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Department of Physics, İzmir Institute of Technology

Prof. Dr. Hamza POLAT
Department of Physics, Dokuz Eylül University

Assoc. Prof. Dr. Engin DURGUN
Department of Materials Science and Nanotechnology, Bilkent University

27 July 2017

Prof. Dr. R. Tuğrul SENGER Assoc. Prof. Dr. Hasan ŞAHİN
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ABSTRACT

ELECTRONIC, MAGNETIC, AND MECHANICAL PROPERTIES OF
NOVEL TWO DIMENSIONAL MONOLAYER MATERIALS

Layered materials exhibit different properties when they are thinned down to a

few monolayers. Following the successful isolation of graphene in 2004, there has been a

rapid increase in the number of studies focusing on other novel two dimensional (2D) ma-

terials such as hexagonal Boron Nitride (BN), transition metal dichalcogenides (TMDs),

post transition metal chalcogenides (PTMCs), and in-plane anisotropic monolayers (Re-

dichalcogenides and blackphosphorus). In addition to their electronic, optical, and mag-

netic properties, mechanical properties of 2D materials are of fundamental importance.

Measurements of elastic constants of 2D materials are still challenging. Therefore, the-

oretical investigation of the mechanical properties is particularly important. Moreover,

investigation of Raman spectra of these materials requires a through understanding of

their vibrational properties. In these regards, we investigate the electronic, magnetic, and

mechanical properties of some novel monolayer 2D materials (such as, auxetic pentagonal

monolayers, flexible monolayers of holey graphene crystals, ultra-flexible monolayers of

PTMCs, and in-plane anisotropic monolayers of ReS2 and blackphosphorus) by means of

first-principles calculations based on density functional theory (DFT). In addition, tuning

electronic properties of a van der Waals heterobilayer structure composed of monolayers

of Mg(OH)2 and WS2 upon an external out-of-plane electric field is studied. The effect of

biaxial strain on the vibrational properties of novel 2D materials is also studied through

their off-resonant Raman activities. Our findings will be useful to clarify several issues

related to the experiments of novel 2D materials.
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ÖZET

YENİ İKİ BOYUTLU TEK KATMANLI MALZEMELERİN
ELEKTRONİK, MANYETİK VE MEKANİK ÖZELLİKLERİ

Katmanlı yapılar birkaç katmana indirgendiklerinde farklı özellikler sergilemek-

tedir. Grafenin 2004 yılında başarılı bir şekilde izole edilmesini takiben, hekzagonal

Boron Nitrat (BN), geçiş metali dikalkojenleri (GMD), post geçiş metali kalkojenleri

(PGMK), ve düzlem içi anisotropik karafosfor yapıları gibi diğer iki boyutlu malzemeler

üzerine yapılan çalışmalarda hızlı bir artış olmuştur. İki boyutlu tek katmanlı malze-

merin elektronik, optik, ve manyetik özelliklerine ek olarak mekanik özellikleride temel

önem arz etmektedir. İki boyutlu malzemelerin elastil sabitlerinin ölçülmesi hala ilgi

çekicidir. Bu yüzden, mekanik özelliklerin teorik olarak araştırılması önemlidir. Buna

ek olarak, bu malzemelerin Raman spektrumunun araştırılması titreşimsel özelliklerinin

anlaşılmasını gerektirmektedir. Bu bağlamda, auxetik tek katmanlı pentagonal yapılar, es-

nek tek katmanlı delikli grafen kristalleri, ultra-esnek tek katmanlı PGMK lar, ve düzlem

içi anisotropik tek katmanlı ReS2 ve karafosfor gibi bazı yeni iki boyutlu malzemelerin

elektronik, manyetik ve mekanik özelliklerini ilk prensiplere dayanan yoğunluk fonksiy-

oneli teorisi tabanlı hesaplamalar yoluyla araştırdık. Ek olarak, tek katmanlı Mg(OH)2

ve WS2 yapılarından oluşan iki katmanlı van der Waals hetero yapısının elektronik özel-

liklerinin düzlem dışı bir elektrik alan altında ayarlanması çalışılmıştır. İki eksenli geril-

menin yeni iki boyutlu malzemelerin titreşimsel özelliklerine olan etkisi bu malzemelerin

rezonant olmayan Raman aktiviteleri vasıtasıyla çalışılmıştır. Bulgularımız yeni iki boyutlu

malzemelerin deneylerine ilişkin birçok sorunun açıklığa kavuşmasında yararlı olacaktır.
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CHAPTER 1

INTRODUCTION

Layered materials when thinned down to their monolayer limit exhibit remarkable

properties as a consequence of quantum effects and strong electron confinement. Due

to the confinement of electrons in out-of-plane direction, physical properties of layered

materials show strong enhancement. The real story of two dimensional (2D) monolayer

form of materials begins with successful isolation of graphene (Novoselov et al., 2004),

2D honeycomb structure of carbon atoms. Due to its extraordinary physical properties

such as having low absorption ratio of 2.3% (Kuzmenko et al., 2008; Nair et al., 2008),

exhibiting high electron mobility at room temperature (Novoselov et al., 2004; Mayorov

et al., 2011)(2.5x105 cm2V−1s−1), and high thermal conductivity (Chen et al., 2008; Geim

and Kim, 2008) (3000 WmK−1). In addition, it has shown that graphene can have very

high densities of electric current (Moser et al., 2007) (million times higher than that of

copper) and can be chemically functionalized for tuning its properties (Elias et al., 2009;

Loh et al., 2010; Nair et al., 2010). Beside all these properties, graphene is known to

exhibit extreme mechanical properties with its very high Young modulus (∼ 1 TPa) and

intrinsic strength of 130 GPa (Lee et al., 2008; Liu et al., 2007). With all these extreme

properties, graphene has opened up a new research of field in 2D monolayer materials.

Generally, mechanical properties of a crystalline solid can be controlled by char-

acteristics of its pristine crystal lattice and structural defects like dislocations and grain

boundaries contained in the structure (Lothe and Hirth, 1982). However, in the 2D limit

defects can be absent in the non-deformed state due to nanoscale and free-surface ef-

fects. Therefore, such solids can exhibit superior strength values close to its ideal high-

est value. The elastic properties of graphene were first systematically investigated by

Lee et al. in 2008 in a series of experiments (Lee et al., 2008). In their experiment,

graphene was mechanically deposited onto a substrate and applied load was achieved by

a tip of Atomic Force Microscopy (AFM). It was reported by means of its stress-strain

relation that graphene demonstrates both non-linear elastic and brittle fracture. In the

elastic limit of graphene its Young modulus was observed to be 1 TPa. In addition, the

fracture strength of graphene at its brittle point was found to be 130 GPa which is the

largest value experienced ever. They also reported that although graphene is a stiff and

brittle material, it can be easily bent over due to its low bending modulus. As mentioned

above, graphene has the highest measured elastic modulus and tensile strength among all
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natural materials which arise from the strong sp2 C-C bonding in its structure. However,

in nature many type of defects can exist in graphene as in other materials, and the mechan-

ical properties of the crystal can be deformed upon these defects (Grantab et al., 2010;

Wei et al., 2012; Warner et al., 2012; Dettori et al., 2012; Jing et al., 2012). Grantab et al.

has addressed this outstanding problem in mechanical properties of graphene by means of

DFT and molecular dynamics (MD) calculations (Grantab et al., 2010). They showed that

graphene sheets having large-angle tilt boundaries with a high density of defects are as

strong as the pristine material surprisingly. In addition, these graphene sheets can be much

stronger than those having low-angle boundaries with fewer defects densities. It is seen

that existence of high defect density may be able to conserve the mechanical characteris-

tics of graphene. It was also reported that failure and ultimate strain values for graphene

can be enhanced with grain boundary angle. Some time later, Wei et al. clearly explained

the physical mechanism causing the weakening or enhancement of strength of graphene

having grain boundaries (Wei et al., 2012). They showed that the reason for tuning of

strength of graphene is not just the density of defects, the arrangements of defects are also

important. It was reported that the strengths of tilt grain boundaries increase as the square

of their tilt angles if pentagon-heptagon defects are evenly spaced in the structure. This

trend breaks down if pentagon-heptagon defects are not evenly distributed. Their findings

are very important because pentagon-heptagon rings are one of the most common defects

found in graphene. Young modulus of materials is an important elastic parameter describ-

ing mechanical characteristics of the structure. Behavior of Young modulus in defected

graphene has been investigated by Jing et al. (Jing et al., 2012) and it was shown that the

vacancy and Stone Wales type defects reduce the value of Young modulus of graphene.

