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ABSTRACT

QUANTUM CALCULUS OF CLASSICAL HEAT-BURGERS’
HIERARCHY AND QUANTUM COHERENT STATES

The purpose of this thesis is an application of quantum calculus to classical Heat-
Burgers’ hierarchy and quantum coherent states. First we construct random walk on g-lattice,
corresponding g-heat equation and exact solutions in terms of new family of g-exponential
functions. Then we introduce a new type of g-diffusive heat equation and g-viscous Burg-
ers’ equation, their polynomial solutions as generalized Kampe-de Feriet polynomials, corre-
sponding dynamical symmetry and description in terms of Bell polynomials. Shock soliton
solutions with fusion and fission of shocks are found and studied for different values of g.
The g-semiclassical expansion of these equations in terms of Bernoulli polynomials is de-
rived as corrections in power of Ing. A new class of complex valued function of complex
argument as g-analytic functions in terms of g-analytic binomials is introduced and shown
that these binomials are generalized analytic functions. As an application, we construct a
new type of quantum states as g-analytic coherent states and corresponding g-analytic Fock-
Bargmann representation. Then, we extend the concept of g-analytic function for two complex
arguments, called double g-analytic functions, which has g-Hermite binomial expansion. As
hyperbolic extension, we describe the g-analogue of traveling waves and find the D’ Alembert
solution of g-wave equation. By introducing g-translation operators we obtain g-binomials,
g-analytic and g-anti analytic functions, g-travelling waves and non-commutative binomials.
New type of quantum states as Hermite coherent states and Kampe-de Feriet coherent states
are studied by generalization of the known Mehler formula. We introduce Golden quantum
calculus, and as an application we study Golden quantum oscillator and its angular momentum

representations.
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OZET

KLASIK ISI-BURGERS’ HIYERARSISININ VE KUANTUM
KOHERENT DURUMLARIN KUANTUM HESAPLAMASI

Bu tezin amaci, kuantum hesaplamanin klasik 1s1-Burgers hiyerarsisine ve kuan-
tum coherent durumlara uygulanmasidir. Ilk olarak, g-latis(6rgii) iizerinde rassal yiiriiyiis
insa edip, ilgili g-15s1 denklemini ve bunun tam ¢oziimlerini g-iistel fonksiyonlarin yeni ailesi
cinsinden bulduk. Daha sonra yeni bir g-difiizyon 1s1 ve g-viskoz Burgers denklemlerini
tanitip, ¢coziimlerini genellestirilmis Kampe-de Feriet polinomlar cinsinden yazip, ilgili di-
namik simetri ve Bell polinomlari cinsinden agiklamasinmi yaptik. Fiizyon ve fisyon soklardan
olusan sok soliton ¢éziimleri bulunup, bu ¢oztimler farkli g degerleri i¢in incelendi. Denklem-
lerin, Bernoulli polinomlari cinsinden g-yari klasik acilimi In ¢ nun kuvvetleri cinsinden yazil-
di. Kompleks parametreli kompleks degerli yeni bir fonksiyon sinifi, g-analitik binomlar
cinsinden g-analitik fonksiyonlar olarak tanitilmistir ve bu binomlarin genellestirilmis anali-
tik fonksi-yonlar oldugu gosterilmistir. Bunun uygulamasi olarak g-analitik koherent durum-
lar olan yeni bir ¢esit kuantum durumlar ve ilgili g-analitik Fock-Bargmann gosterimlerini
insa ettik. Daha sonra g-analitik fonksiyon kavramini, ¢ift g-analitik fonksiyonlar olarak ad-
landirdigimiz iki kompleks parametreli fonksiyonlara genisletip, bunlarin g-Hermite polinom-
lar1 cinsinden acilimini bulduk. Bu fonksiyonlarin hiperbolik genislemesi olarak, g-hareket
eden dalgalar1 tanimlayip, g-dalga denkleminin D’Alembert ¢oziimiinii bulduk. g-oteleme
operatorleri tanitilarak g-binomlar, g-analitik ve g-anti analitik fonksiyonlar, g-hareket eden
dalgalar ve sirabagimli binomlar elde ettik. Bilinen Mehler formiiliinii genelleyerek, Her-
mite koherent ve Kampe-de Feriet koherent durumlar olan yeni kuantum durumlar bulundu.
Altin kuantum hesaplamay1 tanittik, ve uygulamasi olarak Altin kuantum osilatorii ve agisal

momentum gosterimini ¢alistik.
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CHAPTER 1

INTRODUCTION

The mathematical concepts of scale transformation and scale invariance have origin
in more fundamental concepts of human perception. As described by J. Piaget (Piaget and
Inhelder, 1971) in Chapter "Similarity and Proportions" of his paper "The Child’s Conception
of Space", the origin of the similarity idea is in the real perception of forms, starting from
childhood, and possibility to select the forms as an invariant objects of the size variations.
Penetrating to philosophical and religious systems, it produced mathematical analysis as pos-
sibility to split the world to hierarchy of scales with simple rules. The mathematical calculus
of scales and proportions is known as the g-calculus. It takes origin in works of Euler, Gauss,
Fermat, Pascale, and was developed at the end of XIX - beginning of XX- centuries by Jack-
son, Thomae, Heine, Ramanujan and others. At modern times, it has attracted the attention
of researchers in quantum theory of exactly solvable models and this is the reason why it is
also called also as the quantum calculus. This leaded to discovery of quantum algebras and
quantum groups as deformations of the usual Lie algebras and Lie groups with deformation
parameter g. As physical applications it includes quantum spin chains, anyons, conformal
and Chern-Simons field theory. Nonextensive statistical mechanics, Moyal’s quantization and
non-commutative geometry, g-special functions and g-difference equations, g-integrable mod-
els and g-quantum oscillators and g-deformed Poincare groups - are active field of research
now. The present thesis is devoted to study applications of quantum calculus to description
of new type of g-diffusive Heat-Burgers’ equations hierarchy, new type of complex functions

and applications to theory of special functions and quantum states.

1.1. Heat-Burgers’ Hierarchy and ¢-Diffusive Equations

The heat equation and its modifications are the simplest equations in mathematical
physics, modelling diffusion, the heat transfer and other phenomena. To model a more reach
class of diffusion phenomena, several extensions of the diffusion equation by fractional calcu-
lus (Miller and Ross, 1993), quantum or g-calculus (Nalci and Pashaev, 2010), (Pashaev and
Nalci, 2012), noncommutative calculus (Martina and Pashaev, 2013), etc. were proposed.
Described in terms of relative gradients, the heat equation appears in the form of nonlinear

Burgers’ equation. Solution of this Burgers’ equation as the shock solitons and their interac-



tions play fundamental role in description of soliton phenomena. Extensions of this equation
by g-deformations lead to a new type of soliton solutions, like g-shock solitons (Nalci and
Pashaev, 2010), (Pashaev and Nalci, 2012), noncommutative shock solitons (Martina and
Pashaev, 2013), etc. This is the reason why, any exactly solvable extension of the heat and
Burgers’ equations play essential role in description of new type of soliton interactions, in
exact solvability of corresponding equations and in modelling a new physical phenomena
associated with them.

Recently, several extensions of diffusion equation by the g-deformation of partial
derivatives were proposed (Nalci and Pashaev, 2010), (Pashaev and Nalci, 2012) and ex-
act solutions in the form of g-shock solitons constructed and represented in terms of g-special
functions. By such an approach the g-deformation of classical damped oscillator as the g-
deformed oscillator was studied in (Nalci and Pashaev, 2011). The quantum versions of
g-oscillator have attracted attentions due to the relations with quantum groups and exact solv-
ability for different realizations of quantum symmetry, such as symmetrical (Biedenharn,
1989), (Macfarlane, 1989), non symmetrical (Arik and Coon, 1976), Fibonacci (Arik et al,
1992) and Golden calculus (Pashaev and Nalci, 2012), etc. In the set of papers by Man’ko
and coauthors (Man’ko et all, 1997) a physical approach to g-oscillator as a nonlinear os-
cillator was proposed. Then, as was shown in (Pashaev, 2015), every integrable system in
action-angle variables was described as a set of nonlinear oscillators and appeared in the form
of the g- or more generally, the f- oscillator. Motivated by this, in papers (Pashaev, 2015),
(Pashaev, 2016) the linear Schrédinger equation with g-modified dispersion was introduced
and the Madellung form of this equation as g-dispersive complex nonlinear Burgers’ equation
was derived.

In the present thesis, following similar ideas we propose a new type of heat equation
with modified non-symmetric g-diffusive term. This equation belongs to the heat hierarchy of
infinite order diffusive equations. Description of this equation in terms of relative gradients
leads to the g-viscous Burgers’ equation, which is a specific member of Burgers’ hierarchy.
We study several classes of exact solutions, polynomial and shock soliton type. The poly-
nomial solutions are generalizations of the Kampe de Feriet polynomials written in terms of
Bell polynomials. We derive generating function for these polynomials by using the dynam-
ical symmetry and the Zassenhaus formula. Generating exact solutions and the dynamical
symmetry, the generalized boost operator is constructed explicitly. Then we find one, two and
multiple shock soliton solutions and study their interactions. We show that the g-deformation
modifies the speed of our solitons, so that for g < 1 the speed is bounded above and as a re-
sult, fission of soliton takes place. Finally, we develop the ”g-semiclassical expansion” of our

equations in A = In g as higher order deformations, written in terms of Bernoulli polynomials.



1.2. Complex Functions and Quantum States

1.2.1. g-Periodic Analytic Functions

Development of infinite dimensional group theory, conformal field theory and quan-
tum integrable systems, has illuminated from new direction the classical subject known as
g-calculus (Kac and Cheung, 2002). Besides quantum groups and anyon physics, this calcu-
lus found recently applications in old classical problem of hydrodynamics in circular multiple
connected domain (Pashaev and Yilmaz, 2008). Here g-periodic analytic functions allowed
us to formulate the two circle theorem for irrotational and incompressible flow in double con-
nected domain bounded by two circles (Pashaev and Nalci , 2014), (Pashaev, 2009). Let
f(z) be the complex potential of the flow in plane, then with addition of two concentric cir-

cular cylinders with cross sections C; : |z| = r; and C; : |z| = r,, the flow between cylinders

00 00 2
FQ= ), fdd+ ), f(q%) (1.1)

n=—oo n=—oo

becomes

Here parameter ¢ has simple geometrical meaning g = r3/r; as a unique characteristic of the
double connected domain. This solution shows that complex potential is g-periodic analytic
function F(qz) = F(z). Corresponding complex velocity V(z) = dF(z)/dz is scale-invariant
analytic function V(gz) = ¢”'V(z) and admits representation V(z) = z7'A,(z), where A,(gz) =
A,(z) is g-periodic analytic function. The form of scale-invariant function W(gt) = quq(t)
is characteristic of fractal self-similar functions. So the famous Mandelbrot-Weierstrass frac-
tal function is represented in this form. Besides of hydrodynamics, analytical extension of
this function in Fock-Bargman or in coherent state representation can be used for construc-
tion of quantum wave function analog of everywhere continuous but nowhere differentiable
function of Mandelbrot-Weierstrass fractal. This is the reason why naturally to consider it as
quantum fractal. The structure of quantum fractal is typical for hierarchical lattices and phase

transitions critical phenomena (Erzan, 1997).

1.2.2. g-Analytic Functions

The g-binomial formula as a main tool to develop g-Taylor series expansion, allows us
to introduce complex valued function of complex argument which we call g-analytic function.

The Glauber coherent states and corresponding Fock-Bargman representation in quantum the-



ory give direct meaning to an entire analytic function as the wave function of quantum states.
Solutions of the planar electrons problem in magnetic field (Landau levels) and the Quantum
Hall effect (the Laughlin wave function) include an arbitrary analytic wave function, which
reflects degeneracy of the ground state.

Motivated by hydrodynamic problem mentioned above with g-periodic and self-similar
structure, in the present thesis we study complex functions under finite scaling transforma-
tions. This allows us to introduce a new class of complex functions of complex argument, de-
pending on real parameter g and reducible to analytic functions for a particular value of ¢ = 1.
The construction is based on g-derivative extension of the Riemann holomorphicity equation.
As an example of this g-analytic function we treat in details the complex g-binomial. We
show that this g-analytic function, being non-analytic in the classical sense for ¢ # 1, still is
the generalized analytic function. This function allows us to construct a new type of quantum
coherent states and quantum fractals.

As a hyperbolic version of g-analytic functions here we introduce the g-traveling wave
and g-wave equation. Also we derive the analytic Hermite binomial formula and the double
g-analytic g-Hermite binomial formulas.

All binomials formulas can be derived by specific translation operators which are
equivalent to the first order equations on g-analytic functions. As a next result we derive
the Hermite coherent states, the Kampe-de Feriet coherent states and the Bernoulli coher-
ent states. These states are related with squeezed coherent states, which have application in

quantum optics and with dynamical symmetry of quantum oscillator.

1.3. Golden Quantum Calculus

One more direction studied in present thesis is related with the so-called Fibonacci or
Golden quantum calculus. Fibonacci numbers are known from ancient times and have many
applications from human proportions, architecture (Golden section), natural plants (branches
of trees, arrangement of leaves) up to financial market (Koshy, 2001).

The Fibonacci numbers satisfy the recursion relation

F, = F, =1 (Initial Condition), (1.2)

F,=F,+F,», forn>23 (Recursion Formula). (1.3)

First few Fibonacci numbers are 1,1,2,3,5,8,13,... For these numbers, starting from de



Moivre, Lame and Binet, next representation is known as the Binet formula (Koshy, 2001):

F,=2 "% (1.4)
p-¢
where ¢, ¢’ are positive and negative roots of the equation
P-x-1=0,
respectively. These roots are given explicitly as
1+ V5 o 1-5 1
p= ¢ = =-——. (1.5)

The number ¢ is known as the Golden ratio or the Golden section. There is a huge amount
of work devoted to the applications of Golden ratio in many fields from natural phenomena to
architecture and music.

Fibonacci numbers can be considered as a particular case of Fibonacci polynomials
Fy(a):

Fi(a) =1, Fy(a)=a, (1.6)

F,.(a)=aF,(a)+ F,_(a), forn>?2, (1.7)

when a = 1: F,(1) = F,.. The Binet representation for these polynomials is

g = (=3
Fy(a) = ———, (1.8)
q- (—;1)
where parameter @ = ¢ — ¢, so that ¢ = at Vet and -0 = = Y4 are roots of quadratic

2=ax+ 1.

equation x
Here we notice that Binet formula can be considered as a special case of the so-called

g-numbers in g-calculus with two basis g and Q, where Q = —é. The pair (Q, g) calculus



generalizes the g-calculus. In particular cases when Q = 1 it becomes non-symmetrical cal-
culus. In case Q = %1 it becomes so-called symmetrical g-calculus. It appears in the study of
generalized quantum g-harmonic oscillator (Arik et al, 1992), (Chakrabarti and Jagannathan,
1991) and mentioned as a convenient form for generalization, generalization of the g-calculus
in (Kac and Cheung, 2002).

Recently, we found that it appears naturally in construction of g-Binomial formula for
noncommutative elements. Noncommutative g-binomials were considered in (Nalci Tumer
and Pashaev , in preparation ) for description g-Hermite polynomial solutions for g-Heat equa-
tion. From another side it appears also in description of AKNS Hierarchy of integrable sys-
tems where Q = R is recursion operator of AKNS Hierarchy and ¢ is the spectral parameter
(Pashaev and Nalci , 2014).

In the present thesis we would like to explore the possibility to interpret Binet formula
for Fibonacci polynomials and Fibonacci numbers as g-numbers, and develop corresponding

g-calculus.

1.3.1. Generalized g-Deformed Fermion Algebra

In addition to g-bosonic quantum algebra several attempts were done to construct g-
deformed fermionic oscillators (Parthasarathy and Viswanathan, 1991). These fermionic
quantum algebras were applied to several problems: for the dynamic mass generation of
quarks and nuclear pairing (Tripodi and Lima, 1997), (Timoteo and Lima, 2006), as de-
scription of higher order effects in many-body interactions in nuclei (Sviratcheva et al. ,
2004), (Ballesteros et al. , 2002).

A non-trivial g-deformation of the fermion oscillator algebra has been proposed in

(Parthasarathy and Viswanathan, 1991):

N
2

fofg +Nafifo=a (1.9)

[N.fi1=fr, [N fil=—f; f;#0. (1.10)

In this g-deformed fermionic oscillator algebra, the Pauli exclusion principle is not valid any-
more. The oscillator allows more than two g-fermions in a given quantum state. For such g-

fermion algebra the Fock space construction requires to introduce the "fermionic g-numbers"



(Parthasarathy and Viswanathan, 1991),

) = -6 (1.11)
q 2 +q
For generic g, this representation is infinite-dimensional. Though in the limit ¢ — 1, the
Fock space reduces to two states: the vacuum state and one-fermion state, so that the Pauli
principle is recovered. Here we note that this fermionic g-number (1.11) under substitution
q— \/%7 becomes Binet formula (1.8) for Fibonacci polynomials F "(\/Lq — 4/9), and for Golden
Ratio base g = é, it gives Fibonacci numbers (1.4). This relation allows us to connect
Fibonacci polynomials and Fibonacci numbers considered as g-numbers, with fermionic g-
numbers (Parthasarathy and Viswanathan, 1991). Statistical properties of these g-deformed
fermions were investigated in (Chaichian et al. , 1993) for description of fractional statistics.

Later it was shown (Narayana , 2005) that the thermodynamics of these generalized fermions

should involve the g-calculus with Jackson type g-derivative in the form

1 £(g" %) = f(=qx)
x qg+q!

D;f(x) = (1.12)

Here we notice that under substitution g — é this derivative becomes the Fibonacci deriva-

tive (8.21), and for g — }0, the Golden Derivative (8.22). The above consideration indicate
on emergency of the Fibonacci g-calculus in description of g-deformed fermions and their

statistics.

1.3.2. Hecke Condition for R Matrix

Another motivation is related with quantum integrable systems approach to the theory
of quantum groups via solution of the Yang-Baxter equation for the R-matrix (Faddeev et al.
, 1990). If one introduces the R matrix, R = PR, where P- is permutation matrix, then this
invertible R matrix obeys a characteristic equation. For two roots, this equation is represented

in the form of the Hecke condition

(fe—qi)(zh}]i) =0 (1.13)



or

R*=aR +1. (1.14)

By studying representations of the braid group satisfying this quadratic relation, (Jones ,
1987) obtained a polynomial invariant in two variables for oriented links. If calculating higher

powers of matrix R, we repeatedly apply the Hecke condition (1.14) as a result we find

R" = F(@)R + F,_,(a)], (1.15)

where F,(a) = aF,_i(a) + F,_»(a) - are Fibonacci polynomials (1.8) witha = g — %1.

1.3.3. Entangled N Qubit Spin Coherent States

One more motivation is coming from quantum information theory. The unit of quan-

tum information, the qubit, in the spin coherent state representation

1 1
) = —( J (1.16)
1+l LY

is parametrized by complex number ¢ € C, given by the stereographic projection ¢ = tan gei¢

of the Bloch sphere for qubit
0 .0,
16, ¢) :cos§|0)+sm§e’¢|1). (1.17)

For arbitrary representation j of S U(2), the scalar product of two coherent states is

(1+¢y)¥
(1 + g1+ )

(Ply) = (1.18)

The orthogonality condition (@) = 0 implies 1 + g = 0 or a two states at the inverse-

symmetric points in the unit circle ¥ and ¢ = —% (Pashaev and Gurkan , 2011). These points



correspond to antipodal points on Bloch sphere, M(x, y, z) and M * (—x, —y, —z). According to
these points, recently we have constructed maximally entangled set of orthonormal two qubit

coherent states (Pashaev and Gurkan , 2011),

1 1\| 1
Py = — +l—=)|-= 1.19
|P.) \/E(IWILZ'H lﬂ>‘ l//>) (1.19)
1 1 1
G.) = —(W)—|=)%|-= 1.20
IG.) ﬁaw 'w>+ ¢>"”>) (1.20)

with concurrence C = 1. These states generalize the Bell states and reduce to the last ones
in the limit ¢ — 0 and —% — oo. This construction can be extended to arbitrary N-qubit

coherent states. First set of entangled states expanded in computational basis is

Y - |-y
——— = Fi(a,p)(]10..0) +01...0) + ... |00...1)) (1.21)
g+
+F5(a,B)(]110...0) +|101...0) + ...|00...11)) (1.22)
we + Fy(a, B)(111...1) (1.23)

and is characterized by the set of complex Fibonacci polynomials F,(a), where a = ¢ —

|-

Another set of entangled N-qubit coherent states is
1w
[N + _E> =100...0) + L,(a,$)(]110...0) +|01...0) + ...|00...1)) (1.24)
+L(a,£)(|1110...0) +[101...0) + ...100...11)) (1.25)
o + Ly(a, B)(I111...1) (1.26)

and is characterized by complex Lucas polynomials L,(a,8) = y" + (—%)”. The inverse-
symmetric points ¢ and —%D are roots of complex quadratic equation z> = az + 8, where
= 1&—% and B = % From polar representation of complex numbers iy = ge'® and z = re’® we
getr’ =ar+1, wherea = g — %I, and " = rF,(a) + F,_1(a) with Fibonacci polynomials F',(a)
(1.8). The interesting point here is that the symmetric points under the unit circle appear in
the problem of vortex images in circular domain (Pashaev and Yilmaz, 2008), where these
points correspond to the line vortex at ¢ and its image in the circle at i Then parameter a,
a = ae in Fibonacci polynomials has simple geometrical meaning as the distance between
vortex and its image. In particular when this distance is equal to one, a = g — é = 1, the
1+5

position of the vortex is at the Golden Ratio distance from origin r = ¢ = == and Fibonacci



polynomials turn to Fibonacci numbers. In this case the line interval connecting vortex and
the inverse-symmetric point intersects the unit circle at a point which divide this interval on
two parts of length ¢ and .

The above motivations show that Fibonacci g-calculus is interesting subject to develop
with fruitful potential applications.

The goal of the present thesis is to study quantum calculus of classical Heat-Burgers’
hierarchy and quantum coherent states.

The thesis is organized as follows.

In Chapter 2, we study random walk on g-lattice and g-deformed heat equation. After
introduction of the heat and Burgers’ equations by Cole Hopf transformation in Section 2.1
we discuss shock soliton solutions and IVP. Random walk on g-lattice as Fermat partition
and its relation with g-heat equation with specific g-dependence for time and space variables
are discussed in Section 2.2. To describe exact solutions of this equation here we introduce
and study a new type of g-exponential functions. Section 2.3 is devoted to solution of g-heat
equation in terms of these new g-exponential functions. This solution includes g-oscillator
hierarchy and allows extending to a family of g-heat equations. Then we show that specific
case of random walk on g-lattice is described by the symmetrical g-calculus.

In Chapter 3, a new type of heat equation with nonsymmetric g-extension of the diffu-
sion term is introduced, which we call g-diffusive heat equation. We find polynomial solutions
of this equation as generalized Kampe de Feriet polynomials (Section 3.3), corresponding dy-
namical symmetry and description in terms of Bell polynomials in Section 3.4. By using
the Cole Hopf transformation the g-viscous Burgers’ equation is derived in Section 3.5. Its
solutions as shock solitons and their interactions are constructed and analyzed for different
q values. Due to specific dependence of the group velocity on wave number, in addition to
fusion of the solitons as in usual Burgers equation, a new process of fission of shock solitons
with higher amplitude is shown. In Section 3.6 the semiclassical expansion of these equations
is obtained in terms of Bernoulli polynomials as corrections in power of In g. The Béacklund
transformations are subject of Section 3.7

In Chapter 4, we introduce a new class of complex valued function of complex argu-
ment which we call g-analytic functions (Sections 4.1-4.5), satisfying g-Cauchy-Riemann and
g-Laplace equations. We show that g-analytic functions are not the analytic functions in the
usual sense. However some of these complex functions fall to the class of the generalized an-
alytic functions (Section 4.6). A new type of quantum states as g-analytic coherent states and
corresponding g-analytic Fock-Bargmann representation are constructed in Sections 4.8-4.9.

In Chapter 5, the concept of g-analytic function is extended to expansion of g-binomial
in terms of g-Hermite polynomials (Sections 5.1-5.3), analytic in two complex arguments.

Based on this representation, we introduce a new class of complex functions of two complex

10



arguments, which we call the double g-analytic functions (Section 5.4). As another hyperbolic
extension, in Section 5.5 we describe the g-analogue of traveling waves, which are not pre-
serving the shape during evolution. Then IVP for g-wave equation is solved in the g-Hermite
polynomial form.

In Chapter 6, we introduce g-translation operator acting on monomials, which pro-
duces g-binomials, g-analytic and g-anti analytic functions, and g-travelling waves. Another
type g-translation operator as g-commutative (non-commutative) translation operator is intro-
duced. This produces non-commutative binomials, functions for non-commutative coordi-
nates. All these translations can be described by first order g-difference equations.

In Chapter 7, applying evolution operator to Glauber coherent states, we introduce a
new type of quantum states as Hermite coherent states (Section 7.2) and Kampe-de Feriet
coherent states (Section 7.4), characterized by Hermite polynomials and Kampe-de Feriet
polynomials correspondingly. In Section 7.5, we find a generalization of the Mehler for-
mula. By this formula we normalize these Coherent states and construct corresponding
Fock Bargmann representation. In section 7.6, we introduce Bernoulli coherent states are
related Fock-Bargmann representation. By g-translation operator in Section 7.7, we discuss
g-coherent states.

In chapter 8, we introduce Golden quantum calculus. By Fibonacci and Golden deriva-
tives we derive main ingredients of these calculus as Golden Leibnitz rule, Taylor expansion,
Golden binomial and Golden integral. In Section 8.3 we study Golden quantum oscillator and
its angular momentum representations.

Conclusions of this thesis are given in Chapter 9.

11



CHAPTER 2

RANDOM WALK ON QO-LATTICE AND Q-HEAT
EQUATIONS

Here by considering random walk on g-lattice as Fermat partition we introduce a new
type of g-heat equation with specific g-dependence for time and space variables. In order to
find exact solutions of this equation a new type of g-exponential functions are introduced and
some properties are studied. These g-exponential functions are generalizations of Jackson’s g-
exponential functions. We obtain a solution of g-heat equation in terms of these g-exponential
functions. This solution includes g-oscillator hierarchy and allows extending to a family of
g-heat equations. Then we show that specific case of random walk on g-lattice is described

by symmetrical g-calculus.

2.1. Random Walk on Equidistant /s-Lattice and Heat Equation

Consider a symmetric random walk on one dimensional lattice. Starting from the

origin, a particle moves one step to the right or the left with equal probabilities %

Random Walk on equidistant lattice

STEN

Figure 2.1. One dimensional random walk on equidistant lattice with step-size Ax

The consecutive steps are independent and taken at times

h=kAt, k=1,2,3,..

12



with the step size (lattice distance) Ax, so that the set of possible positions of particle is
x = kAx.

The function X(#, x) indicates whether the side x is occupied (X = 1) or unoccupied

(X =0) at time # and
u(te, xi) = P{X(tr, x) = 1}
shows the probability that at time #, the particle is at site x;. Then we can write

1 1
U(tpsr, Xi) = Eu(tkaxk—l) + E”(tk,xkﬂ)- (2.1)

This equation can be rewritten as follows:

1
U(txgr, X)) — ulty, Xp) = 3 (Wt Xp—1) + u(te, Xe1) — 2u(ty, xp)) - (2.2)

Let u(ty, xi) = u(t, x) and expand both sides in Taylor at x, 7 :

utesr, X)) = u(t+At,x) = u(t,x) + % At + O((A1)?), (2.3)
2
u(ty, Xee1) = u(t,x = Ax) = u(t,x) = Ou Ax + Lou (Ax)* + O((Ax)?). (2.4)
ox 2 Ox2

Substituting (8.33) and (8.34) into (2.2) we get

du _ 1892 Fu
ot 2 At 0x*

(Ax)?

T:alsa

We see that for (At — 0) and (Ax — 0) nontrivial dynamics only happen when

constant.



Thus we obtain the linear heat equation as

% = v%, (2.5)
where v = 4.
2.1.1. Burger’s Equation and Cole-Hopf Transformation
Nonlinear heat equation which is also known as Burger’s equation is
Uy + ULl = VUL, (2.6)
By using the Cole-Hopf transformation
u(x, 1) = —ZVZX((XX”;), 2.7)
the equation (2.6) reduces to the linear heat equation
¢ = Vs (2.8)

Shock soliton solutions are particular solutions of this equation.

