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ABSTRACT 

STIFFNESS REQUIREMENTS OF SHEAR DIAPHRAGMS 
USED TO BRACE STEEL I-BEAMS 

 
The buckling capacity of steel I-beams can be increased by providing lateral 

bracing along the length of the beams by either cross-frames or diaphragms. Metal 

sheeting that is often used in steel building and bridge constructions to support the fresh 

concrete, acts like a shear diaphragm and provides continuous bracing to steel beams. In 

building industry, metal deck forms are considered as a lateral support to the beams. 

However, due to their flexible connection detail between the girder and shear diaphragm, 

metal deck forms are not considered as a brace source for bridge construction industry. 

But with the recent studies, by improvements of the flexible connection details, metal 

decking can be used as a bracing system. 

 An adequate bracing system must possess sufficient stiffness and strength. A 

computational study was conducted to investigate stiffness requirements of shear 

diaphragms used to brace stocky and slender steel I-beams. Both doubly and singly 

symmetric sections were studied. The computational study consists of eigenvalue 

buckling analyses on perfectly straight twin-girder system braced by shear diaphragms 

and large deformation analyses with imperfect girders with different configurations of 

girder sections and spans. A three dimensional computer programme was utilized to 

perform analytical studies. Analytical model is verified by a full-scale twin-girder system 

laboratory test that is carried out on a previous study. Stiffness requirements have been 

proposed for shear diaphragms used to brace stocky and slender steel I-beams. 
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ÖZET 

NARİN ÇELİK KİRİŞLERE STABİLİTE DESTEĞİ SAĞLAYAN 
KAYMA DİYAFRAMLARININ RİJİTLİK GEREKLİLİKLERİ 

 
Çelik I-kirişlerin burkulma kapasitesi, noktasal veya sürekli destek elemanları 

kullanılarak artırılmaktadır. Yapım aşamasında taze betonu taşımak için kiriş 

uzunluğunca kullanılan trapez sac kalıplar, bir kayma diyaframı gibi davranırlar ve çelik 

kirişlere sürekli destek sağlarlar. Çelik yapı endüstrisinde, sac kalıplar kirişlere yatay  

destek elemanı olarak değerlendirilirler. Fakat sac kalıplar, kiriş ve kalıp arasındaki 

bağlantı detayının esnekliğine bağlı olarak, çelik köprü endüstrisinde bir destek elemanı 

olarak değerlendirilmemektedir. Ama son zamanlardaki çalışmalar, bağlantı 

detaylarındaki iyileştirilmeler ile sac kalıpların destek elemanı olarak kullanılabileceğini 

göstermiştir. 

Bir destek elemanının görevini yerine getirebilmesi için yeterli rijitliğe ve 

dayanıma sahip olması gerekmektedir. Narin gövdeli çelik kirişleri destekleyen kayma 

diyaframlarının rijitlik gerekliliklerini araştırmak için sayısal bir çalışma yapılmıştır. Çift 

ve tek simetri eksenli kesitler incelenmiştir. Analiz çalışmaları mevcut yamukluğu 

olmayan kiriş ve kayma diyaframlarından oluşan sistemin öz-değer burkulma analizlerini 

ve mevcut kusuru bulunan kirişlerden oluşan kayma diyaframlarının büyük 

deformasyonlar teorisine göre analizlerinden oluşmaktadır. Analizleri yürütmek için üç 

boyutlu sonlu elemanlar programından yararlanılmıştır. Analitik model daha önceki 

çalışmalarda kullanılan tam ölçekli bir test modeline ait analiz sonuçlarıyla 

karşılaştırılmış ve doğrulanmıştır. Kiriş orta açıklığında noktasal destek elemanı 

bulunduran kirişler de analiz edilmiştir. Narin gövdeli çelik I-kirişleri destekleyen kayma 

diyaframları için minimum rijitlilik gereklilikleri önerilmiştir.  
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CHAPTER 1 

 INTRODUCTION 

1.1. General 

The cold formed light gauge steel sheets has numerous ways of applications in 

construction industry such as siding, roof cladding or floor decks. In addition to its use as 

cover sheets, it could be used as permanent formworks to meet the aesthetic and 

functional needs of the structures.   

Permanent metal deck formworks are cold formed corrugated steel sheets that are 

coated by hot-dipped galvanization process. The shape of the ribs and the material 

properties determine the strength and stiffness of the metal deck. Geometry of the ribs 

changes based on the span and the load level of the metal deck forms. The shipping 

conditions limit the deck widths to 40 inches. Standard deck widths varies based on the 

application needs and common sizes are 12, 18, 24, 30 and 36 inches. 

One of the common usage of metal decking forms is as composite floor decks. 

Metals decks needed to serve for some significant tasks in such an application. First task 

is to provide a working platform for workers. Other tasks are serving as a formwork for 

concrete slab, stabilization of the frame against lateral torsional buckling and acting as 

part of the reinforcement of the concrete slab. While floor decks are composite members, 

roof decking forms are not designed to act together with other structural elements such as 

steel members and the concrete slab. Its sole purpose is to transfer the lateral and vertical 

loads to the frames. In comparison with floor decks, rib openings of the roof decking 

forms are generally shallower to provide just the right room for the thermal insulation 

boards.  

Utilizing metal decks as formwork in structures provides many advantages to the 

contractor. Erection of metal decking is fast and easy. The provided working platform 

provides a safer working environment for the workers. Also, due to the efficient material 

use, economical solutions are achieved as well.  
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1.2. Structural Advantages of Metal Deck Forming Systems 

As it is mentioned above, in addition to its non-structural advantages, metal deck 

forms have structural purposes. It could be used for the purpose of structural stability of 

members, such as beams, columns, and purlins which they are fastened to. In the steel 

building and bridge constructions, permanent metal decks behave like a shear diaphragm 

and support the top flange of beams or girders by restraining the warping deformations 

and providing lateral bracing. The beam bracing systems could be classified as lateral or 

torsional bracing. Shear diaphragm bracing could be included in the lateral bracing 

category. The forming systems used in the bridge and building industry differ in terms of 

both geometry and connection details. In Figure 1.1 depicts a typical deck form used in 

bridge applications. 

 

Figure 1.1. A typical deck form used for bridge applications. 

 In the building industry, the metal deck forms are directly attached to the top 

flanges of the beams and provides a continuous bracing against LTB. But due to the 

eccentric connections demonstrated in Figure 1.2, current AASHTO LRFD specifications 

(2010) do not permit the metal deck forms to be used as a brace element for the bridge I-

girders. However, recent studies have showed that metal deck forms could increase the 

lateral torsional buckling capacity of girders significantly through the modification of the 

connection details in a relatively simple way as showed in Figure 1.3. (Egilmez et al. 2007 

and 2012).  
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Figure 1.2. Decking detail for bridge applications 
(Source : Egilmez, 2005). 

 

Figure 1.3. Modified deck connection studied by Egilmez et al. 2005. 

The main philosophy of the stability bracing design is to ensure that the braced 

member could carry the design loads while restraining the deformations. To achieve such 

a purpose, the stiffness and the strength requirements of the bracing system must be 

satisfied (Winter, 1960). Shear diaphragms have a substantial amount of in-plane-

stiffness and strength. The role of shear diaphragms in bracing have been examined in the 

past (Errera and Apparao, 1976, Nethercot and Trahair, 1975, Helwig and Frank, 1999). 

In these efforts, the main objective was to study the lateral torsional buckling capacity of 
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the beams that are supported by diaphragms. The most notable work that explains 

stiffness and strength requirements of shear diaphragms was performed by Helwig and 

Yura (2008a and 2008b). In these studies, stocky beams were utilized to determine the 

stiffness and strength requirements of shear diaphragms without considering the effects 

of side-lap fasteners. 

1.3. Objective and Scope of the Study 

The aim of the study presented in this thesis is to improve the understanding of 

the bracing role of shear diaphragms and to enhance bracing demands for stocky and 

slender steel I-beams. Analyses were conducted to recommend a specific stiffness value 

in terms of the ideal stiffness value. Previous studies (Luttrell 1981, Davies and Bryans, 

1982) on stiffness and strength requirements of shear diaphragms revealed that the shear 

strength of a diaphragm is usually controlled by either the shear strength of the connection 

between the panel sheets and the structural member along the edges or the shear strength 

at the connections between panel sheets on side-lap zones. Thus, both edge and side-lap 

fasteners must be considered to develop strength requirements of the shear diaphragms. 

To achieve this, a simple finite element (FEA) model, that was developed by Davies and 

Bryan (1982) to examine fastener forces, was used. In order to obtain fastener forces 

directly, edge and side-lap fasteners were created separately. Since the fastener forces are 

directly proportional to brace stiffness (Winter 1960, Helwig and Yura, 2008a) a specific 

brace stiffness must be determined to develop strength requirements for shear 

diaphragms.  

Beam sections considered in this study have relatively stocky and slender webs. 

Web slenderness ratios of the beams were 100 and 160 for the sections. Both doubly and 

singly symmetric sections were utilized. Beam depth of the sections were 366 and 732 

mm for the stocky beams; 1464 and 1830 mm for both doubly and singly symmetric 

beams. Span-to-depth ratios of 15, 20, 25 and 30 were studied for stocky beams while 10 

and 15 were taken for the slender beams. 610 mm width of deck panels were modelled in 

the study that were connected to top flange of the beams by four edge fasteners and to the 

adjacent deck by five side lap fasteners. Thickness of the decks were 1.52 mm (16 ga). 

The level of the applied force was determined by the load that results in 210 MPa of a 

bending stress on the extreme fiber of the section.   
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1.4. Organization of the Study 

In this chapter a brief information was given about permanent metal deck forms, 

application fields and contribution of the lateral stability of the beams. Objective and 

scope of the study was explained subsequently. In the following chapter, previous studies 

on shear diaphragms to brace the steel I-beams were clarified. Next chapter consists of a 

description of the finite element model used and its verification. In chapter four, overview 

of the study is provided. This chapter involves information about the cross sectional 

properties of beams used and the type of the analyses conducted in the study. Results 

from the parametrical study along with stiffness requirements are presented in Chapter 5. 

The final chapter provides a summary and conclusions. 
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2 CHAPTER 2 

3 BACKGROUND AND PREVIOUS STUDIES 

2.1. Introduction 

This chapter consists of brief information about lateral torsional buckling 

behaviour of beams and bracing systems utilized to resist this mode of failure. For doubly-

symmetric and singly-symmetric beam sections, factors affecting the lateral torsional 

buckling will be examined. Discussion of the fundamentals of the stability theory and the 

beam bracing will follow. Afterwards, influence of critical imperfections on stability 

behaviour of beams will be discussed. The discussions on the shear diaphragms and the 

determination of shear rigidity values used in the analyses will follow. The last section 

will be about the previous studies conducted about the topic. 

2.2. Lateral Torsional Buckling Behavior of Steel Members 

Main resistance mechanism of beams and girders to transverse loading is the 

major axis bending. Yet in I-shaped steel beams or girders, minor axis behaviour could 

controls the failure mode. Since the major axis stiffness is much larger than the minor 

axis, the weakness in the minor axis pronounced in the torsional properties of the 

members. Therefore, member could become become more vulnerable to lateral torsional 

buckling (LTB). If the member does not have adequate bracing against the LTB, it 

buckles and loses its stability without reaching the flexural yielding strength in major 

axis. Compression in the top flange that is caused by flexural moment is the root cause of 

the LTB. 

Lateral torsional buckling is a mode of failure that involves an out of plane 

displacement of the member and twist of the cross section about the shear centre. Figure 

2. 1 demonstrates a typical LTB mode of a beam and twist of cross section. 
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Figure 2. 1. Lateral Torsional Buckling Behavior and Cross Section Twist . 
(Source : Guide to Stability Design Criteria for Metal Structures, 2010) 

 Loading types and height of the load application point have significant roles on 

determination of the lateral torsional buckling capacity of the girders. The centre of twist, 

which is defined as the intersection of the axis lines of unbuckled and buckled girders, 

may lie in different positions through the web. If it is closer to the compression flange, 

brace effectiveness reduces. 

2.2.1. Buckling Capacity of Beams Subjected to Constant Moment 

Timoshenko and Gere (1961) derived an equation to calculate the elastic torsional 

buckling capacity of doubly-symmetric members under constant moment. As boundary 

conditions, it is assumed that the lateral displacement and the twist of the member is 

prevented while it is allowed to rotate laterally and free to warp. With these assumptions, 

the equation below was stated. 

2( )cr y y w
b b

EM EI GJ I C
L L

                                 (2.1) 
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Where, Lb is the unbraced length of the beam (distance between points of full 

bracing), E is Young’s modulus, Iy is the moment of inertia of the weak axis, J is the St. 

Venant’s torsional constant, G is the shear modulus and Cw is the warping constant of the 

beam. The warping constant Cw is calculated by the general equation below. For doubly-

symmetric sections, it can be simplified as Cw =Iyd2/4.  
 

