϕn−1,

x
y
= −ϕn−3, ...,

x
y
= −ϕ−n+1.
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For Golden binomial next expansion is valid

(x + y)n
F ≡ (x + y)n

ϕ,− 1
ϕ

=

n∑
k=0

[
n
k

]
F
(−1)

k(k−1)
2 xn−kyk

=

n∑
k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 xn−kyk (8.51)

The proof is easy by induction.

Application of Golden derivative to the Golden binomial gives

Dx
F(x + y)n

F = Fn(x + y)n−1
F ,

Dy
F(x + y)n

F = Fn(x − y)n−1
F .

It means

Dx
F

(x + y)n
F

Fn!
=

(x + y)n−1
F

Fn−1!
,

Dy
F

(x + y)n
F

Fn!
=

(x − y)n−1
F

Fn−1!
,

(
Dy

F

)n
(x + y)n

F .

For n = 2k we have

(
Dy

F

)2k
(x + y)2k

F = (−1)kF2k!,
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and for n = 2k + 1 we get

(
Dy

F

)2k+1
(x + y)2k+1

F = (−1)kF2k+1!.

In terms of Golden binomial we introduce the Golden polynomials

Pn(x) =
(x − a)n

F

Fn!
(8.52)

where n = 1, 2, ..., and P0(x) = 1 with property

Dx
F Pn(x) = Pn−1(x). (8.53)

For even and odd polynomials we have products

P2n(x) =
1

F2n!

n∏
k=1

(x − (−1)n+kϕ2k−1a)(x + (−1)n+kϕ−2k+1a), (8.54)

P2n+1(x) =
(x − (−1)na)

F2n+1!

n∏
k=1

(x − (−1)n+kϕ2ka)(x − (−1)n+kϕ−2ka). (8.55)

By using (8.7) it is easy to find

ϕ2k +
1

ϕ2k = F2k + 2F2k−1, (8.56)

ϕ2k+1 − 1

ϕ2k+1
= F2k+1 + 2F2k. (8.57)
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Then we can rewrite our polynomials in terms of just Fibonacci numbers

P2n(x) =
1

F2n!

n∏
k=1

(x2 − (−1)n+k(F2k−1 + 2F2k−2)xa − a2), (8.58)

P2n+1(x) =
(x − (−1)na)

F2n+1!

n∏
k=1

(x2 − (−1)n+k(F2k + 2F2k−1)xa + a2). (8.59)

First few polynomials are

P1(x) = (x − a) (8.60)

P3(x) =
1

2
(x + a)(x2 − 3xa + a2) (8.61)

P5(x) =
1

2 · 3 · 5(x − a)(x2 + 3xa + a2)(x2 − 7xa + a2) (8.62)

P7(x) =
1

2 · 3 · 5 · 8 · 13
(x + a)(x2 − 3xa + a2)(x2 + 7xa + a2)(x2 − 18xa + a2) (8.63)

... (8.64)

P2(x) = (x2 − xa − a2) (8.65)
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P4(x) =
1

2 · 3(x2 + xa − a2)(x2 − 4xa − a2) (8.66)

P6(x) =
1

2 · 3 · 5 · 8(x2 − xa − a2)(x2 + 4xa − a2)(x2 − 11xa − a2) (8.67)

... (8.68)

8.1.5. Noncommutative Golden Ratio and Golden Binomials

By choosing q = − 1
ϕ

and Q = ϕ, in general Q-commutative q-binomial (Nalci Tumer

and Pashaev , in preparation ), where ϕ is the Golden section, we obtain the Binet-Fibonacci

Binomial formula with Golden non-commutative plane (yx = ϕxy). (It should be compared

with Golden ratio b = ϕa).

(x + y)n
− 1
ϕ

= (x + y)(x + (−1

ϕ
)y)(x + (−1

ϕ
)2y)...(x + (−1

ϕ
)n−1y)

=

n∑
k=0

[
n
k

]
ϕ,− 1

ϕ

(−1

ϕ
)

k(k−1)
2 xn−kyk

=

n∑
k=0

Fn!

Fk!Fn−k!