2.1.2. IVP for Burgers’ Equation

IVP for the Burgers’ equation defined in the following form

Uy + Uy, = VUyy, t> O,

u(x,0) = F(x), —oc0o<x<oo,

14



can be transformed to IVP for the Heat equation

¢t = V¢xx’
$(x,0) = e [ Fwd

Solution of the IVP for heat equation

1 0 -
d(x, 1) = f ¢(n,0)e” +dn
Vanrvt J-co

implies the solution of IVP for Burgers’ equation in the following form

” ﬂe‘%dn
ZV&— !

u(x,r) = - = —= <5
¢ f_m e vdn

b

where

L —_ )2
G(n; x, 1) = f Fay)dy + (x 2t77) .

2.1.3. Shock Soliton Solutions of Burgers’ Equation

One of the simplest solution of the heat equation

¢ = Vs (2.9)

is

p=e", m=kx+wt+n (2.10)
1

15



with w; = vk?. Parameterizing k; = a;/2v, we have

4 “% 0
¢ = e~ Xt R

The corresponding solution of Burgers’ equation is

u(x,t) = —2v¢—x =ay. (2.11)

¢

Since the heat equation is linear, any superposition of solutions is also a solution (su-

perposition principle). Then for
; a
p=€"+e"”, = A s iy n,  (i=1,2),
%

the corresponding solution of Burgers’ equation is in the form of shock solitons

m 72
u(x,r) = UE 0 (2.12)

en + e

with asymptotics: u — a; if x - —c0, u — a, if x = +o0, where 0 < k; < k.

2.1.4. Initial Step Function to Shock

Importance of shock solitons follows from initial value problem with step function:

ai, x>0
u(x,0) = F(x) =
a, >a;, x<0.

Then at time ¢ > O :

a, —a

u(x,t) =a + = (2.13)

1 + h(x,t)e— > (-vi=%0)

where v = 434

16



Figure 2.2. Initial step function

When x — oo, — o0, so that x/¢ is fixed and we obtain shock soliton solution

00 _72
f(xfalt) e { dg

h(x,)= —2 51, (2.14)
S e dg
Vvt
4 ’@ ;

Figure 2.3. Shock soliton solution
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2.2. Random Walk on g-Lattice and g-Heat equation

2.2.1. Fermat Partition and g-Lattice

Pierre de Fermat (1601-1665), along with Descartes (1596-1650), invented xy— co-
ordinate system and analytic geometry. Besides developing analytic geometry, Fermat and
Descartes were also early researchers in the subject that we now call the g calculus.

Fermat evaluated the area under the graph of a power function y = x%, where « is a

rational number except —1, that is, how he determined what we now write as

aa/+1
xYdx = )
0 a + 1

He approached the area by rectangular estimates.

y=x"ol

ag™n + ¢+ agh3  agqhz ag a

Figure 2.4. Area on g-lattice

Fermat partitioned the interval [0, a] into subintervals which are not the same size, but
ordered in geometric progression.

Let us calculate the area under the curve of y = x in interval [0,a] by Fermat’s upper
rectangular estimates. For 0 < ¢ < 1, we divide the closed interval [0, a] into n-subintervals

of different lengths at the points ¢°a, ¢' a, ¢* a, ¢’ a, ..., ¢" a, then the partition is

Play, ay,a,, ...,a,} = {a, qa, q2a, ..q"a}.

18



The width of the leftmost subinterval is Aa; = ay — a; = a — ga = a(l — g), the next one
Aa; = a; — ay = ga(l — g), and the last one is Aa, = a,_; — a, = ¢"'a(1 — g). Then, the sum

of rectangular areas from right to the left is expressed in terms of the Riemann Sum S7 as

n

> flevha

k=1

— aa+l(1 _q)zn:(qar+l)k_l
k=1

— aa/+l(1 _ q) Z Qk—l
k=1

A q)(l + O+ QP+ ..+ Q"‘l), (2.15)

%]
o 3
Il

where ¢**' = Q.

The exact area is given by the limit

lim S} = a®'(1-¢q)

N0 1= qa+1 >

aa+1

where Q = ¢**! < 1. Now if ¢ — 1, then S g — 77> which is exact value of the integral.

2.2.2. From Fermat’s Approach to Jackson’s Integral

Let us evaluate the area under the curve y = f(x) in the interval [0, x] by using Fermat

partition

P{X0, X1, X2, eor X} = {X, @X, X, ..., ¢"x = O},

where 0 < g < 1. The Riemann sum is obtained as

9%)
3
1]

vo= x(1-9) ) f(¢'x) "
k=1

x(1=q) ) f(4x)d" (2.16)
=0
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When n — oo, we obtain the Jackson’s integral

lims; = x(1-9) ) f(¢'x)¢’
=0

f fdyx = F(x). (2.17)

2.2.3. g-Lattice and Symmetric Points in Two Concentric Circles

Inversion of point a in circle with radius R is %

Figure 2.5. Inversion of point a in circle R

Inversion of point a in 2 circles with radiuses R; and R, is determined by infinite set

of points

1 1 )
s =0, —d, 4, aq, aq’, ...

q9°- q

LR R R LR

s ’q_’q_a“'
q a a a a

Boundary value problem corresponds infinite set of vortex images arranged as two
. . R’
g-lattices with g = ot
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2
Figure 2.6. g-Lattice of hydrodynamic vortex images in annular domain, g = %
1

2.2.4. Random Walk on g-Lattice

Now let us consider a non-equidistant random walk on the one dimensional lattice.
Starting from the origin, a particle moves one step to the right or the left with different prob-
abilities, which are inversely proportional to the distances. Here, the lattice constructed by
geometrical progression rule x; = g*x,, where ¢ > 1 and k = 0, +1, +2, ..., and corresponding

probability moves one step to the right is ﬁ and one step to the left is %{.

Random Walk on g-Lattice

g i
g+4 2 g+l
BN Y
- #xl{ Xp QX X.FQY" X

Figure 2.7. One dimensional random walk on g-lattice

The consecutive steps are independent and taken at times

t=0%, k=1,2,3,..
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with the step size (lattice distance) Ax, so that the set of possible positions of particle is

_ k
Xk = (4 Xp.

The function X(#, x) indicates whether the side x is occupied (X = 1) or unoccupied

(X = 0) at time ¢, so that

u(ty, xx) = P{X(t, xp) = 1}

shows the probability that at time #, the particle is at site x;. Then we can write

u(t, Xp—1) + U(t, Xie1)-

q
+1 qg+1

U(tisr, X)) =

This equation can be rewritten as follows

u(ty, Xg-1) + Uty Xie1) — U, Xi). (2.18)

q
a1, X)) — uty, Xp) =
U(tisr, Xi) — Uy, Xi) 1 o

We denote u(ty, x) = u(t,x), t=t, = Q, x = x, = ¢*xo. Then we can write

u(tier, xx) = u(Qt, x),

u(ty, xgp1) = ult, gx),
X

l/l(tk, -xk—l) = M(t, 5)’

and the equation (2.18) can be rewritten in the following form

WO, x) — u(t,x) = q;ilua, §>+q+1u<r,qx)—u<r,x>
(O - DiDou(t,x) = ——u@r,Zy+ u(t, gx) — Ut x) — ——u(t. %)
R N e 4 g+1 7 g+1 "’

(0 - l)tDtQu(t, X) L qu(t, g) + u(t,gx) — (g + Du(t, x)

q+1
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(Q — DtDlyul(t, x) %Mi‘ (9(q = 1’ XD} u(t, x))

+1

04(Q — DiyDyu(t, x) T

%Mf (atq - D’ D utt, x), (2.19)

and we get

(¢-1D’qq* xo
(g+1)(Q-1D0k 1

M Dy u(t, x) = (D) u(t, x) (2.20)

where the partial g—derivatives are defined as

04D 0Dy = M2 ) @21)

(g-Dx e Q-

Du(t, x) =

and dilatation operator is Mji‘u(t, x) = u(t, gx).
By proper choice Q = ¢? in order to make equation (2.20) independent of steps number

k, we obtain the (g, g°)— heat equation
Dsu(t, x) = VME(D;)ZM(I, x) (2.22)
or it can be written as
th u(t, x) = vD’%j Dyu(t, x),
where
—=a, —— = (2.23)

Random walk on g-lattice produces different kind of Q-space difference g-time differ-
ence heat equations. As a special cases we mention :
In (Nalci and Pashaev, 2010), (Nalci and Pashaev, 2014) we studied the case Q = ¢q : g-
Space-Time Difference Heat equation, its polynomial solutions and corresponding g-Burgers’
equation with g-shock soliton solutions.

Furthermore in (Pashaev and Nalci, 2012), (Nalci and Pashaev, 2014) the case Q = 1 :
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g-Space Difference and Time Differential Heat equation is studied with details.
In order to solve (g, ¢?)- heat equation (2.22) we need to introduce new type of g-

exponential functions.

2.2.5. New Family of g-Exponential Functions

Definition 2.1 N-Weighted q-exponential function is defined as

O yreen X"
ve0 = ) ¢ s (2.24)
n=0 q-

The g-exponential function ye,(x) is entire function for N > 0and g < 1,and N <0
orO<N<landg>1.

Particular cases of this exponential function are:

1. For N = 0 it reduces to Jackson’s g-exponential function

0ey() = eg(x) = )| (2.25)

'9
— [n],!

which is an entire function of x for ¢ > 1, and for g < 1 it converges for |x| < lqlfll.

2. For N = 1 it is the second Jackson’s g-exponential function

S ey X"
() =E,(0)=)q" T (2.26)
n=0
It is easy to see that
ei(x) = E,(x). (2.27)

Lemma 2.1 g-Derivative of the exponential function ye,(ax) is found as

D} yey(ax) = a yey(aq"x). (2.28)

24



Proof By direct application of g-derivative we find

) n =) 1 o
n(n 1) ax n(n D d x" n(rl 1) )Cn
D~ Ne (ClX) — — E E 5 anan+l
q q : : | —
ey n]q. g [n 1 s [n],!
= Neq(aq X).

Lemma 2.2 Due to the symmetry between q and [11, the g-exponential function ye,(x) satisfies

the following reciprocity relation

ne1(x) =iy eq(x). (2.29)
Proof By using the definition of g-numbers, the relation between g and é—numbers is found

as
[n], = q"‘l[nlé, (2.30)

and the relation between g and }I—factorials is obtained in the form

nn=1)

[n],!=q T [n]1 L (2.31)

Then, by using the definition of N-weighted g-exponential function and the relation (2.31) we
get the desired result

n=0 n=0 [n ]q 1-N
l—Neq(x)-

[} 1 NM [}
n(n 1) n(n 1) 1-N n(n 1) x
ver(r) = > (= = g Zq( et e ()
a q In ”]q p

O

For N = 0, we obtain the known relation between the first and the second Jackson’s

g-exponential functions

Oeé(x) = eé(x) =1 e,(x) = E (x). (2.32)
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This reciprocity relation gives transition between two Jackson’s g-exponential functions or

gives transition between symmetric points in the unit circle, g and %/'

2.3. g-Heat Equation

After introducing a new type of g-exponential function ye,(x) , in order to solve the

(¢, ¢*)-heat equation
M Dput, x) = (D ult, ), (233)

we consider the separation of variable method u(z, x) = T(#)X(x). By taking corresponding

derivatives

DT (D)*X(x)
I  X(gx)

2

we obtain two equations which only depends on ¢ and x,

—v*T (1), (2.34)
—k*X(gx). (2.35)

D, T(1)

(D’X(x)

The solution for time dependent part (2.34) is found in terms of Jackson’s g-exponential

function e, (x) with base ¢* as
T(t) = T(0)e (—vkD),

where 7'(0) is the initial condition. The solution of space dependent part (2.35) is obtained in

1

terms of new g-exponential function ye,(x) with N = 3 in the following form

X() =, ¢, (ilﬂ) (2.36)
q4
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As aresult, particular solution is obtained as

us(0) = XWT(1) = ¢ (ii;—j) e (—viD). 2.37)

Definition 2.2 New family of g-trigonometric functions are defined in the following form

neg(ix) +n ey(—ix)

N €COS4(x) = > ,
sin (x) = a0 T (TR0 (2.38)
2i
which satisfy the relations
NCOS1(X) = _yCOSy(xX) (2.39)
nysini(x) = j_ysing(x). (2.40)

Their derivatives are found as
D, ysing(ax) = a y cosq(qN ax),
D} y cos,(ax) = —a y sing(q" ax).

Then, a general solution is written in terms of new family of g-trigonometric functions in the

form

KX
q1/4

KX )
u(x, 1 = (A; cosq(W) + B% smq(—)) eqz(—wczt), (2.41)
in which we introduce Euler type formula

neg(ix) =y €os,(x) + iy siny(x). (2.42)

Here, A and B could be fixed by initial functions, but in order to fix « we need to use boundary
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conditions, which requires to study zeros of 1 cos,(x) and 1 sin,(x) functions.
In Figures 2.8 and 2.9, we compare Jackson’s g-exponential function and %-weighted
g-exponential function 1e4(x) with the standard exponential function e* for different values of

q.

Figure 2.8. g-Exponential function e,(x)

Figure 2.9. %—Weighted exponential function 1e4(x)

If we consider the Dirichlet boundary conditions X(0) = X(L) = 0 for (g, g*)-heat

equation we obtain the solution as
) X
M(X, l) :% smq(m)eqz(—t), (243)

where for simplicity we choose B =1, k =1, v=1and L = q%xo, Xo = 4.6 is a zero of
1 sin,(x)

In Figure 2.10 we see the solution of (g, g*)-heat equation at time ¢t = 0.1 for g =

0.5, ¢ = 1.2, and g = 1 with interval depending on q.
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Figure 2.10. Solution of (¢, ¢*)-heat equation at time ¢ = 0.1

2.3.1. g-Oscillators Hierarchy
The g-oscillator equation is defined as
(DL) () + v = 0, (2.44)
with the g-exponential solution as
(1) = Aey(iwt) + Bey(—iwt) = acos,(wt) + b sing(wi). (2.45)

But previous consideration implies the g-oscillator equation in the following time delateted

form
t 2 2
(DY) () + wy(gn) = 0. (2.46)

It has a solution as N-weighted g-exponential function with N = %

lw w w . W
y(t) =A %eq (Wt) +B %eq (—Wt) =da % COSq(WZ) +b % Slnq(mt). (247)

For arbitrary N-weighted g-exponential function we introduce the g-oscillator hierar-
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chy
2
(D}) y(0) + w?y(g"t) = 0. (2.48)
The general solution for M-th member of family of g-oscillators is

iw iw w . w
) =A ue, (Wt) +B uey (_Wt) =au Cos, (Wt) +b M Sing (Wt) . (2.49)

2.3.2. Family of g-Heat Equations

The above hierarchy of g-oscillators suggests to introduce a family of g-heat equations

in the form
Diyu(g" x, 1) = (D)) u(x, 1) (2.50)
whose general solution is given by

IK K
u(x, 1 = eQ(—Kzl‘) (A %eq(W)x + B A;eq(—Wx))

eo(—K20) (a y cosq(ﬁx) +by sinq(ﬁx)). @.51)
Property: The eigenvalue problem for g-weighted g-exponential function is
((M;)ND;‘) ve ax) = aye,(ax). (2.52)
Property: The higher order equation

(D)*f(x) = Af(g"x) (2.53)
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has solution in the following form

ﬂ}/k
f(x) =u e (—x] (2.54)

k—1
A

2.3.3. Multiple ¢, g0 Numbers

Definition 2.3 The g-number with two basis q, and q, is defined (Nalci and Pashaev, 2014)

as

q) — ¢,
(nly . = —- (2.55)
e q1 — 92

By choosing ¢, = ¢" and g, = ¢!, the g-number with two basis (g;, g,) is written as

_ @ =@ " -g"

n—1
[12]gv gv-1 gV — gV - g"(1 -q™") - qN( )[n]i’ (2.56)
and the g-factorial with two basis (¢", ¢" ') becomes
[y g = ¢V°F [l . (2.57)

Definition 2.4 (q,, g2)-Exponential functions are defined (Nalci and Pashaev, 2014) in the
following form

g (X) = ! (2.58)
q1-92 n:O [n]zh o
S|
Epp() = ) o—i(@14)™ ¥ (2.59)
n=0 q1.92 *

Proposition 2.1 N-weighted g-exponential function is written in terms of q-exponential func-
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tion with two basis (q", g" ") as follows

Neq(x) = EqN,qN—I (x) (260)

Proof Using definition of (g, g»)-exponential function (2.59) with bases g; = ¢"¥ and g, =

¢"~! we have E v ,v-1(x) as follows

[ee] 1 [e+]
_ N N- 1 n(n 1) N-1 n(n—1)
R ) Y BT
=0 " .q pn
[y q@ %) n(n 1)
N N 1 n(n 1)
= ZWW(CI Z X =y e (). (2.61)
N=0 9" % nlg:

Definition 2.5 The (g, g2)-analogue of (x — a)" is the polynomial (Nalci and Pashaev, 2014)

ifn=20,
q1.92 —

(x a)n —
(x— g 'a)x - ¢ qa)..(x — gy Pa)(x — g5 a) ifn>1

Proposition 2.2 The N-weighted q-exponential function has factorization formula

Neg(X + V)N gv-1 =N e%(x) neg(y). (2.62)

Proof By using the factorization formula (Nalci and Pashaev, 2014)

e‘]iy‘]j('x + y)‘IisCIj = eqivqj(x)Eqisf[j(y) (263)
for g; = ¢" and q; = ¢V~ we get
eqN’qN—l(X + y)qN’qN—l = eqN’qN—l(x) EqN’qN—l(_y)
——
Eq—NA’qI—N
Neg(X + V)N v = Neé(x) neg(y). (2.64)
O

For special choice N = %, the N-weighted g-exponential function with N = % is written
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in terms of exponential function (2.59) with base ( /g, %F)

ey(x) = E\f L (x). (2.65)

1
2

For base (4/q, \/Lq), it is easy to see from definition (2.4) that both exponential functions are

the same

160 = E g1 (¥) = e (x) = (), (2.66)

2

which means that for symmetric basis, the exponential functions coincide. Here, ¢ 5(x) is the

symmetric g-exponential function which is defined as

— ~ x"
e\/g(x) = E\/q(x) = ,V] " (2.67)
n=0 L7 Va-

—

where the symmetric [n] Jg-humber is

(V-
(= (2.68)
R Gl

The factorization formula for N = % is

1e(x+y) g1 =1 er(x) re1(y) = e g(x)e g(), (2.69)
where
ot (x+y) . ek
16 (X +) 5 1 Z i (2.70)

and symmetrical binomial is

(X+y)\f (X + (V")) + (V@) 73).(x + (VD) (x + (V@) ™9). (2.71)
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As a result, the g-difference equation (2.35) has a general solution in terms of sym-

metric exponential functions as

KX — KX
X(x) = D%eq ti—|=Deyg|xi—
q* q*

:Aﬁ@(g)+B§fflﬁ(g), (2.72)
G g

where symmetric +/g-trigonometric functions are

EBE\@(x) _ e yq(ix) +26 W(—lx)’ (2.73)
?@(lx) - Z\/;](—lx)
2i ’

sin g(x) = (2.74)

Applying to the random walk on g-lattice, equation (2.20) can be written in the fol-

lowing form

(O DiDyult,x) = —— (qu(l, 5y ¥ udt, gx) — (g + Duc, x))
g+ q
_ ( _L)Z 2([)7)2 ¢ 275
- q + 1 \/_ \/a \/a-x \/‘? l/l( ,X), ( . )

where symmetric 4/g-derivative is defined as

fivan - f( =)
(Vi- o

D)i@f(x) = (2.76)

We denote 1 = 1,0%, x = xoq*. To get an equation independent of steps numbers k, we choose

O = ¢*, and hence we find the following ¢-heat equation

D'u(t, x) = v(ﬁ{//q)zu(t, x), (2.77)
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where
(g-Da x5 _

Nalg+ 1> 1
By the method of separation of variables u(t, x) = T(£)X(x), particular solution is

14
found
u(t, x) = ep (VK 1)e (kx), (2.78)

which is the generating function of new type of Kampe de Feriet polynomials

_ S
ep(VIRHE g(kx) = ' K1), (2.79)

N=0 """~

where

] NIXN=21(ve)
2 [n] 2N =2n] 4!

Ky(x,t;q) = (2.80)

n=
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CHAPTER 3

Q-DIFFUSIVE HEAT EQUATION AND Q-VISCOUS
BURGERS’ EQUATION

Here we propose a g-diffusive heat equation with nonsymmetric g-extension of the
diffusion term. Written in relative gradient variables, this system appears as the g-viscous
Burgers’ equation. Exact solutions of this equation in polynomial form of generalized Kampe
de Feriet polynomials, corresponding dynamical symmetry and description in terms of Bell
polynomials are derived. We find the generating function for these polynomials by applica-
tion of dynamical symmetry and the Zassenhaus formula. Shock soliton solutions and their
interactions are constructed and analyzed for different g. For ¢ < 1 the soliton speed becomes
bounded from above and as a result, in addition to usual Burgers soliton process of fusion, we
found a new phenomena, when soliton with higher amplitude but smaller velocity is fissing
to two solitons. In terms of Bernoulli polynomials we develop the semiclassical expansion of
these equations. Finally, we obtain the Bédcklund transformation which relates two solutions

of g-viscous Burgers equation.

3.1. QO-Diffusive Heat Equation

We introduce g-diffusive deformation of the heat equation in the following form

2

v P
ox?

0
5 P10 = [ L P(x, 1), 3.1

where v is diffusion constant and the g-operator

0? qV% -1
[ ] _g ol (3.2)
q

V@ q-—1

is defined as a formal power series. In the limiting case ¢ — 1, equation (3.1) reduces to the
standard heat equation.

By the method of separation of variables we search solution of this equation in the
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form
P(x,1) = X(O)T (0).
Substituting this into (3.1) we get

T el X0 .
T — Xx)

As aresult, we obtain two ordinary differential equations

T'(f) + AT(7) = 0,

62
Vi

q

Solution of the first equation in ¢ is

T(t) = e MT(0),

where 7T'(0) is a constant.

3.1.1. Finite Interval Case

X(x)+ AX(x) = 0.

(3.3)
(3.4)

For the space part we consider the following eigenvalue problem on finite interval with

the Dirichlet boundary conditions

62
[V@L X(x) —AX(x),
X(0) =X

I
e

(3.5)
(3.6)
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In order to solve this problem, we use the following boundary value problem

—X'(x) = pX (),
X©0)=X({) =0, (3.7)
with eigenvalues
nm\?
m= (") (3.8)
and the corresponding eigenfunctions
2
X, (x) = \/; sin . (3.9)

This set of eigenfunctions is orthonormal and complete in L?. Then, substituting the last

equation to equation (3.5), and by using definition of the g-operator we obtain

Vﬁ qg-1

g -1
q-—1

[ 62] XG0 = q”%X(x)—X(x)
q

X(x) = [-uv], X(0), (3.10)

which gives the following relation between the eigenvalues of g-equation (3.5) and equation

(3.7
A=—[-pv],. (3.11)

Therefore, solution of the g-deformed initial value problem (3.5) is obtained in terms of solu-

tion of standard Sturm-Liouville problem (3.7) with eigenvalues as g-numbers

P R [—(T)Z v] ,

q
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and the corresponding eigenfunctions as in (3.9).

Then, we find a particular solution of g-diffusive heat equation (3.1) in the form

nmw

Pu(x, 1) = X, ()T, (1) = T (0) \/g sin 7%

where 4, = —[-(%)*v],.

Figure 3.1. Evolution of n = 1 solution at time 7 = 1

Figure 3.2. Evolution of n = 2 solution at time ¢ = 0.1

In Figures 3.1 and 3.2 we show particular solutions for n = 1 and n = 2 modes
correspondingly, in g > 1, ¢ < 1 and ¢ = 1 cases. As we can see, comparing with the usual
heat equation with ¢ = 1, depending on ¢ the decaying process is going faster for ¢ < 1, or

slower for g > 1.

The general solution is a proper superposition of these solutions

- nm - nx nm
b(x, 1) = § A,e~ sin Tx= E A, e gin X (3.12)
n=1 n=1
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To fix the Fourier coeflicients A, we pose the following IVP

¢(x,0) = f(x),

so that we get
- nm
,0) = = > A,sin —ux.
¢(x,0) = f(x) ZO sin

Then the coeflicients are found as

[
a,=2 f o0 sinZZ v dix,
I Jo l

and solution is obtained in the form

b(x, 1) = %2 fo [ dy () sin(%rx) sin(?y) e, (3.13)
We define the Green function for equation (3.1) as
Gx,y;1) = %;sin($x) sin($y) Uy, (3.14)
so that solution of IBVP is

)
o(x,1) = fo Gx,y: 0 f()dy. (3.15)

The Green function (3.14) as evident, satisfies G(x, y;t) = G(y, x; t) and at initial time

t = 0 it is just the Dirac delta function

o0

G(x,y;0) = % > sin($x) sin(?y) = S(x - ). (3.16)

n=0
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Due to relation

d\ . .
F (—) ™ = F(ik)e™, (3.17)
dx

where F is an analytic function, which implies

dz
t P —
e

inm
a2 ]qeil X

_ (), i x
=e ] ‘Ie 1 s

we can rewrite (3.14) in an operator form by using the evolution operator

2 o 2
G-yt = eVitks—y) =23 eizhsin() sin(“Fy)
I £ I I

2 - nm
= Z et sin(?x) sin($y). (3.18)
n=0

3.1.2. Infinite Interval Case

Now we consider the initial value problem for g-diffusive heat equation in infinite

interval:

0 0?
E(}S(x, 1) [V@L o(x, 1),
¢(x,0) S, (3.19)

—00 < X <00,

By using the Fourier transform

P(x, 1) = \/%7 I : ™ d(k, t)dk, (3.20)
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and substituting into (3.19) we have

00 ) 5 00 5 82 )
f ™ @k, H)dk = f ok, Hlv—| *dk.
. . 0x? .

Due to property (3.17)

d2 tkx _ k 2 tkx _ k2 ikx
Vﬁ qe = [v(z )]qe = [—v ]qe .

the integral (3.21) becomes

f " g é.(k, t)dk = f ) Bk, 1) [—vkz]q Mk

(o)

and

f (Pi(k, 1) — [—Vk2]q Pk, 1))e™*dk = 0,
which implies

Bilk,1) = |~vk*| Bk.1).

The general solution of the last equation is found in the form
bk, 1) = p(k, 0) %1,

Substituting (3.25) into Fourier transform (3.20) we get solution

1 o B
d(x, 1) = o f AR gk 0)dk.
T —00

By using the inverse Fourier transform, we can fix ¢(k, 0) by the initial function

B 1 o0 .
k,0) = —— ,0)e M dy.
¢(k,0) \/ELOW e dy

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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Then solution of the initial value problem for infinite interval is

d(x, 1) = f G(x,y; Dg(y, 0)dy, (3.26)
where the Green function is defined as

1 <
G(x,y:1) = er ezk(x—y)+t[—vk2]qdk. (3.27)

(%)

Using property (3.22)

2
et[—vkz]qeik(x—y) — et[v(ik)z]qeik(x—y) — et[ij]qeik(x—y)’

the Green function becomes

L (7w, 2,1
G(x,y;t) = ﬂf et[vd~*‘2]qe’k(x_y)dk — et[vdleqz_f R gk

(o) 7T —00

As a result, the Green function for g-diffusive heat equation (3.19) can be expressed as time

evolution of the Dirac delta function
2
Gx—y:t) = eVidlig(x — y). (3.28)

Definition 3.1 The evolution operator is defined in terms of q-deformed operator as

2
U(r) = Vi, (3.29)
and gives evolution of the initial function ¢(x,0)
2
o(x.1) = Vi lg(x, 0). (3.30)

As an example, we consider the g-diffusive heat equation with initial value as the Dirac Delta

43



function:

0 0?
Al s t = ) 5 ! 5
pr o) [v WL«»(x )
o(x,0) = 5(x). (3.31)
Then the solution is
I[Vﬁ] 1 0 ik _ k2
G(x,t) = e a25(x) = ﬂf ™R ke, (3.32)

3.2. The Generalized Kampe-De Feriet Polynomials

Here we are going to construct polynomial solutions of equation (3.1). For this reason
we consider the plane wave solution of (3.1) as the generating function for the Kampe de
Feriet type polynomials,

¢(x t) — ekx+a)(k)t

which implies the g-deformed dispersion w(k) = [vk*], and
¢(x, 1) = ekx+t[vk2]q' (3.33)

The phase velocity of this plane wave solution is characterized by ¢ :

wk) [, i
kK k  kig-1)

Vph =

In Figure 3.3 we show the phase velocity for different values of g. In contrast to the
linear dependence for ¢ = 1 case, for ¢ < 1 the velocity is bounded from above and reaches
the maximum value and then it starts to decline fast. As we show in Section 5, this leads
to a new process of soliton fissions. However, for ¢ > 1 case the phase velocity is growing

infinitely, that is, it has no upper limit.
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4 - ak -
2 2
— — m — sz
p—] 2 2 2 K ] 2 4 .
= b g=i 7 gl =i 7
Figure 3.3. Phase velocity Figure 3.4. Group velocity

The group velocity of this solution also depends on ¢ and is given by

dw(k) 2vklng .
Ve = = e
dk q-1

Ing

In Figure 3.4 we show the group velocity for three different values of g. For ¢ < 1 the

group velocity is bounded from the above function, taking maximal value

Vinax| = —In-——— (3.34)

fork = £1/4/2vInl/q.