2 (1 )w yC I d                                             (2.2) 

 

Where d is the distance between the centroids of the flanges, is the ratio of the 

moment of inertia of the compression flange about the axis through the web to weak axis 

moment of inertia of the section. The buckling capacity of the beam is obtained by the 

summation of the St. Venant’s torsional resistance and the warping resistance. 

In bridge construction, sections of the girders are designed considering the 

increase of the effective section after casting of the concrete. Due to the composite action 

after the hardening of concrete, capacity of the member in the compression zone increases 

considerably. Therefore, it is possible to employ smaller compression flanges at the top. 

The concrete deck provides a continuous lateral support along the girder as well. Thus, 

size of the top flanges could decrease further as the lateral torsional buckling is not a 

critical mode after the development of the composite behaviour.  Use of different size 

flanges resulted singly-symmetric sections. It should be noted that the equation 2.3 is not 

applicable for singly-symmetric members. 

Kitipornchai and Trahir (1980) suggested the equation below to calculate the 

buckling capacity of the singly-symmetric sections under uniform moment. 

2 2

1 12( 1 )cr y
aM EI B B

L L                             (2.3) 

Where; 

2( ( (1 )))w
y

EC Ea I d
GJ GJ

 

1 2
yx EI

B
L GJ

 

2 2
0

1 ( ) 2x dA
x

y x y dA y
I
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Ix is the moment of inertia of the strong axis and y0 is the distance between shear 

center and the centroid of the section. 

Due to complexity of the expression, Kitipornchai and Trahir (1980) derived 

several equations to simplify the solution for singly-symmetric sections, Eq.2.3 express 

the approximate solution recommended in American Institute of Steel Construction 

(AISC) Load and Resistance Factor Design (LRFD) Spefication.(AISC-LRFD,2001). 

2
1 2 1( (1 )cr y

b

M EI GJ B B B
L

               (2.4) 

where; 

1 2.25(2 1)( ) y

b

IdB
L J

 

2
2 25(1 )( )( )yc

b b

I dB
L L

 

The variables in the equations were as defined previously. 

For singly-symmetric sections, a modified version of Timoshenko’s equation for 

calculating the lateral buckling capacity of doubly-symmetric sections is expressed in the 

AASHTO Specification as well. 

2
22( ) ( )yc

cr
b yc b

I G J dM E
L E I L

                      (2.5)  

In Eq. 2.5, all the variables are as defined in the equations above except the 

variable “d”. While the variable “d” is defined to be distance between flange centroids in 

the previous equation, in AASHTO Specification it refers to full girder depth. 

2.2.2. Effects of Moment Gradient and Load Height on LTB 

Lateral buckling capacity of the doubly-symmetric and singly-symmetric sections 

under constant moment was expressed in the equations 2.1 to 5. But in real life conditions, 

beams are typically subjected to transverse loadings. Such a loading result in a moment 

gradient, which substantially increase the estimated buckling capacity of the members. In 

transverse loading conditions, moment along the member height varies and the effect of 

the variation on the buckling capacity is reflected by a modification factor in the 

previously stated equations. The modification factor, Cb, is defined as a magnifier of the 
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LTB capacity in transverse loading cases at which the loading is applied at the shear 

center of the cross section (Galambos 1998). 

In order to obtain the moment gradient Cb, The AISC Specification (AISC-LRFD, 

2010) suggests Eq. for girders loaded at shear center for doubly symmetric members. 

max

max

12.5
2.5 3 4 3b

A B C

MC
M M M M

                                 (2.6) 

where ; 

Mmax is the maximum bending moment of unbraced part 

Ma is the moment at the quarter point of unbraced part 

Mb is the moment at the midpoint of unbraced part 

Mc is the moment at the three quarter point of unbraced part 

For singly-symmetric members, a simple modification is required to Eq.2.6. 

 

 

max

max

12.5 3
2.5 3 4 3b

A B C

MC R
M M M M

                        (2.7) 

where ; 

R = (0.5+2ρ2) and ρ is as previously defined as ratio of monosymmetry (Iyc/Iy). 

 

Since the location of the loading has a significant effect on the twist of the girder, 

buckling capacity is also effected by the location of the loading. For instance, loading at 

the top flange reduces the buckling capacity of the girder. 

The SSRC Guide (Galambos, 1998) suggests Eq. 2.8 for girders without 

intermediate discrete bracing. 

* 2 /y h
b bC C B                                                     (2.8) 

Where h is depth of the girder, y is the distance between mid-point and the point 

of applied load and B is a parameter that consists of the warping stiffness and the effects 

of the type of loading. For mid-span point load and uniformly distributed load cases, B is 

obtained respectively in the following equations; 
21 0.180 0.649B W W                                         (2.9) 

21 0.154 0.535B W W                                        (2.10) 
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Where L is the distance between braces, and all the other parameters are as defined 

before. 

Considering the complexity of the calculation of parameter B, the SSRS Guide 

(Galambos, 1998) recommends B is taken as 1.4 for typical cases. 

Eq.2.8 is valid for doubly symmetric sections. For singly-symmetric sections, by 

taking B parameter as 1.4, following equation can be used for both doubly and singly 

symmetric sections conservatively. 

2 / max

max

12.5(1.4 )
2.5 3 4 3

y h
b

A B C

MC R
M M M M                        (2.11) 

2.3. Stability and Bracing Systems 

2.3.1. Stability 

In applied mechanics history, Swiss mathematician Leonard Euler has a very 

important role. After the publication of his well-known column formula, there have been 

serious research and developments in applied mechanics discipline. The formula in Eq. 

2.12 determines the elastic critical buckling load of a perfectly straight column that has 

simple support boundary conditions. 

 
2

2cr e
EIP P

L     (2.12) 

 

Where, Pe refers to Euler critical buckling load. The other parameters were as 

defined in the previous captions. 

Following Euler’s studies, researches on stability behaviour of members have 

gained momentum. 

When a member subjected to a gravitational loads, it is subjected to bending about 

its major axis. If an I-beam is considered, while top flange shortens under compression 

bottom flange of elongates in tension. At a critical loading limit, the top flange start to 
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move to sideway and could not shorten under compression anymore. The web and tension 

flange of the beam resist that movement up to a certain limit. Due to inadequate lateral 

supporting of the top flange, the beam loses its lateral stability and could not reach the 

yielding of the top flange.    

In Figure 2.2, Tennessee River Bridge is depicted on the day of its collapse due 

to LTB caused by lack of bracing. The bridge lost its lateral stability and collapsed during 

the construction.  

 

Figure 2.2. Tennessee River Bridge on the day of collapse.  
 (Source:https://failures.wikispaces.com/Tennessee+River+Bridge+Collapse). 

2.3.2. Bracing Systems 

Figure 2.2 reflects the importance of bracing in stability problems. Bracing 

systems that increase the stability of the structures can be classified in four categories as 

illustrated in Figure 2. 3.  
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Figure 2. 3. Types of bracing systems. 
(Source : Guide to Stability Design Criteria for Metal Structures, 2010)  

Truss bracing and diagonal bracing between two structural members are good 

examples of relative bracing, Figure 2. 3 (a). Bracing members prevent the relative 

displacement of the points attached to on the structural member.  

Discrete bracing, that controls the movement of a single point, is a widely used 

system as well. As in Figure 2. 3 (b), plate diaphragms and cross frames are in discrete 

bracing category. Cross frames contributes the stability of the girder since it limits the 

twist of the girder at a single place. 

In Figure 2. 3 (d) lean-on bracing system is depicted. In this concept, leaning 

members supported by the load carrying system laterally by the provided strut 

connections. 

Another category of the bracing systems, continuous braces restrain the lateral 

movement of the entire member along its length. Figure 2. 3 (c). Concrete floor deck that 

provides composite action by shear studs welded on the top flange of the girders and 

restrains it laterally and torsionally. 
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2.4. Beam Bracing 

Bracing of beams can be outlined in two basic categories as lateral and torsional 

braces. Relative displacement of top and bottom flanges must be restricted by the braces. 

(Guide to Stability Design Criteria for Metal Structures, 2010). Lateral braces restrain the 

movement of the compression flange that are attached to. The reason to attach lateral 

braces to the top flange is that bracing becomes less effective when it is close to the shear 

centre. Torsional braces such as diaphragm plates or cross frames prevent the twist of the 

adjacent girders. A combined way of bracing that keeps the section both laterally and 

torsionally, explained by Utton and Trahir (1973) and Tong and Chen (1988), is more 

effective than the individual lateral or torsional brace methods. Metal deck systems that 

are attached to the compression flange behaves as a shear diaphragm and provides 

warping restraint to the top flange by limiting cross sectional twist and relative 

displacements. Figure 2. 4 illustrates the restraining forces on a steel I-girder. 

 

Figure 2. 4. Restraining forces on a steel I-beam. 
 (Source : Guide to Stability Design Criteria for Metal Structures, 2010) 

Helwig and Yura (2008) have stated that in such systems, strength of the 

diaphragm is limited by fastener capacity. 
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2.5. Shear Diaphragms as Continuous Bracing Systems 

Shear diaphragms which resist to in plane loads are considered to have a 

membrane-like behavior, (Strength and Behaviour of Light-gage Steel Shear 

Diaphragms, 1967). With tension field action capability, thin plane sheet and membranes 

can be defined as the ideal shear diaphragms. Due to their membrane-like behavior and 

high in-plane rigidities, when permanent metal deck formworks designed properly, it 

contributes the stability of the girders that they attached to. The most significant property 

of permanent metal deck forms is shear rigidity, denoted by variable Q has kN/rad as unit. 

In building industry, it can be used as continuous bracing systems when the ribs attached 

to top flange perpendicularly. Yet in bridge industry, current AASHTO Specification 

does not allow permanent metal deck forms to be counted as a bracing member. This ban 

is due to decrease of the shear rigidity because of differential camber. Figure 2. 5 

illustrates the related diaphragm action. 

 

Figure 2. 5. Diaphragm shear behaviour. 
(Source : Guide to Stability Design Criteria for Metal Structures, 2010) 

Lutrell at. al (1967), carried out a project on behaviour of light-gauge steel 

diaphragms at Cornell University and published a report. (Strength and Behaviour of 

Light-Gage Steel Shear Diaphragms, 1967). Various types of diaphragm tests were 
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reported. Figure 2. 6 portrays a test setup of a typical shear diaphragm utilized at Cornell 

University. The results of the test, specifically the calculation of shear rigidity values, is 

discussed in Section 1.7. 

 

Figure 2. 6.Test setup of a typical shear diaphragm at Cornell University. 
(Source : Strength and Behavior of Light-gage Steel Shear Diaphragms)  

2.6. Influence of Critical Imperfections on Beam Bracing 

Lateral torsional buckling is a critical failure mode that generally controls the 

design of flexural members. In order to mobilize the capacity of a member, unbraced 

length must be sufficiently reduced by adding bracing elements to the system. AISC 

(2001) involves design rules for stability bracing elements. These rules take both stiffness 

and strength requirements into consideration. While deriving stability-bracing rules, finite 

element analyses (FEA) could be utilized. Modeling techniques and geometry of the finite 

element model (FEM) must be properly set to obtain effective results for stiffness and 

strength requirements. Therefore, boundary conditions and geometrical imperfections 

should be considered. Initial imperfections of structural members could dictate the 

bracing behavior of the systems with their effects on brace forces.  

Eigen value buckling analyses that are performed by modeling perfectly straight 

members provide minimum brace stiffness which is called as ideal brace stiffness. In 

previous studies, Winter (1960) and Yura (2001) showed that the ideal brace stiffness 
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does not reflect sufficient behavior of the real structures due to geometrical imperfections. 

Winter (1960) developed a FEM that demonstrated the stiffness requirements and initial 

imperfection effects. In Figure 2. 7, Winter’s column model with a lateral brace at the 

mid-height and normalized load versus displacement graph are demonstrated. When the 

ideal stiffness is provided to an imperfect column, it is obvious that it cannot reach the 

buckling capacity of a perfectly straight member and displacement will be very large. 

Figure 2. 7 clearly shows that a larger stiffness value than the ideal stiffness could provide 

the needed behavior and displacements could be controlled. AISC (2001) recommends 

using two times of the ideal stiffness (2βi) to sufficiently control the deformations and 

reduce the brace forces. 

Winter‘s model focused on flexural buckling of an imperfect column. Buckling 

mode of such a member involves lateral displacement of the column section. The critical 

imperfection type of such a member is the translation of the section. For torsional bracing 

system, the critical imperfection type involves twist of the section. Helwig and Yura 

(1999) studied torsional behavior of the columns before. Beams elements have different 

critical imperfection types due to lateral torsional buckling. In LTB, cross section twists 

in addition to a lateral displacement of the compression flange. Therefore, it is more 

complicated to select a critical shape for beam elements during buckling. 