However, the reconstruction of these defects can stabilize the Young modulus. In addi-

tion, a possible hydrogenation of vacancy defect sites will enhance the Young modulus

while an opposite behavior is observed for hydrogenation of Stone Wales defect sites. Ex-

perimentally the existence of these defects and dislocations is directly related to synthesis

techniques used for graphene. For example, in some studies it was observed that graphene

synthesized by chemical vapor deposition (CVD) method has much lower Young modulus

and tensile strength than those of exfoliated graphene (Ruiz-Vargas et al., 2011; Lin et al.,

2013). The underlying mechanisms causing the decrease in these mechanical parameters

were then explained in detail (Lee et al., 2013; Tsen et al., 2012; Yu et al., 2011; Kim

et al., 2011). As a common result, it was reported that the transfer process is an important

key for existing of ripples and defects which strongly affect the young modulus and ulti-

mate strength of graphene. Lee et al. studied different types of transfer processes for CVD
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graphene and found that adopting polydimethylsiloxane (PDMS) as the transfer medium

instead of polymethyl methacrylate (PMMA) strongly enhances the value of 2D Young

modulus of graphene (339±17 N/m which very close to that of exfoliated graphene, 340

N/m) (Lee et al., 2013).

As we mentioned above, defects, dislocations, and grain boundaries which may

intrinsically exist in production of graphene are the main reasons for decreasing in values

of mechanical parameters. Not only for defected graphene but also for a perfect sheet

of graphene, it is an important issue to enhance its mechanical properties for use in vari-

ous applications. In many studies, researchers tried to increase mechanical efficiency of

graphene by external effects such as functionalization of its surfaces with various types

of molecules and functional groups. Zhao et al. reported a significant enhancement of

mechanical parameters of nanocomposites based on fully exfoliated graphene nanosheets

and poly(vinyl alcohol) (PVA) (Zhao et al., 2010). They showed that a significant im-

provement of tensile strength (150% increase) and a nearly 10 times increase in Young

modulus which strongly depends on the density of graphene sheets included in nanocom-

posites (nearly at 1.8% volume of graphene addition). Xu et al. successfully prepared

such nanocomposite material by using graphene oxide and reported a layered compos-

ite which is mechanically strong and ductile (Xu et al., 2009). It is important to note

that the brittle character of graphene was tuned to ductile behavior by functionalizing

oxidized graphene. In another study Fang et al. reported an efficient method to function-

alize graphene nanosheets with molecules that are covalently bonded to its surface (Fang

et al., 2009). It was shown that the resultant polystyrene nanocomposites with inclusion

of 0.9% graphene nanosheets reveals an increase of 70% and 57% tensile strength and

Young modulus, respectively.

Enhancing mechanical properties of graphene is not limited to its strength and

Young modulus. In addition to these mechanical parameters, Poisson ratio takes an im-

portant place in field of engineering of graphene’s mechanical properties. It is already

known that graphene has a positive Poisson ratio value as usual materials. However, Jiang

et al. shown that graphene can exhibit negative Poisson ratio which is robust and indepen-

dent of its size and temperature (Jiang and Park, 2014). They showed that the nature of

this negative Poisson ratio occurs due to the interplay between two intrinsic deformation

pathways that are the bond stretching and angle bending interactions. In another study,

Wan et al. investigated the auxetic (negative Poisson ratio material) behavior in graphene

oxide paper which depends on the oxidation level (Wan et al., 2017). They reported that

the Poisson ratio is sufficiently tunable with oxidation level of graphene oxide paper. It
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was found that when the graphene layer is fully oxidized, the Poisson ratio takes a value

of -0.57. Grima et al. studied the effect of defects on Poisson ratio of graphene and found

that the existence of vacancy defects can lead to auxetic behavior in graphene (Grima

et al., 2015).

Graphene can be explained in much more sentences with its extreme mechani-

cal properties. Because of its extraordinary physical properties, graphene has opened a

new research of field, searching of novel 2D monolayer materials. Although it has many

excellent properties, the lack of a band gap in graphene limits its application especially

in optoelectronic devices. Thus, following the successful isolation of graphene many

other 2D monolayer materials such as hexagonal structures of III-V binary compounds

(h-BN (Novoselov et al., 2005; Zeng et al., 2010; Song et al., 2010) and h-AlN (Ba-

caksiz et al., 2015; Tsipas et al., 2013), monolayers of transition metal dichalcogenides

(TMDs) (Gordon et al., 2002; Wang et al., 2012; Radisavljevic et al., 2011; Lu et al.,

2014; Ramakrishna Matte et al., 2010), monolayers of post-transition metal chalcogenides

(PTMC) (Ga- and In-monochalcogenides) (Late et al., 2012; Li et al., 2014; Cai et al.,

2016; Huser et al., 2013), and recently in-plane anisotropic monolayer materials (Re-

dichalcogenides (Tongay et al., 2014; Wolverson et al., 2014), blackphosprous (Li et al.,

2014; Liu et al., 2014), and TiS3 (Island et al., 2014) were successfully brought into this

material family.

Mechanical properties of 2D monolayer materials can generally be presented in

terms og their in-plane stiffness, Poisson ratio, and ultimate strength. Evidently, the AFM

indentation method which was used by Lee et al., was shown to be applicable for other

2D materials beyond graphene. Bertolazzi et al. (Bertolazzi et al., 2011a) measured the

in-plane stiffness and breaking strength of monolayer MoS2 by the same methodology of

Lee et al.. They reported a value of 180±60 N/m and 23 GPa for stiffness and breaking

strength, respectively. The observed values are smaller than those of graphene which is

expected because of the non-planar structure of monolayer MoS2. Another report on the

Young modulus of few layer MoS2 was announced by Gomez et al. by performing a bend-

ing test experiment using tip of an AFM (Castellanos-Gomez et al., 2012). They found

a value of 0.33±0.07 TPa for the Young modulus of few layer (down to 5 layers) sus-

pended MoS2. Another important finding is the high-elasticity of these suspended MoS2

nanosheets. They reported that the suspended sheets are so tough that they can stand

high deformations without breaking. Cooper et al. investigated the non-linear elastic

properties of suspended monolayer MoS2 both theoretically and experimentally (Cooper

et al., 2013). They found that in-plane Young modulus and intrinsic strength of mono-
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layer MoS2 are 130 and 16.5 N/m, respectively. It was also supported by experiment

that mechanically exfoliated monolayer MoS2 was subjected to a nanoindentation test by

an AFM tip and an average value of 120 N/m was found for in-plane Young modulus

which agrees well with the calculated DFT value. Different from those studies, Liu et

al. investigated the in-plane Young modulus of CVD grown monolayer MoS2 for the first

time (Liu et al., 2014). As reported for graphene, the experimental synthesis technique is

an important key for the value of Young modulus in 2D monolayer materials. Thus, study

of Liu et al. is significantly important for the understanding of rigidity of MoS2. They

reported a value of 170 N/m for in-plane Young modulus of MoS2 which is about half that

of graphene.

Since graphene and monolayer MoS2 are in-plane isotropic materials, it is not

possible to distinguish their direction-dependent mechanical properties. Thus, successful

synthesis of monolayers having in-plane anisotropy has opened an important area in the

applications of these materials. Monolayer black phosphorus (BP) is an important exam-

ple to these in-plane anisotropic monolayers. Due to its puckered structure, it is highly

anisotropic in different chiralities. As a first experimental observation, Tao et al. identified

the lattice orientations in 2D few layer BP to probe the anisotropic mechanical properties

of the material by using AFM bending method (Tao et al., 2015). The measured Young

modulus of few layer BP was reported to be 58.6±11.7 and 27.2±4.1 GPa in zigzag and

armchair directions, respectively. This high in-plane anisotropy was also observed for the

breaking stress of few layer BP as 4.79±1.43 and 2.31±0.71 GPa in zigzag and armchair

directions, respectively. As seen from the given values, breaking strengths are almost

compatible with Young modulus values. Apart from this experimental study, Wang et al.

theoretically investigated the effect of uniaxial strain on the mechanical properties of BP

and showed that uniaxial strain efficiently enhances the anisotropy in the structure (Wang

et al., 2015). It was shown that the Poisson ratio of BP vary non-monotonically with the

direction of applied uniaxial strain while the Young modulus vary monotonically from

zigzag direction to armchair direction. Because of its low in-plane Young modulus values

BP is not a stiff material and with its low fracture strength its applications in mechanical

devices is limited. The physical mechanism behind having such low mechanical parame-

ters was demonstrated by Liu et al. (Liu et al., 2016) It was showed that the fracture of BP

under uniaxial strain along armchair direction is caused by a break in the interlayer bond

angles while it is attributed to the break in both intra-layer angles and bonds for the uniax-

ial strain along zigzag direction. Understanding of such phenomenon could be important

for enhancing the mechanical constants of BP. In addition to Young modulus and fracture
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strain of BP, it is a special monolayer material with its negative Poisson ratio. Jiang et

al. reported that negative Poisson ratio in monolayer BP occurs intrinsically (Jiang and

Park, 2014). They showed theoretically that in contrast to bulk auxetic materials which are

mostly hand-made, auxetic behavior of monolayer BP naturally occurs due to its puckered

crystal structure. It was reported that the auxetic behavior is special to out-of-plane direc-

tion in monolayer BP. Recently, Du et al. investigated the anisotropic strain responses of

few-layer BP films to uniaxial tensile and compressive strains experimentally (Du et al.,

2016). They showed the existence of negative Poisson ratio by examining the Raman evo-

lution of uniaxially strained BP. In addition, by examining DFT based calculations they

reported that this interlayer auxetic behavior occurs under armchair strain.

