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ABSTRACT

MINING THE TOXOPLASMA GONDII GENOME FOR MICRORNA
REGULATORY PATTERNS

Toxoplasma gondii is a parasite that causes mental retardation, blindness or near-

blindness, and decreased psycho-motor performance if the patient is congenitally in-

fected. There have been efforts to vaccinate humans against this parasite, yet it was not

achieved. Therefore, a better understanding of Toxoplasma gondii can be provided by

examining its microRNA regulation.

MicroRNAs are known to regulate messenger RNAs and prevent translation. This

results in different effects in different biological pathways. In this study, the Toxoplasma

gondii genome was used to predict precursor and mature microRNAs, while experimen-

tally validated microRNAs were taken into consideration. This was further explored in

terms of microRNA targeting, with the known genes of Toxoplasma gondii. Furthermore,

RNA Sequencing data of this organism was obtained and analysed in terms of gene ex-

pression and possible microRNA expression outcomes. Combining gene expression anal-

yses with targeting predictions, it was possible to create a microRNA - gene interaction

network.

Gene expression analyses showed that there was no differentially expressed genes,

microRNAs or interactions between two developmental stages of Toxoplasma gondii,

tachyzoite and bradyzoite. This result was added to interactions to determine up and

down regulations. Then, all of these interactions were connected where they intersect, to

create a regulation network of microRNAs.

This network was further explored and compared to random networks of the same

size. It was seen that the biological network contains many larger sized cliques. This

knowledge can be further analysed in future work, to create drug leads that will target

vital pathways of Toxoplasma gondii.
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ÖZET

TOXOPLASMA GONDII GENOMUNDAN DÜZENLEYİCİ
MİKRORNA ŞABLONLARININ ÇIKARILMASI

Toxoplasma gondii, doğuştan aktarıldığında zeka geriliği, körlük ya da psiko-

motor performansında düşüşlere sebebiyet vermektedir. İnsanları bu parazitten koru-

mak adına aşı çalışmaları yapılmış, fakat başarılı olunamamıştır. Bu yüzden, mikroRNA

düzenlemeleriyle Toxoplasma gondii’yle ilgili daha çok bilgi sağlanması amaçlanmıştır.

MikroRNAların, haberci RNA’ları düzenleyerek protein oluşturmalarını engelledik-

leri bilinmektedir. Bu düzenleme, farklı biyolojik yolaklarda farklı etkilere sebebiyet

vermiştir. Bu çalışmada, Toxoplasma gondii genomu, deneysel olarak doğrulanmış mikro-

RNA’ları da göz önünde bulundurularak, öncü ve olgun mikroRNA’ların tahmininde kulla-

nılmıştır. Bu, Toxoplasma gondii’nin bilinen genleriyle, mikroRNA hedeflemesi açısından

da incelen-miştir. Bu organizmanın RNA dizileme verisi, gen ve olası mikroRNA ifadeleri

incelenmek üzere elde edilmiş ve analiz edilmiştir. Gen ifadesi analizi, hedefleme tahmin-

leriyle birleştirilerek mikroRNA - gen etkileşimleri çıkartılmıştır.

Gen ifadesi analizi, Toxoplasma gondii’nin iki gelişme safhası olan tachyzoite

ve bradyzoite arasında gen, mikroRNA veya etkileşim ifade farklılıklarının olmadığını

göstermiştir. Bu sonuçlar etkileşimlere eklenerek yukarı ve aşağı düzenlemeler belirlenmiş-

tir. Sonrasında bu etkileşimler, kesişim noktalarından bağlanarak mikroRNA düzenleyici

ağı oluşturulmuştur.

Bu ağ, aynı büyüklükteki rastlantısal ağlarla karşılaştırılmıştır. Biyolojik ağın

daha büyük kliklere sahip olduğu görülmüştür. Bu bilgi gelecek çalışmalarla, Toxoplasma

gondii’nin hayati yolaklarını hedefleyecek ilaç öncüleri yaratılması için incelenebilir.
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CHAPTER 1

INTRODUCTION

Advances in sequencing technologies led to rapid and cheap sequencing of genomes.

What cost around $100,000,000 in 2001, costs $1,000 today (Wetterstrand, 2016). Due

to this decrease, it is estimated that genomic sequence data in 2025 will amount to 20

times of total size of all the videos combined on YouTube by 2025 (Stephens et al., 2015).

Therefore, available data for scientific pursuits only increase, which creates more oppor-

tunity to analyse different biological phenomena.

MicroRNAs, which are small regulatory units, gained popularity with new se-

quencing technologies (Eminaga et al., 2013). On the other hand, Toxoplasma gondii,

even though studied immensely in its early years of discovery (Dubey, 2008), fell to the

list of five neglected parasites (CDC, 2017).

In this study, Toxoplasma gondii related sequencing data was explored in terms

of microRNA regulation. Computational methods were employed to analyse and predict

regulation caused by microRNAs in this parasite, and to establish a complete microRNA

regulation network within confidence levels. In order to introduce terms that were part of

this study, microRNAs, Toxoplasma gondii, and next-generation sequencing are summa-

rized in the following sub-sections.

1.1. MicroRNAs

MicroRNAs were the medium to form the regulation network in this study. Hence,

information about microRNAs is summarized in three subsections.

1.1.1. History and Roles

MicroRNAs (miRNAs) are 18 to 24 nucleotide (nt) long, non-coding RNAs (Bar-

tel, 2009). Since the discovery of miRNAs, many researchers started studying these little

RNAs. MiRNAs were first discovered in C.elegans in 1993 (Lee et al., 1993). Back then,
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they were not named as miRNAs, they were only described as anti-sense RNA-RNA inter-

action. Regardless, it was found out that this small RNAs bind to three prime untranslated

regions (3’UTRs) of specific messenger RNAs (mRNAs) (Lee et al., 1993).

Nowadays, miRNAs are known to regulate many mRNAs either by degrading

them or repressing their translation (Ha and Kim, 2014). More than 60% of human mR-

NAs are estimated to be controlled by miRNAs (Friedman et al., 2009). This kind of

extensive regulation by miRNAs results in them affecting biological roles such as differ-

ences in development, cell signalling, apoptosis, and immune responses (Tüfekci et al.,

2014). Since biological processes are controlled by miRNAs, it is not hard to associate

them with many different consequences such as cancer (Farazi et al., 2013), cardiovascu-

lar diseases (Romaine et al., 2015), inflammatory responses (Thounaojam et al., 2014),

neurodegenerative diseases (Abe and Bonini, 2013) and autoimmune diseases (Saito et al.,

2014).

1.1.2. Biogenesis

The biogenesis of miRNAs differs between various organisms (Millar and Water-

house, 2005; Axtell et al., 2011), yet some of the structures in this process remain the

same (Figure 1.1). First, primary miRNAs (pri-miRNAs) are mainly transcribed with

RNA polymerase II (Lee et al., 2003), with some cases seen with RNA polymerase III

employment (Borchert et al., 2006). These pri-miRNAs are further processed by a mi-

croprocessor that contains Drosha, an RNase III enzyme, and DGCR8 (DiGeorge critical

region 8) in humans, or Pasha in invertebrates to create precursor miRNA (pre-miRNA) in

the nucleus (Xie and Steitz, 2014; Wahid et al., 2010). However, no homologs of Drosha

or its cofactors were found in plants which indicates this step may be absent (Wahid et al.,

2010). Pre-miRNAs are transported out of the nucleus by exportin-5 (Yi et al., 2003).

In plants, however, this transportation occurs with a homologue of exportin-5, namely

HASTY (Bollman et al., 2003). In animals, transported pre-miRNAs are further cut by

Dicer, an endonuclease cytoplasmic RNase III, to create mature miRNAs (Ketting et al.,

2001). Then these mature miRNAs are loaded on Argonaute (ago) protein and create the

RNA-Induced Silencing Complex (RISC) (Carmell et al., 2002). This procedure is, again,

different in plants as they lack Dicer (Reinhart et al., 2002). Plants use Dicer-like proteins

to create mature miRNAs and these mature miRNAs are reported to be created in nucleus
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(Papp et al., 2003). Then RISC loading occurs to finalize the synthesis.