 

Figure 2. 7. Effect of brace stiffness on deformations using Winter’s model. 
(Source: Critical Imperfections for Beam Bracing Systems, Wang and Helwig, 2005) 
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Shape and the magnitude of the imperfections and its distribution along the length 

are essential factors to be studied. Wang and Helwig (2005) conducted an inclusive 

research by applying these factors with their (FEM). Their study first focused on 

obtaining the critical imperfection shape. Then, the distribution of the imperfection along 

the member was studied. Wang and Helwig (2005) considered a simply supported 

W14x22 beam to study the cross sectional shape of critical imperfection with a single 

torsional brace at the mid-span of the beam. Figure 2. 8 graphs a relation between point 

load at mid-span and torsional brace moment. Each curve represents a different 

imperfection type. As seen in the figure, Case A is the worst imperfection type for 

maximizing the brace forces. In Case A, compression flange has a lateral sweep while the 

tension flange remains straight. 

 

Figure 2. 8. Effect of cross sectional imperfection on brace moments. 
(Source: Critical Imperfections for Beam Bracing Systems, Wang and Helwig, 2005) 

Results in Figure 2. 8 demonstrates that critical imperfection shape of the cross 

section is as shown in Figure 2. 9 The magnitude of the imperfection is selected as Lb/500 

where Lb is the unbraced length. Wang and Helwig (2005) compared the results by taking 

half and double of the Lb/500 magnitude. Normalized brace moments at levels of 

M/Mcr=1 versus the magnitudes of lateral sweep of top flange at Lb/1000, Lb/500 and 

Lb/250 is graphed in Figure 2. 10. These results clarifies that smaller imperfections 

provides reasonable approach when the brace moments are scaled from the values of 

assumptions made while deriving general provisions. 
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Figure 2. 9. Critical shape of imperfection of the cross section. 

 

Figure 2. 10. Brace moments versus imperfection magnitude. 
(Source: Critical Imperfections for Beam Bracing Systems, Wang and Helwig, 2005) 

Wang and Helwig (2005) also studied the distribution of the critical imperfections 

along the beam and observed that critical initial imperfection takes place closer to the 

brace near the maximum beam moment point with zero twist at adjacent brace points.  

Consequently, the magnitude of the critical imperfection was taken as Lb/500 that 

is imposed in the design of torsional bracing systems in AISC (2001) Specifications. 
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2.7. Previous Studies 

There have been numerous studies during early 1900s on the behaviour of shear 

diaphragms that are used for stability bracing of beams or girders. It should be noted that 

an adequate stiffness and strength of the bracing system is crucial for stability of the 

structures, Winter (1960). 

After having unsatisfactory experiences on bridge construction, researchers 

concentrated on investigation and development of the new bracing sytems to provide 

stabilization of these structures.  

Cornell University have great contributions for understanding the behavior of 

shear diaphragm used as continuous bracing systems. Errea and Apparao (1976), 

conducted significiant studies on bracing of I-shaped girders with shear diaphragms. 

These studies resulted in an energy-based solution for the buckling capacity of girders 

braced by a shear diaphragm on the compression flange under uniform moment loading. 
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 (2.13) 

 

Where, 

 

EIy = Weak axis bending rigidity; 

ECw = Warping rigidity; 

GJ = Torsional rigidity; 

e = The distance between the center of gravity of the beam and the plane of 

the diaphragm; 

n = A constant for different end support conditions. (1 for simply supported 

end and 2 for fixed end.)  

 

The equation above was derived by considering a lateral displacement of 

compression flange and sinusoidal cross sectional twist along the entire length of the I-

girder braced by shear diaphragms on the compression flange.  

The expression on the equation (2.2) includes a simple solution suggested by 

Errera and Apparao (1976) as well as Nethercot and Trahir (1975). 
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QeMM gcr 2  (2.14) 

 

where, 

 

Mg  = Buckling capacity of the girder alone; 

Q  = Shear rigidity of the shear diaphragm; 

e  = Distance from center of gravity of the beam to plane of shear  diaphragm.  

 

Helwig and Yura (1999) compared the results of Equation 2.13 and Equation 2.14 

by selecting a wide girder section of W30x90 with a span/depth ratio of 20 under uniform 

loading case and braced by a shear diaphragm. The results of comparison illustrated a 

well accordance between both of the solutions. 

Parameter “e” that is given in Equation 2.13 and Equation 2.14 is defined as the 

distance between the diaphragm plane and shear centre of the girder by Lawson and 

Nethercot (1985). 

 Yet, for transverse loading cases the equation above is not valid. Lawson and 

Nethercot (1985) derived the following equation for girders subjected to transverse 

loading cases. 
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where, 

 

Cb  = Factor for moment gradient; 

d = Girder depth; 

g = Load height factor; 

Pe = Weak axis Euler buckling load; 

G = Shear modulus of the beam material; 

J = Torsional constant of the beam; 

Q  = Shear rigidity of the shear diaphragm; 
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Lawson and Nethercot (1985) suggested “g” value of 0.45 and 0.55 for uniform 

distributed load at the top flange and point load at the top flange of mid point of the girder, 

respectively. When the load height effect “g” is not considered (g = 0) Equation 2.15 

yields to Equation 2.16 that resulted in a Cb factor affecting the entire equation.  

Helwig and Frank (1999) conducted a numerical study on the contribution of 

metal deck forms to the stability bracing of steel I-girders. A finite element model is 

utilized for the investigation. The model was a simply supported twin girder system 

braced by shear diaphragms a long the length of the girders. The shear diaphragms of the 

model was created by using four noded shell elements with a unit thickness. Helwig and 

Frank (1999) altered the modulus of elasticity to modify the shear rigidities of the metal 

decks to avoid the local buckling problems. The reason to alter the modulus of elasticity 

instead of the shell thickness was that plate buckling is a linear function of the modulus 

of elasticity whereas it was a function of the cube of the thickness. So with the use of 

modulus of elasticity detrimental effect thickness in the third power is avoided. In order 

to prevent local distortions of the diaphragms, beam elements were used for stiffening the 

shear diaphragm along panel edges. These beam elements had only out-of-plane 

stiffeness. Stiffening beams have the corresponding magnitude of moment of inertia as 

the corrugations of the deck panels. The girders were created from 8 noded shell elements 

unlike the 4 noded panels. The corners of each deck panel rigidly coupled to center points 

of the top flange in x, y and z direction for translational degrees of freedoms. The girders 

were simply supported and free to warp at the supports.  
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Figure 2. 11. Sections considered in the study of Helwig and Frank (1999). 

Web slenderness ratio of the sections was varied from 96 to 160. For each 

sections, girder span over girder depth values of 10, 20, and 30 were considered. Both 

singly and doubly symmetric sections were investigated.  

Lawson and Nethercot (1985) described the parameter “e” in Equation 2.16 as the 

distance between geometrical centroid of the section and plane of decking. However, for 

singly symmetric sections geometrical centroid and shear center does not coincide and 

can be below or above the mid height of the girder section. 

Due to difference in the definition, Helwig and Frank (1999) investigated the 

effects of “e” on buckling capacity. It was observed that considering “e” as a distance 

from shear center to plane of decking overestimates the solution. While, as shown in the 

figure below, considering it as a distance from mid height to plane of decking gives 

reasonable results. 
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Figure 2. 12. Definition of  parameter “e”. (Source: Frank and Helwig 1999). 

 )2( QeMCM gbcr  (2.16) 

 

where, 

 

Mcr  = Buckling capacity of a diaphragm-braced beam; 

Cb
*  = Moment gradient factor that considers load height effects; 

Mg  = Buckling capacity of the girder alone; 

m  = factor for load type and load height effects; 

Q  = Shear rigidity of the shear diaphragm; 

d = Depth of the beam; 

 

Shear rigidity of the deck, Q is calculated as; 
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where, 

 

G’
   = Effective shear modulus of the diaphragm; 

sd  = Tributary width of a diaphragm bracing a single beam; 

ng  = Number of girders in the system; 

s  = Spacing of the girders; 

 

Therefore 2Qe (contribution of the deck to LTB capacity) yields to Qd where d is 

the depth of the girder. Then Equation 2.16 was modified as below. 

 )( QdMCM gbcr  (2.18) 

In previous equation moment gradient factor effects the entire buckling equation 

with girder capacity and deck component together. Thus, finite element analysis results 

showed that applying Cb factor to the entire equation gives overestimated solutions 

compared to FEM results. Cb factors of 1.35 and 1.12 were considered for mid span point 

load and uniformly distrubuted load cases, respectively. Helwig and Frank re-arranged 

the equation by Cb factor only to the Mg (buckling capacity of a girder alone). 

Helwig and Frank (1999) examined the center of twist of the sections to illustrate 

the decrease in the efficiency of the deck if the moment gradients exists due to the 

transverse load case, compared to uniform moment loading case.  

As mentioned before, the center of twist (COT) which is defined as the 

intersection of the unbuckled and buckled girder axes, may lie in different positions 

throught the web. Geometry of the section, type of loading and existence of bracing 

effects the position of the COT along the girder section. 

A closer center of twist to the compression flange of a simply supported I-beam 

means less effective bracing. Yet as it slides through the top flange, the lateral movement 

of the top flange will be relatively less even the rigidity of the diaphragms increased. 

When compared to mid-height loading, top flange loading causes lower buckling capacity 

of the beam. With their findings, Helwig and Frank (1999) presented that, under uniform 

loading COT is located below to bottom flange. They also observed that the section 

subjected to transverse loading at mid height with a moment gradient still has a negative 

CT. Negative CT means that COT is below the bottom flange and positive CT means that 

COT is above the bottom flange. CT  implies the distance between the COT and the bottom 



 26

flange. Existence of the bracing elevates the COT. Larger shear rigidities results in COT 

to move closer to the top flange. Therefore over a limit rigidity of the bracing becomes 

uneffective. 

By comparing FEM results with the equation results, Helwig and Frank (1999) 

figured out that applying Cb to the entire equation (both deck contribution and girder 

alone) causes over estimation of buckling capacity. There for the Cb factor needs to be 

applied to the girder alone (Mg) part of the buckling equation. Even in that case, buckling 

capacity of the system is reported to be still overestimated. Thus a new parameter “m” 

value is evaluated that accounts for the load height and load type effects and decrease the 

overestimation of the deck component. Further numerical studies on compact and slender 

sections with variable L/D ratios are conducted. 

As a result of these studies, it is reported that “m” values of 5/8 and 3/8 for mid-

height and top flange loading, respectively, could be accepted as reasonable estimates. 

For top flange loading cases Cb factor requires a simple modification recommended by 

Helwig et al. (1997) and Galambos (1998). They also modified traditional moment 

gradient factor Cb for mid-height loading. By accounting for top flange loading effects, 

moment gradient factor was adopted as Cb = Cb / 1.4. 

In consideration of these studies, Equation 2.18 modified as follows; 

mQdMCM gbcr
*  (2.19) 

For a specific design load level (considered as 210 Mpa in the study), or critical 

buckling capacity, it is possible to obtain ideal rigidity of a shear diaphragm with the 

transposition of Qi and rearranging the equation above.  

For a continuously braced system, Helwig and Yura (2008a) defined the term 

“ideal stiffness” as a stiffness that aims a perfectly straight beam to reach a specific load 

level. Yet the existence of geometrical imperfections on structural members, larger 

stiffness than the ideal stiffness must be provided to control the deformations. (Winter 

1960). 

Helwig and Yura (2008-I and 2008-II) conducted analytical studies on stability of 

a twin-girder decking system braced with shear diaphragms. In these studies, stiffness 

and strength behaviour of shear diaphragms used to brace stocky beams were 

investigated. Load type and height effects were also taken into consideration. Helwig and 

Yura (2008-I) mainly focused on the stability behaviour of the system with a general 

aspect. The second paper of the study (2008-II) explained the stiffness and strength 
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requirements of diaphragms and summarizes the design requirements of shear 

diaphragms. 

Helwig and Yura (2008-I) studied on the stiffness requirements of the diaphragms 

to control deformations of the girders. “m” value in the equation, that is defined by Helwig 

and Yura (1999), is rearranged for stocky beams. Also cross frames are added at the mid-

span to brace the girder and analyses conducted to see its effect on the system. Helwig 

and Yura (2008-I and 2008-II) considered a predefined initial twist of the beam, as the 

magnitude of the brace forces is a function of the imperfection of the steel members. 

 

 )
500

(θ 0 d
L b  (2.20) 

 

where, 

 

θ0  = Initial twist in radians; 

Lb  = Girder span; 

d  = Depth of the beam; 

 

Lateral sweep of Lb/500 was assumed for the top flange whereas the bottom flange 

was considered as perfectly straight along the girder length. Lb/500 is twice of the value 

suggested in the Specification for Structural Steel Buildings (AISC 2010a). Helwig and 

Yura (2008-I) performed eigen-value buckling analyses to determine ideal stiffness of the 

shear diaphragm for bracing the perfectly straight twin-girder system. In order to 

determine the strength requirments, they also conducted non-linear statical analyses with 

large displacements. Shear diaphragms of the model was designed as a truss element as 

shown Figure 2. 13. Trusses were built up with LINK8 element which is a tension-

compression member without bending capabilities and has three degrees of freedom for 

each node. Shear rigidities of the deck panels were altered by changing the area of the 

truss members. Results from the truss model and shell model of Helwig and Frank (1999) 

was compared and the truss model was verified.  
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Figure 2. 13. Truss panel model (Source: Helwig and Yura 2008_I). 