Monolayers of ReS2 and ReSe2 are two important examples for in-plane anisotropic

materials. Due to their distorted 1T (1T’) structure, strong anisotropy in their electronic,

optical, and transport properties were reported (Liu et al., 2015; Jariwala et al., 2016;

Hafeez et al., 2016). However, studies on mechanical properties of these distorted mono-

layer TMDs are missing when compared to those for BP. In one of those studies Yu et al.

investigated both in-plane and out-of-plane elastic modulus (Young modulus) for mono-

layer ReS2 and reported that for the directions along Re4 clusters and the direction along

the line having 120 degree with Re4 clusters the Young modulus is isotropic with a value

of 142 N/m while it is very high along out-of-plane direction (352 N/m) (Yu et al., 2011).

It should be noted that strong in-plane anisotropy is missing in mechanical constants for

the chosen directions. In our very recent study, we investigated the mechanical prop-

erties of monolayer ReS2 and its fully hydrogenated crystal structure (Yagmurcukardes

et al., 2017). Our results are mainly consistent with those reported by Yu et al. that for

two directions, one along Re4 clusters and another is perpendicular to that, the in-plane

anisotropy is very small for Young modulus along those directions (we found 166 and

159 N/m values). However, we reported that a possible full hydrogenation of monolayer

ReS2 results in strong mechanical anisotropy. Thus, functionalization is a way for tuning

of the mechanical properties of monolayer ReS2.
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CHAPTER 2

METHODOLOGY

2.1. Many-Electron Systems

Interacting many-electron systems generate some of the most outstanding chal-

lenges in quantum mechanics for researchers to understand such systems for many appli-

cations. However, due to the difficulty of solving such systems using quantum mechan-

ical wave functions, density functional theory (DFT) has become a useful and popular

approach.

DFT is the most popular and powerful quantum mechanical approach for the de-

termination of ground state; electronic, magnetic, optical, and mechanical properties of

interacting many-electron systems such as solids and molecules used in physics, chem-

istry, and materials science. Since the wave function is not a real observable in quantum

mechanics, describing all physical ground state properties of materials in terms of an elec-

tronic density makes DFT a powerful and most used methodology due to its ability for

producing very accurate results at low cost.

A quantum mechanical wave function contains all the information about a physical

system. The mathematical expression for such a wave function may be represented by the

time-independent non-relativistic Schrodinger equation

ĤΨ = EΨ (2.1)

where the operator Ĥ is the energy operator known as the Hamiltonian and the

E is the corresponding eigenvalue for the Hamiltonian operator. The solution of the Eq.

2.1 is the wavefunction Ψ which are the eigenfunctions of the Schrodinger equation. In

usual model of a matter, the Schödinger equation should be written for a many-electron

system’s Hamiltonian. When a N -body system is assumed, it is very difficult to solve the

Eq. 2.1 without considering any approximations.

For such a system containing M nuclei and N electrons the Hamiltonian operator

contains the terms for all possible interactions between electrons and nuclei. As a result of

this form of Ĥ , the wavefunction of the system will be the function of spatial coordinates

of nuclei ({RA}, A=1,...,M) and that of electrons ({ri}, i=1,...,N). The Ĥ operator has the
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general form for N-body system is

Ĥ = −
N∑
i=1

∇2
i

2
−

M∑
A=1

∇2
A

2MA

+
N∑
i=1

N∑
j>i

1

|ri − rj|
+

M∑
A=1

M∑
B>A

ZAZB
|RA −RB|

−
N∑
i=1

M∑
A=1

ZA
|ri −RA|

(2.2)

This Hamiltonian operator contains all the terms describing all possible interac-

tions in an N -electron quantum mechanical system. First two terms are the kinetic energy

terms for electrons and nuclei, respectively. MA in the second term is the ratio of the mass

of nucleus to that of an electron, and ZA is the atomic number of the nucleus A. The ∇2
i

and ∇2
A are Laplacian operators in the coordinates of electron and nucleus, respectively.

The third and fourth terms are the Coulomb repulsion terms between electrons and nu-

clei, respectively. Finally, the last term is the Coulombic interaction between an electron

and nucleus. Although, it is written easily by hand, the solution of Schrodinger equation

for this Hamiltonian seems impossible. Thus, many approximations were suggested to

simplfy the solution for this Ĥ

2.1.1. Born-Oppenheimer Approximation

Born-Oppenheimer approximation ,which was developed by Max Born and J.

Robert Oppenheimer in 1927 (Born and Oppenheimer, 1927), fundamentally assumes

that nuclei are much heavier than the electrons in mass. Through this simple assumption,

nuclei can be treated as static, classical particles with respect to electrons. So, the kinetic

term of nuclei in Eq. 2.2 can be omitted while the fourth term becomes a constant due to

the fixed configuration of nuclei. With remaining three terms, the Hamiltonian takes the

form known as electronic Hamiltonian,

Ĥe = −
N∑
i=1

∇2
i

2
+

N∑
i=1

N∑
j>i

1

|ri − rj|
−

N∑
i=1

M∑
A=1

ZA
|ri −RA|

(2.3)

After this simple assumption, the wavefunction which is solution to this Hamil-

tonian becomes only the function of electron position ri. The corresponding Schrodinger

equation takes the form,

ĤeΨe({ri}) = EeΨe({ri}) (2.4)

Under Born-Oppenheimer approximation, solution of Eq. 2.4 seems to be more simple

than its most general form. However, although it seems to be a simple form, the electron-
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electron interaction term in Eq. 2.3 since the motion of electrons is correlated. Thus, the

instantaneous coordinates of each electron should be taken into account which essentially

requires 3N variables for N -electron system. For the solution of Schrodinger equation of

N -interacting electrons, different approximations were introduced. The main purpose of

those approximations is to mapN -electron Schrodinger equation to effective one-electron

Schrodinger equation. One of those approximation methods is density functional theory

(DFT) in which the electron density is considered to be a central quantity.

2.1.2. Thomas-Fermi Model

The idea that the electronic energy can be expressed in terms of the electron den-

sity was first suggested by Thomas and Fermi in 1920s (Thomas, 1927; Fermi, 1927).

In the Thomas-Fermi theory, the electron-nucleus and electron-electron interactions are

assumed to exist classically and only the kinetic energy of the electrons is approximated

as an explicit functional of the electron density. It assumes non-interacting electrons in

a homogeneous electron density. The kinetic energy term is written in as a functional of

electron density as,

T [n] = CF

∫
n5/3(r)dr (2.5)

where the Fermi coefficient CF is equal to 2.781 in atomic units. Adding two

interaction terms, electron-electron and electron-nucleus, the total energy of the system

in terms of electron density takes the form,

E[n] = CF

∫
n5/3(r)dr − Z

∫
n(r)

r
dr +

1

2

∫ ∫
n(r1)n(r2)

|r1 − r2|
dr1dr2 (2.6)

where the second and third terms are the electron-nucleus and electron-electron

interaction terms, respectively. Then, once one knows this total energy functional, it is

possible to calculate ground state energy of the system by minimizing the functional,

E[n], for all possible electron density, n(r), which should satisfies,

N =

∫
n(r)d3r (2.7)

The main goal of the Thomas-Fermi model is not how well the ground state energy

is performed but rather is the illustration that the total energy can be investigated using

electron density.
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2.1.3. Density Functional Theory

In order to simplfy N -electron Schrodinger equation into one-electron like equa-

tion, electron density, n(r), is considered in DFT. One the advantages of using electron

density over the wavefunction is the reduced dimensionality of the problem. Regardless

of the number of total electrons interacting in the system, considering the electron density

reduces the dimension from 3N to 3 because n(r) has always three degrees of freedom.

This reduction in total degree of freedom enables DFT to readily be applied to much larger

system.

First of all, the electron density is defined as,

n(r) = N

∫
...

∫
|Ψ(r1, r2, ...., rN)|2dr1dr2...drN−1 (2.8)

where n(r) determines the probability of finding any of theN electrons while other

N -1 electrons are positioned arbitrarily. In addition, Ψ(r1, r2, ...., rN) is the solution of

the Schrodinger equation and is a function of position of each electrons. Now we discuss

some models presented in DFT on electron density.