Definition 3.2 The generalized Kampe-de Feriet polynomials K,(x,t) are defined as

(o)

kn
i Z EK"(X’ ). (3.35)

n=0

Property of these polynomials can be studied in a similar way as the usual Hermite and
Kampe de Feriet polynomials. But in contrast to ¢ = 1 case, our generating function contains
all powers of k* and requires introduction of the Bell polynomials. Before to proceed with
this approach, in the next section we follow a more direct way by using dynamical symmetry

of g-diffusive heat equation.
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3.3. Dynamical Symmetry for g-Diffusive Heat Equation

For given differential equation $ ¢ = 0 with

A 0
N Ei H(P)) (3.36)

exists the commuting operator K in the following form (Pashaev, 2009),
K =x+tH (P)), (3.37)

where P, = %, such that [S, K] = 0. This K operator generates the dynamical symmetry for
differential equation S ¢ = 0: from given solution ¢ of the equation it creates another solution
¥ = K¢ of the same equation Sy = 0. The K operator in this form is linear in x and 7 and it
represents the generalized Boost operator.

For our g-diffusive heat equation

Loy i
—_ = |ly— s
ot 0x? .
we have H(P,) = [vPlz]q, and by taking derivative of H(P,) according to P; we get

d e’maP? _ | _ 2vIngP;, o' naP?
dP, qg-1 q-1

’ d
H (P)) = d_Pl[VP]Z]q =

Substituting the result into definitions (3.36) and (3.37) we obtain the g-diffusive heat

operator and the g-boost operator in the following form

) o [ o

S E‘ - [V@]q . (338)

) 21 2

o= oy 2ng,d s (3.39)
qg—1 dx
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Algebra of symmetry operators is

PN 2vlng 0 2 A 4
— 4 nq—thlq()axz’ [PI,K] — 1,

qg—1 0x

where Py = % and P; = (;lx

Proposition 3.1 The g-diffusive heat operator (3.38) and the g-boost operator (3.39) are

commutative [S, K] = 0.

Proof
N 0 i ving d 1,2
S,K] = |=- , t—e" "2
5. K] [8t [Véxz]q g—-1 dx ' ]
2ving d ,,,2 | 0 o?
= . lqae ! 152 [E’ l] - [[V@]q, X] . (340)
| S U

In order to find the commutator (x), we use the following property:

For any real analytic function f(x) we have

d ,d
[f(a),x] =f (Ec)’

which implies that the commutator (*) can be written in the form:

& &\
HV@] s X] = ([V@]q) . (341)
q
Calculating derivative of the operator
’ 92 ’
82 qvgj—l
([Va—xz]q) = [ -1 (3.42)

. _ 0
and denoting P = 5~ we get

dP

vIngP?
d (e ‘ 1_1): 2vPING g _ 2VING 0 22 (3.43)
=
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Substituting the result into (3.40), finally we proved that [$, K] = 0. O

Proposition 3.2 If ¢(x, 1) is a solution of g-diffusive heat equation (3.1) and [S, K] = 0, then
W(x, 1) = Kp(x, 1) is also solution of this equation, where S is the g-dispersive heat operator

(3.38) and K is the g-boost operator (3.39).

According to this proposition: if ¢(x, ) is a solution of the g-diffusive heat equation

2p(x, 1) = [v5],4(x, 1), then

21 2
0G0 inat) g p) (3.44)
qg—1 ox

U= (x +t
is also solution.
3.3.1. Bell Polynomials

The generating function of Bell polynomials with n-variables denoted by B,(g1, ..., gx)
is defined as (Comtet, 1974)

[} gnzn ~ [} Zn
epo_; - —ZOBn(gl,qz,...,g,,)a. (3.45)

And a few Bell polynomials are given below

By =1,

Bi(g1) = &1,

By(g1.82) = &2+ &
Bs(81,82-83) = g3 + 38182 + &).-

In particular case, when all independent variables are equal g, = g, = ... = g, = x, the corre-

sponding generating function (3.45) reduces to the generating function for Bell polynomials
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of one variable x defined in (Knuth et al, 1994) as
e - z
=) B.(x)—. (3.46)
n=0
A few Bell polynomials then are
Bo(x) =1, Bi(x) =x, By(x)=x+x* B3(x)=x+3x>+x,... (3.47)

Proposition 3.3 The plane wave solution of equation (3.1) determines the q-Kampe-de Feriet

type polynomials Ky(x,t; q)

[ee)

kN
MU = ) Ky tig), (3.48)
N=0 "~

which can be represented in terms of the Bell polynomials B,(t):

(51
5 XN

t n
Kn(x,1;q) = Z(; N B v

Proof By expanding the plane wave solution in k, we have

ekxe[vkz]qt — (Z k_mxm) e["kz]q" (349)

Then, el can be expanded in terms of Bell polynomials as

2
qvk -1

0 2\n
e[sz]qt = Eth = eﬁ(evlnqkz_l) = Z Bn( : ) (V ln qk ) 5 (350)
£ qg-1 n!

and the plane wave solution is written in the following form

Ry K2 B (' v ngy (3.51)
B min!” g -1 D '
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By changing order of summation m + 2n = N,

N
© 2

t
[vk lgt _ xN—ZnB 1 n
Z (N - 2n)'n' n(q—l)(v ng)

N=0 n=0
we obtain the plane wave solution in the form of g-Kampe de Feriet type polynomials

()

kN
ekrel ot = Z K1), (3.52)

where
£
NN t
K t; B, Ing)".
N(x, 13 g) = Z;‘ N =2l (q — 1)(v ng)
]
Using the first few Bell Polynomials (3.47) we can calculate g-Kampe de Feriet Poly-
nomials

Ko(x,t;q) = 1
Ki(x,t;q) = x
, 2
K(x,t;q) = x"+ Vg
q-—1
3 6tv,
Kiy(x,t;q) = x' +
q-—1

t
Kintig) = x*+12— 2 4 12(— 2 4 12
g-1 qg-1

t
— ()",

where v, = vIng. In the limit ¢ — 1, these polynomials reduce to the standard Kampe-de
Feriet polynomials.
We can find the time evolution of zeros for these polynomials. For n = 2, we have two

zeros evolving as
2tv,

l-gq

In Figures 3.5 and 3.6 we show the evolution of zeros, depending of values of ¢g. For
q < 1, zeros are moving faster than ¢ = 1 case, and for g > 1, the motion slow down.
In order to find the general form of these Kampe-de Feriet polynomials for arbitrary

n, we apply relation (3.44) and the boost operator (3.39). Starting from Ky(x,t;9) = 1 by
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Figure 3.5. Motion of zeros at t = =3 Figure 3.6. Motion of zeros at t = -2

successive application of this formula we obtain

2tv, 6, 2\
K.(x,t;q) = |x+ —e 2| 1. (3.53)
qg—10x
The polynomials result from evolution in time of monomials
K,(x,0;9) = x"
applying the evolution operator (3.30)
2
K, (x,1;q) = " alix", (3.54)

3.3.2. Dynamical Symmetry and Generating Function

Here we would like to find the generating function for our g-Kampe de Feriet polyno-

mials (3.35) by application of the boost operator

[es) n [ n 2

k k" 2tv, d , & 2wy 4 iy
P e S Pl IR e R (3.55)
oy n! ey n! q—ldx

and show that it gives the plane wave solution (3.33).
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Proposition 3.4 We have the following factorization formula

2

d
2tvg g Vq
ek(x+ T ax¢ dx2)

] = & R (3.56)

To show this we need to use the Zassenhaus formula.

Proposition 3.5 The Zassenhaus formula (Magnus, 1954) for two operators X and Y is given
by

POHY) L X Y S IXY] S QY IHIXIX YT (3.57)

where & is an arbitrary constant parameter.

In order to apply the Zassenhaus formula to our case, we denote P = %, which satisfies
the following commutation relations:
[P,x] =1, [P*,x]=2P - -[P" x]=nP""
and can be generalized in the following form

d
L£(P), x] = =5 f(P), (3.58)

for V analytic function f(P).

In our formula (3.56) by changing variables

2t d v 2 \% &2
= ——vy,——e?2, [LZ=e's?, X=X
qg—1 "dx
we obtain
2i Ve ﬁ
ek(x_'_%%g qzl'xz) . 1 — ek(X+Y) . 1- (3.59)

In order to factorize the exponential function we need to calculate the commutator relations:

(X, Y], [VIX. Y], [XI[XYI]I,..
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As easy to see all commutators are vanishing
(X, Y], Y] =[[XY]YLY]=..=0
and therefore the following commutator is zero

[P.Z] = [P.e"" 1= 0.

(3.60)

Explicit calculation of Z and X commutator is obtained in terms of the commutators of X and

Y, which we need for the Zassenhaus formula

[Z.X] = [, X] = 2v,Pe"" = %y,

-1 -1
[[Z.X],X] = qT[Y,X] = —qT[X, Y,

_q-1 _ 14— 1
[[[Z X], X], X] = — (Y. X], X] =(-1) — (X, [X, Y],

qg-—1

ZX1.% . X = =y xx o x1 = S o i v,
———— t S e’ !

n-times X n-1 -times X n-1-times X

Now let us find commutator of operators Z and X.

Calculation of the following commutators give us derivatives

VP2 d va VP2 d
[Z,X] =[e" ,X] = d—Pe 7 = 2que @ = 2quZ = d_PZ

[[Z, X1, X] = [2Pv,Z. X] = 2v,(P|Z, X]+|P,X]Z) = 2vq(P%+l)Z = 2v,(2P*v,+1)Z =

[[[Z, X], X], X]

2v,(2v,(P*[Z,X] + [P*, X]Z) + [Z, X))
3

dp?

2v,(4V;P°Z + 4v,PZ + 2v,PZ) = —7Z,

2v,([2P*v,Z + Z,X]) = 2v,(2v,[P*Z, X] + [ Z, X])

(3.61)

d2
—7
dP?

(3.62)
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which can be generalized in the following proposition:

Proposition 3.6 We present the following identity for commutators

d" d" 2
Z=—¢"" .
dpPr dP”e (3.63)

[Z, X1, X],...], X] =
————

n-times X

Proposition 3.7 The commutation relation (3.63) can be expressed in terms of Hermite poly-

nomials with operator argument

U d\ , =2
[[Z, X], X, ..X] = (—i)'(v,)}H, (l \/v—qa) ¢, (3.64)
n-times X

Proof From definition of Hermite polynomials
n & d" e
H,(&) = (1) e, (3.65)

3

we have

dl’l

Hy@e® = (1) gze ™. (3.66)
By considering commutation relation (3.63)
d" da" 5
Z’X 9X,-..,X = Z:— VqP’
[[ ]R,_/] dPl’l dPn e
n-times

dP _ i

and by changing variables v,P* = -&* = £ = i\V,P = §; = N

dn

H@eS = 1 e
2 dP d 2 b d" 2
H(i 7P = (1) oyet = L oot (3.67)

dé dP (v,)} dP"



n di’l
() () Hy i \FaP)e " = — e,

we can express commutation relation in terms of Hermite polynomials of the operator argu-

ment

Vqu — (_l)n(vq)%Hn(l \/V_qP)evqu

Z,X].X,..X] = ——e
[1Z, X] 1=
. 0o d ., &
= (') i Ty e e (3.68)
O
Using the Zassenhaus formula
& 8 _ynt1 €
LX) | 2 oK Y o= TIXY ], QIEIXYIHXIXYID D XX XY (3.69)
and (3.61) we can factorize the following exponential function as
12 Y & n
$(x+2t e a2y 1 = gth 4 ax? ezg';z(—nﬁl%[x,[x ..... XY, q
vy L 0 n vo
= eé:x fth ldx dxz ezz‘;Z %ﬁ(—i)"yan([ \/Ti>e a2 . 1
a2 o) 42
= efx fth ldx e l_[em q- 1( l)anH (lrd )equ -1
n=2
e ST,
= eé:x n en qil( i) Yq H”(O). (3.70)
n=2
Due to relations for Hermite polynomials
(2n)'
Hy,(0) = (=1)'——
Hy,,1(0) = 0,
we find that only the terms with even numbers survive
g d 143 2 =2k
et e aty ) e ]—[ eT T, (3.71)
k=1
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Replacing & by k and using v, = vIn g we obtain

2 e L) Lrving)

l—e eqlzll

Finally we can factorize this expression in the form of the plane wave solution

d d
k(x+21—‘fld— 145) . 1 = & e[vkz]qt.

3.4. g-Viscous Burgers’ Equation

(3.72)

(3.73)

We can relate our g-diffusive heat equation with nonlinear g-viscous Burgers’ equa-

tion. By dividing equation (3.1) with ¢(x, f) we obtain

1 t ! 0—2 t
(g0 = 205 |V | 00

and taking the x derivative of both sides and denoting

u,

P«
1 ’ X =
(In ¢(x, 1)) p

we get

(3.74)

(3.75)

(3.76)
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Proposition 3.8 We present the following relation

1| & d 5
—|lv— = [v(— + 3.77
¢[V8x2]q¢ [V(dx o) (3.77)
where u = %‘
Proof Using definition of the g-operator number
1| & Lo 11 :
21,9 _ _q ox _ . vlnq%_l
(p[valeng ¢ _1 ¢ ¢q_1(e 2 )¢
3 (vlnq)" 82”
= 752 Z Y (3.78)
and denoting ¢ = ¢/, which implies
_ _ _Ox _
f—ln¢, fx—(lnqﬁ)x—zzl/l,
we find
[ & 1 <« (vlngy" d 5 | R
- - — - 4 "ol = — vnq(dx+u)_1'1
¢[v8x2]q¢ qg-1 nZ:; n! (dx “) q—l(e )
V(£ +u) 2
q" -1 d
= l=v|—+ -1 3.79
q-1 lv(dx u) G7)
O

Substituting (3.77) into equation (3.76) we obtain the g-viscous Burgers’ equation as

. 1) . (3.80)
q

By using solution of g-diffusive heat equation we can find the solution of g-viscous

Burgers’ equation. As a first particular solution of g-diffusive heat equation (3.1) we choose
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the traveling plane wave solution
O(x,1) = I,

This plane wave is the generating function for Kampe de Feriet polynomials (3.48), being
polynomial solution of g-diffusive equation. Moving zeros of Kampe-de Feriet Polynomials
then correspond to moving poles of g-viscous Burgers’ equation (3.80).

By using the Cole-Hopf transformation, the plane wave solution gives the constant

solution of the g-viscous Burgers’ equation
u(x,t) = ¢—x =k.
¢
By considering the superposition of two plane waves with different wave numbers &, k5,
¢(x’ t) — ek1x+[vk%]qt + €k2x+[yk§]qt, (381)

we get shock soliton solution in the following form

2 2
¢x k1€k1x+[Vk1]‘1t + kzekpﬁ—[vkz]qt
I/l(.x, [) = — = . 3 >
¢ e 1x+[vkilqt + ek2x+[vk2]qt

(3.82)

In Figure 3.7 we show one shock soliton for different values of ¢g. Depending on value
of g the soliton is moving faster (g < 1) or slower (¢ > 1) than in usual g = 1 case. By fixing

constants k, > k; > 0, at fixed time we have asymptotic

X—> 400 = u-—-k

X— —00 = u-—- k.

Then our g-shock soliton solution can be written as
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ky — ky

wx, 0 =k + T e |

(3.83)

where the velocity of shock is
[k%v]q — [k%v]q
ki —ky

To analyze this expression we choose k; = 0 and denote k, = k, so that the soliton velocity is

- 2vkIn 4 g,

(3.84)
q-—1
For g < 1 this velocity is bounded from the above, and takes maximal value
2 11
sl = 1| — In=—— (3.85)
e ql-gq

fork = +1/4/2vInl/q.

Figure 3.7. One shock soliton for g = 1(blue), g = 0.5(red), g = 2(green)

We show graph of this velocity in Figure 3.8. This dependence creates a new property
of the shock soliton. Namely, for values of k bigger than the extremum point, and correspond-
ing amplitudes, the velocity is not growing, but decaying. It produces new type of shock

interaction. To see this we look for two shock soliton solutions.
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Figure 3.8. Soliton velocity for g = 0.5

Figure 3.9. Two shock solitons for ¢ = 1(blue), g = 0.5(red), g = 2(green)

By taking superposition of 3-plane waves
d(x, 1) = ek1x+[vk]2]qt n ek2x+[vk§]q; n ek3x+[vk§]qt, (3.86)
we find two shock soliton solution in the form

b, k, ek1x+[ka]qt +k ek2x+[vk§]qt + ks ek3x+[vk§]qt
l/l(.x, t) = E =

(3.87)

VRt o phox+RGlgr | phsxtvS gt

In Figure 3.9 we show fusion of two shock solitons moving with speeds, depending

on values of g. For g > 1 they move slower and for g < 1 the speed of shocks collision is
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going faster than in ¢ = 1 case. In addition to this, for g < 1 case here we have a new type of
phenomena. By choosing parameters k; = 0, k, < ko and k3 > ko, where ky > 0 is extremum
point with maximal speed, we find that the soliton with higher amplitude is moving slowly
and splits to two solitons, one of which with smaller amplitude is moving faster. We illustrate

this behavior as soliton fission in Figures 3.10 and 3.11.

— t=0
— t=2
— t=7
— t=20

Figure 3.10. Shock fission

Figure 3.11. Soliton fission for ¢ = 0.5

Superposition of n + 1 plane waves with wave numbers ki, k, ..., k,;; and constants

M1, - Mis+1 g1ves n-shock soliton solution in the form

;l_+11 kiekix+[Vk"2]"t+ni
Zr_z+l ekix+[vki2]qt+7]i ’

i=1

(3.88)

u(x,t) =
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3.5. g-Semiclassical Expansion of g-Diffusive Heat Equation

If in g-diffusive heat equation (3.1) we expand the right hand side according to v, then

we get infinite order equation with even order derivative in x,

@ = Va_z ¢ qVﬁ_l
ot 0x? g

1 2
= -

1 0?
— 1 none ~  \n
q_lnzz;(nq)v(axzm

1 0>  (vlng)?* &
= Ing— — + ..
L P TR

), (3.89)

where the first order equation for v < 1, is the standard heat equation, but with deformed

e . 1
diffusion coefficient v, = vanql,

O i
— =V, 3.90
o~ iox? 5:90)
As g — 1, this gives standard heat equation with diffusion coefficient v.

From another side, if we like to consider deformations of Heat equation for every
power of In g, which we called the "g-semiclassical" expansion (since ¢ = 1 case corresponds

to "classical case") we need to use the Bernoulli polynomials.

Proposition 3.9 Generating function for Bernoulli polynomials is defined as (Knuth et al,
1994)

text © !
o= Z B,(x)—. (3.91)

r_
¢ n=0

For x = 0 we have the generating function of Bernoulli numbers

o0

= Y B0, (3.92)

n=0

el —1
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where B,(0) = B,-Bernoulli numbers.

In the generating function of Bernoulli numbers (8.33) by choosing ¢’ = g we have
1 Ing)"
nq ZB (n‘D . (3.93)

This gives the modified diffusion coefficient as expansion with Bernoulli numbers in powers

of Ing

(o)

Bn n
7= VZ E(IHQ) .

n=0

Proposition 3.10 [n], number can be expressed in terms of Bernoulli polynomials as

N (Ing)"
mL:n+§]qum—Bmum%m+lﬁ (3.94)
Proof Using the definition of g-numbers
n—1 et 1 1 (Ing "4 1 (1In
), =L — = - = — (=L |- — (2L (3.95)
g-1 ¢g-1 ¢g—-1 1Ing\ ¢g-1 Ing\g—-1
and denoting In g = ¢, we obtain
1 te" 1 t
= - - - . 3.96
), t(ef—l) t(ef—l) (3.96)

The generating function for Bernoulli polynomials (3.91) and (3.92) allow us to get

mr—%w MW+Zwa mmw(+w (3.97)
The term = vanishes due to By(x) = 1. And we can write
n m
%www B 0) o D,BM)&®+Zme B (0) i
The term = becomes n since B;(x) = x — % and the desired result is obtained. O
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The g-number operator for an operator A written as a formal power series in terms of

Bernoulli polynomials is given as

(Ing)"
(m+ !’

[Al; = A+ > (Bua(A) = Byt (0)) (3.98)

By expansion of g-diffusive heat equation (3.1) in powers of In g, we get higher deriva-

tive corrections to the Heat equation

0 0? - 0? (Ing)™
@ _,2 B [v2= | = B | 22, .
o ox +m:1( " 1(VaxZ) l)(m+1)!¢ (3:99)

For the g-Galilean boost operator we obtain

d (Ing)"
K_x+2vtd—+2thB (d 2)7!' (3.100)

The particular solution of g-diffusive heat equation for finite interval case can be ex-

panded in the following form

ny2 ni
$u(x, 1) = 17T ligin Tx
= e_"(¥2 sin _x 1—[ (Bt (—v("E)21)- Bm+1)flmnf;’; (3.101)

which shows how the solution of g-diffusive heat equation is modified by g-diffusivity.
We can expand the Green function of g-diffusive heat equation for infinite interval case

as

G(x,y; 1)

2 - nm
2 e

yn

i Z sin (—x) s1n( y)e_v(m)’ 1_[ Buvst (V)= Bat) Gy

m=1
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showing modification due to g-diffusivity.
The g-viscous Burgers’ equation is also expandable in terms of higher order derivatives

as an arguments of Bernoulli polynomials

|

ool )
. = d V (Ing)"
= VU, + 2vuu, + (;(Bm+l (V(E + u) ) - Bm+1)m .

First two terms of this expansion give the standard Burgers’ equation.
In a similar way we get expansion of the plane wave solution of g-diffusive heat equa-

tion in terms of powers of In g,

(3.102)

(Ing)"
(m+1)! s

(o]
2 2 20
¢(X, t) — ekx+[vk 1qt — ekx+vk t | | e(Bm+l(Vk 1)—By+1)
m=1

showing modification of the standard plane wave solution.
And by using the superposition of two travelling waves (3.82) with different wave

numbers ki, k, as a solution of g-diffusive heat equation we obtain shock soliton solution of

g-viscous Burgers’ equation as g- modification of standard shock soliton solution

k, hxtlviilyr 4 ky ekextlviglgt

¢ _

u(x,t) = =
(. 1) ¢ ekttt o phax+[vi3lgt
ki + etke—kxng—kDr 1= | Bt 30~ By (k1)
m=

1 + ele—kx+v(id—kr e, Bt VK30=Byu (k1)
m=

(ng)"
(m+ )1

(lnq)n‘l
m+ D!

For the speed of g-shock soliton,

o [k3v], — [k3v],
B ky — ky

b



we have expansion

Bm+1(k%V) - Bm+1(k§V) (Ing)™

v=— v(k1+k2)+z
m=1

By using explicit formula for Bernoulli polynomials for n > 0

oS

Jj=0

where b; are Bernoulli numbers, the modified velocity is written as

1 m
v =—-v(k + kz)( Z (( nq)l)‘ m+1(k1,k2)] ,

where

m+1 .
Sm+l = Z( ] )bm+1—j[.]]vk%,vk§

and the g-number with gy, ¢, basis are defined as

q) — ¢,

[nlg.q, = :
q1.92 a1 - o

This shows the modification of the standard velocity of shock soliton.

ki =k (m+ D)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

Now we consider finite v, but expand in terms of € = ¢ — 1 < 1 in (3.89). Then for

q — 1, e < 1,g =1+ € and v-arbitrary finite, we obtain higher order derivative corrections

to heat equation

e, i v 6> v o
o = Vaa? T Caga T gt 0@
€\ 0 v: ot )
= V(l‘a)m’ €3 ga? t o)

(3.108)
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In the first term, for small g we have diffusion coefficient which is modified by e.
In the next section we are going to construct g-viscous Burgers’ equation, related to

our g-diffusive heat equation. For this we need next proposition:

Proposition 3.11 For any f € C* we have the identity

d" d "
-f S — 1
e dx”e (dx + fx) . (3.109)
Proof
d
T Loty = et Loty = eI (el + ol Lgy = (. + Ly, (3.110)
dx dx dx dx
so that
d d
- = f = -
e dxe fot o (3.111)

and then we can generalize it as follows

& dd d
Y o
¢t ¢ drdxdx’
d d d
— S L L LS
e dxe e dxe e "..ee dxe
- (i+fx) . (3.112)
dx
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3.5.1. Corrections to Burgers’ Equation

Expansion in € = g — 1 provides higher derivative order corrections to the Burgers’

equation.

u, =
1 (ving d (ving)?* d
= qj( 1'q(a+b{)2'1+ 2'61 (a+u)41+)
1 In g)?
= 1 (v Ing (u, + u?) + v ;q) (Uyrx + dunty, + 3ui + 6ulu, + ut) + )
_ ving (vIng)
= . 1(uxx+2uux)+ m()+

1 < (vlng) d 5
— el n_l
(q -1 ; n! (dx +u)

This gives the deformation of Burgers’ equation with parameter v. In the limit ¢ — 1 it reduces

to standard Burgers’ equation

Uy = Vg, + 2vVul,.

Forsmallg=1+¢€, € < 1 we write

2 3 e &
Ing = In(1 —e—-—+——..=€(l — =+ —— ...
ng=In(l+¢)=¢€ 7 t3 €( 573 )
and after substitution into (3.113) we get
Ve v?
U, = Vi +2vuu, — ?(uxx + 2uu,) + 56(...) + 0(€?)

(1 - g)vum +2(1 — %)vuux b

This shows lower order corrections to Burgers equation from g-deformed viscosity.



3.6. Béacklund Transformation for g-Viscous Burgers’ Equation

In this section we find the Béacklund transformation which relates two solutions of

g-viscous Burgers equation (3.80).

Proposition 3.12 The Bdcklund transfomation relating a solution u to an another solution v

of g-viscous Burgers’ equation is written as

W 1+ xu+ anlqtq"(%*“)z(ux +u?)
p=1t= 1 . (3.115)

Y x + 24y Gy
q-1

By taking the logarithmic derivative of (3.44)

w ¢ + x¢x 21/lnlql‘dx2 vlnq%¢
v=(ny), = = = - , (3.116)
lﬂ X¢+ 2v]nqtdevlnqd2¢

and taking the ¢ parenthesis in RHS we have

2v1 1 d&? 1
Uy 1+x¢+ anl¢dx2 and2¢
2vlnq 1d vlnq
+ 2l )

In order to write the above transformation in a proper form we need to find the follow-

ing expressions

1d s

[ = W—e”“qéich (3.118)
1 d* o2

L (3.119)

These expressions can be written in terms of Bell polynomials

Definition 3.3 The Bell polynomials are defined by the exponential generating function

&
Ya(¥) = V01,32, o 3) = 70—, (3.120)

69



where

Y E V1 Yax = Y25 Yaxx = Y35 eee

Proposition 3.13 The recursion formula for Bell polynomials is given as

dx
Proof It can be proved by using mathematical induction:

d" d !
Yoy, ) = €70 7" = (— +y1) 1. (3.121)

For n = 1 we have

d d
Y - —y(x) y(x) =|— + .1 =
1) =e e PR Vi,

forn =2

d

P2 2
oy y) = 0@ = [ Ly} 1=y 4y,
»(i.y2) =e T2¢ R it

and we suppose that it is true for n :

d" d !
Y()’l,- ,)’n) =e y(x)d ne)(x) = (Ex +yl) . 1

We need to prove it for n + 1 case:

dn+1 d dn

_ =y(x) ) _ ,—y(x) (x)
Yn+1()’l, ---,}’n,yn+1) - e Y Wey =e ’ dxdxn ey
d d" d
= WL oW e L (LY (v,
e dxe e dx”e (d )’1) w1y ees Vi)
Yn()’l:ms)’n)
d d n d n+l1
(dx yl)(dx yl) (dx yl) ( )
where y; = y,. |

By using the above definition for y = In ¢, the first identity can be rewritten as infinitive

series of Bell polynomials

I = lieﬂnq%(l) Z (VIHQ)n d2n+l ln¢z (Vlnq)” d2n+1 ln¢

¢ dx x2n+1 x2n+1

ln¢Z (Vlnq) e Yaret (IN6), (INB) s ooy (1N B)2per)

n=0

70



I = Z (V ln'q)n Y2n+1 ((ln ¢)x, (ln ¢)xx, ceey (ln (]5)2,,4.1) (3123)
n=0 :

n

d2n+1

dx2n+l

e =" Vot (@), (IN ), -.o, (IN P)2ni1) (3.124)

Similarly, the second identity is also expressed as infinite sum of Bell polynomials

1 d2 Vlnq”[—z2 N (Vlnq)n
1l = g@@ dx ¢ = Z:(; ! Yonio ((ln ¢)xs (lIl ¢)xxa oo (11’1 ¢)2n+2) . (3125)

By using Cole-Hopf transformation and its derivatives

Px

(hl ¢)x = E = U, (ln¢)xx = Uy = Uy, (ln¢)xxx = Uyy = U, ..oy (hl ¢)n = Up-1,

the identities / and I/ can be written in terms of Bell polynomials with arguments of u and its

derivatives

v (vIng)”

1= Y YRy, (3.126)
"m0 n.
o (vIng)

o= Y Yt ). (3.127)
=0 n.