According to the findings of the study, top flange loading effects were reduced by 

the existence of discrete bracing. Thus, “m” values evaluated by Helwig and Frank (1999) 

for slender plate girders before, were reorganised for stocky beams as in the following 

table. 

Table 2. 1. “m” values 
(Source: Helwig and Yura 2008a). 

 Stocky (h/tw<60) Slender (h/tw>60) 

Bracing Condition Centroid 
loading 

Top flange 
loading 

Centroid 
loading 

Top flange 
loading 

No intermediate 
discrete bracing 0.85 0.5 0.5 0.375 

With intermediate 
discrete bracing 0.85 0.85 0.5 0.375 

 

Helwig and Yura (2008a) conducted large displacement non-linear analyses on 

initially imperfect twin girder system braced by shear diaphragms. They reported that 

transverse loads applied at the centroid resulted in smaller maximum brace forces than 

uniform moment loading. Applying loads on top flange increased the maximum brace 
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force and top flange transverse loading elevated the maximum brace forces regardless the 

load type. The maximum mid-span rotations were obtained for transverse loading at top 

flange case and minimum rotations were obtained for uniform moment loading case. 

Adding intermediate cross frames at the mid-girder caused reduction in both rotations and 

brace forces as it brace the girders and reduce the span. As a result, providing a rigidity 

value of four times the ideal shear rigidity provides reasonable results to control the 

rotations and brace forces when compared to two and six times of it. Since the effect of 

shear rigidity got smaller, increasing it to six times become ineffective. Thus, Helwig and 

Yura (2008a) suggested to use four times the ideal shear rigidity value.  
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where, 

 

Mu  = Maximum design moment of a diaphragm-braced beam; 

Cb
*  = Moment gradient factor that considers load height effects; 

Mg  = Buckling capacity of the girder alone; 

m  = factor for load type and load height effects; 

Q  = Shear rigidity of the shear diaphragm; 

d = Depth of the beam; 

 

Helwig and Yura (2008b) concentrated on obtaining stiffness and strength 

requirements for shear diaphragm that are used to brace stocky beams. 

Helwig & Yura (2008b) performed large displacement analyses on stocky beams 

and proposed the brace forces along length of the beam Mbr
’ as seen in Figure 2. 14. As a 

result, Helwig and Yura (2008b) recommended the following equation for Mbr
’. 
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where, 

 

Mu = Maximum design moment of a diaphragm-braced beam; 
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Mbr
’
 = Warping restraining moment per unit length along the longitudinal axis 

of the beam; 

L = Spacing between bracing points; 

d = Beam depth. 

 

 

Figure 2. 14. Brace moment and shear on corrugated sheet. 
(Source: Helwig & Yura, 2008-II) 

In Figure 2. 14 each decking sheet is fastened at both edge and at the side lap 

fasteners. Edge fasteners were used to connect corrugated sheets to girder elements while 

side lap fastener were used to connect adjacent decking sheets. Helwig and Yura (2008b) 

assumed that edge fasteners, used to connect the sheet with the girder, equally resist to 

the shear forces generated in the shear diaphragm. Thus, they transformed the brace 

moment per unit length Mbr
’
 , Mbr moment of a decking sheet formulated in Figure 2. 9. 

From equilibrium, Helwig & Yura (2008-II) presented  the following equations for the 

shear force components in an edge fastener. 
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where, 

 

FV = Component of brace force parallel to beam longitudinal axis; 

FM = Component of brace force perpendicular to beam longitudinal axis; 

FR = The resultant force in fasteners; 

Vbr = Shear force in truss panel; 

ne = Number of edge fasteners per panel; 

Mbr = Brace moment in diaphragm truss panel; 

Mbr
’
 = Warping restraining moment per unit length along the longitudinal axis 

of the beam; 

Ld = Spacing between bracing points; 

wd = width of the shear diaphragm; 

Mu = Maximum design moment of a diaphragm-braced beam; 

L = Span of the beam; 

d = Beam depth. 
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4 CHAPTER 3 

5 FINITE ELEMENT MODEL  

3.1. Introduction 

The three dimensional finite element program ANSYS (2007) was utilized to 

conduct the analytical studies on the lateral torsional buckling behavior of the twin steel 

I-girder and beam system braced by shear diaphragms. The finite element model of the 

system consists of three different element types in order to simulate an analogous 

behavior with the real life applications. Material nonlinearity was not taken into 

consideration in the model and all of the elements have linearly elastic material properties. 

The model of the twin-girder system braced with a corrugated metal deck form is depicted 

in Figure 3. 1. The ANSYS finite element model was composed of 8 noded-shell elements 

(SHELL93) to simulate steel I-girders or beams and web stiffeners, 3-D truss elements 

(LINK8) to simulate the metal deck forms and spring-damper elements (COMBIN14) to 

simulate the screws that fasten the thin elements to heavier structural units. For stitch 

connections between sheets at the side-laps, 3-D truss elements were used by providing 

the equivalent lumped stiffness of the side-lap fasteners. 3-D truss elements have only 

uniaxial compression and tension behavior. 

In this chapter, finite element models of steel I-beams, metal decks, fasteners and 

cantilever shear frame are presented respectively. Furthermore, verification of finite 

element model is also adverted. 
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Figure 3. 1. Twin girder and metal deck diaphragm system. 

3.2. Finite Element Model and the Loading Procedure  

Non-linear static analyses are conducted to observe the stiffness requirements of 

I-beams that are braced with the permanent metal deck forms. In the model, geometrical 

non-linearity are considered but material non-linearity was ignored. Girders are loaded in 

gravitational direction at each mid-node of the top flange along the girder with uniform 

distributed loading. Laboratory tests of twin girder system braced by metal decks indicate 

that girders have maximum bending stress level of 210 MPa at the extreme fiber. (Egilmez 

et. al, 2007). Thus, load level are selected to provide such a stress level. Loading is 

completed in twelve steps. Twenty percent of the total loading is applied in first three 

steps. Ten percent increment in two steps, five percent increment in two steps and two 

percent increment in five steps followed the initial loading. Each loading phase has 105 

sub steps. In the sub steps, convergence criteria for force, moment and displacement are 

checked and verified through iterations. These criteria are set 0.1% and 1% for 

force/moments and displacements respectively. Some of the analyses are terminated due 

to low convergence criteria or due to large deformations and instability of the girders. 
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3.3. FEA Model of Steel I-Girders 

The beam and girder elements and web stiffeners are meshed with 8-noded 

quadrilateral shell elements which are referred as SHELL93 in ANSYS element library 

(2007). For structural mechanic problems, SHELL93 element demonstrated in Figure 3. 

2 could be a proper selection to model curved shells. The element has six degrees of 

freedom at each node: translations in the nodal x, y, and z directions and rotations about 

the nodal x, y, and z-axes and has quadratic deformation shapes in both in-plane 

directions. Large deformation capability of the element is an advantage for the accuracy 

of nonlinear analyses.  

 

Figure 3. 2. SHELL93 Element in ANSYS library. 

Table 3. 1. Material Properties of ASTM A992-Grade 345 Mpa Steel. 

 
 
 

Material properties defined in Table 3. 1 were assigned to shell elements 

(SHELL93) that generates girders and web stiffeners. 

= 205000
= 78800
= 0.30

Modulus of Elasticity (Mpa)
Shear Modulus (Mpa)
Poisson's ratio (ν)
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Flanges of the steel-I beams or girders were divided into two shell elements. Either 

side of the flange center possesses one shell while the numbers of elements along the web 

depth are four. The sensivity of the model and the fineness of the meshes were checked 

by increasing the element number to eight at the web. It was observed that increasing the 

element number did not have a significiant effect on the accuracy of the model. In 

comparison with the web that consists four elements, results were close and in both cases 

excessive distortions of elements were avoided. Thus, webs were divided into four 

elements to reduce the degrees of freedom and correspondingly the elapsed time of the 

anlyses.  Aspect ratios of shells were maintained below. It should be noted that the web 

and flange common nodes were rigidly coupled. 

Merely, uniformly distributed loading case was considered since it reflects the real 

life loading conditions and represents loading of pour concrete slab. Midspan point load 

case was not considered. Thus, sections with compact webs had vertical web stiffeners 

only at their supports to eliminate the local effects. However sections with slender webs 

had transverse stiffeners at their supports and every defined space, ‘a’, which varies 

according to girder depth, ‘h’. The ‘a/h’ ratio is kept constant and approximately equal to 

one. Dimensions of the web stiffeners is selected based on the width of the flange and the 

depth of the web. Thicknesses of the web stiffeners are all same and equal to 20 mm. 

Figure 3. 3 illustrates an imperfect girder that is modeled with ANSYS without boundary 

conditions and applied forces on it. Note that the stiffeners are presented in the figure. 

The beams or girders were simply supported. The lateral movements at the 

supports were prevented at the top and bottom flanges. The web was free to warp to 

provide free rotations of the metal decks.  
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Figure 3. 3. ANSYS FE Model of the girders and beams. 

The initial geometry of a structural member in the system effects the bracing 

behavior and the buckling capacity, because an imperfect element could not reach the 

load carrying level of a perfectly straight member. Thus, initial imperfections play an 

important role in the magnitude of brace forces that develop in bracing members. Wang 

and Helwig (2005) showed that the brace forces are directly proportional to the magnitude 

of initial imperfections for beams braced by cross frames or diaphragms. Wang and 

Helwig (2005) also showed that the worst-case imperfection for maximizing brace forces 

forms by the lateral sweep of the compression flange while the tension flange remains 

essentially straight. For the magnitude of lateral sweep of the top flange, both Wang and 

Helwig (2005) and Helwig and Frank (2008a) suggested using Lb/500 instead of the 

1/1000 limit set by the AISC Code of Standard Practice (AISC 2010) on the variation in 

straightness between points of lateral supports in bridge applications. The reason for 

doubling the magnitude of lateral sweep is due to possible additional out-of-plumpness 

and uneven bearing supports in bridge constructions, which may result in larger 

imperfections. The shape and magnitude recommended by Wang and Helwig (2005) and 

Helwig and Yura (2008a) for initial imperfections is adopted in this study. The geometry 
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and the values of these imperfections are shown in Figure 3. 4 and 3.5. The corresponding 

approximate initial twist is expressed in the following expression. Geometric 

imperfection of the beams were introduced to the analyses through modeling the beam 

geometry.  

 

 
 

(3.1) 

 

where: Lb = unbraced length of the beam and d= depth of beam. 

 

 

Figure 3. 4. The shape and magnitude of imperfections used in the study. 

 

Figure 3. 5. Plan view of imperfections. 

0
Lb

500d
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3.4. FEA Model of Shear Diaphragm  

The FEA model used for shear diaphragms was adapted from a study by Davies 

and Bryan (1982). In this study, Davies and Bryan (1982) simulated the shear stiffness of 

diaphragms by a series of bars forming a truss. Each small truss shown in Figure 3. 6 

consists of four transverse and three diagonal truss elements and represents a single deck 

sheet profile. The deck sheet profile modeled in this study is a deck sheet with three 

corrugations commonly used in both building and bridge applications.  

 

Figure 3. 6. Analytical model of twin girder system based on Davies and Bryan. 

The sub-model used for deck sheet is presented in Figure 3. 7. The transverse truss 

elements are located at every trough and span between the centerline of beam top flanges. 

This type of a representation of deck sheets enables the deck to structural member (twin 

beams in this study) fastener to be modeled by dimensionless spring elements and be 

placed at the ends of each transverse truss element. The transverse truss elements were 

connected to the beam top flange mid-nodes through these dimensionless spring elements. 

The number of transverse truss elements can be changed depending on the number of 

fasteners used to connect the deck sheet to structural member. The truss elements are 3-

D uniaxial tension-compression bar elements. The axial stiffness of the transverse 

elements is taken sufficiently high to be able to neglect the axial strain. Hence, the shear 
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stiffness of the deck sheets depends only on the properties of the diagonal elements. In 

order to determine the required area of the diagonal truss elements that corresponds to a 

certain shear rigidity, an FEA model of an existed shear test frame was utilized. 

 

 

Figure 3. 7. Finite element analytical model of a metal deck. 

3.5. FEA Model of Fasteners  

Luthrell (2004) stated that stiffness and strength of a connection between the metal 

deck and the structural member depend on the diaphragm properties, span arrangements 

and the quality of the connection. Connections can be established by welds, screws or 

power driven pins. In building and bridge applications, deck sheets are generally fastened 

to supporting members along the edges at every trough and to each other at side-lap 

locations by mechanical fasteners. Conventional mechanical fasteners for deck sheets are 

generally 19 mm (¾ in) long TEKS screws with a 6.3 mm (¼ in) diameter. In this study, 

the fasteners that connect deck sheets to supporting members were modeled by 

dimensionless spring elements that possess equal stiffness in two orthogonal directions, 

but no rotational and bending stiffness. COMBIN14 element in ANSYS library was 



 40

chosen to simulate the flexible screw connection. COMBIN14 element provides a 

uniaxial tension-compression behavior with three degrees of freedoms for each node that 

consists of translation in x, y and z directions.  