2.1.3.1. Hohenberg-Kohn Theorems

After Thomas-Fermi model was presented, in 1964 Hohenberg and Kohn formu-

lated the DFT as an exact theory of many-body systems which allows one to express the

electronic Hamiltonian as a functional of electron density, n(r) (Hohenberg and Kohn,

1964). In this model two main theorems exist: (i) there is a one-to-one correspondence

between an external potential Vext(r) and electron density n(r), and (ii) the ground state

electron density n0(r) can be calculated by means of a variational principle. Then, for a

given Vext(r) the total energy functional can be written as,

E[n] = T [n] + Vne[n] + Vee[n] =

∫
n(r)Vext(r)dr + FHK [n] (2.9)

where FHK[n] is a universal functional of n(r) and is independent of any external

potential, Vext(r). In this theory, once we know the the ground state electron density

n0(r), the external potential Vext(r) can be uniquely determined. In addition, if FHK[n]

is a known universal functional of electron density n(r), then for any Vext(r) the exact

ground state energy of the system is the global minimum of this functional with exact

ground state density, n0(r).
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2.1.3.2. The Kohn-Sham Equations

One year later, in 1965, Kohn and Sham realized a model which transforms DFT

into a practical electronic structure theory (Kohn and Sham, 1965). They recognized that

the Thomas-Fermi model fails mainly in describing the kinetic energy of the system. The

energy functional given in Eq. 2.10 now takes the form,

E[n] =

∫
n(r)Vext(r)dr + FHK [n] =

∫
n(r)Vext(r)dr + T [n] + EHartree[n] + Exc[n]

(2.10)

where the universal functional, FHK[n], is written as the sum of kinetic energy of

non-interacting electrons, T [n], Hartree energy, EHartree, and exchange and correlation

energy, Exc. Here, the important step is to define an effective potential which is written

as,

V eff =
δ{
∫
n(r)Vext(r)dr + EHartree[n] + Exc[n]}

δn(r)
(2.11)

which results in the form,

V eff = Vext(r) +

∫
n(r′)

|r − r′|
dr′ + Vxc(r) (2.12)

where Vxc(r) is the exchange-correlation potential derived from the exchange-

correlation energy. Using this form of effective potential, the Schrodinger equation in

Kohn-Sham DFT takes the form of one-electron like equation as,

[
−1

2
∇2 + V eff

]
φi = Eiφi (2.13)

where the eigenfunctions, φi, are known as the Khon-Sham one-electron orbitals

which result in the electron density,

n(r) =
N∑
i=1

|φi|2 (2.14)

Due to the form of Eq. 2.14, the effective potential, V eff , depends on the density,

n(r). Thus, the Kohn-Sham equation should be solved by the following way: (i) begin

with an initial guess of the electron density, (ii) then construct the effective potential,

V eff , by the knowledge of electron density, (iii) calculate the corresponding Khon-Sham

orbitals, φi, and (iv) calculate the new electron density corresponding to these orbitals and

compare with the inital one. Once the convergence is achieved, then the total energy can

11



be calculated in terms of the final electron density. However, although the final electron

density is known, the exchange-correlation energy is still missing.

2.1.3.3. The Types of Exchange-Correlation Functionals

The exchange and correlation energy of a many-electron system is suppossed to

be a key quantity in DFT. Exchange energy is generally defined in the view of Pauli

exclusion principle because in such systems we deal with electrons which are known to be

fermions. Due to this principle, when two electrons interact their total wave function will

be anti-symmetric which give rise to an exchange energy. However, correlation energy

is generally defined as the difference between true total energy of a quantum mechanical

system and its Hartree energy.

In order to complete the Khon-Sham equations, one should exactly know the form

of Exc. For this reason, some sort of approximations for this term have been developed.

We now introduce only the most common types of these functionals which are widely

used in DFT based calculations.

Local Density Approximation(LDA) :

Within this approach, the system is divided into infinitesimal volumes each of

which contains constant electron density. The exchange-correlation energy for each peace

is assumed to be the energy of uniform electron gas of the density. The exchange-

correlation energy of LDA can be written as (Ceperley and Alder, 1980),

ELDA
xc [n] =

∫
n(r)εunifxc [n]dr (2.15)

where εunifxc is known to be the exchange-correlation energy per electron. LDA

is known to be valid for slowly varying electron densities. In addition, it is experienced

that LDA works well especially for metallic systems. The cohesive energies of physical

systems are known to be overestimated within LDA while lattice constants are underesti-

mated.

Generalized Gradient Approximation(GGA) :

It was realized that the local uniform density is not a suitable approximation for

rapidly varying electron densities, thus, the gradient of the electron density,∇n(r), should

also be included. For the total energy functional in GGA, a general functional of both

electron density and its gradient should be included in it (Perdew et al., 1996a),
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EGGA
xc [n] =

∫
fGGA(n(r),∇n(r))dr (2.16)

These functionals are known as semi-local functionals due to their dependence on

the gradient of the electron density. It was experienced by many researchers that GGA

functionals can yield better results for the geometry and ground state energy calculations

when compared with LDA.

2.2. Mechanical Properties of Materials

Mechanical properties of materials have great significance due to giving informa-

tion about the stability of their structure under applied external forces. This information

for a material exactly depends on the structure of the material that is interatomic forces

which resist any structural change determine the behavior of the material. The changes in

a material and the overall macroscopic behavior are tested in experiments and described

in terms of the applied force per unit area (stress) and the displacement per unit distance

(strain).

2.2.1. Elastic Constants

One of the most common mechanical stress-strain tests is performed in tension.

Tensile test (or tension test) is an important experimental step to predict and analyze the

mechanical behavior of a material under applied load. Tensile test is very important in

determining the strength of a material, its ductility and the mechanical characteristics of

the material in terms of the elastic constants (Young modulus, Poisson ratio, Bulk modulus

etc...) These elastic constants for a material can be obtained from the measurements of

stress under applied strain in the linear elastic region. When a material is loaded only in

the elastic region, it is able to restore its original shape with no permanent change after

the applied load is removed. Thus, the elastic property of a material can be emphasized

as the reversible future of the deformation process.

When a tensile stress is imposed on a material, for low values of the applied loads

stress and strain are related to each other linearly. This low-load region is known as the

elastic region for metals and brittle materials. However, for rubber-like materials, which

are known to be ductile, the stress-strain relation does not show a linear behavior or it

may exist for very very small applied loads. For most of the materials elastic behavior
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is observed and the stress-strain are related through the Hooke’s Law which relates them

linearly.

2.2.1.1. Young Modulus

The relation between applied load (stress) and strain in the elastic region can be

expressed by

σ = Eε (2.17)

where σ is the applied load and ε is the change in the dimension of the material

along the direction of the applied load. Here E is known as the constant of proportion-

ality which is also known as ’Young’s Modulus’. This constant can take different forms

depending on the direction and type of the applied load. The Young’s modulus or the

modulus of elasticity has a SI unit of GPa. As given in Eq.2.17, the slope of a linear

segment of stress-strain relation will correspond to E. This modulus, can also be thought

as stiffness or the resistance of the material to elastic deformation. In fact when elastic

modulus is considered on the atomic scale, the strain can be thought as the small changes

in the interatomic spacing and also the stretching of interatomic bonds. Then, the measure

of the modulus of elasticity will give the material’s resistance to seperation of adjacent

atoms. Values of the modulus of elasticity are different for different types of materials.

The reason is exactly due to the different types of atomic bonding in materials.

2.2.1.2. Poisson Ratio

Poisson ratio is another important elastic constant which describes the behavior of

a material to applied load along the unloaded directions. One may define this quantity as

the the ratio of transverse contraction strain to longitudinal extension strain in the direction

of stretching load that is;

ν = −εtrans.
εlong.

(2.18)

As given in the definition of Poisson ratio, it is an important quantity for materials to

identify the compressive(tensile) strains along unloaded directions when the material is

stretched(compressed) uniaxially. For most of the materials, the strains along unloaded
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directions will have opposite sign with respect to loaded direction, thus, the minus sign

is included in the formula to have a positive value for Poisson ratio. Generally, most of

the materials become narrower when they are stretched uniaxially. The reason is that,

most materials resist to a change in their volume (naturally result of their bulk modulus)

more than they resist to a change in shape (result of their shear modulus). Structurally, the

reason of the having positive Poisson ratio is the realignment of interatomic bonds upon

deformation.

As we mentioned not the all of them but most of materials have positive Poisson

ratio that means materials with negative Poisson ratio exist in real world which occur

naturally or are hand-made. In contrast to positive Poisson ratio materials, materials with

negative Poisson ratio tend to extend in a direction when stretched along perpendicular

directions. These materials are known as the ’Auxetics’. With all the auxetic materials

discovered so far, the underlying mechanism is explained by the intrinsic geometry of the

material. These materials can have better physical properties when compared to those for

positive Poisson ratio materials.

2.2.2. Elastic Constants in 2D Limit

In previous sections we defined two important elastic constants, E and ν, for bulk

materials. When dimensional reduction is achieved, these elastic constant should be re-

defined for in case of two dimensional (2D) materials. In this section, we define shortly

these two constants and present our methodology for the calculations of them at the atomic

scale.