(
−1

ϕ

) k(k−1)
2

xn−kyk, (8.69)

where Fn are Fibonacci numbers.

8.1.6. Golden Pascal Triangle

The Golden binomial coefficients are defined by

[
n
k

]
F
=

[n]F!

[n − k]F![k]F!
=

Fn!

Fn−k!Fk!
(8.70)
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with n and k being nonnegative integers, n ≥ k and are called the Fibonomials. Using the

addition formula for Golden numbers (8.6), we write following expression

Fn = Fn−k+k = (−1

ϕ
)kFn−k + ϕ

n−kFk,

and from (8.7) it can be written as follows

Fn = Fn−k−1Fk + Fn−kFk+1

= Fn−kFk−1 + Fn−k+1Fk. (8.71)

With the above definition (8.70)we have next recursion formulas

[
n
k

]
F
=

(− 1
ϕ
)k[n − 1]F!

[k]F![n − k − 1]F!
+

ϕn−k[n − 1]F!

[n − k]F![k − 1]F!

= (−1

ϕ
)k

[
n − 1

k

]
F
+ ϕn−k

[
n − 1

k − 1

]
F

(8.72)

= ϕk

[
n − 1

k

]
F
+ (−1

ϕ
)n−k

[
n − 1

k − 1

]
F
. (8.73)

These two rules determine the multiple Golden Pascal triangle, where 1 ≤ k ≤ n − 1. Then,

we can construct Golden Pascal triangle as follows

Figure 8.1. Golden Pascal triangle
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8.1.7. Remarkable Limit

From Golden binomial expansion (8.51) we have

(1 + y)n
F =

n∑
k=0

[
n
k

]
F
(−1)

k(k−1)
2 yk

=

n∑
k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 yk. (8.74)

Then

(
1 +

y
ϕn

)n

F
=

n∑
k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2

yk

ϕnk (8.75)

or by opening Fibonomials and taking limit

lim
n→∞

(
1 +

y
ϕn

)n

F
=

∞∑
k=0

1

Fk!
(−1)

k(k−1)
2

yk

ϕ
k(k−1)

2 (ϕ + 1
ϕ
)k

(8.76)

lim
n→∞

(
1 +

y
ϕn

)n

F
=

∞∑
k=0

1

[k]−ϕ2!

(
yϕ

ϕ2 + 1

)k

(8.77)

where we introduced q-number, [k]q = 1 + q + ... + qk−1, with base q = −ϕ2, so that

[k]−ϕ2 = 1 + (−ϕ2) + ... + (−ϕ2)k−1 =
(−ϕ2)k − 1

(−ϕ2) − 1
. (8.78)

The last expression allow us to rewrite the limit in terms of Jackson q-exponential function

eq(x) with q = −ϕ2,

lim
n→∞

(
1 +

y
ϕn

)n

F
= e−ϕ2

(
yϕ

ϕ2 + 1

)
(8.79)
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or finally we have remarkable limit

lim
n→∞

(
1 +

y
ϕn

)n

F
= e−ϕ2

(
y√
5

)
. (8.80)

In particular case it gives

lim
n→∞

⎛⎜⎜⎜⎜⎝1 + √5

ϕn

⎞⎟⎟⎟⎟⎠n

F

= e−ϕ2(1). (8.81)

8.1.8. Golden Integral

8.1.8.1. Golden Antiderivative

Definition 8.2 The function G(x) is Golden antiderivative of g(x) if DFG(x) = g(x).

It is denoted by

G(x) =

∫
g(x)dF x. (8.82)

DFG(x) = 0⇒ G(x) = C − constant

or

DFG(x) = 0⇒ G(ϕx) = G(− x
ϕ

)

is called the Golden ’periodic’ function.
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8.1.8.2. Golden-Jackson Integral

By inverting equation (8.23) and expanding inverse operator we find Jackson type

representation for anti-derivative.

Definition 8.3 We introduce Jackson type anti-derivative as

G(x) =

∫
g
(

x
ϕ

)
dQx = (1 − Q)x

∞∑
k=0

Qk f
(

x
ϕ

Qk

)
(8.83)

where Q ≡ − 1
ϕ2 .