 

 

Figure 3. 8. LINK8 geometry and stress output. 
(Source: ANSYS 14 Documentation.) 

COMBIN14 elements were positioned at the centerline of beam top flanges and 

connected to the mid-node of beam top flanges and the ends of the transverse truss 

elements. General layout of fasteners can be seen in Figure 3. 6 on the previous page. 

Although the dimensionless spring elements are demonstrated with a finite length in 

Figure 3. 9, this representation is merely for illustration purposes.  

 

Figure 3. 9. FE model of the fastener based on Davies and Bryan. 
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At side-lap locations separate spring elements were used to connect each 

transverse truss end to the same mid-node of beam top flange. The transverse and lateral 

stiffness of these dimensionless spring elements were assumed to be the same as the 

stiffness of No. 12 and No. 14 Buildex TEKS screws used to develop the SDI Design 

Manual (Luthrell 2004) equations. For the stiffness of deck to structural member 

connections, SDI Design Manual (Luthrell 2004) recommends the following expression:  

 

                                     (3.2) 

 

where: t = thickness of sheet metal  

 

In the shear diaphragm bracing composition, panels adjacent to the supports are 

assumed to be fastened to structural members (beam, diaphragm, etc.) that span 

transversely between the supports. An example of the current application is given in 

Figure 3. 10. 

 

 

Figure 3. 10. Transverse diaphragm at the supports. 

kstructural
106 t
37.4

N /mm
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The stiffness of the deck to structural member connections is also considered and 

incorporated in the model by providing additional spring elements that connect the corner 

node of the deck trusses adjacent to the supports.  

Deck to deck connections, in other words side-lap connections were modeled by 

a transverse truss element that connects opposite edges of adjacent small trusses as shown 

in Figure 3. 10. The stiffness of the side-lap transverse truss elements consisted of the 

sum of the stiffness of the total number of fasteners used at side-lap connections. 

According to Permanent Metal Deck Form (PMDF) standards by Texas Department of 

Transportation (TxDOT 2004) a maximum center-to-center spacing of 450 mm (18 in) is 

required at side-laps.  The stiffness of a deck to deck connection was calculated according 

to the SDI Design Manual (Luthrell 2004): 

 

                                      (3.3) 

 

where: t has been defined in Eq. (3.2).  

 

The number of fasteners at deck to beam connections considered in this study 

ranged from five to three. The number of fasteners at deck to deck connections ranged 

from six to four. A standard deck with dimensions 610 mm and 2750 mm was used. These 

dimensions are representative of practical deck lengths utilized in both the building and 

bridge industries.  

As can be seen from Eq’s. (3.2) and (3.3) both the deck to structural member and 

deck to deck connection stifness depend on the thickness of the deck sheet. In order to 

investigate the effect of sheet thickness on fastener forces, three different deck 

thicknesses (0.91, 1.22, and 1.52 mm [20, 18, and 16 ga.]) were considered in this study. 

3.6. The FEA Model of Shear Frame 

Prior to buckling and large deformation analyses, it was crucial to obtain the shear 

stiffness values of the system that brace the steel I-beams or girders. For this purpose, 

shear frame analyses were utilized to measure shear characteristics of metal decks. In 

Figure 3. 11, FE model of shear frame is demonstrated. The model consists of two 

kside lap
106 t
86.3

N /mm
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adequately rigid beams (BEAM3), 3-D truss elements to generate shear diaphragms 

(LINK8), dimensionless spring elements (COMBIN14), and at the end a rigid link 

element to provide load transfer. Translation of beams is restricted in both x and y 

directions at supports. The system has 8 deck members. The frame is restrained at the left 

end. The other end is not supported and free to deform. The shear diaphragm created in 

the cantilever shear frame model involves all the properties of metal decks defined in the 

previous paragraphs. The same model for metal deck will be utilized in eigenvalue 

buckling and large deformation analyses.  

 

Figure 3. 11. FE model of shear frame used to measure shear parameters. 

The main target of shear frame analyses was to obtain the area of diagonal truss 

elements to determine shear rigidities of the metal decks. Altering these areas provides 

the necessary shear stiffness values of the system. Vertical truss elements have high axial 

rigidities and have no influence on determination of the shear rigidity. Truss 

representation of metal deck eliminates the local distortions of the diaphragm.  

 

 

1

X

Y

Z

TEST FRAME FOR SHEAR DIAPHRAGM                                                  
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3.7. Verification of the FEA Model 

The FEA simulation was verified by comparing the buckling behavior of a 14.63 

m (48 ft) twin-girder system braced by permanent metal deck forms (PMDF). The test 

used in the verification study was a full-scale twin-girder buckling test conducted at the 

structural engineering laboratory of University of Houston. The girders were US wide 

flange beams, W760 134 (US: W30 90), with a depth of 753 mm and web thickness of 

15.5 mm. The top flanges of the girders were flame cut from the original 264.2 mm (10.4 

in) width to 158.8 mm (6.25 in) to produce a singly symmetric section with =Iyc/Iy=0.18; 

where Iyc and Iy are respective moment of inertias of the compression flange and the entire 

cross section about a vertical axis through the web. Point loads were applied to the girders 

through two gravity load simulators at third points. The deck form system used in the test 

set-up represented a forming system used in the bridge industry with a modified 

connection detail. The 1.22 mm (18 ga) thick PMDF sheets were 610 mm wide and were 

supported on cold-formed L76 51 3.3 mm (L3 2 10 ga) galvanized angles. The 

modified connection detail consisted of transverse stiffening angles that spanned between 

the top flanges of the girders. The spacing of the stiffening angles was 4.88 m (16 ft). A 

full description of the test set-up is given by Egilmez et. al (2012). The effective shear 

stiffness of the deck form system was measured to be 7184 kN/m-rad; which 

corresponded to a deck shear rigidity of 9842 kN/rad (Egilmez et. al, 2007). The 9842 

kN/rad shear rigidity corresponded to approximately 5.4 times the ideal shear rigidity of 

the deck system for a stress level of 210 MPa (30.43 ksi).  

Figure 3. 12 presents the comparison of the test results and the FEA simulation 

for mid-span moment vs. mid-span total twist/initial twist. It can be seen from the figure 

that the FEA model predicted the behavior of the test beam satisfactorily in the elastic 

region. The rotations of the FEA model were approximately 4.7% higher than the 

rotations of the girders observed in the test. Since elastic materials were used in the FEA 

model, it was not possible to simulate the inelastic behavior of the twin-girder system.  

 



 45

 

Figure 3. 12. Comparison of FEM and laboratory test results 
 (Source: Egilmez et. al, 2012). 
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6 CHAPTER 4 

7 OVERVIEW OF STUDY 

4.1.  Introduction 

In this chapter, overview of the study is presented. The presentation consists of 

the procedure to obtain the stiffness requirements of the decks, the definition of the 

selected cross sections and the parameters of the analysis that are used in the study. 

The study involves an eigenvalue buckling analyses in order to obtain ideal shear 

rigidities of the twin girder system, a shear frame analyses to define the areas of diagonal 

truss members in the deck model and a large displacement static analyses to investigate 

the stiffness requirements of the shear diaphragms. ANSYS Mechanical APDL (2007) 

was utilized to perform the analyses. In order to investigate the stiffness requirements of 

the shear diaphragms, the rotation of the cross section around x-axis at mid-span, the 

brace forces developed in the edge and side lap fasteners were examined. 

4.2. Analysis Parameters 

It is known that efficient sizing of the web and the flanges could provide 

economical solutions. The flanges essentially resists the bending, torsional forces while 

the web principally resists the shear forces. It is obvious that the width of the flanges have 

an influence on the lateral torsional buckling behavior of the section, therefore necessary 

consideration should be given to this in the design of the flanges. Narrow flange widths 

increase the sensitivity of the member to lateral torsional buckling. Such a selection 

necessitates the investigation of its effects on the stiffness and strength of requirements 

of the shear diaphragms. It is known that extremely narrow width of the flanges could 

cause convergence problems in non-linear analyses due to instability of the girders 

resulting from high lateral displacements. Therefore, in this study the flange widths of the 

beams were selected to avoid such an instability. Flange width is controlled by the h/b 

ratio in the study. This same ratio is named as cross-section aspect ratio in AASHTO 
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LRFD 2012 Bridge Design Specifications 6th Edition. Figure 4. 3 tabulates the section 

designations and cross sectional properties of the beams selected for the study. The beam 

sections consisted of six doubly symmetric and six singly symmetric sections. The web 

slenderness ratios (WSR) of doubly symmetric sections were 60, 100, and 160; whereas 

for singly symmetric sections WSR were 100 and 160. The depths of sections with WSR 

of 60 were 366 mm (14.4 in) and 732 mm (28.8 in) and are referred to as Stocky#1, and 

Stocky #2, respectively. Flange widths of the stocky beams were respectively 140 mm 

(5.5 in), and 280 mm (11 in). Flange slenderness ratios (FSR) of these two stocky beams 

were 7.78. Sections with WSR of 100 and 160 are referred to as DS Slender 100#1 and 

160#1, and DS Slender 100#2 and 160#2. The depth of Slender-100 and 160 sections 

were 1464 mm (57.6 in) and 1830 mm (73.71 in). For the four slender sections flange 

widths were considered: 300 mm (11.8 in). FSR of the slender sections were six.  

In addition to doubly symmetric sections, six singly symmetric sections, referred 

as SS Slender 100#19 to SS Slender 160#39, were also considered. The sections had a 

depth of 1464 mm and 1830 mm, a bottom flange width of 300 mm (11.8 in). The FSR 

of this sections is 6. Top flange widths of the sections were altered to achieve ratios of 

mono-symmetry (Iyc/Iy) of 0.19 (SS-Slender 100#19 and SS Slender 160#19), 0.29 

(Slender 100#29 and SS Slender 160#29), and 0.39 (SS Slender 100#39 and SS Slender 

160#39); where Iyc is the weak axis moment of inertia of the compression flange and Iy 

weak axis moment of inertia of the entire cross-section. The AASHTO Standard 

Specifications (2010) requires the ratio of mono-symmetry to be within the following 

limits: 0.1 ≤ Iyc/Iy ≤ 0.9. Figure 4. 3 demonstrates typical geometry of the cross-sections 

analyzed in this study. In Table 4. 2, web and flange slenderness ratios of the sections and 

the aspect ratios of the mesh elements were given. In Figure 4. 1 and Figure 4. 2 illustrates 

the cross sections analyzed in this study. 
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Figure 4. 1. Doubly Symmetric Sections analyzed in the study. 

 

Figure 4. 2. Singly Symmetric Sections analyzed in the study. 
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Figure 4. 3. General geometry of steel I-beams and girders. 

Table 4. 1. Sections to be analysed in the study. 

 
 

 

 

Width of 
Top 

Flange
(bcf)

Width of 
Bottom 
Flange

(btf)
Thickness

(tcf)
Thickness

(ttf)
Height 

(h)
Thickness

(tw)
mm mm mm mm mm mm

Stocky #1 Compact 140 140 9.00 9.00 366 6.00
Stocky #2 Compact 280 280 18.00 18.00 732 12.00
DS Slender 100#1 Slender 300 300 25.00 25.00 1464 14.14
DS Slender 160#1 Slender 300 300 25.00 25.00 1464 8.84
DS Slender 100#2 Slender 300 300 25.00 25.00 1830 17.80
DS Slender 160#2 Slender 300 300 25.00 25.00 1830 11.13

SS Slender 100#19 Slender 210 300 17.50 25.00 1464 14.21
SS Slender 100#29 Slender 240 300 20.00 25.00 1464 14.19
SS Slender 100#39 Slender 270 300 22.50 25.00 1464 14.16
SS Slender 160#19 Slender 210 300 17.50 25.00 1464 8.88
SS Slender 160#29 Slender 240 300 20.00 25.00 1464 8.87
SS Slender 160#39 Slender 270 300 22.50 25.00 1464 8.85

Singly Symmetric I-Shaped Girders

Doubly Symmetric I-Shaped Girders
Sections Class

Flange Web
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Table 4. 2. Slenderness and aspect ratios of webs and flanges. 

 
 

For stocky sections, span-to-depth ratios (L/d) of 15, 20, 25, and 30 were 

considered. Also, the L/d ratios for the slender and singly symmetric sections were 10 

and 15. 

The only loading condition considered was uniformly distributed load applied at 

the top flange. It is selected due to the fact that uniformly distributed loading is 

representative of loading for newly poured concrete slab. The level of uniformly 

distributed load considered in the study results in 210 MPa bending stress at the extreme 

fiber. This magnitude of loading is accepted to give a reasonable assessment of the stress 

that is expected in the construction phase. Noting that applied loading resulted flexure in 

the girders, the flexural effects, F2 and F5 parts of Chapter F (Design of Members for 

Flexure) in AISC (2010) must be satisfied for the defined limit states. In addition to 

Chapter F, due to shear effects, slender webs and webs under concentrated load on 

supports should be satisfied according to requirements of Chapter G (Design of Members 

for Shear). For this purpose, transverse web stiffeners were attached to the webs of the 

slender beams along the girder. Stocky beams possess web stiffeners at only supports. 