By using the above proposition, we can write / in terms of covariant momentum in the

following form

S (gt (d N\ (4 * (vingy(d "
I = ; Y (a-f‘l/t) '1—Zx+bt; Y a'i‘lxt -1

(di + I/t) €Vlnq(%+”)2 .1 = evmq(%“‘)z (i + I/t) .1 = evlnq(%ﬂt)zu
X

dx
= gy, (3.128)
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Similarly we can write

n n

v (vlng) d iz 4 d » o (ving)" d m
I = Z::{ ) -1_(a+u); T

d 2 In d 2 d d 2 d
- 4 ving(z+u)” | 1=(— + ving(z+uw” ¢ = + .
(dx uye (dx u)e (dx “)

d
evlnq(%ﬂt)z(d_ + o = q"(%“‘)z(ux + ). (3.129)
x

Finally, putting the results (3.128) and (3.129) into the (3.117) we get the Béacklund

transformation between two solutions of g-viscous Burgers’ equation

d 2
g, 1+au+ 2:]/1_nlqt g (uy + u?)
y=— =
¥ x + 2ng; qv(%”)zu
q-1

As an example, we consider the constant solution ¢(x, t) = C of g-diffusive heat equa-
tion (3.1), and the Cole Hopf transformation gives zero solution # = 0 for g-viscous Burgers

equation. By using the Bicklund transformation (3.115) for the solution # = 0 we find rational

solution of the g-viscous Burgers equation in the form

1
v=—=-. (3.130)
X

It is instructive to prove this result by direct substitution to g-viscous Burgers’ equation

d
v, = ([v(a + v)z]q . 1) .

X

Using the definition of g-operator (3.2) the above equation is written as

1

_ V(& v
= (¢" 1)x. (3.131)
Proposition 3.14 We present the following relation
V(L 1y v
q dx Y1 . 1 =e )q dxzey, (3.132)
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where v =y, = y,.

Proof Proof is easy by using the recursion operator for Bell polynomials (3.121),

i+ 2n1
dx Y1

———
2n
—y d v
dx2n €

b n
gEDT = maEe ] 2 Z (vIng)
4 nl

e

2

= Vglire. (3.133)

Forv=y, =y, = )lc we have y = In x, and the above proposition gives
1

v(L41y? “inx v Inx v
q dx T x -1:e quze :;q dxzx_

As a result the equation (3.131) is written in the following form:

(1,2 I - WS
v = ——|—¢q a2 x| = —— —-—q a2 x + — (q dx? x)
g-1\x Log-1\ ¥? X x
1 1 Z (vingy* & 1 i(vlnq)" da
g - x24edoplodxn x\&onl dx
X 1
1 1 1
O=v, = —|-—=x+-1]=0, (3.134)
g-1\ x*  «x

which proves that the rational solution v = 1/x is solution for g-viscous Burgers’ equation.

As a next example, we consider the travelling wave solution ¢(x,) = e Flf of

g-diffusive heat equation (3.1) which gives constant solution u(x,t) = %‘ = k of g-viscous

Burgers equation.

In order to find new solution for g-viscous Burgers’ equation we use Bicklund trans-

formation (3.115) foru = k :

1+ xk + 2007402
v = (Iny), = (3.135)

2vIng 4 412
X+ thv(lﬂ 'k
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and y; = y, = k implies y = kx. By using the proposition (6.1) we can calculate

d gy A 2 _ 2 2
qv(dx+k) k = kqv(dx+k) 1 =ke kxquxz ekx — kqvk

GERRE = R ER ] 2 ekt = g (3.136)

and putting the results into the equation (3.135) we find the rational solution of g-viscous

Burgers’ equation as

1
v=k+ (3.137)

X+ _zvmlq'kte"ln gk’
p

This solution has pole singularity moving with constant speed, equal to the group velocity
(3.4).
Now we show in explicit form that the rational solution (3.137) satisfies the g-viscous

Burgers’ equation:

N
Vv, = [[v(dx +v)

]

X

First we write the RHS of the equation in the following form:

| ) L A (remerd
([V(dx+v) g 1)x B c]—ldx[Zl n! (dx+v) 1)

- (%evlwzw), (3.138)

QL
=

where in the last line we substituted y = In . By using the Boost operator K we can rewrite i/

in the form

2
N 2vin qtievlnqi)ek)ﬁ[vkz]qt’
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and substituting into the equation and using the following property:

2 2
Jex vlnq;7 iekx — ievlnq;’?ekx — ievlnqkzekx

dk dk ' dk
(2vIn gk + x)e i o

>
Mz e = ¢

we get

1 4 @Qvklng+x+ —zginlqkte““ qk*ygvIn gh?

q— IEC x+2‘/l_n1qktevlnqk2
P

RHS =

1 —e"9 2y In q
g-1(x+ %kte"m‘f”‘z)2

= vt.

The last relation can be easily seen by taking derivative of (3.137) in .

(3.139)

(3.140)
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CHAPTER 4

O-ANALYTIC FUNCTIONS

We introduce a new class of complex functions of complex argument which we call
g-analytic functions. These functions satisfy g-Cauchy-Riemann equations and have real and
imaginary parts as g-harmonic functions. We show that g-analytic functions are not the ana-
lytic functions in the usual sense. g-deformation here shows deviation from analyticity. Some
of these complex functions, like g-analytic binomials, fall to the class of the generalized an-
alytic functions. As a main example we study the complex g-binomial functions and their
integral representation as a solution of the D-bar problem. In terms of these functions the com-
plex g-analytic fractal, satisfying the self-similar g-difference equation is derived. A new type
of quantum states as g-analytic coherent states and corresponding g-analytic Fock-Bargmann
representation are constructed. As an application, we solve quantum g-oscillator problem in
this representation, and show that the wave functions of quantum states are given by complex

g-binomials.

4.1. g-Analytic Function

The g-differential of finite scale transformation for real function of one variable is
defined as (Kac and Cheung, 2002)

dof(x) = f(gx) = f(x) = (D, f(x))dyx, (4.1)

where d,x = (¢ — 1)x, and g-derivative is

Jqx) = [

(- D 2

Dif(x) =
For a complex-valued function f(x,y) of two real variables x and y, the g-differential of f

def(x,y) = f(gx.qy) = f(x, ), (4.3)
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can be rewritten as

dof(x,y) = (MyD. f(x,y)) dgx + (Dy f(x,y)) dyy, (4.4)

where d,x = (g — D)x, d;y = (g — 1)y, Dy and Dy, are partial g-derivatives in x and y variables.

Here M; is the dilatation operator in y variable: M,F(x,y) = F(x,qy). In operator form we
d

4 a1

have M, = ¢’#, and D}, = q(’q_l)y

can rewrite complex g-differentials d,z = dyx + id,y, d,z = d,x — id;y as d;z = (¢ — 1)z and

. In terms of complex coordinates z = x + iy, Z = x — iy we

d,z = (q — 1)z. For g-differential of an arbitrary complex-valued function f(x,y) then we get
d,f(x.y) = (MD.f) dyz + (M}D:f) d,Z. (4.5)
where we have introduced two linear operators of complex g-derivatives

D, = (D} - szl ), D= %(Dg + iD)é’ ). (4.6)

In the limiting ¢ — 1, g-differential formula (4.5) is reduced the known differential formula

for a complex valued function f(x,y)

0 0
df(x,y) = 8—£dz + a—JZCdZ. 4.7)

Definition 4.1 A complex-valued function f(x,y) of two real variables is called g-analytic in

a region if the following identity holds
1
D:f = E(Dx +iD)f =0, (4.8)

in the region.

The g-differential of g-analytic function then is given by

d,f = (MD:f)dz. (4.9)

q
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In the limit ¢ — 1, this definition reduces to the standard analyticity condition
- + i—)f =0 (4.10)

leading to independence of Z: df = %dz.

In a similar way, we define g-anti-analytic function f as the one satisfying
| SR
sz:E(Dq—zD;)f:O, (4.11)
and
d,f = (M)D:f)d,z. (4.12)

Notice that analytic function f(z), as a function of z, can depend on several constants.
In the case of g-holomorphic function (4.8) these constants could be arbitrary g-periodic func-
tions of z. For example D;f(z) = 0 determines f(z) not uniquely but up to f(z) + A,(Z), where
D:A,(z) = 0, and A,(Z)-1s g-periodic function A,(g2) = A,(2).

4.1.1. g-Analytic Binomial

The simplest and most important set of g-analytic functions is given by complex g-

binomials

n

(e iy)y = (4 i)+ igy) e+ ig'y)e(x+ig ) = ) [Z] g I,
k=0 q

expandable according to Gauss’ binomial formula. Here, we follow notations for real g¢-

binomial introduced in (Kac and Cheung, 2002). By direct calculation we have

D(x+iy) =0 (4.13)
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and

D.(x + iy)) = [n]y(x + iy); . (4.14)

Then for g-differential we get

dy(x +iy)s = (M)D.(x + iy)}) dyz = [n],(x + iqy))" dyz. (4.15)

In a similar way, it is easy to show that complex conjugate g-binomial (x — iy)y is g-anti-
analytic.
Here we notice an interesting limit of this binomial. For ¢ < 1 and x = 1 the limit

n — oo exists and is given by the g-analogue of the Euler Formula

. \OO v/(1— y
(1 +iy)y = EY/(19 :C0sq1

P y
+iSing——o,
p l ll’lql_

q

where E7 is the second Jackson’s g-exponential function.

4.1.2. Negative Power g-Analytic Binomial

For n € N, we define complex g-binomial of negative power as

1
s —— 4.1
40 = (4.16)

For z # 0, it is an g-analytic function since
Dy(x+iy)," =0 (4.17)
and

D.(x +iy)," = [-n],(x + iy);"*". (4.18)
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For its g-differential we have

dy(x +iy)," = (M)D.(x + iy),") dyz = [-nly(x + iqy), """ dyz. (4.19)

4.2. g-Taylor Formula for g-Analytic Polynomial

By taking linear combination of complex g-binomials, we get g-analytic polynomials.
Conversely, any complex-valued g-analytic polynomial function P(z; g) of degree N has the

following g-Taylor expansion

P(z:q) = Z(ka(m( L (4.20)
»q e .
It follows from the expansion
N
Pzq) = ) ax +iy); 4.21)
k=0

where polynomials {(x + iy), (x + iy)?, ..., (x + iy)lq\’ } are linearly independent. They constitute
a basis for the space of complex g-analytic polynomials degree of N. Due to g-analyticity
condition, the above expansion includes only (x + iy)’; polynomials, and not the complex
conjugate ones. Then differentiating this expression k-times in z, and putting z = 0 we find

coefficients a; = (DXP)(0)/[k]!.
4.3. g-Taylor Representation for g-Analytic Functions

In the limit N — oo, the above Taylor formula for convergent series, represents g-

analytic function

) )k
fGa) =Y ax+ivh = Z(Dkfx )—y. (4.22)

k=0 ]
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It is clear that this g-analytic function satisfies the equation (4.8): D:f(z) = 0. If we fix base
lgl < 1,and n =0, 1,2, ... then we get the inequality

x2 +q2ny2 < X2 +y2,

which implies

G+ iyl <1+ i)"T = 1) an(x+ i)l < O lagllCe+ i)',
n=0 n=0

Proposition 4.1 For a given complex-valued function f(z) analytic inside the disk of radius

R, Cg : |zl < R, 0f(2)/0Z = 0O, with the Taylor expansion

(o)

=) ad, (4.23)

n=0

there exists a g-analytic function f(z;q), D:f(z;q) = 0, |q| < 1, convergent in the same disk

Cr with the g-Taylor expansion

[ee)

@) =) ax+iy). (4.24)

n=0

According to this, every analytic function corresponds to a g-analytic function. For g = 1 a
g-analytic function becomes analytic as f(z;q¢ = 1) = f(z) and parameter g shows deviation

from this analyticity.

4.3.1. g-Analytic Function Examples

From standard exponential and trigonometric functions we have the following entire

g-analytic functions with |g| < 1:

[oe]

ez =) Skl (4.25)

|
‘=0 n.
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y)2n+1
sin(z; q) = Z(— ) (2 o (4.26)

( )2n
cos(z; q) = ;(_) o 4.27)

From the definition of Jackson’s g-exponential function,

o (X + iy)”
eq(2) = ;
! HZ::{ [n]ly
which is an entire function for ¢ > 1, we have g-analytic g-exponential function

= G+ iy
=5 S

' b
n=0 [l’l] q

orinterms of z = x +1iy, z,=x+iqy, .. Zyp =x+iq"y, ..,

e,(z:9) = Z %
n=0 q°

This function e, (x +iy; q) is g-analytic since D;e,(z; q) = 0 for g > 1 in the strip —co < x < o0,

[y| < g/(g — 1), and can be factorized in terms of Jackson’s g-exponential functions as

eg(x +iy:q) = ey(N)E,(iy) = eg(x) (Cos,(y) + iS iny(y)) (4.28)

This formula is g-analogue of Euler formula for analytic function ¢ = e*e” = e*(cosy +
isiny).
Here we like to emphasize that g-analytic functions as complex valued functions are

not analytic functions in the usual sense, because arguments

(+q) , (1-q).
2 2 7

Zp =x+iq'y =
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include both z and Z, so that a%eq(x + iy;q) # 0. The only exception for g # 1 is a linear
function f = az + b.

Geometrically, we can represent every complex variable z,» = x+ig"y,n = 0, +1, +2, ...
in a complex plane with coordinates (x, g"y) whose y coordinate is re-scaled. All these planes
are intersecting along the real axis x. Then, the g-analytic function depends on infinite set of
complex variables on these planes z, z,+1, 7,2, ... and not on Z, Z,+1, Z,=2, .... In the limiting case
q — 1, all planes coincide with the complex plane z, and g-analytic function becomes the

standard analytic function.

4.4. g-Laurent Expansion for g-Analytic Functions

The Laurent formula for an analytic function in annular domain allows us to introduce
corresponding g-analytic function.

In (4.16) for the negative power g-binomial

1
(x+iy)," m (4.29)

we found that for z # 0 it is g-analytic function, D;(x + iy)," = 0. If we fix the base |g| < I,

then we have inequality

1 1
- < - (4.30)
Ot ig iyl = 1+ iy
and hence
b
: Z 2] 431
o I(x + iyy"|”

According to this relation we can extend class of g-analytic functions.

Proposition 4.2 For a given complex-valued function f(z) analytic inside the annular domain

D :r <zl <R, 0f(2)/]07 = 0, and with the Laurent expansion

f= ) b (4.32)

n=—o0o
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Then there exists a g-analytic function f(z;q), D:f(z;q) = 0, convergent in the same domain

D, with the q-Laurent expansion

faa)y= ) bulx+ iy (4.33)
As an example we have
1 o (X)) 1
e(—;q) =)y — 4 = Z — (4.34)
Z oy n! oy nl(x+ lq‘”y)g

which is g-analytic everywhere except z = 0.

4.5. The g-Cauchy-Riemann Equations

Expanding a g-holomorphic function to real and imaginary parts f(x+iy; q) = u(x,y; g)+
v(x,y; q) due to (4.8), (D + iDyl )(u + iv) = 0, and we get the system of g-Cauchy-Riemann
q

Equations

Dyu=D\v, Dyv=-D\u. (4.35)

q

The g-Laplace operator is defined in terms of g-holomorphic derivatives (4.6) as
2 \ 2 1 2
A =4D.D: = (D}) + (D)) = 0+ RCAR (4.36)
q q

where the order of M; and Dy, operators are interchanged according to Q-commutative formula
(DyM}) = Q(M,D}).
Due to (4.8), the operator D, acts on g-holomorphic function f(z; ¢) just as D, deriva-

tive:
1
D.f(z:q) = 5Dy~ iDV)f(z 9) = Dyf(z:q). (4.37)

Definition 4.2 The real function ¢(x,y) is a g-harmonic function if it satisfies the g-Laplace
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equation
Ayp(x,y) = 0. (4.38)

Due to factorization A, f = 4D_D:f = 0, the real and imaginary parts of a g-analytic function

are conjugate g-harmonic functions
Agu(x,y) =0, Ap(x,y) =0.

These functions can be used for solution of two-dimensional g-heat and g-Schrodinger equa-
tions. Recently we have studied the g-heat equations in a line (Nalci and Pashaev, 2010),
(Pashaev and Nalci, 2012). Different forms of these equations can be derived in the prob-
lems of random walk on quantum group (Protogenov, 2015) and gauge theory of self-similar
systems (Olemskoi, 2000). Two dimensional version of stationary heat distribution in such
systems is described by the g-Laplace equation A,ju = 0 with general solution in terms of

g-harmonic functions.
4.5.1. Examples of g-Harmonic Functions
From g-binomial forn = 2
(x+iy)y = (x +iy)(x + igy) = x* = gy* + (1 + g)ixy

we have g-harmonically conjugate functions u(x,y) = x*> — gy?, v(x,y) = (1 + g)xy.

For arbitrary n = 1,2, 3..., polynomial g-harmonic functions are
1 o o 1 . .\
u(x,y) = 5[()6 +iy), + (x—iy)yl, vix,y) = z—i[(x +iy), — (x —iy)l. (4.39)
Simplest non-polynomial g-harmonic functions follow from (4.28) as

u(x,y) = e,(x)Cosy(y), v(x,y) = ey (x)Sin,(y). (4.40)
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4.6. g-Analytic Function as Generalized Analytic Function

In previous sections we have seen that g-analytic functions depend on both z and Z
variables and are not analytic. Nevertheless, here we are going to show that some of g-analytic
functions are generalized analytic functions (Vekua, 1962). This class of functions is related

with the d-problem (D-Bar Problem). The scalar equation

003 _ 1 7) (4.41)
07

for simple connected domain in complex z-plane called d-problem (Ablowitz and Fokas,

1997). For complex functions

g +ih
2 b

O=u+iv, f= z=x+1y

it is equivalent to the system of a generalized Cauchy-Riemann equations

u 1%
A . 4.42
oy " ox h(x,y) ( )

In case of analytic functions, g(x,y) = h(x,y) = 0 — f(x,y) = 0 it recovers the Cauchy-

Riemann equations.

Definition 4.3 Complex function ®(z,7) in a region R, satisfying equation

00 -
i Az, )P + B(z, )P (4.43)

is called generalized analytic function.

The particular case B = 0, the last equation reduces to D-Bar equation

00
— =A(z,2)D (4.44)
0z
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which can be solved in closed form (Vekua, 1962), (Ablowitz and Fokas, 1997) as:

q)(z’ Z) w(z)e 2m ffD A(ZO dévl\dg (445)

where w(z) is an arbitrary analytic function. This solution was first obtained by N. Theodor-

esco in 1931, (Theodoresco, 1936).

4.6.1. Complex g-Binomial

Here we intend to show that complex g-binomials ®(z,z) = (x + iy); are generalized

analytic functions. Calculating the partial derivatives

-1

CRER
ox g
- = 4.46
(x+ly)” ~ ox ;n(x+zqy ;x+lqy ( )
we get
o . a1
a(x +iy), = (x +iy)y, 2ix+ 7ty
0 & iq~
—((x+1iy), = (x+1iy) —, (4.47)
dy 1 1 x +igty
and
a . . n—1 k]q
G_Z(x +iy), = (x +1iy), Z T idty (4.48)

Therefore @(z,2) = (x + iy)y is the generalized analytic function satisfying 0-equation (4.44)

n—1
(k]
—‘D(Z, Z) (D(Z,Z)(l - CI)Z (1 + q")z +‘1(1 _ qk)z’

(4.49)
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where

_ LK1,
AzD=(0-g) =
; (1+ g9z + (1= ¢z

Here parameter g expresses deviation from analyticity, and for ¢ = 1 we have A(z,7) =
0 and D-Bar Equation (9-problem) reduces to the holomorphicity condition 6% 7" = 0. By

using (4.44) and (4.45) we find a new representation for g-Binomial:

. l_qnl _
(x + iy); —CU(Z)CXP[Z ff _ Z(l+q"){+(1— pYe df Ndd|, (4.50)

where

w@=(3) [Ta+a @51)

Details of these calculations are given in Appendix. This representation shows explicit relation

between complex g-binomial (x + ), and complex binomial (x + iy)" = 7".

4.7. Complex g-Analytic Fractals

In this section we are going to construct self-similar fractal surface as a g-analytic
function. In papers (Erzan, 1997), (Erzan and Eckmann, 1997) it was shown how gener-
ators of fractal and multi-fractal sets with discrete dilatation symmetries can be related to
g-derivative operator. It was applied then to free energy of spin systems on hierarchical lat-
tices (Erzan, 1997), (Erzan and Eckmann, 1997) and irreversible dynamics on such lattices
(Erzan and Gorbon, 1999). Key point is that singular part of critical spin systems on hierar-
chical lattices possesses discrete dilatation symmetry and satisfies the homogeneity relation.
Following similar arguments here we consider complex g-derivative and g-analytic functions
to obtain new type of fractal sets.

We introduce complex valued function f(x,y), as homogeneous function of degree d:

flgx, qy) = ¢ f(x,y). (4.52)

88



The g-differential of this function is

dof = fgx,qy) — f(x,y) = (¢ = Df(x,y) (4.53)

and from (4.5), it can be rewritten as
(q" = Df(x,y) = (M)D.f) dgz + (M)D=f) dz. (4.54)

For g-analytic function D;f = O the last term vanishes and we have the homogeneous g-

difference equation

d
o~ g1
iM)D.f = =1

f. (4.55)

Below we consider only the case d = n as a positive integer. To find a solution of this equation,

first we notice that complex g-binomial (x + iy); 1s a homogenous function of degree n

(Ax +idy), = V'(x + iy)y. (4.56)

Combining this condition for 4 = g with g-analyticity condition D:(x + iy); = 0, we find that
it satisfies the equation (4.55). That is

ZMyD (x + iy), = [nly(x + iy)y. (4.57)

Then the general g-analytic fractal solution is

S, y) = (x +iy)y Ag(x,y), (4.58)

where A (gx, qy) = Ay/(gx,y) = Ay (x,qy) = A,(x,y) is complex valued g-periodic function in
both x and y.
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By choosing A,(x, y) as a real g-periodic function, we get the g-harmonic fractals as

U(x,y) = u(x,y) Ay(x, ), V(x,y) = v(x,y) Ag(x,y), (4.59)

where u and v are g-harmonic functions (4.39). Specific form of these fractals depend on

structure of A,(x,y). To fix it we have next Proposition.
Proposition 4.3 A g-periodic function can be represented in the general form

Ay =)™ >0 > " G'x gy (4.60)

k=—00 [=—00

Proof Consider

Afqx.y) = (@)™ Y. > g™ Gg ' x.q)

k=—00 |[=—00

By replacing k by k — 1, it is obvious that A,(gx,y) = A,(x,y). Similarly, it is easy to see that

A,(x,y) 1s g-periodic in y argument as well. |

According to the above proposition, the general g-analytic fractal solution of g-difference

self-similarity equation (4.57) is

Feey) =) @iy > > a7 * Glgx, q'y). (4.61)

k=—00 [=—00

4.7.1. Examples of g-Periodic Functions

For G(x,y) = sinx siny, from (4.60) we find

o e
Ay = oy Y)Y e ;)(kf;n @y (4.62)

k=—00 |[=—00

With another choice G(x,y) = (1 — ™) (1 — V), we get
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1_ lq.X 1_ lqy
Aoy = (o 3 Y A= jkﬂ,) <)

k=—00 [=—00

This function can be written as a product of one dimensional g-periodic functions A(x) and

B(y),

[

Afey)=x" ¥ Z e " A Bo)

k=—00 [=—c0

_el([X

representing the g-periodic parts of the Weierstrass-Mandelbrot function, and a canonical ex-

ample of a fractal curve.

4.7.2. Double Mellin Series Expansion

Below we restrict our consideration to A,(x,y) = A,(x) B,(y), where A,(gx) = A,(x),
B,(qx) = B,(x) are g-periodic functions. Without loss of generality we consider A,(x) case

only in details. By changing argument Inx = # and Ing = 7" we have
A (gx) = Ay (x) = Aye"e') = A (e).

Denoting A,(e') = F(t) we find that it is T-periodic, F(t + T) = F(T), and can be expanded to

Fourier series

[Se]

i2nni
F() = Z cneTt,

n=—oo

with Fourier coefficients

1 T —i2nnt
== F(te 7 dt
T Jo
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According to this, g-periodic function A,(x) can be represented by complex series (the Mellin

series)
Ay(x) = F(Inx) = io coxtni, (4.63)
where
o= ﬁ1 1qu(x)x_1i"27 dx

In a similar way for B,(y) we have

i2nn
B,(y) = Z dyy '™, (4.64)
with coefficients
1 4q i27n dy
d, = — B g ——

Combining together we get the double-Mellin series representation of g-periodic function in

the following form

Ay(x,y) = Z Z Cn iy X T (4.65)

—00 m=—

By substituting to (4.58) and expanding g-binomial according to Gauss’s Binomial
formula, we obtain expansion of self-similar g-analytic function (g-analytic fractal) to double-

Mellin series

fl.y) = Z Z ckd ZH q= i (4.66)

k=—00 m=—o0 =0

In case of fractal (4.62) the expansion is
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f(x,y) Aq(x, y)(x + iy),

O N O] g g, sin(gy) sin(g™y)
5 5 St |
I . qs(k+m)

k=—00 m=—co0 [=0

4.7.3. Examples of g-Analytic Fractals

By choosing function
2 2
Ay(x,y) = sin[—=In|x|| - sin | == In[yl |, (4.67)
Ing Ing

as g-periodic in x and y, we obtain the following set of homogenous self-similar g-analytic

fractals of degree n,

2 2
Fi6y) = sin| =X 1) - sin |yl - (x + i), (4.68)
Ing Ing 4

and for Ref,(x,y) = u, and Imf,(x,y) = v, the set of self-similar g-harmonic functions.
For n = 0, the simplest g-harmonic and g-periodic function is fy(x,y) = A(x,y)
from (4.67). In Figure 4.1 and Figure 4.2, we plot fy(x,y) for g = 2 and 0.5 < x < 0.5,

—-0.5 < y < 0.5. By changing scale (x,y) — (¢"x,q"y), or in our example magnifying our

figure in scales ..., %, %, 2,4,8,...,etc. we find that the figure shows the self-similar character
remaining in the same form.