Figure 1.1. General biogenesis pathway of miRNA. Primary structure is transcribed by
either RNA polymerase II or III, then it is cleaved into pre-miRNA struc-
ture by Drosha, if present in the organism. This pre-miRNA structure is
then exported out of nucleus by Exportin-5, or by HASTY in plants. Dicer
or Dicer-like proteins cleave pre-miRNA structures into mature miRNAs
and mature miRNAs form RNA-Induced Silencing Complex (RISC) with
Argonaute (Ago) proetins. This image was taken from another study, and
edited for simplicity. (Source: Winter et al. (2009))

1.1.3. Genomic Locations

MiRNAs are reported to be synthesized from intergenic regions as well as intronic

regions (Lau et al., 2001; Lee et al., 2003). In this respect, miRNAs that are produced

from different genomic locations can be classified in three different groups, which are,
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intergenic miRNAs with their own promoters, intronic miRNAs that are synthesized from

introns, and exonic miRNAs that overlap with exons (Olena and Patton, 2009).

As was explained, mature miRNAs come from pre-miRNAs. Generally, mature

miRNAs are known to come from one of the arms (3’ or 5’) of the hairpin shaped pre-

miRNA structure (Du, 2005), and in some cases from both arms (Glazov et al., 2008).

However, it was shown that some miRNAs may come from loop regions of pre-miRNAs

as well (Winter et al., 2013). In this study, miRNAs that may be present in the loop regions

were also taken into consideration.

1.2. Toxoplasma gondii

Toxoplasma gondii (T. gondii) was first identified in 1908 by Nicolle and Manceaux

in a hamster-like tissue (Dubey, 2008). Even though there have been many studies about

T. gondii, and its pathogenic effect, toxoplasmosis, today T. gondii is identified as one

of the five neglected parasitic infections by Centers for Disease Control and Prevention

(CDC) (CDC, 2017). Around one third of the human population worldwide is estimated

to be chronically infected by T. gondii (Liu et al., 2015). T. gondii causes toxoplasmosis

in people with congenital infection, which was diagnosed to cause mental retardation,

blindness or near-blindness, and decreased psycho-motor performance in early studies

(McCabe and Remington, 1988). However recent studies show that T. gondii infection

may actually cause even more symptoms (Table 1.1) (Flegr et al., 2014).

T. gondii is an infectious parasite that uses felids as definitive hosts and other warm

blooded animals as intermediates (Dubey, 2004). Transmission can happen congenitally,

in fecal - oral route, or via undercooked / raw meat consumption (Dubey, 2008). Usually,

cats ingest T. gondii which is in one of the three infectious stages: tachyzoite, which is

a form in which T. gondii quickly multiplies itself; bradyzoite, which is a dormant state

where T. gondii remains in a cyst in infected tissues; or sporozoites, which are oocysts

and shed in feces (Dubey, 1996; Dubey et al., 1998). Human infection may occur via

horizontal transmission in bradyzoite and sporozoite stages, whereas in tachyzoite stage,

vertical transmission happens (Figure 1.2) (Tenter et al., 2000). There have been vac-

cination studies for T. gondii, however protection from this parasite in humans was not

achieved (Jongert et al., 2009).
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Figure 1.2. Transmission of T. gondii. T. gondii has 3 infectious stages in its life cycle.
While in tachyzoite stage, it can only be transmitted to off springs. How-
ever, in bradyzoite (tissue cysts) and sporozoite (oocysts) stages, it can be
transferred between species. (Source: Tenter et al. (2000))

1.3. Next-Generation Sequencing

Sequencing is the method to determine the exact order of bases in a DNA or RNA.

Sequencing method was standardized by Edward Sanger in 1977 with the method, cur-

rently named, Sanger sequencing (Sanger et al., 1977). With the completion of human

genome project (Venter et al., 2001), this sequencing method was improved by many dif-

ferent companies with the set goal of reducing the cost of the human genome sequencing

to $1000 by National Human Genome Research Institute (NHGRI) (Schloss, 2008). This

challenge led to massively parallel sequencing (also known as high-throughput sequenc-

ing) methods which is called Next-Generation Sequencing (NGS) (Grada and Weinbrecht,

2013).

NGS platforms are used for various studies today, such as, variant discovery,
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Table 1.1. List of reported T. gondii related symptoms. References to symptoms can
be found in the source study. (Source: Flegr et al. (2014))

Disease/Clinical Entity
Hearing loss Ulcerative colitis

Psychosis; schizophrenia; bipolar disorder Crohn’s disease
Mood disorders; suicide; depression (?) Abdominal hernia

Obsessive - compulsive disorder Hepatitis, including HCV infection
Attention/concentration deficit hyperactivity disorder Granulomatous liver disease

Anorexia Liver cirrhosis; granulomatous liver disease; impaired liver function
Autism spectrum disorders Primary biliary cirrhosis; biliary atresia; cholestatic disorders

Down’s syndrome Diabeter mellitus type 1 and 2
Alzheimer’s disease Goitre; iodine deficiency
Parkinson’s disease Hashimoto’s thyroiditis

Migraine; other headaches Graves’ disease; throid adenoma
Idiopathic intracranial hypertension Rheumatoid arthritis; Still’s disease

Pseudotumor cerebri Polymyositis
Aseptic meningitis Systemic sclerosis
Mollaret meningitis Systemic lupus erythematosus

Epilepsy Wegener’s granulomatosis; other vasculitides
Aphasia and apilepsy (Landau - Kleffner syndrome Hypothalamo-pituitary dysfunction; panhypopituitarism

Facial nerve palsy (Bell’s palsy) Cryoglobulibemia

Central diabetes insipidus; syndrome of inappropriate
antidiuretic hormone secretion

Ocular toxoplasmosis (retinochorioiditis; uveitis; blurred vision; floaters;
macular scars; nystagmus; strabismus; reduced visual acuity; blindness;

scleritis; papillitis; retinal necrosis; vasculitis; retinal detachment; vitritis;
congenital cataract; neuroretinitis; atrophic optic papilla; retinitis

pigmentosa)
Breast cancer Glaucoma

Anti-phospholipid syndrome Ovarian dysfunction
Non-Hodgkin’s lymphoma Uterine atrophy

Brain tumors (meningioma; ependymoma; glioma)

Impaired reproductive function (T.gondii was present in testicles,
epididymis, seminal vesicles, prostate gland in rams, and caused

abnormalities in sperm motility, viability and concentration rates, weight of
epididymis in rats, orchitis)

Neoplasia Neprotic syndrome; lipoid nephrosis
Melanoma Schönlein - Henoch purpura

Congenital toxoplasmosis (encephalitis;
chorloretinitis; neonatal mortality)

Glomerulonephritis (various forms; including these with development of
fibrosis); impaired kidney function

Carcinoma of female genitalia, including cervical
tissue Atherosclerosis; obesity; cardiovascular deaths; all-cause mortality

Chronic heart failure; myocarditis; arrhythmia Diverse abnormalities in aggregate personality; including aggresive
behaviour in animals and humans

Inflammatory bowel disease

sequencing of transcripts of an organism, and profiling genome-wide epigenetic marks

(Metzker, 2010). Most of the sequencing platforms employ a different sequencing method,

and for the task at hand, different sequence preparation method is used (Goodwin et al.,

2016). Also, the output from these applications (Figure 1.3), which are fragments of

original DNA or RNA (reads), vary in length and output presentation type among

methods (Liu et al., 2012). This leads to many different procedures for different topics to

explore. Hence, only the sequencing of transcripts, which is called RNA-Seq, in Applied

Biosciences SOLiD (Sequencing by Oligo Ligation and Detection) will be introduced,

because of the RNA-Seq data that were used in this study.
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1.3.1. RNA Sequencing

To perform RNA Sequencing (RNA-Seq), RNAs should be isolated from source

cell. Then, depending on the focus of the research, selection of these RNAs takes place

(Kukurba and Montgomery, 2015). This is called library preparation and there are vari-

ous designs to prepare a library for different purposes as can be seen in Table 1.2. This

procedure is then followed by conversion to complementary DNA, amplification of these

complementary DNAs with sequencing platform specific adapters, and using the sequenc-

ing method depending on the sequencing platform with the prepared library (Figure 1.4).