These stiffeners were placed with a distance equals to beam height. Thickness of the web 

stiffeners were 20 mm for all sections. Loading applied at mid-height was not considered 

since it is less critical as compared to top flange loading (Helwig and Yura, 2008a and b).  

Top Bottom

Stocky #1 Compact 7.78 7.78 58.00 2.90 2.90 2.34
Stocky #2 Compact 7.78 7.78 58.00 1.45 1.45 1.17
DS Slender 100#1 Slender 6.00 6.00 100.00 1.36 1.36 1.74
DS Slender 160#1 Slender 6.00 6.00 159.95 1.36 1.36 1.74
DS Slender 100#2 Slender 6.00 6.00 100.00 1.36 1.36 2.19
DS Slender 160#2 Slender 6.00 6.00 159.93 1.36 1.36 2.19

SS Slender 100#19 Slender 6.00 6.00 100.04 1.94 1.36 1.75
SS Slender 100#29 Slender 6.00 6.00 100.00 1.69 1.36 1.74
SS Slender 100#39 Slender 6.00 6.00 100.04 1.51 1.36 1.74
SS Slender 160#19 Slender 6.00 6.00 160.08 1.94 1.36 1.75
SS Slender 160#29 Slender 6.00 6.00 159.98 1.69 1.36 1.74
SS Slender 160#39 Slender 6.00 6.00 160.06 1.51 1.36 1.74

Sections Class

Aspect
Ratios
Flanges

Singly Symmetric I-Shaped Girders

Doubly Symmetric I-Shaped Girders

Flange 
Slenderness

Ratios
(λfTOP=b/2tcf)

Flange 
Slenderness

Ratios
(λwBO T=b/2ttf)

Web 
Slenderness

Ratios
(h/tw)

Aspect
Ratios
Web
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The stiffness of a brace system has a significant effect in controlling deformations 

and reducing the brace forces. In literature, the magnitude of required brace stiffness has 

generally been defined as a function of the “ideal stiffness” of the brace. As previously 

mentioned, the “ideal stiffness” corresponds to the brace stiffness required for a structural 

member to reach a specific load level. A brace stiffness higher than the ideal stiffness is 

need to control deformations and brace forces. In previous studies, brace stiffness 

recommendations for column and beam bracing systems generally varied between twice 

to four times of the “ideal stiffness”, respectively; depending on the braced member and 

the bracing type (Yura 2001, Helwig and Yura 2008a). These recommendations are 

generally based on a philosophy to provide a brace stiffness large enough to limit the 

brace forces to reasonable values. The magnitude of a reasonable brace force is somewhat 

arbitrary; however, it has been depicted that limiting the total amount of deformations at 

the design load to be around twice to four times the initial imperfections was usually 

sufficient to control the magnitude of brace forces (Yura 2001, Helwig and Yura 2008a). 

The failure of the shear diaphragms is largely controlled by either the edge 

fastener capacity or side lap fastener capacities (Luthrell 1981, Davies and Bryans, 

19982). The capacity of fastener is a direct function of the thickness of the decks. In this 

study, deck thickness is taken as 1.52 mm (16 ga) which provide reasonable brace forces 

for fastener.  

Rigidity of the diaphragm is a key parameter of the study. As mentioned before, 

system demands a shear diaphragm rigidity larger than the ideal value. Thus, twice (2Qi) 

to four times (4Qi) of ideal shear rigidity of the shear diaphragm was taken. Standard deck 

configuration has four edge fasteners and five side lap connection fasteners. Deck width 

of the study is 610 mm. 

4.3. Procedures of the Numerical Study 

First step of the numerical procedure was the creating the mathematical model of 

the twin girder system. Definition of the girder was followed by the modelling of the 

shear diaphragm and edge and side lap fasteners. Afterwards, the load values on each 

node, that are necessary to simulate uniformly distributed loading to cause 210 MPa 

bending stress at the extreme fiber, were calculated.  
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Initially, ideal shear rigidities were calculated by conducting eigenvalue buckling 

analyses on perfectly straight twin girder system braced by shear diaphragms. In 

eigenvalue buckling analyses, the area of the diagonal truss elements of shear diaphragm 

was incrementally modified until reaching the specified buckling load level. The purpose 

was to reach the 210 MPa stress level at the extreme fiber of the cross section at mid-

span. After reaching the target factored load, the area of the diagonal truss member was 

noted to be used in shear frame analyses later. By utilizing the equations 4.1and 4.3, ideal 

shear rigidity of the system was obtained. 

 Considering the initial imperfections, it is obvious that the decking system will 

not reach Mcr. Thus, a larger value of brace stiffness must be provided to control 

deformations and brace forces (Winter 1960; Yura 2001). For this purpose two to five 

times of ideal shear rigidities were considered. 

Thereafter obtaining all the required shear stiffness values, areas of the diagonal 

truss members were computed by using the shear frame analyses and the equations 4.1 

and 4.3. Figure 4. 4 presents a sketch of the shear frame geometry with applied loads and 

boundary conditions. Eq. 4.1 shows the relation between effective shear modulus and the 

shear rigidity. Q is the shear stiffness of the metal deck in the equation, G’ is the effective 

shear modulus and sd is tributary width of the deck. Calculation of tributary width of the 

deck is also given in equation 4.2. In this equation ng is the number of the girders. 

 
'

dQ G s                                                 (4.1) 
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Through Equation 4.3 effective shear modulus of the system is obtained. This 

value is utilized in the equation 4.1 to calculate the shear rigidity of the diaphragm In 

Equation 4.3, P is the applied load, w is deck width, f is deck span and Δ is lateral 

displacement of the shear frame. The geometry of the model and the applied load were 

not changed. Merely, the area of the diagonal truss members could be altered until the 

target displacement achieved. The same geometry and diagonal truss areas were used in 

eigenvalue buckling and large deformation analyses. 
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Figure 4. 4. Shear frame model used to determine the shear stiffness of decks. 

The numerical analysis procedure used in the study is the large displacement 

analyses. In the numerical analysis, non-linear static analyses of imperfect twin girder 

system was conducted for the specified Qi values by utilizing obtained diagonal truss 

areas. These areas controls the rigidity of the shear diaphragms. The loading procedure 

of large displacement analyses could be found under Section 3.2. 
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CHAPTER 5 

FINITE ELEMENT RESULTS 

5.1. Introduction 

In this chapter, results from finite element analysis conducted on diaphragm 

braced twin-girder systems are presented. Non-linear large displacement analyses were 

conducted to obtain stiffness requirements of shear diaphragms. Results were grouped 

and presented as doubly symmetric stocky I-beams, doubly symmetric slender I-beams 

and singly symmetric slender I-beams. Consequently, the findings will be discussed 

briefly. 

5.2. Doubly Symmetric I-Beams with Stocky Webs 

L/d ratios of 15, 20, 25 and 30 were considered for stocky beams with a web 

slenderness ratio of 60.  Results are presented in both tabular and graphical format. Figure 

5. 1 illustrates the relation between normalized applied moment and mid-span twist ratios 

of two stocky beams with an L/d ratio of 30. Axis of the ordinate shows the normalized 

beam moment which is the applied moment at each load step divided by the maximum 

moment that corresponds to an in-plane bending moment of the section with a stress level 

of 210 MPa at the extreme fiber. On the horizontal axis, the mid-span resulting twist that 

is normalized by the initial twist is given. Thickness of the deck was 1.52 mm (16 ga) and 

number of the side lap fasteners along the seam were taken as five. Width of the deck was 

610 mm and fastened to the top flange with four deck to structural edge fasteners. Results 

for two to five times (2, 3, 4 and 5) the ideal shear rigidity values are depicted.  It could 

be examined from Figure 5. 1 that the normalized twists were measured as 4.02, 3.22, 

2.89 and 4.51, 3.49, 3.11 for the diaphragms having rigidities of three to five times the 

ideal value, at the design load level for Stocky #1 and #2 sections, respectively.  For both 

of the stocky beam sections, solution did not converge at the design load level for twice 
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the ideal rigidity value. Stocky #1 and #2 sections had normalized twist ratios of 6.87 and 

5.96 at %94 and 90% of the design load levels, respectively.  

  

 

Figure 5. 1. Normalized applied moment versus normalized mid span twist ratios of 
Stocky#1 and Stocky#2 beams with an L/d ratio of 30. 

Table 5.1 and Table 5.2 summarizes the results of finite element analysis on 

stocky sections. The table one is divided into eight columns labelled from (a) to (l). 

Columns from (a) to (c) demonstrate the name of the beam section, cross sectional 

properties, and L/d ratios, respectively. Columns from (d) to (g) indicate the normalized 

mid-span twist ratio for diaphragm shear rigidities of two to five times the ideal value at 

design load level. In Table 5.2, there are eleven columns. Columns from (h) to (o) indicate 

the respective edge and side lap fastener brace forces for diaphragms with shear rigidities 

of two to five times the ideal value while columns from (a) to (c) demonstrate the name 

of the beam section, cross sectional properties, and L/d ratios like in the first table.  Deck 

thicknesses, edge fastener numbers and side-lap fastener numbers were same in all of the 

analysis and taken as 1.52 mm (16 ga), four and five respectively. As it could be observed 

from Table 5. 1, the total twists of Stocky #1 and #2 sections varied between 4.10 and 

5.79 times the initial twists (Lb/500d) of the section for L/d ratios of 15, 20 and 25. The 

shear diaphragm rigidity have two times the ideal value in these cases.  Increasing the 

shear rigidity of the diaphragms to three times the ideal value decreased the total twists 
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of the beams by about 30% to 40%.  Further increasing the diaphragm rigidity to four 

times the ideal value decreased the total twists of the beams by approximately 15% to 

23% with comparison to the twists of a diaphragm rigidity of three times the ideal value.  

Further increment of the diaphragm rigidity to five times the ideal value decreased the 

total twists of the beams by 9% to 11% with comparison to the twists of a diaphragm 

rigidity of four times the ideal value.  As an example, for Stocky #2 beam with L/d ratio 

of 25, the maximum normalized mid-span twist ratios were 5.79, 3.38, 2.82, and 2.57 for 

shear diaphragms with rigidities of two to five times the ideal value, respectively. These 

reductions correspond to 41.6%, 16.6, and 8.9% in twists when the diaphragm rigidity 

was increased to three, four and five times the ideal value, respectively. 

Table 5. 1 Normalized mid-span twist ratios of Stocky beams. 

 

 
  

3.25 2.73 2.48
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( a )
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( b )
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bf = 280 mm

4Qideal

( f )
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20 4.37 2.90 2.46 2.24

5.39

d = 732 mm
20 4.38 2.92

2.34 2.13

30 X 4.02 3.22 2.89

2.48 2.27

25 5.79 3.38 2.82 2.57

15 4.10 2.77

WSR = 60 30 X 4.51 3.49 3.11
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Table 5. 2. Normalized brace forces of stocky beams 

 
 

Previous studies show that the necessary brace stiffness for a specific beam 

section should be sufficiently large enough to control brace forces. Thus, the maximum 

brace forces that develop along the length of the beams and side lap regions need to be 

identified. Brace forces that develop in a single deck sheet are presented in Figure 5. 2  

 

Figure 5. 2. Brace forces that develop in a single deck sheet. 
(Source: Egilmez et al., 2014) 
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The standard single deck configuration utilized in this study has three 

corrugations, four edge fasteners, and five side lap fasteners. As presented in Figure 5. 2 

both transverse and longitudinal forces develop at edge fasteners; while only transverse 

shear forces develop at side lap fasteners. 

Considering the Stocky #1 and #2 beams with L/d ratio of 25, a diaphragm rigidity 

of four times the ideal value, five side lap fasteners along the seams and deck thickness 

of 1.52 mm (16 ga), the distribution of the resultant forces developed in edge fasteners 

along the beam top flange is presented in Figure 5. 3.  

 

Figure 5. 3. Resultant end fastener brace forces of Stocky#1 and 
Stocky#2 beams with L/d ratio of 25 and Q=4Qi.  

The resultant forces are calculated by taking vectorial resultant of the transverse 

and longitudinal force components that develop in each edge fastener.  Due to symmetry 

with respect to midspan, brace forces are shown for half of the span. There are a total of 

nine and eighteen deck sheets along half of the beam lengths in Stocky #1 and Stocky#2 

sections, respectively. Each dashed line drawn in the figure belongs to a single deck sheet. 

Also, the data markers on the lines represents the forces in the fasteners along the edge of 

a single sheet. It can be seen in Figure 5. 3 that maximum fastener forces develop around 

quarter span for both of the beams, where shear deformations are maximum. The 
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maximum brace forces that develop in Stocky #2 sections were approximately four times 

higher than the forces that develop in Stocky #1 sections. 

The horizontal lines to the top and bottom of the vertical axis in Figure 5. 3 specify 

the amount of the maximum fastener brace force (7213 N) calculated by Eq. 2.25 for 

Stocky #1 section. This suggested value from previous work (7213 N) is approximately 

4.50 times higher than the maximum resultant fastener force calculated by the analysis 

results. The force at the edge fastener for Stocky #2 beam (28855 N) calculated by Eq. 