2.2.2.1. In-plane Stiffness

The word, modulus of elasticity, can be renamed as in-plane stiffness, C, when

2D limit is assumed. In the 2D limit, since materials have no periodic boundary condi-

tion along the out-of-plane direction, modulus of elasticity (in-plane stiffness) should be

related by the in-plane stress and strain. Thus, the Eq. 2.18 should be rewritten in the

constraint form as;
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σxx = Cxxεxx (2.19)

σyy = Cyyεyy

where the directions xx and yy indicate special directions in the 2D crystal struc-

ture. For example, in a hexagonal crystal structure these directions may demonstrate

zigzag and armchair directions. For isotropic materials, values of C in any direction will

have the same value. This occurs because of the interatomic bonding symmetry of the

crystal structure. However, for anisotropic 2D materials, the observation of in-plane stiff-

ness along different directions will give different results. This means that the material’s

resistance to applied load will not be unique along all directions which may have advan-

tages in its applications in nanotechnology.

The calculation of C in the atomic limit can be done through the relation of strain

energy and applied strain. Strain energy in a material is defined as the change in total

energy of the crystal with applied strain. Since we calculate these elastic constants in the

linear elastic region, the strain energy should obey the equation;

ES = c1ε
2
xx + c2ε

2
yy + c3ε

2
xy (2.20)

where ES is strain energy which is defined as the total energy difference between

strained and relaxed geometries. Once the coefficients ci are calculated, the in-plane

stiffness along any special direction can be calculated by the formula;

Cx = (1/A0)(2c2 − c3
2/2c1) (2.21)

Cy = (1/A0)(2c1 − c3
2/2c2)

where A0 is the strain-free area of the crystal structure.

Calculation of in-plane stiffness is also possible from the knowledge of elastic

parameters which are calculated by elasticity tensor. As we mentioned in-plane stiffness

represents the relation between stress and strain in the linear elastic region. The elasticity

tensor which relates the applied load (stress) to the strain tensor has dimension of 6×6
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given by the form; 

C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212


(2.22)

where Cijkl’s are elastic constants which have some symmetry properties such as;

Cijkl = Cjikl, Cijkl = Cijlk, and Cijkl = Cklij . With all these symmetry considerations,

the number of independent constants reduces to 21 in this 36-element tensor. However,

this number 21 is the maximum number of independent elements. Depending on the

symmetry of crystal structure, it changes between 3 and 21.

For isotropic materials, the form of the elasticity tensor takes the form in Voight

notation as; 

C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C33 0 0

0 0 0 0 C33 0

0 0 0 0 0 C33


(2.23)

where C33 is related to C11 and C12 by the relation; C33 = C11−C12

2
. This notation allows

one to relate mechanical constants each other through these elastic constants. For exam-

ple, once the elements Cij are known the Young modulus and Poisson ratio can be related

to each other by the formula;

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
(2.24)

C12 =
Eν

(1 + ν)(1− 2ν)

where E is the modulus of elasticity (Young modulus) and ν is the Poisson ratio.

Three dimensional modulus of elasticity, E, can be related to its 2D counterpart, C, by

considering the effective thickness of a 2D monolayer material. The effective thickness,

he, is generally assumed to be the thickness of the layer itself plus the interlayer spacing

in its bulk form. Then the in-plane stiffness and E are related by the formula;

C = Ehe (2.25)
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Figure 2.1. A general stress-strain curve demonstrating elastic and plastic regions for
a material including defects or dislocations which are the generators of
plastic region.

By using the Eqs. 2.24 and 2.25, one may able to rewrite C in terms of elastic

constants Cij as;

C = heC11[1−
(
C11

C12

)2

] (2.26)

This elasticity tensor can be directly calculated by using density functional theory

(DFT) based first principles calculations as an output. Thus, it is possible to calculate the

in-plane stiffness in two different ways as mentioned here.

As in the case of C, it is also possible to calculate Poisson ratio in terms of the

elastic constants found from the elasticity tensor. Using the elements Cij one can calculate

the Poisson ratio by the formula;

ν =
C12

C11

(2.27)

When the case of anisotropic materials is considered, the elastic constant in Eq.

2.27 can be changed to find the direction-dependent Poisson ratio of the material. For

example if one uses C22 in Eq. 2.27, then the Poisson ratio along the direction-2 can be

calculated.

Up to now we have defined the elastic mechanical constants and summarized the

calculation methods by using DFT-based calculations. In the next section, we explain

other mechanical parameters such as ultimate strength by defining the stress-strain rela-

tion curve.
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2.2.3. Stress-Strain Relation

The stress-strain curve demonstrates the relationship between the magnitude of

applied load and the resulting strain on a material. As we discussed in previous sections,

for most of the materials this curve has a linear-elastic region in which the deformations in

the material are reversible. However, this is true for the harmonic region in which the en-

ergy of the system is a quadratic function of the applied load. For higher values of stress,

this total energy-strain relation can take different forms and non-reversible deformations

can occur in the material. In order to figure out these behaviors, one should apply loads

up to high values at which the material fractures.

A stress-strain curve can display different types of regions such as linear-elastic,

uniform plastic or nonuniform plastic regions depending on the type of the material. Gen-

erally the term plastic region or plastic deformation is associated with metal crystal struc-

tures because it is mostly caused by dislocations. Thus, for a 2D monolayer crystal struc-

ture it is meaningful to name the plastic region as non-linear elastic region. At non-linear

elastic region, the applied loads are high and the deformations are non-reversible. This

occurs because at high values of applied load, some atoms in the structure may move to

new places resulting in structural phase change. This region is important at the point that

other mechanical properties of the material such as its brittleness or ductility, ultimate

strength, and fracture point can be found from the stress-strain curve.

Firstly, from the slope of the curve of linear-elastic region one may determine

the brittleness of a material if it suddenly breaks after linear-elastic region. This type

of materials do not experience a plastic or non-linear elastic deformation. In contrast, a

ductile material could experience plastic deformation before it fractures. Such materials

experience structural changes before they break. In addition, these materials can resist to

higher values of applied load when compared with brittle materials.

In the case of a perfect 2D monolayer materials (with no defects or dislocations),

we can not talk about a plastic deformation which is driven by defects or dislocations.

Instead, for every 2D material one can define non-linear elastic region in which non-

reversible structural deformations occur before the fracture of the structure. When the

applied load is increased, there will exist a maximum stress point which is defined as the

ultimate strength of the material and the strain value for this point is known as the ultimate

strain. In addition, a fracture strain can be defined as the strain value at which the material

breaks.

In the case of our methodology, we check these mechanical behaviors by applying
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high values of strain on the crystal structure. This can be done uniaxially and biaxially to

determine the degree of anisotropy in the material. In order to get true stress takes place

in the structure, we divide the total stress by the effective thickness, he, of the monolayer

crystal. Ultimate strength is an important output for a material to know its ability be

performed in applications. At the atomic scale, all of these mechanical constants and

parameters are associated with type of interatomic bonding in the crystal structure. Thus,

monolayer materials such as graphene which has strong C-C bonds, will have very high

values of ultimate strength.

In 2D ultra-thin materials, stress-strain curve can demonstrate general, expected

features and the material can seem to be structurally undeformed before it fractures. How-

ever, it is important to check the dynamical stability of the material especially for the strain

values which are smaller than the ultimate strain. This is needed because a material, for

example graphene, can preserve its crystal structure whether reversible or non-reversible

deformations occur. However, this does not mean that it is still dynamically stable. The

phonon instability can occur before the material reaches the ultimate strength point. This

means, the crystal structure is not deformed but it is not dynamically stable any more. At

some finite wave vectors, there will exist acoustic phonon modes with imaginary eigen-

values. For 2D monolayer materials, this acoustic phonon branch is generally the flexural

one which describes the out-of-plane motion of individual atoms. This can be an ex-

pected feature because 2D monolayer materials have no boundary condition along the

out-of-plane direction.

2.3. Theory of Phonons

The dynamical stability of materials whether under tensile test or at equilibrium

can be checked by the calculation of the materials’ phonon-band dispersion through Bril-

louin Zone. As a theory, matter is known to be composed of atoms vibrating around

a certain equilibrium position which is determined by positions of neighboring atoms

obeying the Hooke’s Law. Due to this law, restoring forces that the atoms feel when they

are displaced from their equilibrium position occur to describe these vibrations.