Table 1.2. Library design for RNA-Seq. In the library preparation step of the RNA-
Seq process, an RNA library is created with different criterion for different
study foci. (Source: Kukurba and Montgomery (2015))

Library Design Usage Description

Poly-A selection Sequencing mRNA Selects for RNA species with poly-A tail and
enriches for mRNA

Ribo-depletion Sequencing mRNA, pre-mRNA, ncRNA Removes ribosomal RNA and enriches for
mRNA, pre-mRNA, and ncRNA

Size selection Sequencing miRNA Selects RNA species using size fractionation by
gel electrophoresis

Duplex-specific
nuclease

Reduce highly abundant
transcripts

Cleaves highly abundant transcripts, including
rRNA and other highly expressed genes

Strand-specific De novo transcriptome
assembly Preserves strand information of the transcript

Multiplexed Sequencing multiple
samples together

Genetic barcoding method that enables
sequencing multiple samples together

Short-read Higher coverage
Produces 50-100 bp reads; generally higher read

coverage and reduced error rate compared to
long-read sequencing

Long-read De novo transcriptome
assembly

Produces >1000 bp reads; advantageous for
resolving splice junctions and repetitive regions

RNA-seq can be done with different sequencing platforms (Adiconis et al., 2013;

Goodwin et al., 2016), however the SOLiD sequencing method is reported to have 99.85%

accuracy in sequencing, after a filtration process (Liu et al., 2012). This high accuracy

is due to two base encoding of SOLiD sequencing. This sequencing procedure starts

with SOLiD specific adapters in prepared library, binding to the universal sequencing

primer, which is complementary to the adapters. Then these primers are elongated from

their 3’ end by 8mer oligonucleotides with fluorescent label on the 4th and 5th positions,

that matches the RNA fragment. These fluorescent labels are predetermined for different

bases and are screened while sequencing occurs. 8mers are cleaved between the 5th and

6th position and 6th through 8th bases are washed away. After washing, another matching
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8mer is ligated (which would give the information of the 9th and 10th base this time) and

this process continues until the 25th base knowledge is acquired. After this, a second

round of sequencing starts with -1 starting position of the primer (which would give 3rd

and 4th base in the first elongation this time, 8th and 9th in second and so on). These

rounds are repeated until whole sequence is known with the help of fluorescent screening.

Except for the first and last bases, each base gets sequenced twice, which reduces errors

in sequencing. Details of this procedure can be found in the study of Mardis (2008). At

the ending of sequencing, a sequence file is produced with color encoded values (Ondov

et al., 2008). This type of encoding is called color-space, and instead of base characters,

color codes are given along with their quality scores (Figure 1.3).

Figure 1.3. Example of color-space sequencing output. In the output file, each se-
quenced fragment (read) consists of 4 lines. Starting with ’@’ and ’+’
are the identifiers of the read, where ’+’ line may be empty for different
sequencing platforms. 2nd line of each read contains sequence informa-
tion. In color-space however, only first base is given in actual character,
rest are encoded with corresponding color code. 4th line of a read contains
sequencing quality score of the read, which can be 94 different charac-
ters from ’!’ to ’~’ (from 33rd American Standard Code for Information
Interchange [ASCII] code to 126th one).
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Figure 1.4. RNA-Seq. To sequence RNAs, first all of the RNAs in a cell or a tissue
are extracted. Then, these RNAs are selected according to focus of the
study that will be conducted. After selection, cDNAs are created from
these RNAs and they are amplified for sequencing. (Source: Kukurba and
Montgomery (2015))

1.4. Machine Learning

Machine learning is a computational approach which employs various algorithms

onto previous data, ’learns’ from it, and creates a mathematical model out of properties

(called ’features’) of these data (Baştanlar and Özuysal, Baştanlar and Özuysal). Basi-
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cally, there are two approaches to achieve these kind of models with machine learning,

which are unsupervised learning and supervised learning (Sætrom and Snøve, 2007). Un-

supervised learning is employed when there is little to no prior knowledge about the data

(D’haeseleer, 2005). On the other hand, supervised learning requires labelled data, which

would allow algorithms to create a model that will classify unlabelled data depending on

the features of these labeled groups (Libbrecht and Noble, 2015).

In this study, unsupervised learning was used in gene expression analysis, to de-

termine relation in the gene expression data. Supervised learning was also used, with one

of the most popular algorithms called Random Forests (Breiman, 2001), to predict mature

miRNAs from pre-miRNA structures. Other predictions involved in this study were made

with tools (Dai and Zhao, 2011; Allmer and Saçar Demirci, 2016), hence their algorithms

were not mentioned.

1.5. Aim

Although there have been many studies since the 1900s, T. gondii is still not under-

stood well enough to protect humans effectively from infection. With NGS, it is possible

to get more data about genes of an organism which helps towards more complete under-

standing of different biological pathways. As miRNAs are known to regulate genes, it

is crucial to understand miRNA roles in T. gondii for effective protection. The aim of

this study was to create a gene expression analysis supported miRNA regulatory network

from publicly available RNA-Seq data, which will help towards understanding regulation

patterns of T. gondii.
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CHAPTER 2

METHODOLOGY

Due to the computational nature of the study, the methodology is split into sub-

sections to provide less complicated, step-by-step explanations.

2.1. Data

The reference genome for T. gondii (ToxoDB-25 TgondiiME49) and its annota-

tion file of known transcripts and genes were downloaded from toxodb.org (Gajria et al.,

2007) to match the extracted hairpins from previous work (Saçar Demirci et al., 2016)

which used the same genome file. To filter our data from possible contamination, human

reference genome (Homo sapiens, GRCh38) was downloaded from Ensembl (Herrero

et al., 2016). For gene expression analysis, RNA-Seq data that contains different strains

(Croken et al., 2014) were downloaded from Sequence Read Archive (SRA) (Leinonen

et al., 2011). Samples contained three different strains of T. gondii (CTG, PLK and RH);

SRR1542919-24 belonged to RH strain, SRR1542925-30 belonged to PLK strain and

rest belonged to CTG. Each strain contained two different developmental stage (tachy-

zoite and bradyzoite). Developmental stage samples were equal in number for each strain

and first half of the samples belonged to tachyzoite whereas last half was bradyzoite (e.g.

SRR1542919-21 were tachyzoite RH samples and SRR1542922-24 were bradyzoite RH

samples)

There were already 339 mature miRNA sequences available and described in an-

other study (Wang et al., 2012). These mature miRNAs were obtained from Supplemen-

tary File 7 of the said study, to train a prediction model.

2.2. MicroRNA Detection

Since there are only a number of validated miRNAs of T. gondii, computational

predictions were made to increase possible undiscovered miRNAs. This prediction was
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done in three steps, according to the biogenesis stages of miRNAs.

2.2.1. Pre-MicroRNA Detection

For analysis, hairpins from previous work (Saçar Demirci et al., 2016) were ob-

tained, which were created by computationally fragmenting and folding the reference

genome (ToxoDB-25 TgondiiME49). Instead of using websites that provide feature cal-

culation services (Yones et al., 2015; Bağcı and Allmer, 2016), a Java code was written

to employ Amazon Web Services (AWS) for calculation. izMiR Framework (Allmer and

Saçar Demirci, 2016) was used to create T. gondii specific model, at 1000 fold Monte-

Carlo Cross Validation (MCCV) (Xu and Liang, 2001) by using 70% of the hairpin data

for training and 30% for testing. From the previous work (Saçar Demirci et al., 2016),

pre-miRNAs containing 292 of the 339 known mature miRNAs (Wang et al., 2012) were

used as positive samples. Missing known mature miRNAs (47 in all) were extended by 50

nt to both directions on the reference genome and hairpins of these mature miRNAs were

added to positive samples, resulting in a total of 683 pre-miRNAs. Pseudo pre-miRNAs

(Ng and Mishra, 2007) were used as negative data.

2.2.2. Mature MicroRNA Detection

There was only a small number of known mature miRNAs for T. gondii (339), so a

general mature miRNA prediction model was created by using all mature miRNAs listed

in miRTarBase (Release 6.0) (Chou et al., 2016) which resulted in 4316 mature miRNA

sequences available in miRBase (Kozomara and Griffiths-Jones, 2014). A negative data

set was created as was proposed in another study (Gkirtzou et al., 2010); by shifting

mature sequences by half of their length within the hairpin sequences. To describe mature

miRNAs, 101 features were calculated such as: start and end positions of mature sequence

(2), central loop start and end points (2), hairpin length, miRBase hairpin length, stem

length, mature length, maximum loop length (5), number of matches and mismatches in

the mature sequence region (2), single nucleotide counts (4), dinucleotide counts (16),

trinucleotide counts (64), distances of start and end positions to 3’, 5’, loop start and loop

end (6). Random forest machine learning algorithm was used to train a model with 70%
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learning - 30% testing data in 1000 fold MCCV. From these 1000 fold MCCV (Figure

2.1), the model with the highest accuracy (0.932) was chosen to apply to predicted pre-

miRNAs.