8.2. Golden Quantum Oscillator

Now we construct quantum oscillator with spectrum in the form of Fibonacci numbers.

Since in this oscillator the base in commutation relations is ϕ-Golden ratio, we called it as

Golden oscillator. The algebraic relations for Golden Oscillator are

bb+ − ϕb+b = (−1

ϕ
)N (8.84)

or

bb+ +
1

ϕ
b+b = ϕN , (8.85)

where N is the hermitian number operator and ϕ is the deformation parameter. The bosonic

Golden-oscillator is defined by three operators b+, b and N which satisfy the commutation

relations:

[N, b+] = b+, [N, b] = −b. (8.86)
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By using the definition of number operator with basis ϕ we find following equalities

[N + 1]F − ϕ[N]F = (−1

ϕ
)N (8.87)

[N + 1]F +
1

ϕ
[N]F = ϕ

N , (8.88)

where

[N]F =
ϕN − (− 1

ϕ
)N

ϕ + 1
ϕ

is the Fibonacci number operator. Here operator (−1)N = eiπN .

By comparison the above operator relations with algebraic relations (8.84) and (8.85)

we have

b+b = [N]F , bb+ = [N + 1]F .

Here we should note that the number operator N is not equal to b+b as in ordinary case. By

using the property of Fibonacci numbers (8.7) the algebraic relations (8.84) and (8.85) are

equivalent to Fibonacci rule for operators

FN+1 = FN + FN−1.

Proposition 8.1 We have following commutator relation

[
[N]F , b+

]
= {[N]F − [N − 1]F}b+

= b+{[N + 1]F − [N]F} (8.89)
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Proposition 8.2 We have following equality for n = 0, 1, 2, ..

[[N]n
F , b

+] = {[N]n
F − [N − 1]n

F}b+ (8.90)

Proof By using mathematical induction to show the above equality is not difficult.

�

Corollary 8.1 For any function expandable to power series (analytic) F(x) =
∑∞

n=0 cnxn we

have the following relation

[F([N]F), b+] = {F([N]F) − F([N − 1]F)}b+

= b+{F([N + 1]F) − F([N]F)} (8.91)

and

b+F([N + 1]F) = F([N]F)b+ (8.92)

or

F(N)b+ = b+F(N + 1). (8.93)

By using the eigenvalues of the Number operator

N |n〉F = n |n〉F ,

[N]F |n〉F = FN |n〉F = [n]F |n〉F = Fn |n〉F

we get Fibonacci numbers as eigenvalues of [N]-operator, where we call FN as Fibonacci

operator and we denote |n〉ϕ,− 1
ϕ
≡ |n〉F .

The basis of the Fock space is defined by repeated action of the creation operator b+ on the
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vacuum state, which is annihilated by b |0〉F = 0

|n〉F = (b+)n

√
F1 · F2 · ...Fn

|0〉F , (8.94)

where [n]F! = F1 · F2 · ...Fn.

In the limit

lim
n→∞

F(n + 1)

F(n)
= lim

n→∞
[n + 1]F

[n]F
=

1 +
√

5

2
≡ ϕ =≈ 1, 6180339887,

which is the Golden ratio.

The number operator N for Fibonacci case is written in two different forms according

to even or odd eigenstates N |n〉F = n |n〉F . For n = 2k, we get

N = logϕ

⎛⎜⎜⎜⎜⎜⎝ √5

2
FN +

√
5

4
F2

N + 1

⎞⎟⎟⎟⎟⎟⎠ , (8.95)

and for n = 2k + 1,

N = logϕ

⎛⎜⎜⎜⎜⎜⎝ √5

2
FN −

√
5

4
F2

N − 1

⎞⎟⎟⎟⎟⎟⎠ , (8.96)

where [N]F is Fibonacci number operator defined as

[N]F =
ϕN − (− 1

ϕ
)

ϕ − (− 1
ϕ
)
= FN .