In this section of the thesis, we present the formalism for the calculation of phonon-

band dispersion in harmonic approximation where the magnitude of the restoring force

is related linearly to the magnitude of displacement. Thus, in order to determine the

phonon-band dispersion of a material, the variation of restoring forces with displacements

of atoms in a crystal should be known.
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Apart from the general theory of phonons, here we present our methodology used

in DFT calculations. As mentioned above, to get the phonon dispersions for a material,

one should obtain the force constants as a matrix by displacing atoms. In order to achieve

this, the small displacement method is used. In this methodology, firstly we need to

consider a sufficiently large supercell for the crystal and then each of the atoms in the su-

percell should be displaced along the cartesian coordinates. The amount of displacement

should be taken to be suitable for which the harmonic motion is satisfied. In addition,

the use of symmetries in the crystal can reduce the number of displacements. For each of

these displacements, the resulting Hellmann-Feynman forces are calculated and the dy-

namical matrix is constructed. Let us start with the potential energy function of the crystal

at low temperature given by,

Uharm = Eeq +
1

2

∑
lsα,l′tβ

Φlsα,l′tβulsαul′tβ (2.28)

where Eeq is the energy of the crystal at equilibrium positions of the ions while

uls denotes the displacement of the atom s in the unit cell l along cartesian directions α or

β. The term Φlsα,l′tβ represents the force-constant matrix which is the second derivative

of the harmonic potential energy with respect to the displacements. When the harmonic

energy given in Eq. 2.28 is differentiated, one can find the relation between the forces on

each atom, Fls, and the displacements, uls, which is expected to be related linearly as,

Flsα = −
∑
l′tβ

Φlsα,l′tβul′tβ (2.29)

Once we know the force constant matrix, Φlsα,l′tβ , then we can define the dynam-

ical matrix as,

Dsα,tβ =
1√
MsMt

∑
l

eiq(Rl′tβ−Rlsα)Φlsα,l′tβ (2.30)

where Ms and Mt are the masses of the sth and lth atoms. The term on the ex-

ponential function, Rl′tβ − Rlsα, represents the distortion of the atoms in the cartesian

components α and β.

Once this matrix is found, one may able to solve the eigenvalue equation of the

matrix. The eigenvalues of dynamical matrix give the phonon frequencies of each phonon

branch for the crystal at any wave vector, q. The total number of phonon branches is noth-

ing but the total number of degree of freedom for the crystal. The size of the dynamical

matrix is also determined by the number of these phonon branches. For a crystal structure

containing N -atoms in its primitive unitcell, there will be found 3N phonon branches 3
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of which are acoustic and 3N − 3 are optical branches. The acoustic branches describe

the motion of the individual atoms that move in-phase. For an optical phonon branch,

however, the atoms move out-of-phase. Throughout this thesis, we have used the PHON

code (Alfè, 2009), a free software, to calculate the phonon dispersion of a material. This

code uses the Hellmann-Feynman forces calculated by the software Vienna Ab-initio Sim-

ulation Package (VASP) (Kresse and Furthmuller, 1996a) which is based on DFT.

2.3.1. Raman Spectrum

Raman spectroscopy is an experimental tool which provides information about

atomic vibrations in a material that can be used to characterize the sample. In addition,

the chemical structure, phase, and crystallinity of the material can be identified. In the

Raman technique, a monochromatic light is incident on the sample and the scattered light

is detected by the experimental setup. During the experiment, both elastic and inelastic

scattering of light is detected. The majority of light scatters with the same frequency as

the incoming light which is known as Rayleigh or elastic scattering. Only very small

amount of the scattered light in energy, 10−5% of the incident light intensity, is shifted

due to the interactions between the incident electromagnetic waves and the vibrational

energy levels of the atoms in the material. The process leading to this inelastic scattering

is the termed the Raman effect. Raman scattering can occur with a change in vibrational,

rotational or electronic energy of atoms in the sample. Chemists are concerned primarily

with the vibrational Raman effect to characterize the structure, phase, and composition of

the material. The energy difference between the incident photon and the Raman scattered

photon is equal to the energy of a vibration of the scattering atoms. A plot of such energy

difference figures out the Raman spectrum for the material.

In the view of quantum mechanical description, the vibrating molecule is excited

to a virtual state. In Rayleigh scattering, the vibrating molecule returns to its ground state

with no loss of energy. The intensity of such scattering is very high when compared to

that of Raman scattering. In the plot of Raman spectrum, the Rayleigh intensities occur at

zero frequency difference since the incident light is scattered with its original frequency.

However, in Raman scattering the vibrating molecule returns to an excited state which

is known as Stokes Raman scattering. If the vibrating molecule is initially in an excited

state and returns to its ground state after scattering, this process is known as the Anti-

Stokes Raman scattering. Although, Stokes and Anti-Stokes Raman scattering have the

same intensities, scientists analyze and report the Stokes one since it exist with positive
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energies in the Raman spectrum.

2.3.1.1. Theory of Raman Activity

In order to calculate the Raman activity of a vibrational mode, we should start by

fundamental explanation of the intensity. Intensity of an output from a physical source is

ratio of the average power to the area where the scattering rate is observed.

I =
P

A
(2.31)

where P is the average Power radiated from the source and A is the area. As we

mentioned in the previous section, in a Raman spectroscopy experiment an incident light

interacts with vibrating atoms in the sample and scatters inelastically in Raman effect. As

we know from classical electrodynamics, an oscillating dipole radiates with total average

power P (watts) given by

P =
4π3ν4

0 |µ|2

3ε0c3
(2.32)

Then quantum mechanically the intensity of a transition from state |ν > to < ν ′|,

I =
4π3ν4

0

3Aε0c3
< ν ′|µ2|ν > (2.33)

where ν0 is the frequency of the incident light, c is the velocity of light, and µ is

the electric dipole moment of the oscillating dipole which is related to incident electric

field by,

µ = αE (2.34)

with α being the polarizability of the matter. Here the induced dipole moment

in the oscillating molecule is caused by the incident oscillating electric field E. For an

incident light of frequency ν0, the electric field component oscillates in the form,

E = E0cos(2πν0) (2.35)

whereE0 is the amplitude of the oscillating E-field. For a vibrational mode in material, the

polarizability, α, should be written in a Taylor expansion of the normal mode describing

the motion of the individual atoms in that state. The polarizability is written up to first

order term as,
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α = α0 +
∂α

∂Qk

|0Qk (2.36)

Here the Qk is the normal mode describing the whole motion of individual atoms

participating the kth vibrational mode. Since the motion of the atoms in the vibrational

mode is considered in harmonic approximation (all atoms are assumed to be harmonic

oscillator), the solution of the normal mode Qk is given as,

Qk = Q0cos(2πνk) (2.37)

where νk is the frequency of the kth normal mode. Using the form of E and α in

Eq. 2.34 we have,

µ = α0E0cos(2πν0) + E0Q0

(
∂α

∂Qk

|0
)
{cos[2π(ν0 − νk)] + cos[2π(ν0 + νk)]} (2.38)

In this form of induced electric dipole we all three scattering terms; the elastic

or Rayleigh scattering term which contains cos(2πν0), the Stokes Raman scattering term

containing cos[2π(ν0 − νk)] and the last term is the Anti-Stokes one having cos[2π(ν0 +

νk)] term. Since the Stokes Raman intensity is reported experimentally, we will deal only

with this term in our calculations. Using the Stokes Raman scattering term of induced

dipole moment in Eq. 2.33, we have the intensity for Stokes Raman scattering,

ISR =
4π3ν4

0E
2
0

3Aε0c3
< ν ′|

(
∂α

∂Qk

|0
)2

cos2[2π(ν0 − νk)Q2
0]|ν > (2.39)

where we can write I0 = 1
2
E2

0ε0c is the intensity of the incident light. In addition,

the time average of the cosine term will give 1
2
. Finally, we left with the Stokes Raman

scattering intensity of the form,

ISR =
8π3ν4

0I0

3Aε20c
4
| < ν ′|

(
∂α

∂Qk

|0
)
|ν > |2 (2.40)

Here, the initial and final states can be though as the polarization vectors of in-

cident light and scattered radiation. As can be seen in Eq. 2.40, the intensity of Stokes

Raman scattering is proportional to the change of polarizability with respect to the nor-

mal mode of a vibration. We will call this term as the Raman activity which is given by,

| < ν ′|
(

∂α
∂Qk
|0
)
|ν > |2 where the term

(
∂α
∂Qk
|0
)

is a 3x3 Raman tensor given by,
∂α11

∂Qk

∂α12

∂Qk

∂α13

∂Qk
∂α21

∂Qk

∂α22

∂Qk

∂α23

∂Qk
∂α31

∂Qk

∂α32

∂Qk

∂α33

∂Qk

 (2.41)
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Figure 2.2. A typical experimental setup for the Raman scattering process. êi and ês
represent the polarization vectors of incident light and scattered radiation.

for the kth vibrational mode. Since this term includes the change of of polarizability with

respect to the normal mode, it is a vibrational mode-dependent property. Generally, it can

be written with the knowledge of group theory for every vibrational mode.

In our calculation methodology within DFT, we are not able to directly calculate

the polarizability or its change with respect to the normal mode using the package VASP.

Instead, we can calculate the dielectric tensor for the material and its change with respect

to to the vibrations. Thus, the change in dielectric tensor can be related to the change in

polarizability by the formula,

∂αij
∂Qk

=

(
V

4π

)
∂εij
∂Qk

(2.42)

For a vibrational mode to be a Raman active mode, the Raman tensor should be

a non-zero tensor to give a non-zero intensity. If we have a non-zero Raman tensor for a

vibrational mode, then we can also calculate its direction-dependent activity by changing

the experimental setup. Changes in the polarization state of the incident light affects the

nature and information content of the scattered radiation. However, this is true for the

term itself, ês
(

∂α
∂Qk
|0
)
êi where ês and êi stand for the polarization vectors of scattered

radiation and incident light, respectively.