Figure 2.1. Score distributions of 1000 machine learned models established using 1000
fold Monte Carlo cross validation.

2.2.3. MicroRNA Targeting

For targeting predictions, psRNATarget 2011 release (Dai and Zhao, 2011) was

used in default settings. All of the genes that were described for T. gondii were extracted

from the reference genome and they were used as target sites, since UTRs are not yet

established.
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2.3. Expression Anaylsis

Expression analysis was done for both genes and miRNAs, because of the reg-

ulatory interaction of these two. Then, whole interactions were explored in terms of

expression analysis, to deduce differences between strains and developmental stages in a

broader perspective.

2.3.1. Gene Expression

Downloaded RNA-seq data were first cleaned from their adapter sequences using

Cutadapt tool (Martin, 2011). Then, low quality regions were trimmed from the data

using Sickle tool (Joshi and Fass, 2011). Quality trimming was done with the threshold

of 30 quality score. If the reads were smaller than 30 nt long after trimming, they were

discarded (Table 2.1). FastQC tool (Andrews, 2010) was used to check quality levels

before and after trimming. Resulting clean reads were mapped onto the human reference

genome (GRCh38) using Tophat v1.4.1 (Trapnell et al., 2009). This mapping application

was done in order to filter out possible human contamination in the reads, as T. gondii

strains were reported to be grown in human foreskin fibroblast cell lines in the source

study (Croken et al., 2014). Because of the colorspace characteristics of samples, a large

amount of reads was filtered and an older version of Tophat had to be used instead of

current version v2.1.1. A java script was developed to count mapped reads sorted by

their locations with the help of the downloaded annotation file for T. gondii. Sorting of

reads was done on KNIME Analytics Platform (Berthold et al., 2009). Genes that had

fewer than 5 reads mapped onto them were considered as not expressed and filtered out.

Mapped nucleotide normalization method was adopted (see 2.3.4) to normalize mapped

read counts. Normalized counts were further filtered by their expression among their

strains and developmental stages. Genes that were not expressed in at least 70% of the

samples in their respective strains or developmental stages were filtered out.
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Table 2.1. Read statistics. For all 18 samples downloaded from SRA, pre-processed
and processed read numbers can be seen.

Samples Raw Reads Cleaned Reads Mean Clean
Read Length

Deleted
Reads (%)

Reads Mapped
on Human (%)

Toxo Mapped
Reads (%)

SRR1542919 58,730,137 2,077,159 37.15 96.46 1.05 84.49
SRR1542920 43,055,026 11,581,307 44.23 73.10 0.91 72.09
SRR1542921 44,958,415 14,617,199 53.89 67.49 0.70 75.73
SRR1542922 43,264,535 1,375,655 37.31 96.82 0.75 85.54
SRR1542923 53,074,533 13,476,636 44.13 74.61 1.01 69.58
SRR1542924 55,077,053 18,329,562 55.04 66.72 0.77 76.15
SRR1542925 36,994,224 1,423,290 37.57 96.15 3.27 88.33
SRR1542926 48,595,529 12,544,189 44.20 74.19 1.25 77.00
SRR1542927 55,934,799 17,482,709 53.82 68.74 1.12 81.83
SRR1542928 74,716,539 2,727,669 37.70 96.35 3.20 89.18
SRR1542929 51,517,301 12,437,480 44.01 75.86 2.61 79.16
SRR1542930 41,089,401 13,451,657 53.60 67.26 1.42 83.09
SRR1542931 211,425,021 7,886,857 37.41 96.27 1.89 87.22
SRR1542932 44,043,513 9,678,918 43.69 78.02 2.06 68.16
SRR1542933 248,076,128 80,172,404 54.23 67.68 1.88 78.25
SRR1542934 51,790,061 1,704,048 37.07 96.71 2.26 83.78
SRR1542935 55,535,624 14,076,802 44.19 74.65 4.72 71.03
SRR1542936 38,718,995 13,031,003 54.12 66.34 3.74 75.64

Mean 69,810,935 13,781,919 45.19 79.64 1.92 79.24

2.3.2. MicroRNA Expression

A custom annotation file was created from the strand and genomic location knowl-

edge of predicted pre-miRNAs in this study. With this annotation file, it was possible to

ascertain the amount of miRNAs expressed by employing the steps defined in 2.3.1. Due

to less mapping to miRNA regions, the mapped read count threshold was lowered to 2

from 5. MiRNAs that had less than 2 reads mapped onto them were filtered out. As was

mentioned in 2.3.1, if a miRNA was not expressed in at least 70% of the samples in their

respective strains or developmental stages, it was filtered out.

2.3.3. MicroRNA - mRNA Interactions

In this study, an interaction is defined as a miRNA co-expressed with at least one

of its target mRNAs in the same sample. MicroRNAs often originate from genes and

these source genes can be used to extend the interaction to the gene level by associating

them with metabolic or regulatory pathways. Thus a complete interaction is defined by

the source gene, miRNA, and its target(s). MicroRNAs that did not come from a known

gene were filtered out in this study.
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In order to establish a regulatory network and to further analyse the interactions

within T. gondii, Cytoscape v3.4.0 (Shannon et al., 2003) was used. Interactions were

built with source genes and target genes represented as nodes and miRNAs as edges. A

network was built with only the expressed genes and miRNAs (after they were filtered by

their respective criteria) if they showed expression in at least one sample. In the created

network, total amount of interaction of a gene with other genes was used to determine the

node size. Total expression amount (total of all samples, in NKMN) was used to color the

genes with a color gradient. In this gradient, yellow color showed the lowest amount of

expression and red showed highest. There were many nodes between expression amount

of 1000 to 5000 NKMN. To increase the differentiation between these nodes by color,

two additional breaks were added to color gradient, turquoise and dark blue, on 1000 and

5000 NKMN.

Normalized interaction ratios (see 2.3.4) were presented in log2 scale to show

ratios with higher target gene expression as positive values and higher source gene ex-

pressions as negative. Edge colors were set to show this interaction values, where red

colors show negative values and green showing positives. Regardless of their sign, edge

width was set to get thinner as it gets closer to zero. Cliques were detected using the

Cytoscape plug-in MClique (v1.2). Since extensive numbers of cliques were found they

were compared to randomized networks using the Network Randomizer (v1.1.2) plug-in

in Cytoscape. Ten random networks were created using the same nodes and edges of

the microRNA network. MClique was, again, used to detect cliques in the randomized

networks.

2.3.4. Normalization

Generally, in RNA-Seq related studies, reads per kilobase per million mapped

reads (RPKM) or in paired end samples, fragments per kilobase per million mapped reads

(FPKM) are calculated to normalize the expression values. However, our data showed

differences even before quality and adapter trimming processes. Therefore, an approach

to normalize according to actually mapped nucleotide number was employed. With the

written Java script, it was possible to save the length of mapped reads while counting

them. Knowledge of lengths of all genes and miRNAs was available within respective

annotation files, and FastQC tool (Andrews, 2010) provided total amount of nucleotides

16



in each sample. Using these, nucleotides per kilobase of transcript per million nucleotides

mapped (NKMN) was applied.

NKMN method was calculated by total mapped nucleotides per gene or miRNA,

divided by total nucleotide number of corresponding gene or miRNA and total nucleotides

in the sample. Since the ratio was aimed to show per kilobase per million, it was

multiplied by a billion to bring the values into an intuitive range with the following

formula.

∑
(Mapped Nucleotides on Gene or miRNA)∑

(Nucleotides of Gene or miRNA)×
∑

(Nucleotides in Sample) × 109

For the interactions, an interaction ratio was calculated. Since the lengths of reads

were changing among samples and this affected miRNA expression counts and their nor-

malization, expression of their source genes was used to represent their abundance in in-

teractions. Therefore, this ratio was calculated by dividing target gene expression amount

by source gene expression amount for the interaction. Then, these ratios were normalized

by the median value of interaction ratios of the sample to which they belonged. After this,

the median value of all of the median values of samples were taken, and normalization is

further extended by dividing all of the ratios by this final median value.