For n = 2, we have

2 2
n(xy) = (2 —qy?)-sin|—In|x|| - sin[ == In]yl|.
Ing Ing

va(x,y) [2],(xy) - sin (2_71 In |x|) - sin (2_71 In |y|) . (4.69)
Ing Ing

In Figure 4.3 we show 3D plot of u,(x,y) at ¢ = 2 and —10 < x < 10, =10 < y < 10. By
re-scaling coordinates in 2" scale we get the same figures, showing self-similar structure of

our g-harmonic function.
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Figure 4.1. Contour plot of g-periodic g-harmonic function

Figure 4.2. 3D plot of g-periodic g-harmonic function

For n = 3, we get

2 2
u(xy) = (@ gy~ [20,q’y")sin (ﬁ In |x|) sin (ﬁ In |y|),

v(x,y) V(21,5 + ¢*(x* = gy*)) - sin (2—” In |x|) - sin (2—” In |y|) ) (4.70)
Ing Ing

In Figure 4.4 we show 3D plot of g-harmonic fractal uz(x,y) at ¢ = 2 and -1 < x < 1,
—1 <y < 1. This figure also shows self-similar structure at 2" scale.

For n = —1, we have

2 2
f(x,y) = sin (é In |x|) : sin(é In |y|) iy 4.71)
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Figure 4.3. 3D plot of n = 2 g-harmonic function

Figure 4.4. 3D plot of n = 3 g-harmonic function

and corresponding self-similar g-harmonic functions for (x + iy # 0) are

2
q-x . (2 . 2

u(x9 y) = m - SIn (m In |X|) - SIn (m In |y|)
—-qy . [ 2n . [ 2n

v(x,y) = m - 8in (m In |x|) . s1n(m In |y|) 4.72)

In Figure 4.5 and 4.6 we show contour plot and 3D plot of this g-harmonic fractal u(x,y) at
q=72.
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Figure 4.5. Contour plot of n = —1 g-harmonic function

Figure 4.6. 3D plot of n = —1 g-harmonic function

4.8. g-Analytic Coherent States

In this section, we apply our g-analytic functions to construct quantum states of har-

monic oscillator. We consider bosonic operators

[a,a'1=1, [a,11=0, [a",I] =0 (4.73)

and the vacuum state |0):

al0)y = 0,010y = 1. (4.74)
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The orthonormal set of n-particle states, n = 0, 1,2, ...,

(a’)"

n) = i

0y, (nlm) = &um, (4.75)

generates the normalized Glauber coherent states, with complex @ (Perelomov, 1986),

@y = e Hel S f/y_' Iny. (4.76)
n!

By analogy with these coherent states we introduce a new set of g-analytic coherent states,

parameterized by complex number o = @, + ia;:

(a; + laz)
v q) = 4.77)
w Z N

Normalization condition gives

2 + a,2)n2

- 1 2
1 = (a:qlas q) = |C] Z T’q = |CPe,(@} + a3),2,
n=0 q:

where we denoted

© (a2 + a?)"
e} +ad)p =y ——L (4.78)

g [n],!

in Hahn’s notations (Hahn, 1949), see also (Ernst, 2001). Then the normalized g-analytic

coherent states are given by

-1 2 () + i)
1 q) = (eq(a? +03)),2) Z:(; T\/T]'q Iny . 4.79)

For |g| < 1, due to evident relation (7 + 3)!, < (a] + @3)", we get inequality

egat +@3), < e laf +a3), (4.80)
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where on the r.h.s we have the Jackson g-exponential function. From infinite product repre-

sentation (Kac and Cheung, 2002) of the last function

1
(1= (1= glaP)y’

e (lal) = (4.81)

we can see that singularities of this function are located on the set of concentric circles with
radiuses given by growing geometric progression r, = rog"* , ry = 1/ m Then both
functions convergent in the disc D : |a|*> < 1/(1 — g). This is the region where normalization
of our g-analytic coherent states is defined.

When ¢ — 1 these states reduce to the Glauber coherent states (4.76) and radius
of convergency ry — oo. Here we emphasize that our g-analytic coherent states are also
different from the g-coherent states appearing in representation of g-deformed Heisenberg-
Weyl algebra (Vitiello, 2012), (Vitiello, 2009), (Vitiello, 2008). The last ones are analytic

in @, while our states are not analytic but the g-analytic.

4.9. g-Analytic Fock-Bargmann Representation

The standard Fock-Bargman representation of an arbitrary state

[Se]

W) = D calmy, <yly>= > lel =1,
n=0

n=0

is given by the scalar product of this state with Glauber’s coherent state (4.76):

(aly) = e P y(@), (4.82)
where the wave function
o0 an
= . 4.83
() ;:0 c Na (4.83)

is an entire analytic function (Perelomov, 1986).
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Analytic g-coherent state is defined (Arik and Coon, 1976) as

@y = &% Z NTR] Iny, (4.84)

n=0
and corresponding analytic g-Fock-Bargmann representation of an arbitrary state i) is

_l?

(aly) = e > Y(@), (4.85)

where the wave function

(4.86)

w(>-2 J_

is an analytic function.
As an example, our g-analytic coherent state (4.79) in Fock-Bargman representation

< zla; g > is characterized by analytic function in z:

0 n n
-1 (0/1 +ia), 2

=N

Va(@) = (eg(a] + 03),2) (4.87)

By using our g-analytic coherent states (4.79), now we introduce new representation
of these states which we call g-analytic Fock-Bargman representation. By taking the scalar

product of |y > with (4.79) we get

- (al ay)y

(@ qlpy = (eg(} + a3)) «/W (4.88)
= (eq(af% + a'z)qz) l//(d’; q), (4.89)

where the wave function

[ee)

Y(a,q) = cn (o m) (4.90)
VInl,!
q-
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is complex g-analytic function. Therefore, every complex g-analytic function, D:y(x + iy), =
0, determines quantum state in our g-analytic Fock-Bargmann representation.

Proposition 4.1 allows us to compare two wave functions in Fock-Bargman represen-
tation (4.83) and in g-analytic Fock-Bargman representation (4.90). Entire character of the
first one implies existence of the second one for |g| < 1.

As the simplest example we find representation of the orthonormal basis {|n)}, which

is given just by complex g-analytic binomial

) > daasg) = 4.91)
[n],!

It is not analytic, but as we have seen in Section 4.6.1, it represents the generalized analytic
function.
As a next example, we find the Glauber coherent state |@) (4.76) in our g-analytic

Fock-Bargmann representation < z; gla >:

s (x+zy) & e exdt lay)”
o(z:q) = €72 2l 4.92
Valz:9) = ;0 E TR (4.92)

which is g-analytic in z = x + iy.
4.10. Quantum g-Oscillator

We consider g-bosons with creation and annihilation operators

+ _ N+I]q \/[N]q +
b"=a" \/N+I (4.93)

B [[N +1], B [N],
“\V N7 a=a N (4.94)
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. N— . .
where operators a*, a are given by (4.73), N = a* a, [N], = qull. The commutation relations

are

bb* —b*b=4q", (4.95)

bb*—gb " b=1, (4.96)
and for g-number operators we have
b*b=I[N],, bb" =[N+1], (4.97)
As easy to see, n-particle states for b and a operators are the same

_ @ 0y = b")"

R Non

) 10 (4.98)

where vacuum state is @|0) = »|0) = 0. Then for b, b* operators we have

blny = {J[nlyln—1), b*Iny= ([In+1],ln+1). (4.99)

By using last relations we find action of these operators in g-analytic Fock-Bargman repre-

sentation:
b - D, b" — zMg’, (4.100)

where D, is complex derivative operator defined in (4.6). For g-number operator we get

representation

[Nl, » zM)D.. (4.101)
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This representation shows interesting connection with self-similarity condition discussed in

Section 4.7.3. The eigenvalue problem
[Ny |n) = [nlgIny, (4.102)

in g-analytic Fock-Bargman representation

(x +iy); ~ (x +iy)j

= [n] ;

ZMD, (4.103)

is equivalent to the self-similarity g-difference equation (4.57).

Quantum g-oscillator is described by Hamiltonian operator

H = hw(bb" + b b). (4.104)

The Hamiltonian in g-analytic Fock Bargmann representation becomes the operator as in

H = 1w(D,z M, + z M D), (4.105)

and the Schrodinger equation

Hln) = Ey|n), (4.106)

takes the form of g-difference equation

(D, z M2+ 2 M2 DOWn(z: 9) = Ein(2 ), (4.107)

with g-analytic solution

i@ = e e, 11, (4.108)
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The above consideration shows that our g-analytic functions even non-analytic func-
tions could describe quantum states. Moreover, fractal g-analytic functions discussed in Sec-

tion 4.7.3 describe quantum states with fractal properties.
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CHAPTER 5

QO-ANALYTIC HERMITE BINOMIAL FORMULA

We extend the concept of g-analytic function in two different directions. First moti-
vated by derivation of the Dirac type d-function for quantum states in Fock-Bargmann repre-
sentation, we find expansion of g-binomial in terms of g-Hermite polynomials, analytic in two
complex arguments. Based on this representation, we introduce a new class of complex func-
tions of two complex arguments, which we call the double g-analytic functions. As another
direction, by the hyperbolic version of g-analytic functions, we describe g-analogue of trav-
eling waves, which does not preserve the shape during evolution. The IVP for corresponding

g-wave equation is solved in the g-D’ Alembert form.

5.1. Different Type of Analiticity

Definition 5.1 Complex function f(z) of one complex variable z (or two real variables x and

y) is analytic if it satisfies

1(0
—f(Z) = 5(— + l—)f(Z) = (.1

We now define its g-analogue.

Definition 5.2 A complex function f(z;q) of one complex variable(two real variables) is q-

analytic if

| =

D f(z;q) = (D;“ + iD’l")f(z;q) =0. (5.2)

Example: Complex g-binomial z = (x-+iy)2 = (x+iy)(x+igy) = z. (%(1 +q)z+(1- q)Z)

is not analytic since, ((%(x + iy)fl # 0) but it is g-analytic Df_](x + iy)g =
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Definition 5.3 Complex function f(z,w) of two complex variables z,w is analytic if

0 0
a—zf(z, w) = 2= fzw) =0. (5.3)

Definition 5.4 Complex function f(z, w) of two complex variables z and w is double analytic

if it satisfies

Owf(z,w) = 9 ) f(z,w) =0. (5.4)

1 .
E(a_z“%

Definition 5.5 Complex function f(z,w;q) of two complex variables 7 and w is double g-

analytic if it satisfies

D..f(z,w) = (D;+in)f@;w):(1 (5.5)

| =

Example: For z = x+iyand w = u+iv complex g-binomial (z+iw); = z°+[2],iwz—gw*

A

is analytic in z, w (%(Z +iw); = %

(z + iw); = 0) and double g-analytic (D.,(z + iw); = 0).
As is well known, states of a quantum system in Fock-Bargmann representation are
described by complex analytic function f(z) and visa versa (Perelomov, 1986). In this repre-

sentation , due to the formula

f du()e f(2) = f(£) (5.6)

where a measure du(z) = dzdZe ¥, the exponential function plays the role of Dirac type &

function (Floratos, 1991). Proof of this formula is based on following identity

f@@ﬁfzﬁ (5.7)

Motivated by derivation of Dirac type ¢- function for quantum states, in Fock-Bargmann

representation we find holomorphic Newton binomial of two complex variables z and w ex-
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In this chapter, g-analogue of this formula for complex g-binomial is obtained in terms

of g-Hermite polynomials

1 + 1
(z+iw)g = Z [n] *q" Ho(z ) Hilgw, q) (5.9)
q

which is double g-analytic function function D ;(z + iw)Z = %(Dfl +iDV)(z + iw)g =0

It shows expansion of double g-analytic function of two comple;( variables in z and w,
in terms of standard analytic functions as g-Hermite polynomials. This formula can be used
for description of double g-analytic functions and corresponding Fock-Bargmann representa-
tion.

This representation allow us to introduce g-analogue of travelling waves (x+ct); which
can be expressed in terms of g-Hermite polynomials and corresponding g-travelling wave
equation

((D’}] )’ - c2(D;)2) u(x,1) =0

and its general solution in g-D’ Alembert form.

5.2. Analytic Hermite Binomial Formula

We start with the following Lemma
Lemma 5.1 For all ¢, n-complex numbers, we have

n n—k dk +p\"
Z( )(_ y dé* dn e = (an) e, (5.10)
k=0

Proof Consider left hand side of (5.10)

an (-1)* & LA A d_d nefz/4"72/4 (5.11)
£ dén- kd k dg dn
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By changing variables ¢ and 1 to A and u respectively according to

A+p=¢ A-p=n

we have
E-n _ E-n £+7
Au =
M ) ( 3 X 5 )
and
KU IO PRE (R P PRV (§_+ ’7)” AT 1A (5.12)
dé dn du 2
O
Corollary 5.1 We have
i i L el e g (5.13)
p é:n k dfk
Proof By taking the limit of expression (5.10)asnp — & = u — 0,4 — &, we get
lim > (— pEZ A i i e g (5.14)
¢ £ dér* dn dnt® p—0,4—¢ ’
O
Lemma 5.2 Forn =1,2,... f(z) = 7", the below equation holds
f dzdze %" = &". (5.15)

Proof By changing complex coordinates to cartesian coordinates the integral is expressed

in terms of summation formula

s e 1 ; S
f dzdze % e%7" = — f dxdyef("_’y)e_(x2+’2)(x+iy)”
n

1 v o
—Z(n)ikfdx x”_ke_"zegxfdy yke_yze_’f"
m k
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1 n\ . dv* 2 d* 2 gy
= = d x+§x_fd Y iy
ﬂz(k)l d "-kf RTETS I B

k=0
2 n k dn_k 52/4 dk _52/4

_ _ e d e 5.16
k_o(k)( ‘e (5.16)

where we have used the results of Gaussian integrals

—x2 2
fe x+axdx: \/7_T€a /4

and

—x2+ibx 3. _ -b?/4
f e dx = /e .
By using Corollary 5.1 we find the desired result

f dzdze %" = &". (5.17)

O

Now as evident we can generalize this result for any analytic functions f(z) = >~ a,2"

as

f du()e” f(z) = f(&).

The above proof implies some interesting binomial identity formula for Hermite poly-

nomials. For this, we need Rodrigues formula for Hermite polynomials:
Definition 5.6 Rodrigues formula for Hermite polynomials of complex argument is defined
by

Hy(2) = (—1y'e” L2 (5.18)
dz"
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and replacing 7 — iz we get

di’l
H,(iz) = i"e™ T e (5.19)
Identity 5.1 The following identity
1 i(")( DO HE) = & (5.20)
s - n-k(5E)HK(5) = .
2 L \k 2577

holds.

Proof According to the previous proof we have

&= fdzdze Ll = Z( )(_ )k e 52/4;;(6—62/4 (5.21)

k=0

In order to use the Rodrigues formula we multiply the above expression by ¢ /4¢™¢"/4

o (n k &4l &4 & d" 14 d_k £ /4
; Ve ( df’”‘ )(dfke )
n n 1 n—k 5 dk )
_ —1"(—,) H, (““ “’”4)
kZ:(; k( ) 2i {3 §) dék
o (D G LN g
= % D (Zi 11(i3) —2) (2)
_ i C n _ 1 \n—k:n—k § §
D) (1)t )
—_— (5.22)

]

Particular case: By simple change of variable ¢ — —2iz in (5.20), we obtain
LS (Vi) = 2 5.23
27§ [ Hi @ (i) = 2 (5.23)
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and by reductions & = x and & = iy we get

1 n .
=2 (Z)i"—"Hn_k<%)Hk(§) =X (5.24)
k=0
1 n
=2 (k) " H, (GOHS) = 1Y (5.25)
k=0

Identity 5.2 More general identity is given as

n

1
+iw)' =5 Z (Z)ian_k(z)Hk(w). (5.26)

k=0

The proof can be done by generating functions for Hermite polynomials.

Proof Generating function for Hermite polynomials is defined as follows

gz =" =" H (z)— (5.27)
n=0
and
gow, 7)== N Hk(w)— (5.28)
k=0

by changing variable 7 = it and multiplying (5.27) and (5.28) we have

(o)

g glmin = ™ = 37 5 = 1@ H"(W)’ £, (5.29)

=0 k=

In order to change the order of double sum we choose / + k = n, and by expanding the left

hand side in r we get

(e8] 2”[ n . (&) n n
g(z,1) gw, ity = >’ w > :7 (Z)Hn_k(z)Hk(w)ik. (5.30)
n=0 : n=0 " k=0
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By equating the term of # we obtain the desired result (5.26):

(z+iw)" = % Z (Z)ian—k(Z)Hk(W)-
k=0

Another proof can be done by using the complex Laplace equation.
Proof (" = (z + iw)" is analytic function of two complex variables z and w. Therefore it
satisfies complex Laplace equation A" = 0, where A = j—; + % which implies A*/" = 0 for
k=0,1,2... As evident,

1 —1A)2 —LAy
e Nz + i) = (daE, & +iw)" = (@+iw)" (531
4 2! n!
or explicitly
—1A . N (P
e (z+iw) = e tite ta? W
k
k=0
. n &k —lﬁ —k _li k
- (et ) (). (5.32)
k
k=0
By using the identity for Hermite Polynomials:
1 d?
H,(x) =2"e *a2 x"
we get
1 <« (n
(z+iw)' = — Z( )Hn_k(z)Hk(w)ik. (5.33)
2n \k
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5.3. g-Hermite Polynomials

In paper (Nalci and Pashaev, 2010), we define g—Hermite polynomials according to

generating function

n

eq(—t2)eq([2]th) = Z H,(x; q)#, (5.34)
n=0 q°
where
> X" A T
= s E = T2
0= 2y B9 =2 o

are Jackson’s g-exponential functions and g-numbers and g-factorials are defined as follows:

n

q' -1
-1’

[n],! = [11,02],...[n],-

[n]q =

From this generating function we have the special values

L [2n],!
H5(0;9) = (=1)"——, (5.35)
[n],!
H,1(059) =0, (5.36)
and the parity relation
H,(=x;q) = (=1)"H,(x; ). (5.37)

By g-differentiating the generating function (5.34) according to x and 7 we have the recurrence

relations correspondingly

Dan(X; 9) = [Z]q[n]an—l(X; Q)» (538)
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Hn+1(X; Q) = [2]q XHn(X; C]) - [n]q Hn—l(qX; Q)
~nlgq"" Hy 1 (G ).

(5.39)

We notice that the generating function and the form of our g-Hermite polynomials are

different from the known ones in the literature.

First few polynomials are

Hy(x;q) =1

Hi(x;q) = [2],x

Hy(x; q) = [2]; X - [2],
Hy(x:q) = 212 % - 23], x

Hy(x; q) = [2]; x* = [212[3],[4], x* + [2],[3],[2] 2.

When g — 1 these polynomials reduce to the standard Hermite polynomials.

In generating function (5.34) for ¢ = 1 it gives expansion of g-exponential function in

terms of g-Hermite polynomials

o

Z Hn(-X; Q) _ eq([z]qx)
20, T B

In the limitg — 1

For x = 1 and x = O case:

n.

C Hi(D) 1 Ha(0) - x Ho(0) o (21
=) D L5 _ |

n! 4 @2n)!

n=0

(5.40)

n!

113



Identity 5.3 g-Analogue of identity (5.26) is as follows

N B L e 1
+ i)y =—= > || i'q T Hy iz Hilqw, ), (5.41)
[2]‘1 k=0 k q q

where H; stands for q-Hermite polynomials.

Proof By using the generating function for g-Hermite polynomials (5.34) by replacing

x — Z we obtain

[ee) tn
2 _ )
ey(~)e,([21,21) = Z; 2 D (5.42)
and then replacing t — it, Z — W and ¢ — 1/g we have
- 1.,
er(P)er([20:iW1) = > H,(W; =)' ——. (5.43)
q q q s q [I’l]é !
Multiplying (5.42), (5.43) and using the factorization of g-exponential functions
eq(x)eé(y) =e,(x+y), (5.44)
and e,(0), = 1 we get
[ee) (o) . l 'k
: H(Z; q) HlW: DI
ey (11217 + [21,iW)) = 1+, (5.45)
q( o, ,Zol,; TTIN

For the right hand side, by changing the order of double sum we choose k+/ = n and expanding

left hand side in ¢, we derive

n

. r"([z]qz+ [2]$iW)

0o M n n L) 1 '
! .= Z | [ ] q > H,(Z; Q)H(W; )i, (5.46)
n=0 [n]q : 'n=0 [n]q "X q q

for every power ' we have identity
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" ] < - 1
(Z+ﬂ) = [”] q 7 H,Z: @) H(W: =i, (5.47)
q
q
where

1 1
Kl = ——[Kl, [kl = ——[K],! (5.48)
7 q g

Replacing Z = z and % = w the desired result is obtained

1 - b
(+iw)y=—== " [n] q 7 Hy(z @) H(qw; —)l
q

O

Another proof can be done by using the following identity and using complex g-

Laplace equation.

Identity 5.4 Following identity

e, (—%Aq) (z+iw)) = (z+iw)), (5.49)
(217

q

holds.

Proof  (z +iw) is g-analytic function. Therefore, it satisfies g-Laplace equation
Ayz+iw); =0

Furthermore, we have

e, (_ 1 ((DZ) +(DY) )) (z +iw),!

1 n
eq( [2]2 ) (z+zw) [] q

= i oy ( [2]2)” ((DZ)Z + (D”qlv)2): (z+iw)y,

n=
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) 1 1 n ; o
B Z [n],! (_@) (Aq)q (@ +iw), (5.50)

where (Aq)’; =A,- Agll) . Aéz) - Agln—l) and

Aq=(Dg)2+<Dg>2, A§>:<Dg)2+q<Dg>2 LAY = (DY) + g 1(DW)

Using the fact that (Aq)’: (z+ iw)z =0,Ym = 1,2, ..., only the first term in expansion survives
then we get desired result.

Using the factorization of g-exponential function

( [2]2 ) (Z+lw)n
= ( Dz ) . (_@(D:) )(z + iw)Z
- [ ] "“‘z”lke ( —( f)) (——(DW)) (5.51)
N 77\ e R '

By using the generating function of g-Hermite Polynomials (5.42) we have the follow-

ing identity:

1
H,(x;q) = [2]}e, (——2(D5,‘)2) X, (5.52)
212
which gives
——( A : (z:9) (5.53)
“\ "2 TR Az g :
and
Lok = 1
e:{( [2]5 Di )w = [2]’iquk(qW’q) (5.54)

q
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where D" = }IDT. Substituting these results into equation 5.51, we get
q q

1 _ o [n] w1 1 1
€q (——Aq) (z+iw), = [ ] q 7 = H (2 @) Hilgw; —)
2", d ; k|, [212F 214 q
According to identity 5.4 we get the desired result as
G+ iwpy = — Z H 5 Hy (s O Hilgw; i (5.55)
zZ+mw), = n—k\Z5 W, =)L . .

5.4. Double g-Analytic Function

Here we consider a class of complex valued functions of two complex variables, z and

w, (or four real variables), analytic in these variables 5_95 f= % f=0.

Definition 5.7 A complex-valued function f(z,w) of four real variables is called the double

analytic in a region if the following identity holds in the region:
_ 1 ,
az,wf = E(az + law)f =0, (556)
where
1 , 1 :
azf = 5(8)«7 - lay)’ awf = i(au - lav)

andz=x+1iy, w=u+iv.

Definition 5.8 A complex-valued function f(z,w) of four real variables is called the double

g-analytic in a region if the following identity holds in the region:

_ 1 o
D..f = E(D; + lDé)f =0, (5.57)
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where e e
Z _ f(CIZ’W)—f(Z,W) w _ v T s
qu(Z, w) = G-1)2 Déf(z, w) = (é T

andz = x+1iy, w=u+iv.

Here we should notice that
N T I I
Dq * E(Dq —1 q), Dq + E(Dq — qu).

The simplest set of double g-analytic functions is given by complex g-binomials

k

. . . . . Snl vanma
(z+iw), = (z+iw)(z +iqw)(z + ig*w)...(z + ig"'w) = Z [ ] gF e D2k Rk
k=0 L™ g

satisfying

1 v4 Y4 ; n __

E(Dq + lDé)(Z + lW)q =0.
Proposition 5.1 Complex g-binomials satisfy following relation

1 o o e
E(DZ — zDé)(z +iw), = [n],(z +iw), I

Proof We have

1 . w b n
E(DZ - zDé)(z +iw),

1 (< [n] ) i [n .
_ ! Z PLCSIERS (DZ Zn—k) Wk g ek (Dvlv Wk)
2 k k g
=0 L™ 1q =0 L™1q
n—-1r 7 n ’
1 n _ ks ‘ Ll P
_ 3 Z ) qk(k 1)/2[n—k]qz k llkwk_lz [k,] qk K=Dj2;k nk — [k ]q]
=0 L™ g =1 1% g q
1 (< [n] =D _ g2k gk nz_i n k(k+1)/2 k1 n—k—lwk [k +1]
= = n—kJl,z 'wh =1 iz —
2= gk—qq ! el e qq q" !

[
— 1l

gD Kl — i
lq

~
i
(=]
—
= S

qk(k+1)/2iik[k + 1]q) Zn—k—likwk
q
q

| =

k+1
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1S [n]! .
- 1% (k=1)/2 ) n—k=1 3k, K
22 ([n—k—l]![k]!q ©ow

= [n] ln B 1] qk(k—l)/2zn—k—1l-kwk
k=0 k q
= [nlz+ iw)Z‘l,

From the above result follows that any convergent power series

(o)

Fatiw)y =) aiz+iw)

n=0

determines a double g-analytic function. Since our relation (5.41) shows expansion of double
g-analytic g-binomials in terms of g-Hermite polynomials, it also gives expansion of any
double g-analytic function in terms of the analytic polynomials.