As a result, the Fibonacci numbers are the example of (q,Q) numbers with two basis

and one of the base is Golden Ratio.This is why we called the corresponding q- oscillator

as a Golden oscillator or Binet-Fibonacci Oscillator. The Hamiltonian for q-Binet-Fibonacci

oscillator is written as a Fibonacci number operator

H =
�ω

2
(b+b + bb+) =

�ω

2
([N + 1]F + [N]F) =

�ω

2
FN+2,
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where bb+ = [N + 1]F = FN+1, b+b = [N]F = FN . According to the Hamiltonian, the energy

spectrum of this oscillator is written in terms of Fibonacci numbers sequence,

En =
�ω

2

(
[n]ϕ,− 1

ϕ
+ [n + 1]ϕ,− 1

ϕ

)
=
�ω

2
(Fn + Fn+1) =

�ω

2
Fn+2, (8.97)

En =
�ω

2
Fn+2.

A first energy eigenvalues

E0 =
�ω

2
F2 =

�ω

2
,

which is exactly the same ground state as in the ordinary case. Higher energy excited states

are given by Fibonacci sequence

E1 =
�ω

2
F3 = �ω, E2 =

3�ω

2
, E3 =

5�ω

2
, ...

In Figure 8.2 we show the quantum Fibonacci tree for this oscillator.

The difference between two consecutive energy levels of our oscillator is found as

�En = En+1 − En =
�ω

2
Fn+1.

Then the ratio of two successive energy levels En+1

En
gives the Golden sequence, and for the

limiting case of higher excited states n→ ∞ it is the Golden ratio

lim
n→∞

En+1

En
= lim

n→∞
Fn+3

Fn+2

= lim
n→∞

[n + 3]F

[n + 2]F
=

1 +
√

5

2
= ϕ ≈ 1, 6180339887.

This property of asymptotic states to relate each other by a Golden ratio, leads us to call this

oscillator as a Golden oscillator.
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Figure 8.2. Quantum Fibonacci tree for Golden oscillator

We have the following relations between q- creation and annihilation operators and

standard creation and annihilation operators

b+ = a+
√

FN+1

N + 1
=

√
FN

N
a+ (8.98)

b =

√
FN+1

N + 1
a = a

√
FN

N
, (8.99)
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which we call nonlinear unitary transformation, where [a, a+] = 1.

8.2.1. Golden Angular Momentum

Double Golden Oscillator algebra suF(2), determines the Golden Quantum angular

momentum operators, defined as

JF
+ = b+1 b2, JF

− = b+2 b1, JF
z =

N1 − N2

2
,

and satisfying commutation relations

[JF
+ , J

F
− ] = (−1)N2 F2Jz = −(−1)N1 F−2Jz , (8.100)

[JF
z , J

F
± ] = ±JF

± , (8.101)

where the Binet-Fibonacci operator is

FN =
ϕN − (− 1

ϕ
)N

ϕ + 1
ϕ

= [N]F .

The Golden quantum angular momentum operators JF
± may be written in terms of Fibonacci

sequence and standard quantum angular momentum operators J± as

JF
+ = J+

√
FN1+1

N1 + 1

√
FN2

N2

=

√
FN1

N1

√
FN2+1

N2 + 1
J+ (8.102)

JF
− = J−

√
FN1

N1

√
FN2+1

N2 + 1
=

√
FN1+1

N1 + 1

√
FN2

N2

J−. (8.103)
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The Casimir operator for Binet-Fibonacci case is

CF = (−1)−Jz
(
FJz FJz+1 + (−1)−N2 JF

− JF
+

)
= (−1)−Jz

(
−FJz FJz−1 + (−1)−N2 JF

+ JF
−
)
. (8.104)

The angular momentum operators JF
± and JF

z act on state | j,m〉F :

JF
+ | j,m〉F =

√
F j−mF j+m+1 | j,m + 1〉F , (8.105)

JF
− | j,m〉F =

√
F j+mF j−m+1 | j,m − 1〉F , (8.106)

JF
z | j,m〉F = m | j,m〉F . (8.107)

The eigenvalues of Casimir operator CF
j are determined by product of two successive Fi-

bonacci numbers

CF
j = (−1)− jF jF j+1,

then the asymptotic ratio of two successive eigenvalues of Casimir operator gives Golden

Ratio

lim
j→∞

(−1)− jF jF j+1

(−1)− j+1F j−1F j
= −ϕ2.