2.3.5. Differential Expression Analysis

R platform (Team, 2016) was used to determine differences in expression, as well

as interaction ratios. NKMN values between different strains (RH vs. PLK, RH vs. CTG,

and PLK vs. CTG) and between developmental stages (Tachyzoite vs. Bradyzoite) were

converted to log2 fold changes. Student’s t-test was performed for each gene, miRNA

and interaction among different strains and developmental stages. P values were obtained

from these test and adjusted according to Benjamini-Hochberg (Benjamini and Hochberg,

1995). Thresholds were chosen as 0.05 for p-value, and 2 for log2 fold changes.

2.4. Annotation of Genes and MicroRNAs

The annotation file of T. gondii contained gene annotation and protein names from

these genes. However, gene annotation was cryptic (e.g. gene TGME49 293600) so pro-
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tein product names were used where possible. In cases where a protein was synthesized

from multiple genes, gene accession numbers (e.g. 293600) were added to protein names

(e.g. RPL27 293600). For genes that did not have known protein products, BLAST

(v2.4.0+) (Camacho et al., 2009) was used to align these genes with genes of other T.

gondii strains. Similarity above 75% (with mismatch + gap <4) in these alignments was

accepted to be used as new annotation. Genes that did not fulfill any of these conditions

were left with their gene annotation from the annotation file.

Predicted pre-miRNAs were initially annotated with numbers only, starting from

one to the total number of predicted miRNAs. Then after filtering pre-miRNAs according

to criteria described in 2.2.1, this annotation was extended to their source strand (Pos for

positive and Neg for negative), prediction number and the chromosome to which they

belonged (e.g. Neg 263687 TGME49 chrII). Further annotation was done by aligning

all mature miRNAs in miRBase (Kozomara and Griffiths-Jones, 2014) and the previously

described 339 T.gondii miRNAs (Wang et al., 2012) to our predicted pre-miRNAs using

BLAST (v2.4.0+) in blastn-short mode. In alignments with above 75% similarity (with

mismatch <4), miRNA names were kept as new names to our predicted miRNAs with

addition of our prediction number to be able to track the miRNA back when required

(e.g. tgo-novel-12-9 21502). Those that did not fulfill this criterion were kept unchanged.

To be able to differentiate mature miRNAs coming from same pre-miRNA, an identifier

number was attached to annotations (e.g. Neg 263687 TGME49 chrII 2).
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CHAPTER 3

RESULTS AND DISCUSSION

Due to the nature of this study, expression results, and differences between these

expressions are discussed separately for miRNAs, genes and interactions, in the light of

obtained results. Then a regulation network was created based on expression and miRNA

targeting analysis.

3.1. MicroRNA Detection

In a previous study (Saçar Demirci et al., 2016) the Toxoplasma gondii ME49

genome was folded and hairpin like structures (approximately 5 million) were extracted.

Since many of these hairpins are unlikely to be pre-miRNAs, a machine learning model

using izMiR framework (Allmer and Saçar Demirci, 2016) was trained and used for the

assessment of the putative hairpins. In total, 1,227,917 pre-miRNAs were predicted from

these hairpin structures and these were filtered by their confidence scores (>0.99) using

the izMiR model. This filtering resulted in 4,589 confident pre-miRNAs. These pre-

miRNAs were further checked whether they are part of a gene or not, and intergenic pre-

miRNAs were not taken into account. About 300 candidate pre-miRNAs were affected

by this filtering leaving 4,240 hairpins for further analyses. Expression with at least 2

mapped reads in at least one of the samples was the final requirement for pre-miRNAs

and 2,484 passed this filtering step. Pre-miRNAs were further processed into mature

miRNAs in the miRNA genesis pathway and this process was mimicked by fragmenting

the 4,589 confident candidate hairpins into 24 nt long sequences with 6 nt overlaps. Since

the length of mature sequences is generally smaller or equal to 24 nt, the majority of

mature sequences should be in the generated candidate pool with this approach. This pool

was too large for further analysis, therefore, a machine learning model was established to

discriminate the candidates. Mature candidates with a minimum of 15 nt long sequences

and a model prediction score of at least 1.0 were used for further analysis. A total of

4,234 mature sequences passed the filtering by the machine learned model. 973 of the

mature sequences overlapped with the hairpin loop and were removed while 89 included
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the complete loop and were retained as loop-miRs (Winter et al., 2013). 1,058 mature

miRNAs are located on the 5’ arm while 2,114 are located on the 3’ one. The confident

pre-miRNA candidates were compiled into a genome feature format file to enable their

expression analysis using standard workflows.

3.2. Gene Expression

For the expression analysis of T. gondii genes and miRNAs, a set of RNA-seq

samples was acquired. Pre-processing of the downloaded RNA-Seq samples produced

varying read lengths (Table 2.1). This difference in length needed to be taken into account

during normalization and nucleotide mapping rate rather than read or transcript mapping

Figure 3.1. Distribution of normalized genes. The values shown on the y-axis are the
resulting numbers from the formula presented in normalization method.
Normalization was done for each gene in each sample. Each sample was
shown with its accession number in the x-axis. The distribution of nor-
malized mapped nucleotides were found to have closer median values than
raw counts.
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rates was considered. After normalization, the general distribution of gene expression

appeared similar among samples despite variation in average read length indicating the

effectiveness of the NKMN normalization approach (Figure 3.1).

Figure 3.2. Heatmap showing the 50 genes with largest average expression among
samples. The strains (CTG: pink, PLK, green, and RH: red) and devel-
opmental stages (bradyzoite: olive and tachyzoite: blue) can be seen on
top of the genes. Gene identifiers are provided on a per row basis on the
right and sample accessions are provided below the heatmap. Rows and
columns have been clustered and expression amount is plotted in log2 scale
using the pheatmap package in R.

This normalized expression among samples was compared and the most expressed

50 genes (top 50 of the average of all 18 samples) are presented in Figure 3.2. The process

of picking the genes most expressed on average identifies the genes that are similarly
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expressed in all samples. This is confirmed by the heatmap in Figure 3.2. There is no

significant expression difference between developmental stages of T. gondii among the

most expressed 50 genes. Samples from strains clustered together which reveals that the

highly expressed genes in all samples are more uniformly expressed on a per strain basis

than on a per developmental stage basis. Unfortunately, 6 samples presented slightly

different behaviour (SRR15429[19,22,25,28,31,34]). Investigation into the origin of this

revealed that the outliers have the shortest average read length and the largest percentage

of deleted reads after pre-processing (Table 2.1). Even though there were differences

in read lengths and amount of the reads in these outlier samples, it was seen that both

development stages of each strain had almost the same expression amount among itself

(Figure 3.2). This indifference in gene expressions among development stage was seen to

be not influenced by read length or number differences. Furthermore, in both cases cluster

analysis shows that strains PLK and RH have more similar gene expression among the top

50 genes.

3.3. Differential Gene Expression

Differential expression analysis was done in R using the NKMN normalized gene

expression and employing t-test with Benjamini-Hochberg correction. Only genes ex-

pressed in at least 70% of the samples were considered for differential expression analy-

sis. Out of a total of 8,920 annotated genes in T. gondii, 7,834 genes in strain RH, 8,047

genes in strain PLK, and 7,853 genes in strain CTG passed the 70% criteria. For the de-

velopmental stages 7,949 genes (tachyzoite) and 7,954 genes (bradyzoite) were available

for differential expression analysis after filtering. For the comparison between stages and

strains, only these expressed genes were taken into account, which resulted in a further

decrease of comparable genes: 7,790 genes (RH vs. PLK), 7,679 genes (RH vs. CTG),

7,781 genes (PLK vs. CTG), and 7,863 genes (tachyzoite vs. bradyzoite). The log2

transformed distribution of differential expression among strains and stages is displayed

in Figure 3.3.

The distribution of differential expression is least for tachyzoites vs. bradyzoites

(Figure 3.3). It is also similar for RH vs. CTG and PLK while quite different for PLK vs.

CTG (Figure 3.3). This further confirms the finding that RH and PLK are closer related

in respect to their expressed genes than CTG (Figure 3.2). Calculated log2 fold changes
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Figure 3.3. Distribution of differential gene expression (log2 transformed) between
strains and developmental stages.

and adjusted p-values were used to further filter the genes for these comparisons. The

selected significance threshold for p value was <0.05 whereas for the log2 fold change

(l2fc), gene expressions with log fold <-2 or >2 were chosen. With these thresholds, 529

genes in the PLK vs. CTG comparison were found to be differentially expressed, whereas

differentially expressed genes for RH vs. CTG amounted to 328 and for RH vs PLK to

613. There was no significantly differentially expressed gene for the comparison between

tachyzoite and bradyzoite stages.