2.25 is not depicted in the figure, due to being beyond the graph limits. For Stocky #2 

beam the calculated value of edge fastener force from Eq. 2.25 was 4.39 times higher than 

the maximum value measured from the analysis.  The main reason for this difference of 

edge fastener forces is that, Helwig and Yura’s study ignores the effects of side lap 

fasteners and the equation is derived for a stress level of 345 MPa which corresponds to 

the tensile yield strength of the steel material. This stress level is approximately 64% 

higher than the stress level used in this study (210 MPa). 

Figure 5. 4 illustrates the side lap force distribution along half of the beam length 

for Stocky #1 and #2 sections of a shear diaphragm with a rigidity of four times the ideal 

value. There are five side lap fasteners along the seams and the deck thickness is 1.52 mm 

(16 ga). Analysis results are presented for L/d ratios of 15, 20, 25, and 30. As stated 

before, side lap fasteners were modeled utilizing transverse uniaxial tension-compression 

truss elements (LINK8). The stiffness of the transverse truss elements symbolizes the 

total stiffness of the fasteners connecting the decks together on overlapping region. The 

data markers in Figure 5. 4 represent the brace force in a side lap fastener at each seam.  

The force in a single side lap fastener is the average force per fastener along that lap. It 

was presumed that the side lap fastener force develops at a seam was split evenly by the 

side lap fasteners along the seam. The observed distribution of forces in Figure 5. 4 are 

similar to the edge fastener force distribution along the beam. The maximum side lap 

fastener forces also developed around quarter length of the beam. The brace forces that 

are measured in Stocky #2 beam were nearly 3 to 5 times higher than the forces that 

occurred in Stocky #1 beams. It is seen from the figure that increasing the L/d ratios 

resulted in an increment in side lap brace forces. The rise in brace forces were more 

substantial in Stocky #2 beams, with comparison to the change in force levels observed 

in Stocky #1 beams for variable L/d ratios. 
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Figure 5. 4. Sidelap fastener forces along the beam for Stocky#1 and Stocky#2 beams 
with diaphragm rigidity of four times the ideal value and L/d ratios of 15, 
20, 25 and 30. 

The maximum edge and side lap fastener brace forces (Fbr-e and Fbr-sl), that 

develop at the design load level, along the length of the beams with stocky sections are 

tabulated from columns (h) to (o) in Table 5.2. As it can be observed from the table, using 

a section with a deeper web increases the fastener forces to higher values than the value 

of the increment in maximum twist. For instance, for an L/d ratio of 25 and a diaphragm 

rigidity of three times the ideal value, the mid-span normalized twist of Stocky #2 section 

was 4.0% higher than that of Stocky #1 section (3.38 vs. 3.25 for Stocky #2 and #1 

sections, respectively). Conversely, for the same L/d ratio and shear diaphragm rigidity, 

the maximum edge and side lap fastener brace forces that occur in Stocky #2 beam were 

nearly four times higher than the respective values of Stocky #1 beam. Similar behavior 

was observed for various L/d ratios and diaphragm rigidities. The extraordinary rise in 

fastener brace forces is possibly because of the increase in load levels between Stocky #1 

and #2 beams with the same span/depth ratios. Although the web slenderness ratio and 

the stress levels were the same for the two sections, Stocky #2 beams carry about four 

times more load than the Stocky #1 beams.  
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It could also be seen in Table 5.2 that for both sections, increasing the diaphragm 

rigidity from twice and three times the ideal value decreased the maximum edge and side 

lap fastener brace forces by 27% to 39% respectively. Further increment of the diaphragm 

rigidity to four times the ideal value decreased the fastener brace forces by an extra 11% 

to 20%.  Further increment of the diaphragm rigidity to five times, the fastener forces 

dropped by an extra 6% to 10%.  For instance, for Stocky #2 beam with an L/d ratio of 

20, the respective maximum edge fastener forces (Fbr-e) were 9046 N, 6408 N, 5650 N, 

and 5303 N for a shear diaphragm with rigidities of two to five times the ideal value. For 

the same section, the maximum side lap fastener brace forces (Fbr-sl) were 35447 N, 24972 

N, 21931 N, and 20545 N for a shear diaphragm with rigidities of two to five times the 

ideal value. 

5.3. Doubly and Singly Symmetric I-Beams with Slender Web 

The beams that were discussed in the previous section had stocky webs, which are 

commonly utilized in building industry. Results discussed in this section will concentrate 

on the sections with deeper webs, both doubly and singly symmetric. The width to span 

ratios (WSRs) of 100 and 160 that are widely used in plate girders, will be considered. 

The relatively slender webs of the beams resulted higher risk of web shear buckling. 

Nevertheless, since the assumed stress level (210 MPa) in this study is comparatively low, 

web shear buckling was not observed in the analyses. Four doubly symmetric slender 

sections (with depths of 1464 mm and 1830 mm) and six singly symmetric slender 

sections (with a depth of 1464 mm) were studied. The L/d ratios of 20, 25, and 30 that 

were used in the previous section are not used for the selected cross sections.  For such 

L/d ratios the bending moment due to self-weight of the beams either surpassed or was 

extremely close to the lateral torsional buckling capacity of the sections.  The deck 

systems used in all of the analyses had 1.52 mm (16 ga) thickness of deck sheet. There 

are four edge fasteners, and five side lap fasteners along the seams.   

The normalized mid-span twist ratio and edge/side lap fastener brace forces for 

the members defined are listed in Table 5.3, Table 5.4 Table 5.5 and Table 5.6 

respectively. These tables have the same format with Table 5.1 and Table 5.2. It can be 

noted for Table 5. 3 that for a shear diaphragm with rigidity of twice the ideal value, the 

ratio of total mid-span twist ratios to the initial twists ( T/ o) of doubly symmetric beams 
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varies between 3.57 for Slender-100 #1 beam and 4.74 for Slender-160 #2 beam.  

Increasing the diaphragm rigidity to three, four, and five times the ideal value decreased 

the twists by approximately 28.3%, 13.0%, and 7.0%, with comparison to the twists 

observed on the beams with diaphragm rigidities of two, three, and four times the ideal 

value, respectively. For instance, for the most slender doubly symmetric section, Section-

160 #2, with a L/d ratio of 15 and WSR of 160, the respective ratios of total twist to initial 

twist were observed as 4.74, 3.30, 2.87, and 2.66 for a shear diaphragm with rigidities of 

two to five times the ideal value.  These values correspond to reductions of 30% (from 

two times the ideal rigidity to three times), 13% (from three times the ideal rigidity to 

four times), and 7% (from four times the ideal rigidity to five times) in mid-span twist. 

Table 5. 3. Normalized mid-span twist ratios of doubly symmetric slender I-beams. 
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Table 5. 4. Normalized brace forces of doubly symmetric slender I-beams. 
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Table 5. 5. Normalized mid-span twist ratios of singly symmetric slender I-beams. 
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Table 5. 6. Normalized brace forces of singly symmetric slender I-beams. 
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initial twist ( T/ o) varies between 3.24 for SS-100 #19 section with an L/d ratio of 10 

and 4.16 for SS-160 #39 section with an L/d ratio of 15 in Table 5. 5. The amount of these 
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100, L/d ratio of 10, and Iyc/Iy = 0.29, the respective ratios of total twist to initial twist 
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the ideal value. These values correspond to reductions of 28%, 13%, and 7% in mid-span 

twist ratios when the diaphragm rigidities were increased to three, four, and five times the 

ideal value from two, three, and four times the ideal value, respectively.   

Analogous with the drop in twists, increasing the diaphragm rigidity to three, four, 

and five times the ideal value similarly decreased the edge and side lap fastener brace 

forces in both doubly and singly symmetric beams. For doubly symmetric beams the 

respective drops in both end and side lap fastener brace forces were approximately 25.6%, 

10.8%, and 5.5% when the diaphragm rigidities were dropped to three, four, and five 

times the ideal value from two, three, and four times the ideal value; as can be examined 

in Table 5.2. For instance, for Slender-160 #1 section with a span/depth ratio of 15, WSR 

of 10, and deck thickness of 1.52 mm (16 ga) the maximum edge fastener brace forces 

were 12486 N, 9364 N, 8365 N, and 7991 N for diaphragm rigidities of two, three, four, 

and five times the ideal value. Side lap fastener brace forces were measured as 9759 N, 

7319 N, 6549 N, and 6191 N correspondingly. These values correspond to percent 

reductions of approximately 25%, 11%, and 5% for both maximum edge and side lap 

fastener brace forces when the diaphragm rigidity is increased to three, four, and five 

times the ideal value from two, three, and four times the ideal value, respectively.  

The effects of web slenderness ratio and beam depth on mid-span twist ratios and 

brace forces can be found in Table 5. 4 and Table 5. 5 as well. In order to observe the 

effects of web slenderness ratio, normalized twists and brace forces of Slender-100 #1 

(beam depth = 1464 mm, WSR = 100) and Selnder-160 #1 (beam depth = 1464 mm, WSR 

= 160) beams can be compared. For a shear diaphragm with a rigidity of three times the 

ideal value and L/d ratio of 15, for instance, the respective values of normalized mid-span 

twist ratio, maximum edge fastener force, and maximum side lap fastener force were 2.87, 

11861 N, and 9212 N for Slender-100 #1 beam. When the web slenderness ratio was 

increased to 160 (Slender-160 #1), normalized mid-span twist ratio increased to 2.98 

(3.8% increase), maximum edge fastener force decreased to 10738 N (9.5% decrease), 

and maximum side lap fastener force decreased to 8407 N (8.8% decrease).  A diverse 

behavior was noted when web slenderness ratio was kept constant and depth of the beam 

was increased. With comparison of the normalized mid-span twist ratios and brace forces 

of Slender-100 #1, which has a beam depth of 1464 mm and WSR of 100, and Slender-

100 #2, which as a beam depth of 1830 mm and WSR of 100, sections disclose that not 

only the normalized twists but also fastener brace forces increased when a deeper beam 

was used. For the specific rigidity value of the diaphragm and L/d ratio the respective 



 67

normalized mid-span twist ratio, maximum edge fastener force, and maximum side lap 

fastener force were 3.13, 15982 N, and 12483 N for Slender-100 #2 section. These values 

signify an increase of approximately 9.1%, 34.7%, and 35.5% in mid-span twist ratio, 

maximum edge fastener force, and maximum side lap fastener force, respectively. The 

increase in brace forces due to an increase in depth of the beam is more probably owing 

to the higher uniform distributed load demanded to develop a stress level of 210 MPa 

(30.43 ksi) at the extreme fiber of the sections with higher depths with comparison to 

those of the beams with smaller web depths.  

For singly-symmetric slender beams maximum edge and side lap fastener forces 

are listed in Table 5. 6.  As it observed in Table 5. 6 six singly symmetric sections with a 

depth of 1464 mm, WSR of 100 and 160, and mono-symmetry (Iyc/Iy) ratios of 0.19, 0.29, 

and 0.39 were studied.  The reductions in maximum edge and side lap fastener forces in 

singly symmetric beams were similar percentage to those seen in doubly symmetric 

slender beams. Increment in the shear rigidity of the diaphragm to three, four, and five 

times the ideal value decreased both the edge and side lap fastener forces in entire six 

sections by nearly 26.5%, 10.8%, and 5.8% with respect to the forces measured in systems 

with a diaphragm with rigidities of two, three, and four times the ideal value, respectively. 

A parallel behavior was noticed in the effect of web slenderness ratio on normalized mid-

span twist ratio as well as maximum edge and side lap fastener forces. Table 5. 5 and 

Table 5. 6 clarifies that normalized mid-span twist ratios increased and maximum edge 

and side lap fastener forces dropped when the web slenderness ratio of the beams 

increased. For instance, for a shear diaphragm with rigidity of four times the ideal value, 

normalized mid-span twist ratio, maximum edge fastener force, and maximum side lap 

fastener force were 2.10, 7229 N, and 5616 N correspondingly for SS-100 #29 beam with 

a web slenderness ratio of 100 and L/d ratio of 10. With the increment in web slenderness 

ratio to 160 (SS-160 #29), normalized mid-span twist ratio increased to 2.19 (4.3% 

increment), maximum edge fastener force dropped to 6443 N (10.9% decrease), and 

maximum side lap fastener force dropped to 5015 N (10.7% decrease). A similar 

performance was noted in other singly symmetric beams.   

Figure 5. 5 and Figure 5. 6 depicts the normalized applied moment versus 

maximum edge and side lap fastener forces for doubly symmetric Slender-100 #1 and 

singly symmetric SS-100 #39, #29, and #19 sections for a shear diaphragm with rigidity 

of four times the ideal value and L/d ratio of 15. It is observed in Figure 5. 5 and Figure 

5. 6 that at the design load level the maximum edge fastener force (Fbr-e) was 10613 N 
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for doubly symmetric Slender-100 #1 section that has a mono-symmetry ratio of 0.50. At 

this load level, the maximum edge fastener forces of singly symmetric SS-100 #39, #29, 

and #19 beams (with respective ratios of mono-symmetries of 0.39, 0.29, and 0.19) 

decreased to 9427 N, 8365 N, and 7441 N, respectively.  The maximum side lap fastener 

force (Fbr-sl) at the design load was 8238 N for doubly symmetric Slender-100 #1 section.  