Examples: Forn =1:

k(k=1)

1 w1 1
Z+iw)l =z+iw=— [] T Hy_i(z; @) Hi(qw; —)i*
q [Z]q;qu 1-+\Z5 q) i (g q

1

1 1 1

1
Ho(z; @) H,(qw; —)i) )
q q

(5.58)

Forn=2:
(z+ iW)(ZI = (z+iw)z+igw) =7+ i[2],2w — gw*
1 2 [2 k(k=1) I,
= o5 q 7 Ho_(z;9)Hi(gw; —)i
[2]621 kz=(; k q q
1

2

2 1 2 1
= ([ ] H,(z; q)Ho(gw; =) + qHo(z; @) Ha(gw; —)i2)
0 . q 1 q

1 2
— H(z;9)H =)
[2]2 1(z; ) H (gw q)l +

q q

g-Holomorphic Laplacian: Another proof of identity (5.41) can be done by noticing
that g-binomial (z+ iw)j is double g-analytic function. Then we can use the following identity

and complex g-Laplace equation.
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Theorem 5.1 The following identity holds

1 o o
eq(—ﬁAq)q(z +iw), = (2 +iw), (5.59)
q
Proof
Since (z + iw)y is g-analytic function, it satisfies the g-Laplace equation
Az +iw), =0
and

1 . . ! N
eq(_@Aq)q(Z + lW)q = q(_ﬁ ((D ) + (D ) ))q(Z + lW)q
= 3 ! —L ’ 2\2 w2 n .
= HZ:(; [n]q‘ ( [2]2) ((Dq) + (Dé) )q (Z + lw)q
[ee] 1 1 n " . )
i nzz(; an (_@) (Aq)q (4w, (5.60)

where (Aq)z =A,- A(ql) . A(qz) - A;n—l) and
Aq = (D2)2 + (Dg’)z, Af}l) = (DZ)Z + Q(Dg)z A(n D _ (DZ) +q" I(DW)

Using the fact that (Aq): (z+ iw)Z =0,Ym = 1,2, ..., only the first term in expansion survives,

then we get desired result. |
Due to (5.44) we can factorize g-exponential operator function as
() v im
el ——=5 Z+iw
2e™), ‘
= e (—L(DZ)Z)el (——(DW) )(Z + iw)"
\ 1212 212 ‘
o [n] weny 282 | n—k 1 w2 | .k
= q ? leq(——(D))z el(——(Dl))w. (5.61)
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By using the generating function of g-Hermite Polynomials (5.42) we have the follow-

ing identity:

1
H,(x; q) = [2]}e, (——Z(Dj)z) X, (5.62)
22
which gives
Lol e Ln o (5.63)
“A\Tppte )t T et '
and
e (—L(DWY)w" = ——— Hi(gqw; 1) (5.64)
e )" T ke e '

q

where D" = [—;D‘f. Substituting into (5.51), we get

q q

1 " ~[n] wn, 1 1 1
eq( Aglg(z +iw)y = Z[ ] g i H, (23 @) ——=— Hi(qw; 5).
q

21 |k 21+ [21% g+
Then, according to identity (5.59) we obtain desired result
o 1 <« [n] wo 1,
(z+iwyp=—= > 11 g 7 Hyrlz @ Hilgws -)i". (5.65)
(215 = K], 1

Theorem 5.2 Double g-analytic Kampe-de Feriet binomial expansion is given by

1
V—vigw, vt, 5)1’".(5.66)

1
q

1 < )
APV S K121, Ntz v ) K([2]
= ) ;[k]qq G TR TR

Proof Using the definition of g-Kampe-de Feriet polynomials (Nalci and Pashaev, 2010)

. X
K,(x,vt;q) = (- t)an(—_; ) (5.67)
X, vt; q v RV q
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X

and changing arguments as PRED

= z we get

Ko([21, V=viz, v, )(—vi) T = H,1(2:q)

and replacingbyn—k - k, z = gw, g — Ll]

1 1
Ki([211 N=vigw, vi; =)(=v1)"% = Hi(qw =),
! q q
Using the above relations into the g-binomial expansion in terms of g-Hermite binomial for-

mula (5.65) the desired result is obtained. O

As a particular case of our binomial formula, we can find g-Hermite binomial expan-
sion for the g-analytic binomial (x + iy)" as well. If in (5.41) we replace z — xand w — y,

then we get

o 1 < [n] we 1.
(x +1y), = [k] q > Hy(x; Q)Hk(qy;é)lk~ (5.68)
q

Since a g-analytic function is determined by power series in g-binomials (Pashaev and Nalci
, 2014), this formula allows us to get expansion of an arbitrary g-analytic function in terms of

real g-Hermite polynomials.
5.4.1. g-Binomial and g-Translation Operator
Our proof is based on representation of g-binomial as a g-translation:
eZD;x" = (x+a). (5.69)

This formula can be proved by expanding g-exponential function as follows
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0 ki yx\k n k¢ yx\k n
aD* a (Dq) a (Dq) k[n]q[n - l]q[n —k+ 1],1 k(k=1)
e, ‘X" = X' = X'= > a g 7 x*
DI TP IR T ) L,
_ [n qk(kz—l)xn_k k_ (x + a)”, (5.70)
k=0 k q

where (D))" = [n]y[n — 1],...[n — k + 1]x", [k]i! =

g-Binomial Expansion in terms of g-Hermite Polynomials
Complex g-binomial expansion in terms of g-Hermite polynomials we find in the next

form:

iyD: o 1 [n (S 1)
e = (x+ i) = Z[ ] g T Hyo ) Hilgy: —) (5.71)
= q

In order to prove this formula, from the generating function for g-Hermite polynomial (5.34)

we get

H,(x;q) = eq(= W(Dx) )2]5x". (5.72)

By replacingn — k, x — qy, g — é we obtain

l — o ay
Hk(qy,q) =ei( [2]2 (Dq) )21} (qy) (5.73)

As the next step, to both sides of Gauss’ binomial formula (5.71) we apply the operator

1
2 @wﬁ 215 e (- oF DML (5.74)

Then, by using (5.72) and (5.73), from the RHS of (5.71) we obtain

1 & k(k l)
2] Z [n] g™ T Hyi(x; @) Hi(qy; —) (5.75)

q k=0
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From another side the LHS of (5.71) becomes

S (D) e,

(= [2]2 ;

—_— X 2 1(—
aE P

and due to (D™)%e, i = (L )Q(D)‘)2 P4 xn and as follows

q l]

iyD}

e (——(D"y) e ”Df'x"—a( (D, ",

212 ¢ "4 (2]

q

finally we find

ey ﬁ(DX) +E(Dx) )X = éD X = (x+ iy)l (5.76)

By changing real variables to the complex ones x — z and y — w, we obtain the expansion of

double g-analytic g-binomial in terms of g-Hermite polynomials (5.9).

5.5. g-Traveling Waves

Here as another, hyperbolic extension of g-analytic functions, we consider the g-
analogue of traveling waves as a solution of the g-wave equation. Direct extension of trav-
eling waves to g-traveling waves is not possible. This happens due to the lack of the chain
rule in g-calculus and as follows, impossibility to use moving frame as an argument of the
wave function. Moreover, if in the Fourier harmonics f(x,f) = e®~“) we try naively to
replace the exponential function by Jackson’s g-exponential, f,(x,7) = e,(i(kx — wt)), then
we find that it doesn’t work due to the absence of factorization for g-exponential function

ey(i(kx — wt)) # ey (ikx) e (iwt).
5.5.1. Traveling Waves

Real functions of two real variables F(x,f) = F(x + ct) called the traveling waves,

satisfy the following first order equations
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d 0 ~
(a_r ¥ ca) F(x+ct) =0. (5.77)

It describes waves with fixed shape, prorogating with constant speed ¢ in the left and in the

right direction correspondingly. The general solution of the wave equation

Fu 0%

— =, 5.78
o2~ ox (5-78)
can be written as an arbitrary superposition of these traveling waves
u(x,t) = F(x + ct) + G(x — ct). (5.79)

5.5.2. g-Traveling Waves

Direct extension of traveling waves to g-traveling waves is not possible. This happens
due to the absence of chain rule in g-calculus and as follows, impossibility to use moving
frame as an argument of the wave function. Moreover, if we try in the Fourier harmonics
f(x,1) = *®=) replace exponential function by Jackson’s g-exponential function f(x,?) =
e (i(kx — wt)), then we find that it doesn’t work due to the absence of factorization for g-
exponential function e,(i(kx — wt)) # e,(ikx) e (iwt).

That is why, here we propose another way. First we observe that g-binomials
(x % ct)) = (x £ en)(x £ get)..(x £ ¢" i) (5.80)
forn =0, +1, £2, ..., satisfy the first order one-directional g-wave equations
(D % Dy e 2 en; = 0. (5.81)

which are hyperbolic analogs of g-analyticity (and anti-analyticity). Then, the Laurent series
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expansion in terms of these g-binomials determines the g-analog of traveling waves

(&)

fxtcet), = Z a,(x ct)g.

n=—0o0

Due to (5.81) the g-binomials (5.80) satisfy the g-wave equation
(@2 = Dp?)ucn = 0 (5.82)
and the general solution of this equation is expressed in the form of g-traveling waves
u(x,t) = F(x + ct)y + G(x — ct), (5.83)
where

F(x+ct)y, = Z a,(x + ct)Z

n=-—0o

and

Glx—ct)y = Y by(x—co).

n=—o0o

This allows us to solve IVP for the g-wave equation

[(D’, )2 - cZ(D;)Z] u(x,1) =0, (5.84)
u(x,0) = f(x), (5.85)
D' u(x,0) = g(x), (5.86)

where —co < x < oo, in the D’ Alembert form:

u(x,t) =

fx+ct)y+ f(x—ct)y .\ i f(xm)q

7 e g(x)d,x’, (5.87)

(x—ct)q
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where the Jackson integral is

(x—ct)y

(x+ct)g >
f gy = (1=g)x+ct) ) qglg/(x+cn),
j=0

(1= g)x—ct) ) a’glg/(x = cp). (5.88)
j=0

If the initial velocity is zero, g(x) = 0, the formula reduces to

u(x,t) =

(fGx+ ety + flx=cn)y). (5.89)

| =

It should be noted here that g-traveling wave is not traveling wave in the standard sense and
it is not preserving shape during evolution. It can be seen from simple observation. The
traveling wave polynomial (x— ct)g = (x—ct)(x—gct)(x—qg°ct)...(x—g" ' ct) includes the set of
moving frames (as zeros of this polynomial) with re-scaled set of speeds (c, gc, ¢°c, ..., ¢""'¢).
It means that zeros of this polynomial are moving with different speeds and therefore the
shape of polynomial wave does not preserve. Only in the linear case and in the case ¢ = 1,

when speeds of all frames coincide, we get standard traveling wave.

5.5.3. Examples

In this section we are going to illustrate our results by several explicit solutions.

Example 1: We consider I.V.P. for the g-wave equation (5.84) with initial functions

u(x,0) = X2,

D' u(x,0) = 0. (5.90)
Then the solution of the given I.V.P. for g-wave equation in D’ Alembert form is found as
u(x, 1) = x> + gc*r’. (5.91)

When g = 1, it reduces to well-known one as superposition of two traveling wave parabolas

(x + ct)*> moving to the right and to the left with speed c¢. Geometrically, the meaning of q is
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the acceleration of our parabolas in vertical direction.

Example 2: The g-traveling wave

u(x,t) = (x — ct)fl = (x—ct)(x—qct)
2 12
= (x - [i—]ct) — %c%z (5.92)

gives solution of I.V.P. for the g-wave equation (5.84) with initial functions

u(x,0) = x*

D' u(x,0) = —[2],c¢x. (5.93)

If ¢ = 1 in this solution, we have two degenerate zeros moving with the same speed
c. In the case ¢ # 1, two zeros are moving with different speeds ¢ and gc. It means that,

the distance between zeros is growing linearly with time as (¢ — 1)ct. The solution is the
(¢=1?
4
. 2 .
with constant speed %c. The area under the curve between moving zeros x = ct and x = gct

parabola, moving in vertical direction with acceleration ¢?, and in horizontal direction

qct -1 3.3
(x— ct)f]dx = —uﬁ

e 6

is changing according to time as #°.

For more general initial function f(x) = x", n = 2,3,... we get g-traveling wave
u(x, 1) = (x = ct)) = (x — et)(x = get)..(x — ¢"'ct)

with n-zeros moving with speeds ¢, gc, ..., ¢"'c. The distance between two zeros is growing
as (¢" — ¢")ct, and the shape of wave is changing. In parabolic case with n = 2, the shape of
curve is not changing, but moving in horizontal direction with constant speed, and in vertical
direction with constant acceleration. In contrast to this, for n > 2, the motion of zeros with
different speeds changes the shape of the wave, and it can not be reduced to simple translation
and acceleration.

Example 3: Given IVP for the g-wave equation (5.84) with initial functions as g-
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trigonometric functions (Kac and Cheung, 2002)

u(x,0) = cosyx,

D' u(x,0) = sin,x. (5.94)

By using the D’ Alembert form (5.87), after g-integration , we get

1 (x+ct)y . ) )
u(x,t) = 3 [cosq(x +ct)y + cosy(x — ct)q] + 7 L o, sing(x")d,x
1 1 1
= 3 1+ - cosy(x —ct)y + (1 = p cosy(x +ct),|. (5.95)

Example 4: g-Gaussian Traveling Wave For the initial function in the Gaussian
form: u(x,0) = ¢~ in the standard case g = 1 we have the Gaussian traveling wave with the
same shape u(x,t) = e (see Figure 5.1). For the g-traveling wave with the same initial

.. 42 .
condition u(x,0) = ¢, we have solution

u(x, 1 = (e_(x_”)z)q = i " (x - cz‘)ﬁ"

(see Figure 5.2). As we can see, during evolution the shape of the wave is changing as an

amplitude is growing.

0g-rnffl 20T AN N —
ost /- NN

04 i i i i i
-1 -0.5 0 0.5 1 1.5

Figure 5.1. Gaussian traveling wave at time 7 = 0,7 =0.5and 7 = 1
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0.4 i i i i
-1 -0.5 0 0.5 1 1.5

Figure 5.2. g-Gaussian traveling wave attime t = 0,7 = 0.5and t = 1

5.5.4. g-Traveling Waves in terms of g-Hermite Polynomials

Identity(5.26) allows us to rewrite the traveling wave binomial in terms of Hermite

polynomials as
Y 1 < (n & )
(x+ct)' = o Z I"H,_(x)H(—ict).

Its g-analogue for g-traveling wave binomial follows from (5.41)

" 1 [n o k=1 . 1
(x+ct), = 27 Z [k] iq 7 H,_(x; @) H(—igct, ;1)-
q

q k=0

Then, the general solution of g-wave equation (5.82) can be expressed in the form of

g-Hermite polynomials

u(x,t) = F(x +ct); + G(x — ct),, (5.96)
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where

[Se] [Se] 3 1
Flxka,= Y aesen= ) ano [k] g% Hyeiv Hi(=iget, ),
- - q q
n=—o0o0 n=—0o0 q = q
- - 1 < - 1
Gl—eiy= ) ax=ctj= ) a3 [Z] g7 Hyoalv ) Hliget, ).
- 15 £ q
n=—co n=—co q k=0 q

It is instructive to prove the g-traveling wave solution

(D1 - cDx) (x+ ct) =

K

by using ¢g- Hermite binomial. We have

1 <« |n k(k-1) . 1
(D), = eDy)(x + ct); = (Dtl - CD;) E [ ] g 7 H,_i(x; @) H(—igct, 5)
q q
q

1 k=1 1
[2]n Z [n] lkq( ) H, i(x; Q)D Hi(—igct, 5)

q k=0

1 v n & Ko=) 1
- T DH, H 7, —
c[z],,Z[k] g (6 i (iget, )

q k=0

By recursion formula for g-Hermite polynomials

D H,(x; q) = [2]4[n] H,-1(x; q)

we get

1 O n] o ve- , N
(D', = eDp)(x+ €t = o D H KT Hyoo (5 L21 K Hio-y (—iget, i)
q qk q q

1 n—1 - |
[2]2 kz(;[n] I - >[2] [n — Kkl H, k-1 (x; @) Hi(—igct, 5)

n—1

_[]Z

94 k=0

k+1 A(k+l)

1
4" Hyoea (s @21 [k + 111 Hil—iget, )(=igo)

k+1

k(k 1)

1
7 [2]4[n = k] Hy—i—1 (x5 @) Hi(—igct, 5)
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1
q

LS ] e n| ey 1
=ci'—= " ([k N 1] iq 7 210k + 1] - [k] ¢ [21,ln - k]q) Hiciea (5 O Hi(=iget, )
q q

The expression in parenthesis is zero due to g-combinatorial formula and [n]: = gﬂ‘i .

q

As a potential application of our results we should mention that an analytic function of
two complex variables can be related to the tensor product of Glauber coherent states. Then,
the double analytic functions, as well as the g-double analytic functions correspond to some
symmetry restrictions on these states. Expansion of these states in binomial and Hermite
binomials form would reflect some entanglement properties of these states. These questions
are under the study now. Interesting problem also is to find the symmetry group of the g-wave

equation as a g-deformation of the Lorentz group.
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CHAPTER 6

QO-BINOMIAL AND QO-TRANSLATION OPERATOR

Here we introduce g-translation operator, which produces g-binomials, g-analytic and
g-anti analytic functions, and g-travelling waves. A second type of g-translation operator as
g-commutative (non-commutative) translation operator is also given, which produces non-
commutative binomials, functions for non-commutative coordinates. We generalize these g-
translations to g, p-translations for two bases. By specific choice of bases as Golden ratio
we obtain Golden binomials as translation of monomials. Finally we show that all these

translations can be described by first order g-difference equations.

6.1. Binomial and Translation Operator

As is well known, the translation operator e"%, with real number coefficient a, acting

on monomial x", denoted by e X" produces binomial expansion
= (n
d
ey = (x+a) = Z (k)x”_kak. (6.1)

According to this, application of translation operator to any analytic function f(x) = ", a,x"

gives translation of the argument

Ui f(x) = f(x + a). (6.2)

If the translation coefficient is related to time variable ¢ as a = *ct, we get the travelling

waves
e f(x) = f(x % cf), (6.3)

as a solution of wave equations (g—; == CZ%) f(x £ ct) = 0, which are moving to the left and

right direction correspondingly with speed c.
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The translation operator with complex translation coefficient a = +iy produces com-

plex analytic and complex anti-analytic binomials respectively

eV = (x + iy)".

(6.4)

As a result, any analytic or anti-analytic complex functions can be written as the translation

of real analytic function f(x) = 3,7 a,x"

e f(x) = fx + iy).

(6.5)

By differentiating this relation in y we get the analyticity and anti-analyticity conditions cor-

respondingly

0 0
(a + l@)f(x + ly) =0.

6.2. g-Binomial and g-Translation Operator

Definition 6.1 The g-translation operator of the first kind is defined as

aD?}
q
eq .

where e (x) is first Jackson’s g-exponential function (2.25).

Definition 6.2 The g-translation operator of the second kind is defined as

where E (x) is second Jackson’s g-exponential function (2.26)

(6.6)

(6.7)

Proposition 6.1 The first kind g-translation operator (6.6) acting on monomial x" produces
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the binomial
Pyt = Zn: " X kat (6.8)
! o Lkl
Proof Using the definition of the first Jackson’s g-exponential function we get

. 00 (an)k n k

qg.n _ q _ —
e, ‘X' = ; i, X' = Z[k]q [n],...[n — k+1]qx"

(6.9)

I
=~
Il
[«
—
= S
I
Q
=
=
&
Q
=~

O

Proposition 6.2 The second kind g-translation operator (6.7) acting on monomial x" pro-

duces g-binomial

aDy, n

X = (x+a)y, (6.10)
where

(x+a), = (x+a)x+qa)..(x+ q"'a) = [n] q@xn_kak
q

and yx = xy.

Proof Using the definition of the second Jackson’s g-exponential function we get

aDj‘] . 00 an)k n ak ;
eé X' = Z k = ; [k]l![n]q...[n—k+1]qx"
- [ ] Tt = (x v a)l, 6.11)
=0
where we used
k—1
g7 K]y, = [,

O

According to proposition (6.1), the application of first kind of translation operator

(6.6) to any function f(x) = )", a,x" we obtain g-function as
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e f =y a[Z] Xk, (6.12)
q

n=0 k=0

which can not be written in simplest form of zeros of polynomial.
For a = +iy in first kind of g-translation operator and application to monomial x",

gives g-analytic and g-anti-analytic complex g-binomial

+iyD?

e, 'x'= Z [Zl XK &iy) =1 (x 2 iy)). (6.13)
k=0 q

Therefore, the application of first kind of g-translation operator to any function f(x) = 3,7 a,x",

produces the g-analytic and g-anti-analytic functions

[

CEDWY [Z] O = ) anre ) = fre ). (614)
n=0 k=0 q

n=0

These functions satisfy the g-analyticity and g-anti-analyticity conditions

(D} £iD}) f,(x. iy) =0, (6.15)

0| =

and corresponding g-Cauchy Riemann equations
Dou =Dy, Dy =-Du, (6.16)

where f,(x,y) = u,(x,y) +ivy(x,y).
A more interesting case is the application of second kind g-translation operator (6.7)

to any function f(x) = >, 7, a,x". This yields a g-function f as an expansion in g-binomials

oo

¢ f) = fla+a)y, = ) a,x+ ) (6.17)

n=0
By choosing a = +ct in g-translation operator and applying this to any function f(x) =

136



Yo anX", we get the g-travelling waves,
ictD’;
e, "f(x)= f(x<£ch), (6.18)

These g-travelling waves give the general solution of the g-wave equation studied in (Nalci

Tumer and Pashaev , 2016)

(e

in the following form u(x, t; q) = f(x + ct), + g(x — ct),.

)2 -2 (D;)z) u(x,t;q) =0,

Q=

For a = +iy in g-translation operator and application to monomial x", gives g-analytic

and g-anti-analytic binomials (Pashaev and Nalci , 2014)

iin’;

e X' = (x £ 1y)y. (6.19)

1
q

As a result, the application of g-translation operator to any function f(x) = ., a,x", pro-

duces the g-analytic and g-anti-analytic functions

+iyD}

€, ) = flx £ ly)q (6.20)
q
These functions satisfy the g-analyticity and g-anti-analyticity conditions

(Dx D ) Flxxiy), =0, 6.21)

q
q

| =

and corresponding g-Cauchy Riemann equations

Diu=D)v, Dy =-Du, (6.22)
q

where f(x + iy; q) = u(x,y; q) + iv(x, y; q).

We can generalize the above results in the following definition:
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Definition 6.3 The g, p-translation operator is defined as

Epir=e, ", (6.23)

q.p 11
9P

where (q, p)-Jackson’s exponential is

1 =)
Eqp0) = ) ea—ylap) T x (6.24)
n=0 9-p
and (q, p)-number is
q9 -
[nlgp = = [n])q-
“w = ) P

Proposition 6.3 Action of q, p-translation operator (6.23) to monomial x" produces (q, p)-

polynomial in the form

e X = (k) (6.25)
q’p
where (q, p) polynomial is defined in the form
(43, = Dap) T [Z Py
k:() q.p
= (¢ NGy gp )+ ply), (6.26)
As a special case when g = ¢, p = ¢’ = —é, where ¢ is the Golden ratio, we obtain

Fibonomial (Pashaev and Nalci, 2012) as translation of monomial

yD
e, TEX = (x4 y)z,_l, (6.27)

g

sl

(4

where
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u k-1 (71 _
(x+¥)r = (x+y)_, = Z(—l)(z)[k] YR,
Y k=0 :

o

and g-binomial coeflicients are Fibonomial

[n] _F,!
k¢_7 F,_\F°

1
e

’
i
7 .

where F,, = [n]r = p

6.3. Non-Commutative Translations
Definition 6.4 g-commutative translation operator is defined as
e, (6.28)

where ax = gxa.

Proposition 6.4 Application of g-commutative translation operator to monomial x" gives

non-commutative binomial

¢ X =(xta)=y [”] X, (6.29)
q

where ax = gxa.

Proof By using the definition of g-exponential function we have

anl oo (CIDE k
e, "x :; A (6.30)
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and using the non-commutativity of coordinates ax = gxa, we obtain the k-th derivative as

(aD* Y x" (aD%)(@aD?)...(aDY) X"

k-times

(aD})(aDy)...(aD¥)[n],x"'a

q

k-1 times

[nl,ln = 1],...[n = k + 1],x"*d". (6.31)

Putting this into the definition of g-exponential function we get the desired result. O

The g-commutative translation operator with complex translation coefficient a = +iy
produces g-analytic and g-anti-analytic binomials respectively for non-commutative coordi-

nates yx = gxy

+iyD| n
e, ‘X'=(xtiy)'= Z [Z] X (xiy)k. (6.32)
q

k=0

Thus any g-analytic or g-anti-analytic complex functions of g-commutative coordi-

nates yx = gxy can be written as the translation of real analytic function f(x) = 3, a,x"

+iyDy x©
eg )= flxxiy)= ) an(x£iy)" (6.33)

n=0

By taking Dy derivative of this relation, we get the g-analyticity and g-anti-analyticity condi-

tions for g-commutative coordinates correspondingly

(DE + iDZI)f(x +iy) = 0, yX = gxy, (6.34)

where the g-derivatives are acting on non commutative complex g-binomial as follows

n—1
i

ifn] (x + iqy)"!. (6.35)

D (x +iy)"
q

Dy (x +iy)"
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The commutator relation of corresponding g-derivatives for function f(x + iy) = X,° an(x +

iy)" is found as
|D,. 3| = DD} - qDi D} = 0 (6.36)
q q q

By choosing a = *ct in g-commutative translation operator and applying this to the

monomial X" we get g-travelling binomial of non-commutative time ¢ and space x : tx = gxt
+ctDy

e, "X'=(x=xcr) (6.37)

As a result, the application of g-commutative translation operator to any function f(x) =

Yoo anX", produces the general solution of g-wave equation of g-commutative variables x, ¢ :

((D’q)2 -q (cD’f )2) u(x,1) =0 (6.38)

as superposition of travelling waves with tx = gxt

u(x,t) = F(x+ct) + G(x — c1) (6.39)
where
F(x+ct) = Z a,(x + ct)", G(x—ct) = Z a,(x —cr)".
n=0 n=0

We can generalize the above results in the following definition:

Definition 6.5 The gp-commutative translation operator is defined as

ey’ (6.40)
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where (q, p)-Jackson’s exponential is

(o0

1
HOEDY FES (6.41)
n=0 4P
and (q, p)-number is
qn _ pn
[n],, = .
a.p q—p

Proposition 6.5 Action of gp-noncommutative translation operator (6.41) to monomial x"

produces complex (g, p)-polynomial with yx = qpxy in the form

iyD

ey’ "X = (x4 iy), (6.42)
where
(x+iy)" = Z [Z] XY, yx=qpxy. (6:43)
k=0 q.p
As a special case wheng = gpand p = ¢’ = —910, where ¢ is the Golden ratio, we obtain

Fibonomial as translation of monomial with yx = —xy

iyD1.~¢ . = [n k.
€y X =+ ly)%_é = Z [k] _7x i)k, (6.44)

k=0 > (Iﬁ

and g-binomial coeflicients are

where F, = [nl,y = [nlr = £255.
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CHAPTER 7

COHERENT STATES AND GENERALIZED MEHLER
FORMULA

Here by applying evolution operator at time ¢ = 1 to Glauber coherent states we in-
troduce a new type of quantum states as Hermite coherent states, characterized by Hermite
polynomials, which can be normalized by using the known Mehler formula. Then the evo-
lution operator at arbitrary time ¢ generates more general Kampe-de Feriet coherent states,
characterized by Kampe-de Feriet polynomials. In order to normalize Kampe-de Feriet co-
herent states we introduce the generalization of the known Mehler formula. Then we intro-
duce corresponding Fock-Bargmann representation for these new coherent states. By using
the generating function of Bernoulli polynomials we construct Bernoulli coherent states and
related Fock-Bargmann representation. By using g-evolution operator for g-holomorphic heat
equation we obtain g-analogues of Hermite and Kampe-de Feriet coherent states and corre-
sponding Fock- Bargmann representations. The g-translation operator allows us to get double

g-analytic g-Coherent states from analytic g-Coherent states.

7.1. Coherent States

Definition 7.1 The Glauber coherent state in the basis of Fock states |n) is defined as (Perelo-
mov, 1986)

ar

o)y = e 2

(7.1)

On.

where « is an arbitrary complex number and |n) = @r ) |O>

The Fock-Bargmann representation of coherent state |a) is defined by scalar product

of this state with coherent state |z) :

[Se] =m

(d \2+|a\2 7" _ (% +a?) |2+\n\2 _ (2 e \2+\n\2) . _ (22 +e) _
(o) = € Z §j & = e Gla,2),

m=0 ' =0
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where G(a, z) = €** analytic in z and «.

7.2. Holomorphic Heat Equation

Definition 7.2 For complex «, the holomorphic heat equation in space of analytic functions

is defined as

0 N 1o
ot 490a?

with evolution operator

2

_1,a”
U(l‘) =e 4[d(y2

so that

DO(a,t) = U(t)D(e, 0).

7.3. Hermite Coherent States

——) O(a,1) =0

(7.2)

(7.3)

Proposition 7.1 Applying evolution operator U(1) to monomial 2a)" we get the Hermite

polynomials H,(@) :

2
H, (@) = e " 2a)".

In this section, we consider the coherent states which are not normalized

|a>:; f/lm"”'

(7.4)

(7.5)

Definition 7.3 Applying evolution operator U(1) to not normalized coherent state |a) we de-
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fine Hermite coherent state |H(@)) as

1d — H,
e i |ay = Z; an/‘;_)!|n> = |H(a)), (7.6)

characterized by analytic Hermite polynomials in «,

Proposition 7.2 The action of bosonic operators a, a*, which satisfy the commutation relation

la,a™] = 1, to Hermite coherent state is expressed in the following form:

1d
alH(@)) = (G—EE)IH(CM, (7.7)
d
a’ |H(@) = 7o [H(@)). (7.8)

Proof Action of annihilation operator to n-particle states a |n) = Vn|n — 1) gives

H, H, © H,.
alti@)=a > Dy = 2 D gy -1y = 3 i@ (7.9)
. =0 .

by using two and three term recurrence relation for Hermite polynomials

iHn(a) =2nH, (@) (7.10)
da
Hy.1(@) = 2aH,(@) - 2nH,_ () (7.11)
we get desired result
o aH, > LH, (@)
alH@y = Y D, S wmB,

n=0 2n \/’? n=0 2n+1 \/m !
1d
a|H(a)) - 370 |H()) . (7.12)

Another way to prove this proposition is starting with eigenvalue problem for annihi-

lation operator

ala) = ala) (7.13)
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2
and multiplying both sides by evolution operator U(1) = ¢ 7 so that we have

_1 1
e talgla)y = e talala)
_1.d> _1.d>
alHa)) = |e 4da2,a] la) + ae *a? |a)
~————
N |H(a))

by using the known commutation relation [%, x] =1,

CU I I a1 da
dx’x_ dxz’x_ dx’ 7 dx”’x_ndx”“’

so the commutator * becomes

—
® |
=
I
QN‘Q,‘\,
-
Q
[
Il

S 1 d
5 () o
4] n! da?1

n=1

© n+1 2n+1
2y I e N
g 4 n! da+l 2da

As a final result in (7.14) we obtain

H(@)) = L d H
al (a)>—(a—§£)l (@) .

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

Similarly, using the action of creation operator to n-particle state a* |n) = Vn+ 1|jn+ 1),

and the recurrence relations we have
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a* |H(@))

n202 \/_

i \/_a In >_ZH(“)\/n+ Tn+1)
:o :

H,(a)

N H,_i(a) E
Z 1\/(_71xf|>-22n\m|n>

n=1

o
= IH@).