When we include the bra-ket in the notation, it means an average over all angles
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of orientation of the sample with respect to the laboratory frame is taken into account.

Thus, the Raman activity term can be written in terms of Raman invariants which are

independent of the setup of the experiment. Especially for the systems including randomly

oriented molecules, this angular averaging should be carried out to find the intensity of

Raman scattering. Now let us assume that the incident light is polarized in z-direction

and propagating along z-axis as shown in Fig. 2.3.1.1. The scattered radiation is detected

along y-direction and possibly polarized in x- and z-directions which can be shown by

the relation given in Eq. 2.34.

µz = αzzE0z (2.43)

µx = αxzE0z

Thus, two possible terms will appear in the form of scattered intensity given by in

Eq. 2.40, < α̃2
zz > and < α̃2

xz > where α̃ denotes the derivative of the polarizability with

respect to the normal mode, Qk. Having these two terms means that with their summation

one can calculate the total intensity of the scattered radiation or the partial intensities as

parallel and perpendicular to the incident light. The resulting averaging for these two

terms will be given in terms of the Raman invariants as,

α̃s ≡
1

3
(α̃xx + α̃yy + α̃zz) (2.44)

β ≡1

2
{(α̃xx − α̃yy)2 + (α̃yy − α̃zz)2 + (α̃zz − α̃xx)2

+ 6[(α̃xy)
2 + (α̃yz)

2 + (α̃xz)
2]} (2.45)

where α̃s and β represents the isotropic and anisotropic parts of the derivative of

polarizability tensor, respectively. The importance of representing the intensity in terms

of these two variables is being invariant to a change in the sample orientation. Thus, using

these identities can help us to write the scattered intensity independent of the experimental

setup. Finally, using these forms of isotropic and anisotropic polarizability derivative

tensors, the Raman activity can be written as,

RA = 45α̃2 + 7β2 (2.46)

When a detailed mathematical calculation is performed, it can be seen that al-

though the experimental setup given in Fig. 2.3.1.1 is changed, the total averaged Raman

activity remains the same with the form given in Eq. 8.4. However, the only thing that
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changes under the change of experimental setup is the ratio of perpendicular Raman ac-

tivity to parallel Raman activity which is known as the depolarization ratio given by,

ρ =
I⊥
I‖

(2.47)

As we mentioned, the total intensity of Raman scattering along perpendicular and

parallel polarization directions is invariant under experimental setup when orientational

averaging is considered for the sample being analyzed.

2.4. Computational Details

For the first-principles calculations, we employed the plane-wave basis projector

augmented wave (PAW) method in the framework of density-functional theory (DFT).

The generalized gradient approximation (GGA) in the Perdew- Burke-Ernzerhof (PBE)

form (Perdew et al., 1996b) was employed for the exchange-correlation potential as im-

plemented in the Vienna ab-initio Simulation Package (VASP) (Kresse and Furthmuller,

1996a,b). The van der Waals (vdW) correction to the GGA functional was included by

using the DFT-D2 method of Grimme (Grimme, 2006). For calculation of the band

gap, effect of spin-orbit coupling (SOC) on top of GGA was considered. More ac-

curate calculations for electronic band gap were performed using the Heyd-Scuseria-

Ernzerhof (HSE) screened-nonlocal-exchange functional of the generalized Kohn-Sham

scheme (Heyd et al., 2003). The charge transfer analysis was performed by using Bader

technique. (Henkelman et al., 2006)

For the electronic and geometric relaxations of the monolayer crystals, the total

energy was minimized until the energy convergence becomes less than 10−5 eV in the

structural relaxation and the convergence criteria for the total Hellmann-Feynman forces

on the unitcell was taken to be 10−4 eV/Å. To prevent possible interactions between pe-

riodic images of single layers, enough large vacuum spacing was considered. The min-

imum energy was obtained by varying the lattice constant and the pressure was reduced

below 1 kbar. A Γ-centered k-point mesh scheme was adapted for the Brillouin zone

(BZ) sampling for the primitive unit cells. The broadening for the density of state (DOS)

calculations was taken to be 0.05 eV.

In order to investigate the dynamical stability of monolayers, the vibrational spec-

tra of the structures were simulated. Phonon spectra were calculated by using the small

displacement method as implemented in the PHON code (Alfe, 2009). For the calculation
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of force constant matrix, supercells were considered for each monolayer crystal. Each in-

dividual atom was displaced from its equilibrium position by an amount 0.04 Å in the

harmonic region.

Our results on the mechanical, electronic, and vibrational properties of novel 2D

monolayer materials are presented in the following chapters. Firstly, we give our results

on the mechanical properties of pentagonal monolayer crystals of graphene, boron ni-

tride, and silver azide. Secondly, prediction of new doped holey graphene strcutures and

their electronic and mechanical properties are presented. Next, mechanical characteris-

tics of monolayer PTMC (GaS and GaSe) are presented in terms of their elastic constants

and non-elastic parameters. Finally, as an in-plane anisotropic monolayer material, me-

chanical properties of ReS2 and effect of hydrogenation on its mechanical properties are

discussed. In the next chapter, tunable electronic properties of a heterobilayer structure

of magnesium hydroxide (Mg(OH)2) and WS2 are presented. The effect of an external

electric field on the energy-band structure is investigated. Finally, vibrational properties

of novel 2D monolayer materials from different structure families are discussed in terms

of their Raman spectra and the effect of in-plane biaxial strain on their Raman spectra are

given.
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CHAPTER 3

MECHANICAL PROPERTIES OF MONOLAYERS OF

PENTAGONAL CRYSTAL STRUCTURE

In the last decade, graphene, one atom thick form of carbon atoms arranged in a

honeycomb structure, has become one of the most exciting topics of materials research

due to its exceptional properties (Novoselov et al., 2004). Besides graphene (Novoselov

et al., 2005), there exists many other forms of pure carbon in nature such as graphite, di-

amond, C60 fullerene (Kroto et al., 1985), nanotube (Iijima and Ichihashi, 1993), carbon

nanocone (Charlier and Rignanese, 2001), nanochain (Jin et al., 2009) and graphdiyne (Li

et al., 2014) which are the well known bulk and low dimensional forms of carbon element.

In additon to these, stability and unique mechanical properties of a new carbon allotrope,

p-graphene, are reported by Zhang et al recently (Zhang et al., 2015). It is shown that

while the unique pentagonal crystal symmetry provides a dynamical stability (for temper-

atures up to 1000 K), the buckled nature of the p-graphene leads to a negative value for

its Poisson’s ratio.

Metal azides, consisting of a metal atom (Na, K, Rb, Cs, Ag, Cu or Tl) and the

azide molecule (N3), are another group of compounds which may find applications in

monolayer crystal technology. Their electronic structure, chemical bonding, vibrational

and optical properties have been investigated (Gordienko and Poplavnoi, 2005; Jain et al.,

2013; Gordienko et al., 1996; Gordienko and Poplavnoi, 2004; Zhu and Xiao, 2007, 2008,

2010; Colton and Rabalais, 1976; Schmidt et al., 2007; Hou et al., 2011). Due to its large

chemical energy stored in its bulk phases, AgN3 is one of the intensely studied mem-

bers of this family. Gordienko et al. (Gordienko and Poplavnoi, 2005) have studied the

electronic band structure of AgN3 by using density functional theory (DFT) calculations.

Jain et al. (Jain et al., 2013) calculated the energy band gap of AgN3 as 2.95 eV. Using

a pseudoatomic orbital basis, the electronic structure of AgN3 was also reported (Gordi-

enko et al., 1996). Change of structural and vibrational properties of AgN3 under applied

pressure was studied by using DFT and generalized gradient approximation (GGA) (Zhu

and Xiao, 2007). Moreover, Schmidt et al. (Schmidt et al., 2007) reported the crystal

structure and chemical bonding of the high temperature phase of AgN3 by using X-ray

powder diffraction. In this study it was pointed out that the high temperature-AgN3 phase

contains buckled layers with silver atom connecting to the azide groups in pentagonal

form in the direction parallel to [001]. The phase transitions and structures of AgN3 at
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Figure 3.1. Top view and side view of pentagonal (a) graphene (b) AgN3, (c) B2N4,
(d) B4N2.

different pressure values were also reported by Hou et al. (Hou et al., 2011)

In this chapter we investigate the structural, electronic and mechanical properties

of pentagonal monolayers of carbon (p-graphene), two phases of boron nitride (p-B2N4

and p-B4N2) and silver azide (p-AgN3). The mechanical properties of these pentagonal

structures are examined under uniaxial strain and in terms of the in-plane stiffness and

the Poisson’s ratio values. Their vibrational spectra are also calculated. The paper is

organized as follows: Structural properties of four different pentagonal structures are

presented in Sec. 3.1. The electronic and magnetic properties of optimized structures are

investigated in Sec. 3.2. In Sec. 3.3 mechanical properties and dynamical stability of the

pentagonal structures are investigated. Finally we present our conclusions in Sec.3.4.