As the ratio of mono-symmetry (Iyc/Iy) decreased to 0.39, 0.29, and 0.19 the maximum 

side lap fastener forces dropped to 7353 N, 6522 N, and 5792 N for singly symmetric SS-

100 #39, #29, and #19 sections, respectively. The reduction in maximum edge and side 

lap fastener forces was nearly 11% for each drop in mono-symmetry (for example from 

Iyc/Iy = 0.5 to Iyc/Iy = 0.39, from Iyc/Iy = 0.39 to Iyc/Iy = 0.29, and from Iyc/Iy = 0.29 to Iyc/Iy 

= 0.19).  The effect of mono-symmetry on normalized mid-span twist ratio was less 

crucial. For instance, Table 5. 3 and Table 5. 5. explains that, for a shear diaphragm with 

rigidity of four times the ideal value and an L/d ratio of 15, the respective normalized 

mid-span twist ratios of doubly symmetric Slender-100 #1 and singly symmetric SS-100 

#39, #29, and #19 beams were 2.50, 2.45, 2.38, and 2.32. These reductions were 2.0%, 

2.9%, and 2.5% correspondingly. Similar behaviors were observed in other singly-

symmetric sections.  

 

Figure 5. 5. Normalized applied moment versus maximum edge fastener forces for 
Slender 100#1,SS-100#39, #29, #19 beams with an L/d ratio of 15 
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Figure 5. 6. Normalized applied moment versus maximum side lap fastener forces (per 
fastener) for Slender 100#1,SS-100#39, #29, #19 beams with an L/d of 15 

5.4. Diaphragm Stiffness Requirements of I-Beams 

In this study the behavior of steel I-beams braced by metal deck forms 

continuously at the compression flange was examined to develop stiffness requirements 

of the shear diaphragms. Six doubly symmetric and six singly symmetric sections with 

WSR of 60, 100, and 160, L/d ratios of 10, 15, 20, 25, and 30, and web depths of 366 mm 

(14.4 in), 732 mm (28.8 in), 1464 mm (57.6 mm), and 1830 mm (72 in) were used. Only 

top flange distributed loading case was considered. The design load level for the sections 

was chosen as the bending moment corresponding to an in-plane stress equal to 210 MPa 

(30.4 ksi) at the extreme fiber of the beam sections.  

The results reveals that providing twice the ideal rigidity results in relatively large 

normalized mid-span twist ratios at the maximum design load for the entire sections 

utilized. Stocky beams with L/d ratio of 30 did not converge and could only reach 90% 

of the design load level. Increasing the diaphragm rigidity to three times the ideal value, 

which means a 50% increment in the rigidity of the diaphragm, decreased the normalized 

mid-span twist ratio values approximately 35.8%, 28.3%, and 30.0% for stocky, doubly 

symmetric slender, and singly symmetric slender beams, respectively. Further increasing 

the diaphragm rigidity to four times the ideal value, a 33.3% increase in the rigidity of a 
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diaphragm, decreased the mid-span twist ratios approximately 17.1% and 12.9% for 

stocky and slender beams. Providing a shear diaphragm with a rigidity of four times the 

ideal value limits the normalized mid-span twist ratios of entire sections below three, 

except for stocky beams with L/d ratio of 30. Increasing the diaphragm rigidity to five 

times the ideal value further dropped the twists approximately 9.5% and 7.1% for stocky 

and slender sections, respectively.  Nevertheless, the reductions are not significant enough 

when compared to the 25% increment in brace stiffness.   

Similar percent reductions were examined in brace forces for increasing the 

rigidity of diaphragms.  Providing a diaphragm rigidity of three times the ideal value 

instead of two reduces both the edge and side lap fastener brace forces approximately 

31% and 25% for stocky and slender beams, respectively.  Increasing the diaphragm 

rigidity to four times the ideal value, a 33.3% increase in the rigidity of the diaphragm, 

drops the edge and side lap fastener brace forces by nearly 14% and 16%, respectively.  

For slender beams the reductions in both edge and side lap fastener brace forces were 

nearly 10.8%.  Further increasing the diaphragm rigidity to five times the ideal value, a 

25% increase in the rigidity of the diaphragm, dropped the edge and side lap fastener 

brace forces by nearly 7% and 5.5% for stocky and slender beams, respectively. The 

reductions in brace forces provided by increasing the rigidity of the diaphragm to five 

times the ideal value are not significant enough as well when compared to the 25% 

increment in brace stiffness.  

Based on the observations discussed above, a shear diaphragm stiffness equal to 

four times the ideal value will be suggested to limit deformations and brace forces for 

shear diaphragms in order to brace steel I-beams. Equation 2.21, which was suggested by 

Helwig and Frank (1999) to calculate the buckling capacity of diaphragm braced beams, 

can be used to resolve for the required effective diaphragm shear stiffness as given below: 

௥௘௤ᇱௗ′ܩ  ൌ ସሺெೠି஼∗್ெ೒ሻ௠ௗ௦೏               (5.1) 

 

The equation given above is valid for the sections analyzed in this study.  These 

sections are: (a) Stocky sections with WSR of up to 60, depth of up to 732 mm (28.8 in), 

and L/d ratio of up to 30; (b) Doubly symmetric sections with WSR of up to 160, depth 

of 1830 mm (72 in), and L/d ratio of up to 15; and (c) Singly symmetric sections with 

WSR of up to 160, depth of up to 1464 mm (57.6 in), and L/d ratio of up to 15. The design 



 71

stress level utilized to derive Eq. (11) was 210 MPa (30.4 ksi). For stress levels higher 

than 210 MPa (30.4 ksi) the required effective shear stiffness can also be taken as four 

times the ideal value as recommended by Helwig and Yura (2008b).   

Designers can utilize the equations and the design tables involved in the SDI 

Manual (Luthrell, 2004) or test results from previous works (such as Egilmez et al. 2007) 

to choose the proper deck layout that will meet the stiffness demands suggested by Eq. 

(5.1).  Proper factors should also be applied to Eq. (5.1) such as Φ=0.75 in load and 

resistance factor design (LRFD) and Ω=2.0 in allowable stress design (ASD). 
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CHAPTER 6 

CONCLUSIONS 

6.1. Summary and Conclusions 

Stability requirements of steel I-beams braced by shear diaphragms are 

investigated. In order to conduct the numerical studies on the lateral torsional buckling 

behavior of the twin steel I-beam systems, a three dimensional analysis programme 

(ANSYS Mechanical APDL, 2007) is utilized. Numerical studies were performed on both 

perfectly straight and initially imperfect twin girder-deck system models. Value of the 

applied initial imperfection was Lb/500d which has a sinusoidal path and with zero values 

at the supports. In this imperfection pattern, bottom flange remained straight as the top 

flange displaced laterally through the beam section. In the study, material nonlinearity 

was not modelled, therefore all the finite elements have linearly elastic material 

properties. Both doubly and singly-symmetric sections with various parameters were 

studied. For both type of these sections, web slenderness ratio were taken 58 for stocky 

sections and 100 and 160 for slender sections. Similarly, flange slenderness ratios were 

7.78 for stocky beams and 6 for all slender sections. Span to web depth was also limited 

for the sections. For stocky beams L/d ratios of 15, 20, 25 and 30 were investigated. This 

ratios were kept 10 and 15 for slender beams due to disadvantages of the cross sectional 

properties. A value of 210 MPa is designated for the target stress level at the outer fiber. 

This stress level is generally reached after the erection of steel I-beams. The distributed 

loading to create the moment value that results the intended stress level was applied at 

the top flange of the beams. The finite element mathematical model was verified by 

utilizing the results of a full-scale twin-girder diaphragm buckling test (Egilmez et al., 

2005). Upon obtaining the ideal shear rigidities, shear frame analyses were performed to 

obtain the areas of diagonal truss members that signify the diaphragm rigidities. After 

that, large displacement analyses were performed on initially imperfect girders with 

specified stiffness values of diaphragm configurations. The analysis results are evaluated 

to examine the mid-span twists and brace forces developing on the edge and side lap 
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fasteners. Brace forces and rotations were normalized to develop generalizations that is 

free of the specific member sizes. 

 

According to rotation results, the findings are as follows; 

 

 Increasing the span to depth ratios causes higher mid-span twist ratios, 

 Providing a deck with higher stiffness reduces the mid-span twist ratios of 

the section, 

 Center of twist of the sections are moving upwards as the deck stiffness 

increases, 

 As the center of twist gets closer to the compression flange, increasing the 

deck stiffness loses its effectiveness, 

 For the same slenderness ratio and span to depth ratio, beams with smaller 

aspect ratio in cross section has smaller mid-span twists, 

 For singly-symmetric slender sections, beams with smaller mono-

symmetry ratios have smaller mid-span twist ratios. 

 

According to the bracing force results, the findings are as follows; 

 

 Along the length of the section maximum bracing forces develop around 

quarter span, where the shear deformations are maximum, 

 Higher bracing forces occur in the sections that are subjected to higher 

flexural moments and higher compression forces (it should be noted that 

higher internals forces develop in the sections with larger moment of 

inertias), 

 Increasing the span to depth ratio resulted in higher bracing forces, 

 Maximum bracing force of the edge fasteners in a single deck generated at 

the first and the last fasteners, 

 The side-lap fastener forces are higher than the edge fasteners and the 

demand of the side-lap connections is smaller than that of the edge fastener 

connections. 
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In conclusion, based on the observations given above, singly symmetric sections 

with smaller mono-symmetry ratios provide a better rotational behavior and a shear 

diaphragm stiffness equal to four times the ideal value will be suggested to limit 

deformations and brace forces for shear diaphragms in order to brace steel I-beams. 
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APPENDIX A 

DESIGN EXAMPLE 

Beam Properties: 

Stocky #2 girder 

n, Number of beams   = 4 

td, Thickness of deck  = 20 cm 

sg, Beam spacing   = 3.25 m 

Lb, Unbraced length   = 18.30  m (Lb/d = 20) 

A, Cross sectional area  = 18432 mm2 

Sx-x = 4431999 mm3 

 

Calculation of Design Loads: 

Self weight of the steel I-Beam: 

m
kN

mm
N

mm
Nmm 45.145.11085.718432 3

52  

Concrete slab: 

m
kNmm

m
kN 34.1520.025.36.23 3

 

Live load 22 9052.140
m
kN

ft
lb  

m
kNm

m
kN 19.625.39052.1 2

 

Design load:
m

kNw 98.2219.634.1545.1  

Design moment: kNm
Lw

M b 962
8

2

 

Load Factor for the construction condition =1.3  

Maximum bending stress: MPa
S
M

xx

2833.1  

 

Check beam buckling capacity: 
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According to the AISC (2010) limit state of lateral torsional buckling is can be 

checked according to the limiting laterally unbraced length, Lr which is defined below 

within the Equation B.1. Capacity of a beam alone can be checked with Equation 2.3 as 

well. 

 

22

00

7.0
76.6

7.0
**95.1

E
F

hS
Jc

hS
Jc

F
ErL y

xxxxy
tsr  

          

(B.1) 

 

where, 

 

Lr = Limiting laterally unbraced length for the limit state of inelastic lateral-

torsional buckling, mm 

rts = Effective radius of gyration 89.72
x

wy

S

CI
 mm; 

E = Modulus of elasticity of steel, 200 000 MPa; 

Fy = Specified minimum yield stress, 345 MPa; 

J = Torsional constant, 1489536 mm4; 

c = coefficient, 1 for doubly symmetric I-shapes; 

Sx = Elastic section modulus taken about the x-axis, 4431999 mm3; 

h0 = Distance between the flange centroids, 714 mm; 

Iy = Moment of inertia about the principal axis, 65956224 mm4; 

Cw = Warping constant, 8406035382639 mm6; 

 

Lr is calculated as 7107 mm. Lb>Lr. Limit state of lateral-torsional buckling 

applies. Lateral torsional buckling capacity of a beam alone is not enough to carry a 210 

MPa stress level due to bending.  

Determine shear diaphragm parameters: 

According to the Chapter 5, a diaphragm with four times the ideal stiffness need 

to be selected.  

From Equation 2.1 Mcr is obtained as 283.32 kNm.  

“m” factor is taken as 0.5 from Table 2. 1 for top flange loading case without an 

intermediate brace. Cb
*  is  0.80. Mu  for 210 MPa bending stress is 930.72 kNm.  
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From the data above, Qreq, Qi  is 1923.50 kn/rad. A total deck stiffness of 7694 

kN/rad must be provided. Applying Equation 2.17(b) 

4375.225.3*
4
3*1

gd s
n

ns  m. 

51.3156
4375.2

7694''

ds
QG  kN/m/rad. 

A suitable diaphragm can be selected by using Luthrell (2004). 