For each pair of strains, the five most differentially expressed genes per strain were

chosen (Figure 3.4, Appendix A.1). Only for RH vs. CTG, the differential expression

clusters stages while for PLK vs. CTG and RH vs. PLK the stages do not cluster at all.

Over-expressed genes in RH are not as strongly over-expressed as for CTG and PLK.

As expected for developmental stages, which did not have any significantly differentially

expressed genes, the heatmap (Figure 3.4, bottom right) does not display any clustering
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Figure 3.4. Heatmaps showing the 5 most over-expressed genes per strain (RH: blue,
PLK: brown, CTG: pink) and developmental stage (bradyzoite: dark green,
tachyzoite: mint). Each pair presents 10 genes of which 5 are over-
expressed in one of the strains/stages and 5 in the other. Genes are hi-
erarchically clustered based on the expression among replicates. Over-
expression was analysed with pooled replicates, but for a better overview,
all measurements are shown in columns including their hierarchical clus-
tering. Actual values of these maps and chosen genes can be seen in Ap-
pendix A.1.

for strains or developmental stage.

3.4. MicroRNA Expression

For the expression analysis of miRNAs, pre-miRNAs were compiled into an an-

notation file for usage with standard expression analysis workflows. The same NKMN

normalization was applied to miRNA expression analysis. Due to aforementioned differ-

ences in read lengths, raw miRNA counts varied greatly among samples even though nor-

malization was performed and despite the normalization being effective for genes (Figure
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3.5). Therefore, miRNA normalization was not found to be effective. It is hypothesized

that perhaps mature miRNAs are more likely to be sampled by shorter reads which is

further confirmed by the lower mapping ratio of samples with longer reads (Table 2.1).

While different reads were hypothesized to be needed, expression analysis continued to

be done with RNA-seq data to have a general idea about T. gondii miRNA expression.

Figure 3.5. Distribution of normalized miRNA expressions. Normalization method
that was employed to genes were applied to miRNA expressions. It was
seen that median values were varying between samples but closer among
similar mean read lengths.

In a similar fashion to gene expression analysis, the on average most expressed

50 miRNAs were identified for a general idea of expression among miRNAs and samples

(Figure 3.6). A similar picture emerges for miRNAs as for genes with the exception that

CTG and PLK are closer related in terms of expression in general. The same samples

which were outliers for genes (overall less expression, Figure 3.2) show the opposite be-

haviour for miRNAs (overall more expression, Figure 3.6). Also, these samples confirm

the closer relationship between RH and PLK seen for genes. Similar to gene expression,

neither the development stage nor the strain show significant overall differences in ex-
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pression for the 50 most expressed genes (on average). It is noteworthy, that among the

most expressed 50 miRNAs, 43 were novel miRNAs predicted in this study whereas only

7 of them show high similarity with known miRNAs (Figure 3.6).

Figure 3.6. Heatmap showing the 50 miRNAs with largest average expression among
samples. The strains (CTG: pink, PLK, green, and RH: red) and develop-
mental stages (bradyzoite: olive and tachyzoite: blue) can be seen on top of
the genes. Gene identifiers are provided on a per row basis on the right and
sample accessions are provided below the heatmap. Rows and columns
have been clustered and expression amount is plotted in log2 scale using
the pheatmap package in R.
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3.5. Differential MicroRNA Expression

From the initial 1,227,917 predicted miRNAs with a model confidence score >0.99,

4,589 miRNAs remained for further analysis. Similar to what was done during gene dif-

ferential expression analysis, miRNAs were required to be expressed in at least 70% of

the samples. For the T. gondii strains, this led to 398 miRNAs (RH), 515 miRNAs (PLK),

401 miRNAs (CTG); and for the developmental stages 448 miRNAs (bradyzoite), and

447 miRNAs (tachyzoite) remained. These numbers further decreased for comparison

groups: 272 miRNAs (RH vs. PLK), 258 (RH vs. CTG), 289 (PLK vs. CTG), and 328

(tachyzoite vs. bradyzoite).

Figure 3.7. Distribution of differential miRNA expression (log2 transformed) between
strains and developmental stages.

For these miRNAs, Benjamini-Hochberg corrected t-test was applied and log2 fold

changes were calculated using R. The same threshold values as the differential gene ex-

pression analysis (p-value <0.05, l2fc>2 or l2fc<-2) were applied to differential miRNA
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expression analysis. Only 2 miRNAs were found to be differentially expressed between

PLK and CTG, another 2 miRNAs between RH and CTG and 5 in RH vs. PLK. No signif-

icantly differentially expressed miRNAs were found for tachyzoite vs. bradyzoite stages,

thereby, confirming the findings for the above gene expression analysis. The distribution

of log2 fold changes for miRNAs can be seen in Figure 3.7.

Figure 3.8. Heatmaps showing all differentially expressed microRNAs for pairs of
strains (RH: blue, PLK: brown, CTG: pink) and developmental stages
(bradyzoite: dark green, tachyzoite: mint). MicroRNA expression is hi-
erarchically clustered based on the expression among replicates. Over-
expression was analysed with pooled replicates, but for a better overview,
all measurements are shown in columns including their hierarchical clus-
tering. Actual values and miRNAs can be seen in Appendix A.2.

The log2 fold change distributions among strains and stages is quite similar for

miRNAs (Figure 3.7) with the exception of differential expression for tachyzoites vs.

bradyzoites which shows a very small inter quartile range (Figure 3.7).

Clustering of strains is dominating clustering as compared to developmental stage

(Figure 3.8, Appendix A.2). Four of the miRNAs were annotated via similar sequences

28



in miRBase but unfortunately, they are either of plant origin or their targets are not an-

notated so that a cross annotation is not possible in this case. Many of the significantly

differentially expressed miRNAs were detected in this study.

3.6. MicroRNA - mRNA Interactions

Since miRNA - mRNA interactions contain both expression analysis and network

generation, they are explained in different subsections to be able to keep track of separate

results.

3.6.1. Expression and Differential Expression

For miRNAs to be functionally active, they need to be co-expressed with their tar-

get mRNAs. It is, therefore, important to ensure that both miRNA and target are expressed

in the same sample to be able to conclude anything about miRNA regulation. Above, pre-

miRNAs and mature miRNAs were detected and their expression was confirmed. Gene

expression was also established for the same samples. Therefore, it is possible to analyse

miRNA and mRNA co-expression in this study. As a note, even though miRNA expres-

sion was explored in this study, generally miRNA expression analyses require specifically

prepared libraries (Eminaga et al., 2013) (also see Table 1.2). However, the samples used

in this study were prepared to detect mRNAs rather than miRNAs which led to low detec-

tion of miRNAs and almost no detection of their differential expression. To overcome this

challenge, all miRNAs that do not originate from an annotated gene were discarded. For

the remaining miRNAs (4,240) the expression of their source genes was used to represent

their expression. Naturally, more reads will be mappable to mRNAs than much shorter

miRNAs, which makes the approach chosen here more robust, as well. Thus, an interac-

tion for this study is defined by a source gene and a target gene connected by a miRNA

and co-expressed in the same sample.

Overall, 4,240 miRNAs and 8,920 (all annotated T. gondii) mRNAs were avail-

able for interaction analysis. If all interactions were possible, this would lead to approxi-

mately 40 million interactions. However according to targeting prediction that was done

there were initially 161,970 interactions. Then these interactions were filtered by expres-
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sions. If one component of the interaction (source gene, miRNA or target gene) was not

expressed, then the interaction was filtered out. Out of a total of 161,970 interactions

65,602 were found to be co-expressed in this manner.

The ratio of target gene expression divided by source gene expression was used

for the analysis of the differential expression of interactions. Interactions needed to exist

in at least 70% of the samples in order to qualify for differential expression analysis.