We can also construct representation of our F-deformed angular momentum algebra

in terms of double Golden boson representation b1, b2. The actions of F-deformed angular

momentum operators to the state |n1, n2〉F are given as follows :
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JF
+ |n1, n2〉F = b+1 b2 |n1, n2〉F =

√
Fn1+1Fn2

|n1 + 1, n2 − 1〉F , (8.108)

JF
− |n1, n2〉F = b+2 b1 |n1, n2〉F =

√
Fn1

Fn2+1 |n1 − 1, n2 + 1〉F , (8.109)

JF
z |n1, n2〉F = 1

2
(N1 − N2) |n1, n2〉F = 1

2
(n1 − n2) |n1, n2〉F . (8.110)

The above expressions reduce to the familiar ones (8.105)-(8.107) provided we define

j ≡ n1 + n2

2
, m ≡ n1 − n2

2

|n1, n2〉F ≡ | j,m〉F ,

and substitute

n1 → j + m, n2 → j − m.

8.2.2. Symmetrical suiϕ(2) Quantum Algebra

As an example of symmetrical q-deformed suq(2) algebra we choose the base as qi =

iϕ and qj = i 1
ϕ
, then our complex equation for base becomes

(iϕ)2 = i(iϕ) − 1.
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The ϕ- deformed symmetrical angular momentum operators remain the same as J(s)
± , J

(s)
z . The

symmetrical quantum algebra with base (iϕ, i
ϕ
) becomes

[Jϕ+, J
ϕ
−] = [2Jz] i

ϕ
= [2Jz]iϕ, i

ϕ
(−1)( 1

2−Jz), (8.111)

where

[2Jz] i
ϕ
=
ϕ2Jz − ϕ−2Jz

ϕ − ϕ−1

and

[J(s)
z , J(s)

± ] = ±J(s)
± . (8.112)

8.2.3. s̃uF(2) Algebra

One of the special cases of symmetrical s̃u(q,Q)(2) algebra is constructed by choosing

Binet-Fibonacci case (qi = ϕ, qj = − 1
ϕ
). The generators of s̃uF(2) algebra J̃ϕ±, J̃

ϕ
z are given in

terms of double bosons b1, b2 as follows :

J̃F
+ = (−1)−

N2
2 b+1 b2,

J̃F
− = b+2 b1(−1)−

N2
2 ,

J̃F
z = Jz. (8.113)

satisfying anti-commutation relation

J̃F
+ J̃F
− + J̃F

− J̃F
+ = {J̃F

+ , J̃
F
− } = [2Jz]F , (8.114)
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and [J̃F
z , J̃

F
± ] = ±J̃F

± . The Casimir operator is written in the following forms

C̃F = (−1)Jz{F jz F jz+1 − J̃F
− J̃F
+ }

= (−1)Jz{J̃F
+ J̃F
− − F jz F jz−1}. (8.115)

The actions of the F-deformed angular momentum operators to the states | j,m〉F are

J̃F
+ | j,m〉F = (−1)

j−m
2

√
F j−mF j+m+1 | j,m + 1〉F ,

J̃F
− | j,m〉F = (−1)

j−m
2

√
F j+mF j−m+1 | j,m − 1〉F ,

J̃F
z | j,m〉F = m | j,m〉F . (8.116)

And the eigenvalues of Casimir operators are given by

C̃F | j,m〉F = {(−1)mFmFm+1 − (−1) jF j−mF j+m+1} | j,m〉F
= {(−1) jF j−m+1F j+m − (−1)mFmFm−1} | j,m〉F .
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CHAPTER 9

CONCLUSION

In the present thesis, we studied quantum calculus of classical Heat-Burgers’ hierarchy

and quantum coherent states. We constructed random walk on q-lattice as Fermat partition

and obtained corresponding q-heat equation with specific q-dependence for time and space

variables. In order to find exact solution of this equation we introduced a new family of q-

exponential functions which produces Jackson’s q-exponential functions for weighted number

N = 0 and N = 1. The solution of q-heat equation is found in terms of our q-exponential

functions. We obtained q-oscillator hierarchy by using this solution and it allows us to get

a family of q-heat equations. Then the specific case of random walk on q-lattice produced

q-heat equation with symmetrical q-derivatives in space variable and its exact solution was

written as symmetrical q-exponential and symmetrical q-trigonometric functions.