(7.19)

O

As a result, we obtain the eigenvalue problem for Hermite coherent state with eigen-

value a, which are eigenvectors of a superposition of bosonic operators

2
B|H(a)) = —a|H(a)),

V3

where
B 2 ( + ! +)
=—\a+ =a
V3 2
and [B,B"] = 1.
The Hamiltonian for Hermite coherent states is obtained as
_ hw + +\ 1 2 2
H=—-~(B"B+BB") = @((3mwx) +7°).
where
B - 3mwx + ip
Vohimw
Bt 3mwx —ip
6himw
and p = —zi

(7.20)

(7.21)

(7.22)

We find the fluctuation deviation in x and p in the following form:
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Ax = J(x2) = (x)* = e (7.23)
Ap = (p*)—(p)* = 3;1% (7.24)

where (x) = (H(a)|x|H(a)) .
As an important result, Hermite coherent state has minimal Heisenberg uncertainty
relation

h
AxAp =3 (7.25)

If we compare Hermite coherent states with Glauber coherent states, then we note that

both states minimize the Heisenberg uncertainty relation (7.25). But for the coherent states

we have
fi
Ax = [ ——
. 2m
himw
Ap = [ —
P 2

Comparing with (7.23), (7.24) we find that position uncertainty in Hermite state is squeezed
by factor V3. This indicate that Hermite coherent states are the squeezed states.

In order to find the normalized Hermite coherent state we use the Mehler Identity
(Mehler, 1866).

Identity 7.1 The Mehler formula is defined as

[

_l¢2(X2+y22)+2uxy _ Z Hn(x)Hn(y) (z)n’

e 1—u
2 !
—u ey n 2

E(x,y) =

(7.26)

where |u| < 1.

Proof Using the Gaussian integral

f ) e€d¢é = \n (7.27)

[ee]

we can write

e = — f e E N g (7.28)
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By substituting this relation into the Rodrigues’ formula for the Hermite polynomials we

obtain integral representation for Hermite polynomials

2 d ! 2 2 d ! 1 « 24n;
x| _ -0 x| —&E°42iéx
¢ ( dx) ¢ ¢ ( dx) \/%fooe dé

Lexz f m(—l)"(2i§)”e‘§2+2i§xd§

H,(x)

f (—1)"Qig)"e ™ e, (7.29)

So, by using the integral representation of Hermite polynomials we have

i Hn(xr)ll!tln(y) (g)”

n=0

[ [ S
= lf dé:f d]] g_(f_ix)z_(n—iy)ze—Zufn
T J_o o

— lf dé e—(f—ix)z—Ziufwuzfzf dn e—((fl—iy)ﬂtf)z
T J_co -0

\r
1 00
_ f o~ (1-U)E 420 (x—uy)+x° d¢
Vi Jow
1 T —()r—uy)2 +x2( 1 —uz) 1 —u? (x2 +y2 )+2uxy
= — ¢ -2 = e 12 (7.30)

\/_ 1w V1 —u?

where we have used the Gaussian integral

(o]
e—ax2+bx+cdx — Eezﬂ +c
—co a

O

Using the Mehler formula for u = %, x=pfandy = a, we find inner product of two

Hermite coherent states in the following form

H@H@) =y, PO (%) - %e-é<az+ﬁz-4@> #0. 731)
n=0 ’

This form shows that Hermite coherent states are not orthogonal.
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By putting @ = 3, as a result we find normalized Hermite Coherent state as

l(a/ +@2—4|al?) H (a) (7 32)
Z 2n

|H(a)) =

s\s

where (H(a)|H(a)) = 1.
The probability of Hermite coherent state |H(a)) being in the state |n) is

H,(a)H, (@)

i ‘ L(a?+a?)~4fof?
2 22np|

P(n) = [{n|H(a))I” =

(7.33)

The Fidelity for Hermite Coherent states, which measure the closeness of two quantum

states is found as
|(H(B)|H(a))|* = ge—é((a—B)Z+<<'r—ﬁ>2—2<aB+&ﬁ), (7.34)

By applying bra vector (x| to the normalized Hermite coherent state (7.32) we obtain

(x|H()) = i La?+a? 4|a|2>Z H, (a) Ay (7.35)

§|

and writing the coordinate representation of n particle state

i1 o 2
<x|n>=wn(x>:(%) ﬁH(\/%x)e (7.36)

we get the wave function

_ V3 L(@?+a*~4laP) i e N 1 \/7
(XH(@)) = — (nh) e 22’1@11' ( —x)H(a/) (7.37)

6‘

«/Li the normalized Hermite coherent state in

coordinate representation is obtained as Gaussian function with origin determined by complex

By using Mehler formula (7.26) with u =
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! 2
b

(x|H(@)) = (3_;;)4 e%(3a2+&2—4|a|2)6_%(x_% E“) ) (7.38)
T

Figure 7.1. Squeezed Hermite state in coordinate representation

We have indicated above and now we can see that the Hermite coherent state is the

squeezed coherent state

(xlH(@)) = (V3)"& (xla),
e

where squeezing factor is written in terms of dilatation operator M with g = V3.

Definition 7.4 The generating function for Hermite polynomials is defined as (Arfken and
Weber, 2005)

- "
e - Z H,(x)— (7.39)
n'
n=0

Proposition 7.3 We have the following identity

(%) %> = |H(a)) (7.40)

Proof Using the definition of Hermite coherent state (7.6) and the generating function for

Hermite polynomials (7.39), we get desired results as follows
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o Hu(@) o Hu(a) (@) o Hu(@) (a+ )"
|H(a)) = In) = 0y = =] 10)
+ o 2 ot 2 0 n +\n
= (5 % 0y = o (5) 0% 0y = o (5) ST W)
s 2" n!
, X n +\n ) n 2
= %) @) 0y = (%) Y iy =e() g> (7.41)
= e = ny=e . .
Z; 2t Nt 24 50 2
O
Proposition 7.4 The eigenvalue problem for Hermite coherent state is found as
at 2 at 2
2¢ () a el T) |H(@) = a|H(@)). (7.42)
12
Proof Applying operator elT) to both sides of equation (7.40),
)
‘%> = o) |H(e)) (7.43)
and then annihilation operator a
12
al3) = ael®) jH@)
2
25) = ad¥ @)
12 )2 2
e_(T)C—Zy %> = ¢ (7) ae(T) |H(@))
12 2
alH@) = 2¢(T) aed™) |H@)). (7.44)
O

Definition 7.5 Another definition for the Glauber coherent state is application of unitary dis-

placement operator D(a) = €% =% to the vacuum state |0)

lr) = D()0) . (7.45)
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Definition 7.6 The displacement operator for the Hermite coherent state is defined as

H(@)) = D(H(@)) |0) = e () 33010y | (7.46)

Proof Using the definition of coherent state D(a) |0) = |a) we write

Il
D[R

o[2)o

e_(%)ze%a+

“Sagy = (%)

+12 @ +_Qa
(5 e 5410y = |H(a) (7.47)
D(H(a))
O

By using the definition of Hermite coherent states and the unitary displacement oper-

ator D(«@)
2 2
H@) = ¢ti7la) = ¢ 42 D) 0)
_1.d Zia") —a
= (4 4 da2 ea(_i_'—a )e_aa |O> (748)
and the property
e—%d‘f%eak — e—%kzeak (749)

we get our Hermite coherent states as squeezed states

H(@)) = ¢ 1“9’ |ay, (7.50)
———
S

Lo+

where S (&) = e 1@

unitary one.) If we denote b,b" in terms of boson creation and annihilation operators as

=%, (This squezing operator is not unitary, but can be extended to the

follows

b+Ea+_

 b=a-% (7.51)

2

(\ON ST
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the it satisfies the same commutation relation [a,a*] = [b,b*] = 1. As a result we get the
SU(1,1) algebra

b? (b*)? 1
K =—, K, = , Ko=-(b"b+bb"
2 + 2 0 4( + )
[Ko, K.] = =K., [Ki, K_]=-2K, (7.52)
wiht Casimir operator
C=K;—-Ki—K;=KyKy+1I)+ KK, (7.53)
where
K, +K_ K,-K_
K, =K, +iK,, K, , K= ———, (7.54)
2 2i
[Ki, K>] = —iKo, [Kz, Kol = 1Ky, [Ko, Ki] = iK>. (7.55)

This shows that our Hermite coherent states are S U(1, 1) generalized coherent states,
representing squeezed coherent states.

Fock-Bargmann Representation of Hermite Coherent State By using scalar prod-
uct of coherent state |z) with Hermite coherent state |[H(«@)), and the generating function for

Hermite polynomials (7.39) we get

&\ﬁ ﬁ\ﬁ

H "H,
(H (@) D = >Z )

2'n!

L l(a +a%-4)a| )Z

—i (a 21 a2 4o ) —;+az
e 2 4

(7.56)

2
which gives Fock-Bargmann representation of Hermite coherent states, where G(a, z) = e~ **
is analytic in @, z. This representation can be considered as generating function of analytic

Hermite polynomials and is a function of two complex variables.
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7.4. Kampe-de Feriet Coherent State

Proposition 7.5 The Kampe-de Feriet polynomials are found acting by the operator U(t) =

2
¢ i to monomial 2a)" as follows:
(7.57)

_1,4d%
K, (a,t) = ¢ *'a2 2a)".

Definition 7.7 Applying operator U(t) to coherent state |a), we introduce the Kampe-de

Feriet Coherent states
(7.58)

ltﬁ N Kn )
e_Z da? |a/> = Z (a/ t) |l’l> = |K(a, t)) .

2n /!

n=0

We obtain the eigenvalue problem for Kampe-de Feriet coherent states in the following

form
b|K(a,t)) = a|K(a,t)) (7.59)
2
-5
where
1
b= (a + éaJ’)

[b,b%] =1
The Hamiltonian for harmonic oscillator determined by b operators is written as har-

monic oscillator with variable mass u(t) = m%

2 'u(l)w2x2

P
2

1
H = + —) =
hob'h + 3) 0

b

241

or with parametric frequency w(?) = w

1 P> mw?(t)x?
H=hwt)(b'b+ =)= —+ ——.
b+ ) =5t
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Fluctuation deviations in x and p are

Ax = (2 —(x)?= !

2A0(1 + 2)
_ 2N (N2 — m
Ap = p)—(p)*= 2A(=0)
where
A = Lz
2hw(1 — tz)

As an important result, Kampe-de Feriet coherent states minimize Heisenberg uncer-
tainty relation
h
AxAp = —.
P=3
Comparison with Glauber coherent states shows that in both cases we have the minimal un-
certainty relation, but for the Kampe-de Feriet states the coordinate uncertainty is squeezed

by factor depending on parameter ¢ and it vanishes for r — 2.

2 t’
In order to find normalized Kampe-de Feriet coherent states and their coordinate rep-

resentation we introduce the generalized Mehler Formula.

Theorem 7.1 Generalized Mehler formula is introduced as bilinear generating function for

two Kampe-de Feriet polynomials

Z( ) K. (x, r)Kn(y D1 el (7.60)
- V1 —t1v?

L
where |v| < e

Proof By using the relation between Hermite and Kampe-de Feriet polynomials

Ku(x,1) = ( \/;)n H, (_

K(.7) = (Vr)' Hn( ) (7.61)

and replacing by % =¢ % = 77, the Mehler formula is written as

(o) (o)

O (4) B _ 3 (4 s B VEOKN D) L 25 g )

n=0 2 ’ n=0 n! V1 —u?
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If we rewrite the above formula in terms of x and y variables, we obtain

2( 2 )

o " K, (5, DKL, PO Wi k'

Z( u ) (x, DK, (y, 7) _ R (7.63)
2T n! VI-u?

n=0

and by denoting u = V7v we get the desired result. |

Special Cases:

i. If we choose ¢t = 7 = 1 in the generalized Mehler formula and use the relation

K.(x.1) = (Vi) H, (%) (7.64)

we obtain the Mehler formula (7.26)

O (V) HiOH, ) 1 e
e 7. (7.65)
; ( ) n! VI =2

ii. If we choose t = 7 = 0, the application of evolution operator to monomials produces

monomials and the generalized Mehler formula transforms into exponential function

i( ) XV g, (7.66)

n=0

iii. For = 0 and 7 = 1 the generalized Mehler formula produces the generating function of

Hermite polynomials

(o)

vy\" -ann(y’ T) N Zan()/) —47%+4zy
j— —_— = —_— = N 7.67
nz:(; ) Z:(; T o7

where U(1)(2y)" = H,(y) and 5 = z.

iv. For 7 = 0 and t-arbitrary we get generating function of Kampe-de Feriet polynomials

(o) (o) n

Z( )n Y& (x t) o~ rr2vxy Z Z_yKn(X, 1= 6_422t+4xz, (7.68)
n.

n= n=0
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where 7 = z.

v. For 7 = 1 and r-arbitrary we have

N "K(xt>H<y> 1 2@adin
Z() =12 (7.69)

n=0

vi. For x = y we have

[o] —(vx 2 T+1)+ vxz
Z ( ) K, (x, t)K (r7) _ 1 e (7.70)
ot V1 -2

vii. For r = 7 we get

= K, (x,)K,(y,t 1 222 0y
Z( ) = ) 0 - e T (7.71)
=0 ! V1= (v)?

S

viii. For x = y and r = 7 we have

S (K, (x 0’ _ 1 20t
; ( ) — (tv)ze : (7.72)

Applying bra vector (x| to Kampe-de Feriet coherent state (7.58) and using (7.36) we

obtain

RS K, ( )
K@) = C (5] Z(z\/_) (Vi) e (7.73)

n!

Using the special case of generalized Mehler formula (7.69) for v = % we get coor-

dinate representation of Kampe-de Feriet coherent state

2
o2 _@w(x oh 2(1/)

1/4

maw

<X|K(C¥, t)> = (—) exe 2-t 2h mw 2+t
nh

where [f| < 2.
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For @ = @, + ia», the Gaussian probability distribution function is

n%fn% 4n%
mw toz| _mme
e 2t h

2h 2 2
o 31 A"

| (x|K(a, 1)) |2 _ (E)l/z ez( S

Figure 7.2. Gaussian probability distribution of Kampe-de Feriet coherent state

Normalized Kampe-De Feriet Coherent States

Forv = 1,

product of two different Kampe-de Feriet coherent states

x = @ and y = 3, the generalized Mehler formula allows us to get the inner

K a 122, 02y =
K(a T § n( ’ t)Kn(,B’ 7 ) 1 Zg(aTHpT)rap
< ( ' t)|K(ﬁ’ )> B 22"7’1‘ 1 1’”% . ( /. ;4)

n=0 I —tr3

If r = tand B = @, the inner product is written in the form

[ee)

K” 2, Kn )
(K(a, DIK(@,0) = ) <w2f2>nn’(a H _ 2
S O

L
2

1 - L@+a?yrial?

-7 (7.75)

As a result, the normalized Kampe-de Feriet coherent state is defined in the following

form

K, (a,t)
|n
n!

. ), (7.76)
" \n!

K(@,0)=C )" »
n=0
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where

—ﬁ(ry2+&2)+\alz -1 /2

-2
e 4

C=|———| . (1.77)

_z
1-3

Fock-Bargmann Representation of Kampe-De Feriet Coherent State

The Fock-Bargmann representation of Kampe-de Feriet coherent state |K(a, 1)) is

2 o 7K (a,t ool
@M«n0>:eJ%C§SE—J?—2:Ckﬁﬂa=CG@¢uo (7.78)
n!
n=0

where the corresponding analytic Fock Bargmann representation of Kampe de Feriet Coherent
state

Gz ;1) = &+

depends on two complex variables z, a.

This function satisfies the holomorphic heat equation is found in the following form

2

0 0

— (ZdK(a, 1)) = — (zK(a,t 7.79

% (zlK(a, 1)) 502 (zlK(a, 1)) (7.79)
as the plane wave solution in the form

Gz, a;1) = &

7.5. Bernoulli Coherent State

The generating function of Bernoulli polynomials is

el —

tetx © n
I:Zymﬂa. (7.80)
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By using the relation for Bernoulli polynomials
B (x+ 1) = By(x) = nx"™", (7.81)

we find the following representation

By(x) = (et 1) %xn. (7.82)

-1
Then, by application of Bernoulli operator (eﬁ — 1) ‘% to coherent state |@) we in-

troduce Bernoulli coherent states

(e —1) di Z 'eda—l —a In) = Z |n>—|B(a)> (7.83)

B (a)

In order to normalize the state, we use the normalization condition (B(«@)|B(@)) = 1 which

1

Zzo Bn(ﬂ)l.gn @ *

gives C = . Finally the normalized Bernoulli coherent state is found as

1 >\ B
B(@)) = @)y (7.84)
ZOO—O B, (@)B, (@) n=0 \/’E

Fock-Bargmann Representation of Bernoulli Coherent State The Fock-Bargmann

representation of Bernoulli coherent state is

0 2l

lB@) - e Z 7" 'Z B (a') e Z"’: ann'(a)
32y @B 1 Vm! \/W n!
e‘% ze™ s
= — = ——G(Z.a), (7.85)

where the corresponding analytic function in @, z is found as

az

ze
G b = 9
(@,2) et —1
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which is generating function of analytic Bernoulli polynomials as function of two complex

variables «, z.

7.6. g-Coherent States

Definition 7.8 g-Holomorphic heat equation is defined as

(D o7 ——(D?) )¢(a, £) =0, (7.86)

with g-evolution operator (Nalci and Pashaev, 2010)
Ut;q) = ( ——1(Dy) ) (7.87)
q ‘1 [2]

Proposition 7.6 Applying evolution operator U(1;q) to monomial with g-numbers coeffi-

cients ([2],a)" we get the g-Hermite polynomials H,(«; q) : (Nalci and Pashaev, 2010)

H,(a;q) = eq(—m(D") )([Z]qa)”- (7.88)

Proposition 7.7 Applying evolution operator U(t; q) to monomial with g-numbers coefficients

([2],0)" we get the q-Kampe-de Feriet polynomials

Ky(a,t;q9) = eq(—ml(D(’) )([Z]qa)”. (7.89)

Definition 7.9 Analytic g-coherent state (Arik and Coon, 1976), (Vitiello, 2012), (Vitiello,
2009) and (Vitiello, 2008) is defined as

(7.90)

la;Q>=e;ZW
q

Definition 7.10 Applying g-evolution operator to analytic q-coherent state we introduce g-

Hermite coherent state, which is analytic in «, in the following form
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(o0

! N H,
ey = eq(_W(Dg)z) ) :Czeq(_ P ))\/_ i =c [2]2(0/—(]). m,
? n=0 n=0

where the normalization constant is

1

Hy(@q)Hy(a:q) q)
\/Z [2]2" [n]y!

The Fock-Bargmann representation of this state is |H(a; q))

_i2 =2
2 < _
<Z7 qu(a/, q)> - Zoo i (a’ q)H (a' q) q (_ [2]%1) eq(Za)v
\/ T RRm,

where the corresponding analytic Fock-Bargmann representation is found as generating func-

tion of g-Hermite polynomials with two complex variables z, @

2

G(z,a;q) = eq( P

) e,(za).

Definition 7.11 Action of g-evolution operator U(t; q) to analytic g-coherent state |a; q) pro-

duces q-Kampe-de Feriet coherent state

1 a\2 . _ C N2 a" _ N Kn(a,’taq)
eq(_@rwq) )Ia,q> - ;equ(Dq) e - ;—[H]q' In) = K(@.1: ) (1.91)

The Fock-Bargmann representation of this state is

S % K.(a.t:q) = 7K (st q) o
;q|K(a,t;q)) =C ——n)=C —n)=C .
(z:qlK(a.1:9)) mZO Ww% o In) Z; o In) = Cey(Z1)e,(za)
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The corresponding Fock-Bargmann representation is written
Gz, a,1) = e, (Z*1)e,(za) (7.92)

as generating function of g-Kampe de Feriet polynomials with two complex variables z,

And the normalization constant is calculated

ﬁ
2

Kn(@.::9)Kn(a.t3q) q)
\/Zn 0 [n]!

(7.93)

As an application we write g-Heat equation with g-Kampe de Feriet g-coherent states

solution

D (z;qlK(a, 15 q)) = (D§)* (z; qlK(a,1;9)) . (7.94)

7.6.1. g-Translation Operators and g-Coherent States

Definition 7.12 Action of the translation operator e o of complex a and 8 on complex mono-

mial " produces the double analytic binomial
i,B% no_ c O\
evad" = (a+ip)", (7.95)
where (a + iB)" is analytic in both «, 8 and it is a double analytic function

(o .0 o
E(a—'i'l%)(aﬁ'lﬁ)

B,
Definition 7.13 Applying the g-commutative translation operator e, * to complex monomial

a" gives g-commutative binomial

iBD?

e, "a" = (a+ip)", (7.96)
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where g-commutative binomial is defined as

n

(@+ip) =y [Z] B, (7.97)
q

k=0

which is g-commutative (Ba = qaf3) double analytic binomial.

Example 1: Action of this operator to analytic coherent state |a) produces double analytic

coherent state with g-commutativity of o and 8 :

iBD? o .
e Tlay=y % ) = |a + iB). (7.98)
n=0 :

Example 2: Action of this operator to analytic g-coherent state |a; g) produces double analytic

g-coherent state with g-commutative o and 3 :

ipD? n
IS Z(“ n’]ﬁ) ) = la+ iB: ). (7.99)
q

Definition 7.14 The second kind g-translation operator (6.7) is defined as

e PPi (7.100)

q

Action of this operator on monomial a" gives

efﬁ "o = = (a +iB), (7.101)

q

where (« + iB); is double g-analytic binomial
it 08\ o 181 =
5 (D5 + i )@+ iy = 0

Proposition 7.8 Application of g-translation operator to analytic coherent state |a) produces
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double g-analytic coherent state

lﬁDa N iBDY a" - ((I + lﬂ)z
a) = e —|n) = — |n). 7.102
e e ZO : \/a” Z; e In) (7.102)

This double g-analytic coherent state in Fock-Bargmann representation is written as

follows

> Ha+ 1,8)”
Z s T

(2@ +iB),) = (7.103)
n=0
and corresponding q-analytic Fock-Bargmann representation is constructed as
o (2 + ZB)”
(Zla+iB)g) = Y = = e(za + izB),. (7.104)

n=0

Proposition 7.9 Application of g-translation operator to analytic q-coherent state |a; q) pro-

duces double g-analytic coherent state

oo

o D% ppd @' o (@ '3)" _
e "lasq) = | In) = n) = (@ +1B):q) - (7.105)
a “ nz(; @ 4/[n]g! ! nZ:(; Vinlg! |a Pl >

This double g-analytic coherent state |a; q) in Fock-Bargmann representation is written as

follows

= ”(a + 1,8)"
)=

(ziql@+iB),:q = ¢,(Za + iZB),. (7.106)

n=0

and corresponding double g-analytic g-coherent state in q-Fock Bargmann representation is

constructed as

> (za + izB)!
(idla+iB)0) = )t = ez + i), = ecdes B (7.10)
n=0 '

As a result, we obtain double g-analytic function from analytic g-coherent state.
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CHAPTER 8

GOLDEN QUANTUM CALCULUS

The Binet-Fibonacci formula for Fibonacci numbers is treated as a g-number (and g-
operator) with Golden ratio bases g = ¢ and Q = —1/¢, and the corresponding Fibonacci or
Golden quantum calculus is introduced. Quantum harmonic oscillator for this Golden calculus
is derived so that its spectrum is given just by Fibonacci numbers. The ratio of successive
energy levels is found as the Golden sequence and for asymptotic states in the limit n — oo
it appears as the Golden ratio. That is why we call this oscillator as the Golden oscillator.
By double Golden bosons, the Golden angular momentum and its representation in terms of

Fibonacci numbers and the Golden ratio are derived.

8.1. Golden g-Calculus

In (Q, g) calculus we have the number

Q" -q
[nloq = . (8.1)
0.4 Q _
If we choose Q = ¢ = ”T‘B andg =¢' = 1_T\B = —é. Then (8.1) becomes Binet’s formula for
Fibonacci numbers as (¢, ¢")-numbers :
Fo=2"% =,y = [n]s. (8.2)
-
This definition can be extended to arbitrary real number x,
A Al

F.= [-x]ga,ga’ = [x]r = = > (83)

p 1
-9 o+
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though due to negative sign for the second base, it is not a real number for general x

1 1 1 1
e = R = | 89

(3

Instead of real number x we can also consider complex numbers z = x + iy,

Example : It is easy to see that

1 F,
fim P UE gy B 8.5)

oo [l e F,

The addition formula for Golden numbers is given in the form

1 m
(n+mlp=Fom=¢"Fp + (——) F,. (8.6)
¥
By using (8.2) we can get
N /N ’
¢ =pFy+ Fy_1, ¢ =@ Fy+ Fyo, (8.7)

and the above formula (8.6) can be rewritten as

Fn+m = FnFm—l +Fn+1Fm

Fo Fp+ FuF . (8.8)
The substraction formula can be obtained from it by changing m by —m as

Foom =[n—mlp = ¢"[-m]r + (—é)_m [n]r (8.9)
or by using the equality

[-nlr = —(=D™"[nlr (8.10)
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it can be also written

1 —m ~
[n—m]r = (—9—0) ([nlr = ¢""[mlF)
= ( 1)_mF Y r (8.11)
@ BN GOV '
or
" "
Fom = |\-—| F,———F,. (8.12)
¢ (=bm
Definition 8.1 Higher Fibonacci Numbers are
Fm = (A0 U0 [ (8.13)

‘,Om —_ Qolm

and F,(,l) =F,.

By definition, the multiplication rule for Golden numbers is given by next formula
[I’lm]%_l =Fun = [n]%_l[m]‘pn’(_L)” = FnFE,r:), (8.14)

and the division rule is

[m] _ [m]W _ [m]wl/n"pll/n
n x4 [n]wm/n"p/m/n [I’l]‘pl/n"p/l/n
)
F F,
Fu = —&5=—% (8.15)
J R

Higher Fibonacci numbers can be written in terms of ratio of Fibonacci numbers as

follows

Fm = M (8.16)

~ |
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From definition (8.2) we have the following relation

F_,=(D"'F,. (8.17)

For any real x,y

1y
¢'ylr + (——) [x]F
¢

[x+ ylF

¢ [x]r + (—é) [ylF (8.18)

which are written in terms of Fibonacci numbers as follows

1
Fx+y (PXFy + (_;)ny

1 X
©F,+ (——) Fy. (8.19)
¢
For real x, we have the Fibonacci recurrence relation
(xlr=[x—1lp+[x=2]p > F.=F, |+ F,. (8.20)
Example : Golden r is

Fp = [n]p == 4,73068 + 0,0939706:i.

8.1.1. Fibonacci and Golden Derivative

We define the Fibonacci derivative operator

gt — (=t g
ﬂ%:—zr?%—:uah. (8.21)
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and the Golden derivative operator as

)cdi _ /x% d
F . = —90 L = [x—]p.
dx

Fax -y

Then the Golden derivative of arbitrary function f(x) is given by

flen == _(Mp=M1) 10

Foa f(x) = Dpf(x) =

(¢ + )x (@ + 3%

(8.22)

(8.23)

Here, arguments are scaled by the Golden ratio: x — ¢x and x — —i. This scaling can be

written in terms of Golden dilatation operator

M, f(x) = f(ex),

where f(x)- smooth function. Its operator form can also be written as

g (1+ \/g)xjx.

M(/J = prﬁ = 2
A function A(x) is called Golden periodic function if
DFA(X) =0.
This implies
1
A(px) = A(——x).

2

As an example we have:

M@:gqllmm)
Ing

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)
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Example 1: Application of Golden derivative operator Dy on x" gives

Dpx" = ann—l
or
Dgx"
Fl’l = La
xn—l
so it generates Fibonacci numbers.
Example 2:
o F
pret= 3
n=0 n:
or 7
et —e v 26% sinh gx s n
Dret=—11 = =2
@+ 9—0 \/gx s n!
For x = 1 it gives next summation formula
N5
1 2

— F, sinh
Z ST
n=0 B

8.1.2. Golden Leibnitz Rule

We derive the Golden Leibnitz rule

Dr(f(x)g(x)) = D f(x)g(px) + f(—g)DFgu).

By symmetry, the second form of the Leibnitz rule can be derived as

Dr(f(x)g(x)) = Drf (X)g(—g) + f(@x)Drg(x).