Out of the total 65,602 interactions found, 63,120 of them were expressed in the

samples of the RH strain. PLK had 63,778, CTG strain 62,494, bradyzoite stage 62,994,

and tachyzoite stage had 62,369 interactions in their respective samples. As before, when

considering differential expression of interactions, these numbers further trimmed down

to 62,867 (RH vs PLK), 61,923 (RH vs. CTG), 62,441 (PLK vs. CTG), and 61,874

(tachyzoite vs. bradyzoite). T-test and log2 fold change calculations were performed for

Figure 3.9. Distribution of differential expression of interactions (log2 transformed)
between strains and developmental stages.

the remaining interactions. Thresholds were kept the same (p <0.05, l2fc <-2 or l2fc >2)

for the assessment of differential expression among strains and development stages. As

can be seen in Figure 3.9, log2 fold changes between developmental stages did not vary

significantly which supports the findings for differential expression of genes and miRNAs.
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The distributions look similar to the distributions of differential gene expression (Figure

3.3) as can be expected since an interaction is defined by the ratio of the expression of a

pair of genes. After significance filtering, 4,502 interactions were found to be differen-

tially expressed in PLK vs. CTG, 5,488 (RH vs. CTG), 6,508 (RH vs. PLK), and none for

bradyzoites vs. tachyzoites. Most of the top differentially expressed interactions are new

Figure 3.10. Heatmaps showing the 5 most over-expressed interactions per strain (RH:
blue, PLK: brown, CTG: pink) and developmental stage (bradyzoite: dark
green, tachyzoite: mint). Each pair presents 10 interactions of which 5
are over-expressed in one of the strains/stages and 5 in the other. Inter-
actions are hierarchically clustered based on the expression among repli-
cates. Over-expression was analysed with pooled replicates, but for a better
overview, all measurements are shown in columns including their hierar-
chical clustering. Actual values and chosen interactions can be seen in
Appendix A.3.

detections in this study. For the comparison between RH and CTG, however, more than

half of the top differentially expressed interactions involved miRNAs similar to mouse
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miRNAs. The comparison among strains leads to clustering of strains before stages (Fig-

ure 3.10, Appendix A.3). This is different for comparison between developmental stages

where the clustering is not as expected which may be due to missing of actual significant

differential expression.

It is interesting to note, that 10s of miRNAs, 100s of genes, and 1000s of interac-

tions were significantly differentially expressed among strains but not between develop-

mental stages. The interactions consist of co-expressed miRNAs and genes. From these

results it can be deduced that few miRNAs and genes can lead to a wide variety of ex-

pressed (including differentially expressed) interactions which may have a large influence

on the resulting phenotype.

3.6.2. Regulatory Network

An interaction network was formed using the 65,602 interactions that were ex-

pressed in total (Figure 3.11). This network contained a total of 5,126 nodes that consisted

of expressed source and target genes. 173 of the nodes were only miRNA sources (3.37%)

while 4297 were only targets (83.83%). 656 of the nodes (12.80%) were acting as both

sources and targets for different interactions. 28 of the nodes (0.55%) were sources for

miRNAs (43) targeting themselves i.e.: self-regulating.

While protein expression is not available for this study, taking into account highly

connected regulatory components within the overall regulatory network may also add

significance to the proposed interactions.

Therefore, the network was searched for cliques which are sub-graphs that are

fully connected i.e.: each node is connected to all other nodes in the sub-graph via

an edge (miRNA). Since an interaction consists of two nodes and an edge, such trivial

cliques were ignored. Excluding cliques with less than 3 nodes, a total of 64,349 cliques

were found in the interaction network. The largest cliques in the biological network con-

sisted of 11 nodes, and there were only 2 such big cliques found. To assess whether

the interaction network could be meaningful, nodes and edges were randomized using

the NetworkRandomizer plug-in in Cytoscape to create 10 random networks. While the

total number of cliques varied between random networks, none of them formed cliques

with more than 4 nodes (Figure 3.12). In 10 random networks, 3 had the occurrence of

one 4-node clique while in the interaction network, 13,134 4-node cliques were observed
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Figure 3.11. MicroRNA interaction network. Nodes represent genes; node size depends
on the node degree and node color on the associated gene expression.
Edges represent miRNA driven regulation between the genes connected
by the edge (source gene – miRNA –— target gene). Edge color and width
represent the normalized targeting ratios.

(Figure 3.12). Therefore, the cliques in biological network is significantly different and

unique. These cliques may be biologically meaningful, as the sizes and amounts were

created from miRNA targeting prediction.

The largest two cliques in the interaction network consisted of 11 nodes with 119

and 120 edges, respectively. Such strong coupling and the large amount of cliques sug-

gest biological meaning for these regulatory components. The most targeted node in

the interaction network is S8GNL0 with 209 incoming interactions. The most outgo-

ing interactions are from the gene S8F823 amounting to 1,312 targets (524 distinct ones)

from 4 distinct miRNAs (mmu-miR-466g 277687 1: 193 interactions and tch-miR-1277-

5p 275830 1, tch-miR-1277-5p 275830 2, and tch-miR-1277-5p 275830 3: 373 interac-

tions each). Considering both targeting and being targeted at the same time, the most

interactive gene is S8F823 with 12 miRNAs targeting it to its additional 1,312 targets

(with additional multiple mature miRNAs targeting the same gene), totaling 1,324 inter-

actions.
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Figure 3.12. Clique Occurrence. In the biological network created in this study, there
are multiple cliques containing more than 4 nodes. It was seen that the
highest number of cliques were formed with 5 nodes (14621). In created
10 random networks, average amount of cliques was only high for 3 node
ones. 4 node cliques were seen once in 3 different random network only.

Most of the cliques found in the interactions network were of size 5 and, therefore,

such a clique was chosen to be presented (Figure 3.13).

The selected clique contains one gene (S8F559) which displays self-regulation

via two miRNAs and is, thereby, also the most targeted gene in this clique with seven

incoming miRNA edges (Figure 3.13). A clique with five nodes needs a minimum of 10

edges to be fully connected. The selected clique contains 19 edges with 7 of them being

redundant for the clique criterion and two being self-regulatory edges which are also

not considered for clique detection. Some of the miRNAs (6) in this clique are similar

to miRNAs from tch (tree shrew) which is a squirrel like animal and thus a host for T.

gondii. Other cliques (not shown) are enriched in miRNAs from, for example, human or

rat.
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Figure 3.13. Representative clique from the interaction network. Nodes (5) represent
genes. Edges (19) represent mature miRNAs which are part of their source
gene. Colour of the nodes shows total normalized gene expression. Colour
of the edges shows gene expression ratio, which is defined as the natural
logarithm of the target gene expression divided by the source gene ex-
pression. Thickness of edges emphasizes extreme gene expression ratio.
Source gene of the miRNA is indicated by a circle at the edge whereas the
targeted side is modelled as a T-shaped tip.
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CHAPTER 4

CONCLUSION

Little is known about the miRNA-based regulation in T. gondii. Therefore, pre-

miRNAs, their associated mature miRNAs, and the mRNA targets were predicted from

the genome. A publicly available RNA-seq dataset investigating three T. gondii strains

(RH, PLK, and CTG) and two developmental stages (tachyzoite and bradyzoite) was used

to analyse expression of the detected miRNAs and their targets. In an attempt to add fur-

ther confidence, miRNAs and their targets were analysed together as interactions. 65,602

expressed interactions were found between the 4,240 miRNAs and 8,920 annotated mR-

NAs. Currently, 339 miRNAs have been described for T. gondii of which a number (47

out of 339) of them was disputed previously (Saçar Demirci et al., 2016). Here, 4,240

miRNAs (containing 305 of the 339 known ones) and their targets co-expressed in the

same sample are presented.