We introduced a new type of q-diffusive heat equation, including standard derivatives

in time and space, with nonsymmetric q-extension of the diffusion term. The polynomial solu-

tions of this equation was written as generalized Kampe-de Feriet polynomials, corresponding

dynamical symmetry and description in terms of Bell polynomials. Written in relative gra-

dient variables this system appeared as the q-viscous Burgers’ equation and its one, two and

multiple shock soliton solutions are found and studied their mutual interactions for different

values of q. We found that due to specific dependence of the group velocity on wave number,

in addition to fusion of the solitons as in usual Burgers equation, a new process of fission

of shock solitons with higher amplitude takes place. The q-semiclassical expansion of these

equations in terms of Bernoulli polynomials was derived as corrections in power of ln q. We

get the corresponding Bäcklund transformations of q-viscous Burgers’ equations.

We introduced a new class of complex valued function of complex argument which

we called q-analytic functions satisfying q-Cauchy-Riemann equations and get the real and

imaginary parts as q-harmonic functions. These q-analytic functions are not classical ana-

lytic functions but we proved that some class of these complex functions are considered as

a generalized analytic functions. As an example we obtained that the complex q-binomial

functions are generalized analytic functions by satisfying D-bar problem and their integral

representation is written. In terms of these functions the complex q-analytic fractal, satisfying

the self-similar q-difference equation is derived. As an application we constructed a new type

of quantum states as q-analytic coherent states and corresponding q-analytic Fock-Bargmann

representation. In this representation, quantum q-oscillator problem is solved and shown that
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the wave functions of quantum states are given by complex q-binomials.

The concept of q-analytic function was extended to expansion of q-binomial in terms

of q-Hermite polynomials which are analytic in two complex arguments. In this represen-

tation, we introduced a new class of complex functions of two complex arguments, called

double q-analytic functions. As hyperbolic extension, we described the q-analogue of travel-

ing waves, which are not preserving their shape during evolution. We studied q-wave equation

and solved in the q-Hermite polynomial form.

By introducing q-translation operator we obtained q-binomials, q-analytic and q-anti

analytic functions, and q-travelling waves. Another type q-translation operator, called q-

commutative (non-commutative) translation operator, was introduced. Then we represented

non-commutative binomials, functions for non-commutative coordinates. Then we gener-

alized these q-translations to q, p-translations for two bases. By specific choice of bases as

Golden ratio, Fibonomials are constructed as translation of monomials. We described all these

translations by the first order q-difference equations.

Based on acting by evolution operator, we introduced a new type of quantum states

as Hermite coherent states and Kampe-de Feriet coherent states, characterized by Hermite

polynomials and Kampe-de Feriet polynomials correspondingly. We generalized the known

Mehler formula in order to normalize these coherent states. Their Fock-Bargmann repre-

sentations were written. By using the generating function of Bernoulli polynomials, we get

Bernoulli coherent states and related Fock-Bargmann representation. Then q-analogue of co-

herent states are introduced.

We introduced Golden quantum calculus. By Fibonacci and Golden derivatives we

derived main ingredients of these calculus as Golden Leibnitz rule, Taylor expansion, Golden

binomial and Golden integral. As an application of Golden quantum calculus, we studied

Golden quantum oscillator and its angular momentum representations.
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APPENDIX A

D-BAR REPRESENTATION OF COMPLEX

Q-BINOMIAL

In this section, we are going to prove q-complex binomial representation (4.50), (4.51)

.