(8.29)

(8.30)

(8.31)
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These formulas can be rewritten in explicitly symmetrical form :

8(px) + g(—f,)) (f(swc) + f(—i))
—— |+ Dpg(x) | ———|. (8.32)

Dp(f(x)gx)) = Drf (x)( 5 2

More general form of Golden Leibnitz formula is given with arbitrary «

Dr(f(x)g(x)) = (af(—g» +(1- a)f(sOX)) Dpg(x) + (ag(gox) +(1- a)g(—g») Dpf(x).

Now we may compute the golden derivative of the quotient of f(x) and g(x). From
(8.30) we have

D, (f(x)) _ Drf(x)glex) - Dig(x)f(sax)' (8.33)
8(x) 8(px)g(=7)
However, if we use (8.31), we get
D -X_D _x
Dy (f(x)) _ Ff(0)g(=7) ig(X)f( g,). (8.34)
g(x) 8(px)g(=7)

In addition to the formulas (8.33) and (8.34) one may determine one more representa-

tion in symmetrical form

D, (@) _ lDFf(X)(g(—i) +g(px)) = Drg(0)(f(=3) + f(W))' (8.35)

gx)) 2 8(px)g(=2)

In particular applications one of these forms could be more useful than others.

8.1.3. Golden Taylor Expansion

Theorem 8.1 Let the Golden derivative operator Dy is a linear operator on the space of

polynomials, and
x" x"

F,! = F,F,..F,

Py(x) =
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satisfy the following conditions :

(i) Po(0) =1and P,(0)=0foranyn>1;

(ii) deg P, = n;

(iii) DpP,(x) = P,_1(x) forany n > 1, and Dgp(1) = 0. Then, for any polynomial f(x) of
degree N,one has the following Taylor formula :

N N
. , X
f(x) = ;(DF FO)P,(x) = ;(DF 1O,

In the limit N — oo (when it exists) this formula can determine some new function

& n

X
fr@) = ) (DENO) (8.36)
n=0 n:
which we can call the Golden (or Fibonacci) function.
Example : (Golden Exponential) The Golden exponential functions are
o\ X PN o PN
ek = Z(; w10 Fis Z(;(—l) et (8.37)

The Golden derivative of these exponential functions are found

kx _ kx
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DFEkx — kE;vkx

for arbitrary constant k (or F-periodic function). Then these two functions give the general

solution of the hyperbolic F-oscillator

(D = k)¢(x) = 0, (8.39)
as
B(x) = Ak + Be ™, (8.40)
and elliptic F-oscillator
(D% + KH)p(x) = 0, (8.41)
¢(x) = AEX + BE;*. (8.42)
We have next Euler formulas
ey = cosp x + ising x, (8.43)
E' = coshp x + i sinhg x, (8.44)
and relations
Coshpx = cosp x, (8.45)
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Sinhpx = sing x, (8.46)
where
E; + E;* EL—E*

Sinhpx = +—F (8.47)

Coshpx = ,
oshpx > 7

We notice here that these relations are valid due to alternating character of second exponential
function.
Example : (F-Oscillator)

For F-oscillator

D%x +wx=0 (8.48)

the general solution is

x(t) = aEy' + bEZY" = d’Coshrwt + b'Sinhpwt = a’ cosp wt + b’ sing wt (8.49)

8.1.4. Golden Binomial

Golden Binomial we define as

X+ 5=+ V- @)+ (1) g y) (8.50)

and it has n-zeros at the Golden ratio powers
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For Golden binomial next expansion is valid

2 n k(k—1
+Wp=GH ., = ) [ ] (-1 T Ry
¢ F

U ! -
)y gy iy
L4 F, (IF,]

The proof is easy by induction.
Application of Golden derivative to the Golden binomial gives

Dp(x+y)p = Fu(x + y)’}_l,

Dip(x+y)p = Fulx = )i

It means

(x+yp e+
F,!  F,! "~

(x+y)p  (x=y!
F Fn‘ N Fn—l! ’

(D}) (x+ )
For n = 2k we have

(D) e+ )3 = (-1 F,

(8.51)
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and for n = 2k + 1 we get

(2

2k+1
)

(x+ ) = (1) Foyn .

In terms of Golden binomial we introduce the Golden polynomials

(x—a)}
F,!

Py(x) =

where n = 1,2, ..., and Py(x) = 1 with property

D);"Pn(-x) = Pn—l(x)-

For even and odd polynomials we have products

! ; n+ - n+k _—2k+
P, (x) = Pl lk]l(x— (=1 P a)(x + (1) g,
—(=1)" n
P9 = w | Jor= a1yt a).
n+l - =1

By using (8.7) it is easy to find

1
@ + = = Fy + 2Fy 1,

¥

1
2k+1
o = =g = Fa + 2F .

(8.52)

(8.53)

(8.54)

(8.55)

(8.56)

(8.57)
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Then we can rewrite our polynomials in terms of just Fibonacci numbers

P2,(x) = an’ l—[(x — 1" (Fyy + 2Fy2)xa — a?), (8.58)
Pov () = & F;:)na) ]—[( (1Y (Foy + 2F o )xa + ). (8.59)
First few polynomials are
Pi(x) =(x—-a) (8.60)
Ps(x) = %(x +a)(x* = 3xa + a°) (8.61)
Ps(x) = = (x = a)(x* + 3xa + a*)(x* — Txa + a*) (8.62)
P;(x) = m(x +a)(x* = 3xa + a*)(x* + Txa + a*)(x* — 18xa+a*)  (8.63)
(8.64)
Py(x) = (x> — xa — a*) (8.65)
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Pa(x) = %(x2 + xa — a*)(x* — 4xa — a®) (8.66)

1
Pe(x) = m(x2 — xa — a>)(x* + 4xa — A (X* = 1lxa - d®) (8.67)

(8.68)

8.1.5. Noncommutative Golden Ratio and Golden Binomials

By choosing g = —é and Q = g, in general Q-commutative g-binomial (Nalci Tumer
and Pashaev , in preparation ), where ¢ is the Golden section, we obtain the Binet-Fibonacci
Binomial formula with Golden non-commutative plane (yx = ¢xy). (It should be compared

with Golden ratio b = ga).

1 1 1
(X + M+ (@ + (=) + (==)"y)
¥ ¥ ¥

n

2,

k=0

(x"')’)’il
@

n (_l)@xn_kyk
k o1 "

n k(k=1)

F,! 17
ZFk!Fn_k!( S0) Ry, (8.69)

k=0

where F,, are Fibonacci numbers.

8.1.6. Golden Pascal Triangle

The Golden binomial coeflicients are defined by

[n] [n]F! _F,! (8.70)
F

kl. ~ = kIplkl!  Fp o Fy!
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with n and k being nonnegative integers, n > k and are called the Fibonomials. Using the

addition formula for Golden numbers (8.6), we write following expression
1 k n—k
Fn:Fn—k+k:(__)Fn—k+90 Fy,
¥
and from (8.7) it can be written as follows

F, = F.aFi+F,Fi
= FoiFi1+ Fogi Fr. (8.71)

With the above definition (8.70)we have next recursion formulas

n| (—é)k[n = 1]¢! " *n - 175!
[kL T KAk =10 = kIl k = 11!
NI ai|n =1
= ) [ ) L ‘e [k_ I]F (8.72)
_ kn—l] 1 n_k[n—l] 873
R 873

These two rules determine the multiple Golden Pascal triangle, where 1 < k < n — 1. Then,

we can construct Golden Pascal triangle as follows

v N
1 1
# e 0/ \
1 21 1
v Y P ¢/ N—y 9 N\

Figure 8.1. Golden Pascal triangle
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8.1.7. Remarkable Limit

From Golden binomial expansion (8.51) we have

n g n k(k=1)
A+yr = [k] (=12 yk
k=0 F
- F,! k(k=1)
= (-1 7y~ (8.74)
F, \F!
k=0
Then
y n n Fn' Kn) yk
1+=] = —(-1)"2 (8.75)
( 90")F ; Fr i\ Fy! ¢
or by opening Fibonomials and taking limit
lim 1+ i Ly Y (8.76)
n—o0 F — F (pk(kz D] ( 1 )k ’
lim (1 + l)n = i ! ( hd )k (8.77)
n—co Q" F = [k]_¢2! (,02 +1

where we introduced g-number, [k], = 1 + ¢ + ... + ¢!, with base ¢ = —¢?, so that

-1 _ (_()02)k -1

e (8.78)

[kl 2 =1+ (=¢%) + ... + (=)

The last expression allow us to rewrite the limit in terms of Jackson g-exponential function

e,(x) with g = —¢?,

lim (1 + l) =e (ﬂ) (8.79)
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or finally we have remarkable limit

. Y y
Im({l+ =] =e_, —) (8.80)
’Hw( ¢" )F ’ ( V5
In particular case it gives
5 n
lim (1 + i) = e_a(1). (8.81)
N—s 00 SDn -

8.1.8. Golden Integral

8.1.8.1. Golden Antiderivative

Definition 8.2 The function G(x) is Golden antiderivative of g(x) if DrG(x) = g(x).
It is denoted by

G(x):fg(x)dpx. (8.82)

DrG(x) =0 = G(x) = C — constant
or
DrG(x) = 0= Glex) = G(%)

is called the Golden ’periodic’ function.

183



8.1.8.2. Golden-Jackson Integral

By inverting equation (8.23) and expanding inverse operator we find Jackson type

representation for anti-derivative.

Definition 8.3 We introduce Jackson type anti-derivative as

G(x) = f g(f)dgx =(1-0x ) Q"f(fQ") (8.83)
¢ P ¢

where Q = —é.

8.2. Golden Quantum Oscillator

Now we construct quantum oscillator with spectrum in the form of Fibonacci numbers.
Since in this oscillator the base in commutation relations is ¢-Golden ratio, we called it as

Golden oscillator. The algebraic relations for Golden Oscillator are
+ + 1 N
bb™ — bbb = (——) (8.84)
¥
or
+ 1 + N
bb* + —b*b = ¢", (8.85)
¥

where N is the hermitian number operator and ¢ is the deformation parameter. The bosonic
Golden-oscillator is defined by three operators b*, b and N which satisfy the commutation

relations:

[N,b*] =b", [N, b] = —b. (8.86)
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By using the definition of number operator with basis ¢ we find following equalities

1
[N + 1]p — ¢[N]F = (_ZD)N (8.87)
[N+ 1]r + }D[N]F =¢", (8.88)
where
oV = (=N
[N]r = 1
pt+g

is the Fibonacci number operator. Here operator (—1)V = ™.

By comparison the above operator relations with algebraic relations (8.84) and (8.85)

we have

b'b = [NlF, bb* = [N+ 1]F.

Here we should note that the number operator N is not equal to b*b as in ordinary case. By
using the property of Fibonacci numbers (8.7) the algebraic relations (8.84) and (8.85) are

equivalent to Fibonacci rule for operators

Fny = Fy+ Fy_y.

Proposition 8.1 We have following commutator relation

[[N]F,b"] {IN]r = [N = 1]¢}b"

b™{[N + 11F — [N1Fr} (8.89)

185



Proposition 8.2 We have following equality forn =0, 1,2, ..

[[N15, 671 = {[NT — [N = 11}b" (8.90)

Proof By using mathematical induction to show the above equality is not difficult.

Corollary 8.1 For any function expandable to power series (analytic) F(x) = Y7 c,x" we

have the following relation

[F(IN1F), b"] {F(INIp) = F(IN = 11p)}b”

= b{F(IN +1]p) - F(IN]p)} (8.91)
and
b"F(IN + 11r) = F(IN1p)b* (8.92)
or
F(N)b* = b*F(N +1). (8.93)

By using the eigenvalues of the Number operator

Nn)p =nln)p,

[NlrIn)p = Fyn)p = [nlp n)p = F, [n)p

we get Fibonacci numbers as eigenvalues of [N]-operator, where we call Fy as Fibonacci
operator and we denote |n>‘p 1= |n)p.
oy

The basis of the Fock space is defined by repeated action of the creation operator b* on the
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vacuum state, which is annihilated by b |0); = 0

Gk
= 94
o e L (8.94)

where [n]g! = F - F, - ...F,,.

In the limit

. Fn+1D . [n+1]r 1++5
lim ——— = lim -
n—oo  F(n) n—o  [n]g 2

= ¢ =~ 1,6180339887,

which is the Golden ratio.
The number operator N for Fibonacci case is written in two different forms according

to even or odd eigenstates N |n) = n|n) . For n = 2k, we get

5 5
N =log, (TV_FN 3P 1), (8.95)

and forn = 2k + 1,

(8.96)

V5 5
2 4 :

N = log, [—FN —\/SF2 -1

where [N]r is Fibonacci number operator defined as

] " = (=)
F=———_ = In
¢=(=3)
As a result, the Fibonacci numbers are the example of (¢, Q) numbers with two basis
and one of the base is Golden Ratio.This is why we called the corresponding g- oscillator
as a Golden oscillator or Binet-Fibonacci Oscillator. The Hamiltonian for g-Binet-Fibonacci

oscillator is written as a Fibonacci number operator

L L h
H = 2207+ bb%) = S (N + 15+ [NI) = = Fyea
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where bb*™ = [N + 1]p = Fy+1, b*b =[N]r = Fy. According to the Hamiltonian, the energy

spectrum of this oscillator is written in terms of Fibonacci numbers sequence,

/] /]
(Il 1 11yt ) = 52 Pt Fas) = 5P, (8.97)

E_ha)
) 2

hw
E, = TFn+2~
A first energy eigenvalues
hw hw
Ey= —F, = —,
°T 27T 2

which is exactly the same ground state as in the ordinary case. Higher energy excited states

are given by Fibonacci sequence

E—th—h E_3ha) E_Sha)
1_2 3 = nw, 2 — 2, 3 = 2,...

In Figure 8.2 we show the quantum Fibonacci tree for this oscillator.

The difference between two consecutive energy levels of our oscillator is found as

hw
AE, =E, . —E, = TFrwl-

Then the ratio of two successive energy levels % gives the Golden sequence, and for the

limiting case of higher excited states n — oo it is the Golden ratio

F 1
_ lim P gy (1030 14 V5 o ~ 1,6180339887.

n—oo 0 n—oo [, o n—oo [n + 2]1: 2

This property of asymptotic states to relate each other by a Golden ratio, leads us to call this

oscillator as a Golden oscillator.
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e SR S/ ATOND CIRAN ACS, TREE
GOLDEN OSCIULATOR FIBONACC] TREE

£

Figure 8.2. Quantum Fibonacci tree for Golden oscillator

We have the following relations between g- creation and annihilation operators and

standard creation and annihilation operators

FN+1 FN
bt =at L = N+ )
a ‘/N+1 \/Na (8.98)

_ FN+1 _ FN
b—w/N_i_la—aw/N, (8.99)
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which we call nonlinear unitary transformation, where [a,a”] = 1.

8.2.1. Golden Angular Momentum

Double Golden Oscillator algebra sup(2), determines the Golden Quantum angular

momentum operators, defined as

N; — N,
JE=btby, JE=biby, JF = 12 2

and satisfying commutation relations

V5, JE] = (1) Fay = =(=DMF 4y, (8.100)

E, 76 = +JE, (8.101)

where the Binet-Fibonacci operator is

The Golden quantum angular momentum operators J© may be written in terms of Fibonacci

sequence and standard quantum angular momentum operators J.. as

FN1+1 \/FNZ \/FN1 \/FN2+1
8.102
\/Nl +1 N, + 1 I ( )

FN| FN2+1 FN]+] FNZ
:J—w/_w/—:w/—w/ J_. 8.103
Ny N2+1 Ny +1 N, ( )
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The Casimir operator for Binet-Fibonacci case is

CF

(=) (FpFp + (=D)7JLY)

(-1 (—F,Z_F,Z_I + (=) gF Jf) . (8.104)
The angular momentum operators J% and J act on state |j, m) :

JEjomyp = \FjnF jomet 1jom + 15 (8.105)

Jf WA m>F = VFj+ij—m+1 |j,m— 1>F’ (8.106)

JEVjomyp = m|j.m) . (8.107)

The eigenvalues of Casimir operator Cf are determined by product of two successive Fi-

bonacci numbers
Cl = (=1)/F;Fj.1,

then the asymptotic ratio of two successive eigenvalues of Casimir operator gives Golden

Ratio

fim D FiF o
joe (—1)_j+1Fj_1Fj

2

We can also construct representation of our F-deformed angular momentum algebra
in terms of double Golden boson representation by, b,. The actions of F-deformed angular

momentum operators to the state |n;, ny); are given as follows :
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I, mayp = b byl mayp = \JFpai Fuy Iny + 1,n0 = 1)p, (8.108)

Jf Iny,ny)p = b; bylni,no)p = VFann2+1 ny—1,n+ 1)p, (8.109)
. 1 1
J. ny,ny)p = E(Nl =Ny |ny,ny)p = 5(”1 —my)|ny,no)p . (8.110)

The above expressions reduce to the familiar ones (8.105)-(8.107) provided we define

. hptn ng—nm
= m:

-2 -2

|n1’n2>F = |]’ m>F 5
and substitute

n— j+m, n, — j—m.

8.2.2. Symmetrical su;,(2) Quantum Algebra

As an example of symmetrical g-deformed su,(2) algebra we choose the base as g; =

i and g; = i1, then our complex equation for base becomes
(% qgj =1, p q

(ip)* = iig) = 1.
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The ¢- deformed symmetrical angular momentum operators remain the same as J(j), J S). The

symmetrical quantum algebra with base (i, é) becomes

[J4,J9] = [27.]. = [2JZ],.%-(—1)<%-JZ>, (8.111)
where
and
/9,79 = +J0. (8.112)

8.2.3. sup(2) Algebra

One of the special cases of symmetrical su, )(2) algebra is constructed by choosing
Binet-Fibonacci case (¢; = ¢, ¢; = —). The generators of suz(2) algebra J£, J¥ are given in

terms of double bosons b, b, as follows :

JF = (1) Zbib,,
JF = biby(~1)"7,
Jr=1. (8.113)

satisfying anti-commutation relation

JETE + JEJF = (JF, J7Y = [2J.1F, (8.114)
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and [JT, J¥] = +JF. The Casimir operator is written in the following forms

C' = (-D™F;Fj.-JT%)
(DL = F i Fj). (8.115)

The actions of the F-deformed angular momentum operators to the states |j, m) are

T omyp = (=17 \JF o o lom + 1y,
T jomye = (=1)7 \JFpmF fomer Ljym = 1y,

T\ jomyp = mlj,m)p . (8.116)
And the eigenvalues of Casimir operators are given by

CF|j,m)p {(=1)"FpF st = (=1)F i F jimir} |y myp

{(_l)ij—m+1Fj+m - (_l)mFmFm—l} |]’ m>F .
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CHAPTER 9

CONCLUSION

In the present thesis, we studied quantum calculus of classical Heat-Burgers’ hierarchy
and quantum coherent states. We constructed random walk on g-lattice as Fermat partition
and obtained corresponding g-heat equation with specific g-dependence for time and space
variables. In order to find exact solution of this equation we introduced a new family of g-
exponential functions which produces Jackson’s g-exponential functions for weighted number
N = 0 and N = 1. The solution of g-heat equation is found in terms of our g-exponential
functions. We obtained g-oscillator hierarchy by using this solution and it allows us to get
a family of g-heat equations. Then the specific case of random walk on g-lattice produced
g-heat equation with symmetrical g-derivatives in space variable and its exact solution was
written as symmetrical g-exponential and symmetrical g-trigonometric functions.

We introduced a new type of g-diffusive heat equation, including standard derivatives
in time and space, with nonsymmetric g-extension of the diffusion term. The polynomial solu-
tions of this equation was written as generalized Kampe-de Feriet polynomials, corresponding
dynamical symmetry and description in terms of Bell polynomials. Written in relative gra-
dient variables this system appeared as the g-viscous Burgers’ equation and its one, two and
multiple shock soliton solutions are found and studied their mutual interactions for different
values of g. We found that due to specific dependence of the group velocity on wave number,
in addition to fusion of the solitons as in usual Burgers equation, a new process of fission
of shock solitons with higher amplitude takes place. The g-semiclassical expansion of these
equations in terms of Bernoulli polynomials was derived as corrections in power of Ing. We
get the corresponding Bécklund transformations of g-viscous Burgers’ equations.

We introduced a new class of complex valued function of complex argument which
we called g-analytic functions satisfying g-Cauchy-Riemann equations and get the real and
imaginary parts as g-harmonic functions. These g-analytic functions are not classical ana-
lytic functions but we proved that some class of these complex functions are considered as
a generalized analytic functions. As an example we obtained that the complex g-binomial
functions are generalized analytic functions by satisfying D-bar problem and their integral
representation is written. In terms of these functions the complex g-analytic fractal, satisfying
the self-similar g-difference equation is derived. As an application we constructed a new type
of quantum states as g-analytic coherent states and corresponding g-analytic Fock-Bargmann

representation. In this representation, quantum g-oscillator problem is solved and shown that
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the wave functions of quantum states are given by complex g-binomials.

The concept of g-analytic function was extended to expansion of g-binomial in terms
of g-Hermite polynomials which are analytic in two complex arguments. In this represen-
tation, we introduced a new class of complex functions of two complex arguments, called
double g-analytic functions. As hyperbolic extension, we described the g-analogue of travel-
ing waves, which are not preserving their shape during evolution. We studied g-wave equation
and solved in the g-Hermite polynomial form.

By introducing g-translation operator we obtained g-binomials, g-analytic and g-anti
analytic functions, and g-travelling waves. Another type g-translation operator, called g-
commutative (non-commutative) translation operator, was introduced. Then we represented
non-commutative binomials, functions for non-commutative coordinates. Then we gener-
alized these g-translations to ¢, p-translations for two bases. By specific choice of bases as
Golden ratio, Fibonomials are constructed as translation of monomials. We described all these
translations by the first order g-difference equations.

Based on acting by evolution operator, we introduced a new type of quantum states
as Hermite coherent states and Kampe-de Feriet coherent states, characterized by Hermite
polynomials and Kampe-de Feriet polynomials correspondingly. We generalized the known
Mehler formula in order to normalize these coherent states. Their Fock-Bargmann repre-
sentations were written. By using the generating function of Bernoulli polynomials, we get
Bernoulli coherent states and related Fock-Bargmann representation. Then g-analogue of co-
herent states are introduced.

We introduced Golden quantum calculus. By Fibonacci and Golden derivatives we
derived main ingredients of these calculus as Golden Leibnitz rule, Taylor expansion, Golden
binomial and Golden integral. As an application of Golden quantum calculus, we studied

Golden quantum oscillator and its angular momentum representations.
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APPENDIX A

D-BAR REPRESENTATION OF COMPLEX
0O-BINOMIAL

In this section, we are going to prove q-complex binomial representation (4.50), (4.51)

A.1. Generalized Cauchy formula

For non-analytic function ®(z), the next generalized Cauchy formula is valid (Vekua,
1962), (Ablowitz and Fokas, 1997)

(D(Z)=L ‘D(K)df_lffa(bdfdﬂ (A.D)
2niJr -z o« ol { -z ’

where { = & + in. First we are going to check this formula for non-analytic function

l+q" 1-¢
O,0) = x+ig'y = —L 7+ —L 7 (A.2)
2 2
with
oo, 1-qg" []
=1 11 -g).

07 2
For the disk of radius R we have:

1. The line integral part in the above generalized Cauchy formula gives

l+q
B+ Stz
% -z dé =

1 1+4" 11 1 1-4" rd
1 +q Sgd +q 56 1-q ﬁ. (A3)
2mi 2 T 2ni {— 27rl 2 r{—z
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The first integral vanishes, while the second one gives 2ri so that we have

l+q" 1 1-q" (Zd
¢ . 11-4q fdg

. A4
2 T 2 Y-z &4)
By substitution £ = Re™ the last integral becomes
1 1-¢q" (™ ido
— 1 f - (A.5)
2mi 2 o Re? -z
Then, rewriting it in terms of u = ¢ we get contour integral along the unit circle
1 1-¢" d
— -1 56 — = (A.6)
2ni 2 Jy=1 w(Ru —2)
By the residues theorem this integral vanishes
1-¢"[R R
—+—|=0. Al
2R [—z z] &.7)
As aresult for the line integral we obtain
1 +4"
LI = IS (A.8)

2. The double integral part in polar coordinates £ = & + in = re' is

1 1 —q"déd 1—q" (7 (R rdrdo
——ff q" dédn _ qf f rardy. (A.9)
T G 2 g_Z 271' 0 0 I”e’H—Z

By substitution u = ¢ we rewrite the angle part of integral as the contour integral along

the unit circle |u| = 1

n _n R
_lffl‘q dédn _ 1 ‘_Ifdrgg _du (A.10)
T G 2 {_Z 2mi 0 lul=1 M(M_Z/r)
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By the residues theorem the contour integral for |z]| > 7 is

du (T
$ s =il i

and for |z| < r it vanishes. Thus the double integral for r > |z| also vanishes so that the

range of integration in r is going from O to |z],

1=a" Izl 1=a" 72
q f rdr = L2 (A.12)
z 0 z 2

Then finally for the double integral we get

Z. (A.13)

Adding the line and the double integrals (A.8), (A.13) together we obtain desired

formula (A.2):LI + DI = %z + %Z.

A.2. Generalized analytic function

For @,(z) in (A.2) as a generalized analytic function, we have the D-bar equation

00,  (1-q"
0z~ (I+q)z+(-g'z

D, (2) = An(z, )Py (2), (A.14)

where

(I-4"

M= Ty d e

Representation (4.45) for this function is

D,(2.2) = w(z) e | o L dendz (A.15)
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To check it we are going to calculate this integral explicitly and find holomorphic function
w(z) for the disk of radius R.

The double integral in exponential is

I:L‘ fAn(éV’Z) dg/\dz:_l_qnff dfd?] _
27i p (-2 n p [(1+¢M¢+ (1 -¢")¢1¢ -zl

where ¢ = & +inand D = {{ : || < R} or in the polar coordinates = re',

I_qn_ljwjﬂﬂ drdo g -1 Rdn
T Jo o Jo [ +gne (A —gere® —z1 w1 Jo 1"

where by complex substitution # = ¢ we have contour integral around unit circle

1 du 1
h:f§ — —, (A.16)
UJu=1 w0 [(T+gMu+ (1 —g"), 1w — 3]
or
1 du
== - . (A.17)
’ i(1+q") Ju=1 [u + :Zn][u -]

For the base 0 < g < 1 the integrand has two simple poles inside of the unit circle at u =

+i 4/ :;n and for |z] < r, one more simple pole at u = z/r. Then by the residues theorem

1

2 = lkl>r

Ih=———{ ¥ (A.18)
L+q" | o, 2l < 7.

Substituting to integral I we get

—q (Rdr | = >
I=21 qu @) (A.19)
bratdo o, <,
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or

_ 4
j=ol=4 f dr 1 (A.20)
0 r

By elementary integration

1=4g" 1 n 1 = d")z
I=tn(? + =L 2y =g LEORHU 2GR (A21)
I +q" (I+4g")z
and for (A.15) then we find
1 +4" 1-q"
D,(2.7) = w(z) el = 2" 2+ 2q z, (A.22)
where the analytic function
1+q"
w(z) = RS

A.3. Complex g-binomial as generalized analytic function

The above results can be applied now for the complex g-binomial degree n,

(x +iy), = (x + iy)(x + igy)...(x + iq"'y).

Denoting

D(2) = Po(z) P1(2) ... Py-1(2),
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1+q

where ®@,(z) = x + ig"y = -z + —z, we have

[k, o
Nz +(1-g"z Az D)P(.2),

5 . i n—1
a—ztb(z, 2) =021 -q) ; (1+gq

where

n—1
Az =(1-¢q) An(z,2).
;(1+q")z+(1— q")z Z

By the above calculations for the double integral in a disk of radius R, ({ = & + in), we

obtain

1 AL, D) IESH f f dédn
_ - _— -1 —
2ni f fD = n Z(q ) et -0 -2

n— k _ —_
_ Y Ut (- (A23)

1 (1+4¢"z

>~
Il

Then
D(z,2) = (x + iy)z = w(2) eZm I A(md{/\d(
Lk 14k
In 1} }[ qlfk"’q"]
= w(z)e R
n—1 l+q 1_
- a)(z) l—[ 1+q (A24)
2(x + igky)
- A25
CL)( ) 1_[ (1 n qk)z ( )
or
X+1 = w(z X+ .
ST VTR ITIT A
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As aresult we find the next form for the analytic function

n—1

w(z) = (%) [Ta+a. (A.27)

k=0
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