With the available data, it was possible to create a miRNA driven gene regula-

tion network. Metabolic pathways of T. gondii are not well defined and most of the

proteins synthesized by T. gondii remain hypothetical. With further studies, the inter-

actions presented in this study can be integrated into proven pathways of T. gondii for

better understanding of the regulation happening in this intra-cellular parasite. Further-

more, interactions found in this study may lead to interesting drug targets. Combining the

knowledge presented in this study, these drug targets can be chosen so that they affect any

strains or developmental stages that were explored.
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Tüfekci, K. U., R. L. J. Meuwissen, and e. Genç (2014). The Role of MicroRNAs in
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APPENDIX A

PLOTTED DIFFERENTIAL EXPRESSION VALUES

Table A.1. Top 5 Differentially Expressed Genes

Differential Expression - Genes
PLK vs CTG RH vs CTG

Gene l2fc padj Gene l2fc padj
S8EMV8 8.63 3.29E-03 S8EMV8 9.91 1.84E-03
S8F7Q7 7.19 1.72E-03 ROP18 6.76 4.87E-04
ROP18 6.86 3.47E-04 A0A125YSP7 5.66 6.01E-06
S8G544 5.80 2.25E-02 ABCG84 5.55 3.92E-04
S8GA24 5.55 2.19E-04 S8F776 5.49 4.94E-04
S8GIV7 -5.88 1.53E-04 A0A125YGM9 -6.81 1.09E-02
S8GJX7 -6.24 2.87E-05 S8GBJ7 -7.15 1.44E-04
S8F4M4 -6.30 1.01E-03 S8F7B9 -7.31 3.73E-04
S8GIE6 -6.42 2.29E-03 S8EZ59 -7.43 9.50E-04
S8F425 -6.50 9.60E-04 S8EX82 -8.72 1.46E-03

RH vs PLK Tachyzoite vs Bradyzoite
S8GIE6 7.56 1.02E-03 A0A125YVF6 1.65 9.26E-01
S8F425 7.03 5.81E-04 S8F918 1.50 9.18E-01
S8GH76 5.71 7.61E-05 TGME49 355050 1.34 9.42E-01
S8G1H2 5.26 9.70E-04 A0A125YG81 1.33 9.85E-01

A0A125YSP7 5.10 1.85E-06 TGME49 355210 1.17 9.18E-01
S8GDF0 -6.34 6.57E-04 S8EPZ6 -1.60 9.59E-01
S8F0T6 -6.55 8.10E-04 S8F8L7 -1.62 9.62E-01
S8EX82 -6.55 1.33E-03 S8GMZ2 -1.65 9.83E-01
S8F5N9 -6.62 2.48E-03 S8ETH6 -1.75 9.49E-01

A0A125YGM9 -6.66 8.89E-03 AP2XII2 -1.94 9.26E-01
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Table A.2. Differentially Expressed miRNAs

Differential Expression - miRNAs
PLK vs CTG

miRNA l2fc padj
Pos 1017361 TGME49 chrVIIb 3.23 5.28E-02
Neg 2400181 TGME49 chrXII 2.58 9.79E-01
Neg 1863667 TGME49 chrX 2.46 4.82E-02
Pos 1740891 TGME49 chrX 2.26 8.04E-01
Pos 541500 TGME49 chrV -1.80 9.79E-01
Pos 277477 TGME49 chrII -1.84 3.30E-01

Neg 1446843 TGME49 chrIX -2.02 9.79E-01
Pos 1517039 TGME49 chrIX -3.74 1.58E-02

RH vs PLK
Neg 2337788 TGME49 chrXII 3.66 3.62E-05
Pos 1632774 TGME49 chrX 3.13 1.08E-02
Pos 1517039 TGME49 chrIX 2.56 3.01E-01
Neg 460000 TGME49 chrIV 1.93 7.48E-01

mmu-miR-6414 2286979 1.83 5.37E-01
Neg 557604 TGME49 chrV -3.65 6.65E-02

tae-miR1128 633204 -4.18 7.47E-02
Pos 844987 TGME49 chrVIIa -5.00 9.63E-05

RH vs CTG
Neg 2337788 TGME49 chrXII 4.87 3.36E-03
gra-miR7484c 2030510 2.94 2.39E-01
Neg 1863667 TGME49 chrX 2.79 2.39E-01
tch-miR-1277-5p 564989 2.54 1.14E-01
Pos 2184537 TGME49 chrXII -2.32 6.37E-01
Neg 1765335 TGME49 chrX -2.45 9.93E-01
Neg 1417681 TGME49 chrIX -2.65 2.39E-01
Pos 844987 TGME49 chrVIIa -3.85 4.82E-03

Tachyzoite vs Bradyzoite
Pos 2115001 TGME49 chrXI 1.51 9.90E-01
Pos 541500 TGME49 chrV 1.47 9.90E-01

Pos 2164687 TGME49 chrXII 1.45 9.90E-01
Pos 1978651 TGME49 chrXI -1.39 9.90E-01
hsa-miR-4524b-3p 1680787 -1.68 9.90E-01

Neg 1739554 TGME49 chrX -1.73 9.90E-01
Pos 1842340 TGME49 chrX -1.74 9.90E-01

45



Table A.3. Top 10 Differentially Expressed Interactions

Differential Expression - Interactions
PLK vs CTG

Interaction l2fc padj
S8GRN8—Pos 570377 TGME49 chrV 1—S8G1H7 7.96 1.69E-05
S8GRN8—Pos 570377 TGME49 chrV 2—S8G1H7 7.96 1.69E-05
S8F6M7—ptr-miR-3149 468546 1—A0A125YQV8 7.73 3.21E-04
S8F6M7—ptr-miR-3149 468546 2—A0A125YQV8 7.73 3.21E-04
S8GRN8—Pos 570377 TGME49 chrV 1—S8F675 7.29 7.18E-05
S8GB10—tch-miR-1277-5p 2146654 1—S8GRN8 -6.20 5.93E-05
LAP—Neg 1539412 TGME49 chrIX 1—S8GIV7 -6.52 3.50E-04
LAP—Neg 1539412 TGME49 chrIX 2—S8GIV7 -6.52 3.50E-04

S8GG66—gga-miR-3523 1617267 1—S8GIV7 -6.55 7.67E-04
S8F6X6—Pos 1102181 TGME49 chrVIIb 1—S8F4M4 -7.38 1.01E-03

RH vs PLK
S8FCX5—Neg 452509 TGME49 chrIV 1—A0A125YSP7 8.60 1.68E-06

S8FC20—hsa-miR-6728-5p 210073 1—S8EQB0 7.81 3.22E-04
S8F0T6—Neg 1386367 TGME49 chrVIII 1—A0A125YLZ6 7.11 4.23E-05

S8FCX5—Neg 452509 TGME49 chrIV 1—S8F1G6 6.92 1.38E-05
S8F0T6—Neg 1386367 TGME49 chrVIII 1—S8G8G7 6.85 2.23E-05
ABCG84—Neg 1516947 TGME49 chrIX 1—S8EZM6 -7.81 1.83E-07

ABCG84—Neg 1516947 TGME49 chrIX 1—A0A125YP51 -8.49 3.39E-07
ABCG84—Neg 1516947 TGME49 chrIX 1—S8F591 -8.79 1.84E-07

A0A125YI56—gra-miR7484c 2030510 1—A0A125YNV2 -9.47 3.35E-05
A0A125YI56—gra-miR7484c 2030510 2—A0A125YNV2 -9.47 3.35E-05

RH vs CTG
S8FCX5—Neg 452509 TGME49 chrIV 1—A0A125YSP7 7.69 2.13E-05

S8F591—mmu-miR-7063-3p 585890 1—S8GML9 7.44 8.65E-04
S8F591—mmu-miR-7063-3p 585890 2—S8GML9 7.44 8.65E-04
S8F591—mmu-miR-7063-3p 585890 3—S8GML9 7.44 8.65E-04
S8FC20—hsa-miR-6728-5p 210073 1—S8EQB0 7.02 9.07E-04

S8F7Q2—mmu-miR-466m-3p 679113 1—S8EZ59 -8.78 1.53E-04
S8F7Q2—mmu-miR-466m-3p 679113 2—S8EZ59 -8.78 1.53E-04
S8FE58—Neg 284035 TGME49 chrII 1—S8EZ59 -9.36 1.75E-05

ABCG84—Neg 1516947 TGME49 chrIX 1—S8F081 -9.46 1.06E-05
S8GL47—mmu-miR-467g 1104875 1—S8F7B9 -9.77 6.79E-06

Tachyzoite vs Bradyzoite
S8F559—Pos 637948 TGME49 chrV 1—S8EZ59 1.77 9.60E-01
S8F559—Pos 637948 TGME49 chrV 2—S8EZ59 1.77 9.60E-01

A0A125YKL6—gga-miR-1627-3p 500385 1—S8F5J3 1.75 8.17E-01
S8FC20—hsa-miR-6728-5p 210073 1—S8EWB5 1.74 9.78E-01
S8F559—Pos 637948 TGME49 chrV 1—S8G387 1.72 9.88E-01

S8F056—Neg 1782640 TGME49 chrX 2—S8EY17 -1.84 9.98E-01
S8F056—Neg 1782640 TGME49 chrX 3—S8EY17 -1.84 9.98E-01
S8F056—Neg 1782640 TGME49 chrX 1—AP2IX5 -1.96 9.61E-01
S8F056—Neg 1782640 TGME49 chrX 2—AP2IX5 -1.96 9.61E-01
S8F056—Neg 1782640 TGME49 chrX 3—AP2IX5 -1.96 9.61E-01
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