A.1. Generalized Cauchy formula

For non-analytic function Φ(z), the next generalized Cauchy formula is valid (Vekua,

1962), (Ablowitz and Fokas, 1997)

Φ(z) =
1

2πi

∮
Γ

Φ(ζ)dζ
ζ − z

− 1

π

∫ ∫
G

∂Φ

∂ζ̄

dξdη
ζ − z

, (A.1)

where ζ = ξ + iη. First we are going to check this formula for non-analytic function

Φn(z) = x + iqny =
1 + qn

2
z +

1 − qn

2
z̄, (A.2)

with

∂Φn

∂z̄
=

1 − qn

2
=

[n]q

2
(1 − q).

For the disk of radius R we have:

1. The line integral part in the above generalized Cauchy formula gives

1

2πi

∮
Γ

1+qn

2
ζ + 1−qn

2
ζ̄

ζ − z
dζ =

1

2πi
1 + qn

2

∮
Γ

dζ +
1

2πi
1 + qn

2
z
∮
Γ

dζ
ζ − z

+
1

2πi
1 − qn

2

∮
Γ

ζ̄dζ
ζ − z

. (A.3)
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The first integral vanishes, while the second one gives 2πi so that we have

1 + qn

2
z +

1

2πi
1 − qn

2

∮
Γ

ζ̄dζ
ζ − z

. (A.4)

By substitution ζ = Reiθ the last integral becomes

1

2πi
1 − qn

2

∫ 2π

0

idθ
Reiθ − z

. (A.5)

Then, rewriting it in terms of u = eiθ we get contour integral along the unit circle

1

2πi
1 − qn

2

∮
|u|=1

du
u(Ru − z)

. (A.6)

By the residues theorem this integral vanishes

1 − qn

2R

[ R
−z
+

R
z

]
= 0. (A.7)

As a result for the line integral we obtain

LI =
1 + qn

2
z. (A.8)

2. The double integral part in polar coordinates ζ = ξ + iη = reiθ is

−1

π

∫ ∫
G

1 − qn

2

dξdη
ζ − z

= −1 − qn

2π

∫ 2π

0

∫ R

0

rdrdθ
reiθ − z

. (A.9)

By substitution u = eiθ we rewrite the angle part of integral as the contour integral along

the unit circle |u| = 1

−1

π

∫ ∫
G

1 − qn

2

dξdη
ζ − z

= −1 − qn

2πi

∫ R

0

dr
∮
|u|=1

du
u(u − z/r)

. (A.10)
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By the residues theorem the contour integral for |z| > r is

∮
|u|=1

du
u(u − z/r)

= 2πi
(
−r

z

)
(A.11)

and for |z| < r it vanishes. Thus the double integral for r > |z| also vanishes so that the

range of integration in r is going from 0 to |z|,

1 − qn

z

∫ |z|

0

rdr =
1 − qn

z
|z|2
2
. (A.12)

Then finally for the double integral we get

DI =
1 − qn

2
z̄. (A.13)

Adding the line and the double integrals (A.8), (A.13) together we obtain desired

formula (A.2):LI + DI = 1+qn

2
z + 1−qn

2
z̄.

A.2. Generalized analytic function

For Φn(z) in (A.2) as a generalized analytic function, we have the D-bar equation

∂Φn

∂z̄
=

(1 − qn)

(1 + qn)z + (1 − qn)z̄
Φn(z) = An(z, z̄)Φn(z), (A.14)

where

An(z, z̄) =
(1 − qn)

(1 + qn)z + (1 − qn)z̄
.

Representation (4.45) for this function is

Φn(z, z̄) = ω(z) e
1

2πi

∫ ∫
D

An(ζ,ζ̄)
ζ−z dζ∧dζ̄ . (A.15)
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To check it we are going to calculate this integral explicitly and find holomorphic function

ω(z) for the disk of radius R.

The double integral in exponential is

I =
1

2πi

∫ ∫
D

An(ζ, ζ̄)

ζ − z
dζ ∧ dζ̄ = −1 − qn

π

∫ ∫
D

dξ dη
[(1 + qn)ζ + (1 − qn)ζ̄][ζ − z]

where ζ = ξ + iη and D = {ζ : |ζ | ≤ R} or in the polar coordinates ζ = reiθ,

I =
qn − 1

π

∫ R

0

∫ 2π

0

dr dθ
[(1 + qn)eiθ + (1 − qn)e−iθ][reiθ − z]

=
qn − 1

π

∫ R

0

dr
r

I0

where by complex substitution u = eiθ we have contour integral around unit circle

I0 =
1

i

∮
|u|=1

du
u

1

[(1 + qn)u + (1 − qn) 1
u ][u − z

r ]
, (A.16)

or

I0 =
1

i(1 + qn)

∮
|u|=1

du

[u2 +
1−qn

1+qn ][u − z
r ]
. (A.17)

For the base 0 < q < 1 the integrand has two simple poles inside of the unit circle at u =

±i
√

1−qn

1+qn and for |z| < r, one more simple pole at u = z/r. Then by the residues theorem

I0 =
2π

1 + qn

⎧⎪⎪⎪⎨⎪⎪⎪⎩ −
1

1−qn
1+qn +

z2

r2

, |z| > r,

0, |z| < r.
(A.18)

Substituting to integral I we get

I = 2
1 − qn

1 + qn

∫ R

0

dr
r

⎧⎪⎪⎪⎨⎪⎪⎪⎩ −
1

1−qn
1+qn +

z2

r2

, |z| > r,

0, |z| < r,
(A.19)
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or

I = 2
1 − qn

1 + qn

∫ z

0

dr
r

1
1−qn

1+qn +
z2

r2

. (A.20)

By elementary integration

I = ln(r2 +
1 − qn

1 + qn z2)
∣∣∣z
0 = ln

(1 + qn)z + (1 − qn)z̄
(1 + qn)z

, (A.21)

and for (A.15) then we find

Φn(z, z̄) = ω(z) eI =
1 + qn

2
z +

1 − qn

2
z̄, (A.22)

where the analytic function

ω(z) =
1 + qn

2
z.

A.3. Complex q-binomial as generalized analytic function

The above results can be applied now for the complex q-binomial degree n,

(x + iy)n
q = (x + iy)(x + iqy)...(x + iqn−1y).

Denoting

Φ(z) = Φ0(z)Φ1(z) ...Φn−1(z),
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where Φn(z) = x + iqny = 1+qn

2
z + 1−qn

2
z̄, we have

∂

∂z̄
Φ(z, z̄) = Φ(z, z̄)(1 − q)

n−1∑
k=1

[k]q

(1 + qk)z + (1 − qk)z̄
= A(z, z̄)Φ(z, z̄),

where

A(z, z̄) = (1 − q)

n−1∑
k=1

[k]q

(1 + qk)z + (1 − qk)z̄
=

n−1∑
k=1

An(z, z̄).

By the above calculations for the double integral in a disk of radius R, (ζ = ξ + iη), we

obtain

1

2πi

∫ ∫
D

A(ζ, ζ̄)

ζ − z
dζ ∧ dζ̄ =

1

π

n−1∑
k=1

(qk − 1)

∫ ∫
D

dξdη
((1 + qk)ζ + (1 − qk)ζ̄)(ζ − z)

=

n−1∑
k=1

ln
(1 + qk)z + (1 − qk)z̄

(1 + qk)z
. (A.23)

Then

Φ(z, z̄) = (x + iy)n
q = ω(z) e

1
2πi

∫ ∫
D

A(ζ,ζ̄)
ζ−z dζ∧dζ̄

= ω(z)e
ln

∏n−1
k=1

⎛⎜⎜⎜⎜⎜⎜⎝ 1+qk
2

z+ 1−qk
2

z̄

1+qk
2

z

⎞⎟⎟⎟⎟⎟⎟⎠

= ω(z)

n−1∏
k=1

1+qk

2
z + 1−qk

2
z̄

1+qk

2
z

(A.24)

= ω(z)

n−1∏
k=1

2(x + iqky)

(1 + qk)z
(A.25)

or

(x + iy)n
q = ω(z)

2n

zn
∏n−1

k=0(1 + qn)
(x + iy)n

q (A.26)
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As a result we find the next form for the analytic function

ω(z) =
( z
2

)n n−1∏
k=0

(1 + qk). (A.27)
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