The cohesive energy of a unit cell was calculated using the formulaEc=
∑
na Ea −

Estr, where Ea denotes the energy of a single isolated atom and na denotes the number of

atoms contained in the unit cell. Estr denotes the total energy of the monolayer structure.

Summation is used for the structure containing different types of atoms in its simulation

cell. Calculated cohesive energies are listed in Table 3.
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Table 3.1. Geometry of pentagonal structures, calculated lattice parameter a, the dis-
tance between atoms dXY , buckling of the monolayer h, total magnetic
moment µ, the amount of charge lost or gained by the atoms ∆ρ, the to-
tal cohesive energy of a primitive unitcell Ec, the energy band gap of the
structure Eg, work function Φ, Poisson’s ratio ν and in-plane stiffness C.

Geometry a dXY h µ ∆ρ Ec Eg Φ ν C

(Å) (Å) (Å) (µB) (e) (eV) (eV) (eV) (eV/Å2)
p-Graphene buckled 3.64 1.34 (C1-C1) 1.21 0 0.3 42.40 2.21 6.01 −0.08 16.71

1.55 (C1-C2)
p-AgN3 planar 6.01 1.19 (N-N) - 0 2.1 31.45 1.33 3.43 0.90 0.37

2.33 (Ag-N)
p-B2N4 buckled 3.62 1.34 (N-N) 1.26 0 4.2 34.49 - 5.19 −0.02 3.62

1.55 (B-N)
p-B4N2 buckled 3.79 1.59 (B-B) 1.23 1.95 4.3 33.58 - 3.88 −0.19 7.59

1.57 (N-B)

3.1. Structural Properties

Firstly geometrical relaxations of structures were performed by considering their

square-shaped primitive unitcells with the lattice vectors a1=a(1,0,0) and a2=a(0,1,0) for

all structures (see Fig. 3). In the structure of p-graphene the 4-coordinated carbon atoms

were denoted by C1 while the 3-coordinated ones were denoted by C2. The geometrical

calculations show that the bond length of C1-C2 is 1.55 Å while C2-C2 bond length is

1.34 Å. The lattice constant is a=3.64 Å within GGA approximation and it is consistent

with the value calculated by Zhang et al. (Zhang et al., 2015) The buckling of the layer

is 1.21 Å which is also consistent with the value calculated by Zhang et al. (Zhang et al.,

2015) Bader charge analysis indicates that 0.3 e amount of charge is donated from C1

and two C2 atoms to other two C2 atoms. The calculated cohesive energy is 42.40 eV for

p-graphene monolayer.

For p-AgN3 geometry relaxation 8-atomic primitive unitcell was considered. As

seen in Fig. 3(b) 2-coordinated N atoms are denoted by N1 while 3-coordinated ones are

denoted by N2. The geometry relaxation within the GGA approximation gives the lattice

constant value as a=6.02 Å. The Ag-N1 bond length is 2.33 Å while the N1-N2 bond

length is 1.19 Å. The bond angle between the Ag-N1-Ag atoms is 132.5 degrees and it is

90 degrees for the N1-Ag-N1 bonds. The relaxed geometry of AgN3 monolayer structure

is planar similar to some other two dimensional structures such as hexagonal graphene

and h-BN. Bader charge analysis shows that an amount of 0.7 e charge from each Ag

atom was donated to the N atoms but dominantly to the central ones. The final charge on

the Ag, N1 and N2 atoms and N1 atom are 10.3 e, 5.2 e and 5.3 e respectively. The total
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cohesive energy of p-AgN3 is 31.45 eV as listed in Table 3.

Optimized lattice constant of the p-B2N4 is found to be a=3.62 Å. The N-N and

B-N bond lengths are 1.34 Å and 1.55 Å, respectively. The buckling of p-B2N4 is 1.26

Å which is close to that of p-graphene. The Bader charge analysis demonstrates that B

atoms have final charge of 0.9 e so that an amount of 2.1 e charge was transferred to the

N atoms from each B atom. The cohesive energy of p-B2N4 monolayer is calculated as

34.49 eV.

The p-B4N2 has a lattice constant of a=3.79 Å which is greater than that of p-

B2N4. This time the B-N bond length is 1.57 Å while the B-B bond length is 1.59 Å. The

buckling of p-B4N2 is 1.23 Å which is close to that of the p-B2N4 structure. Results of

Bader charge analysis indicates that an amount of 2.2 e charge was depleted to each N

atom from the B atoms. Finally the cohesive energy of p-B4N2 is 33.58 eV.

3.2. Electronic Properties

In this section the electronic band dispersion and magnetic ground state of p-

graphene, p-AgN3, p-B2N4 and p-B4N2 are investigated comprehensively. As seen in

Table 3, the p-graphene has an indirect band gap of 2.21 eV. As shown in Fig. 3.2(a) the

valence band maximum (VBM) of the p-graphene is located in between the Γ and the X

(high symmetry) points while the conduction band minima (CBM) is in between the M

and the Γ points. It also appears that the both spin up and spin down states are degenerate

throughout the Brillouin Zone and thus the structure does not exhibit any spin polarization

in its ground state. In the 6-atomic primitive unitcell of the p-graphene while two of the

4-coordinated C atoms have no excess electrons, four 3-coordinated C atoms pair their

electrons in pz orbitals and therefore the p-graphene has a nonmagnetic ground state.

The p-AgN3 has an indirect band gap of 1.33 eV as seen in Table 3. In Fig. 3.2(b)

the VBM of the p-AgN3 is in between the Γ and the X points while the CBM exists in

between the M and the Γ points. As it is seen in Fig. 3.2(b) that the p-AgN3 also does

not exhibit any spin.

The p-B2N4 is another structure having nonmagnetic ground state. As seen in Fig.

3.2(c), again the spin up and the spin down states are degenerate. Unlike the p-graphene

and the p-AgN3, the p-B2N4 displays metallic behavior. The valence band crosses the

Fermi level in between all high symmetry points through whole Brillouin Zone.

In all the pentagonal structures considered, only the p-B4N2 has a spin polarization

in its ground state. The total magnetic moment of p-B4N2 is 1.95 µB as given in Table
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Figure 3.2. Band-structures of pentagonal (a) graphene (b) AgN3, (c) B2N4, (d) B4N2

where blue lines denote up spins while dashed red lines denote down spins
respectively.

3. This value of total magnetic moment arises from the ferromagnetic ordering of B local

moments. In the primitive unit cell each B atom has a local magnetic moment of 0.48 µB
while the each N atom has local moment about 0.02 µB which is very small compared

to that of B atom. Therefore, the net magnetic moment of 1.95 µB for p-B4N2 structure

is mostly due to local moments of B atoms. In its 6-atomic primitive unit cell both N

atoms are 4-coordinated while all the B atoms are 3 coordinated. The spin polarization is

localized on the N atoms since they add up their electrons in their pz orbitals. As given in

Fig. 3.2(d) the spin up and spin down states have different dispersions. Only in between

the high symmetry points Γ and the X , M and the Γ the spin up and spin down bands

cross each other just above the Fermi level. The valence band of spin down states crosses

Fermi level while the conduction band of spin up states crosses Fermi level. The band

structure metallic for both spins but if spin orbit coupling is included, then there may

open a band gap at the points where the up and down spin bands cross.

The charge density difference plots of pentagonal structures are provided in Fig.

3.3. In order to plot these figures we first obtained the total charge density of each mate-

rial. Then, using the same unit cell and settings we obtained the charge density of each

atom separately at their original positions in the compound. After that we summed these

individual charge densities and subtracted them from the charge density of the compound.
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These figures reveal the modifications in the total charge of the individual atoms when the

crystal is formed. The charge density difference plot of p-graphene Fig. 3.3(a) shows that

there is a charge depletion in the hollow site of the lattice. This charge is accumulated

mostly at the bonding sited between the C atoms. The figure for the AgN3, Fig. 3.3(b),

indicates that there is a charge depletion from the N2 atoms and a charge accumulation

at the region where the N1-N2 and N1-Ag chemical bonds are formed. The hollow site

charge depletion is also observed for B2N4 in Fig. 3.3(c). Similar to previous cases, there

is a charge accumulation at the locations where the B-N chemical bonds are formed. For

the case of B4N2 in Fig. 3.3(d), there is a charge depletion from the one side of the B

atoms and again a charge accumulation at the bonding sites.

For the p-graphene, the charge transfer is from C1 atoms and 2 of C2 atoms to

other C2 atoms. For the p-AgN3, as seen in Fig. 3.3(b) there exists a charge depletion

from Ag and N1 atoms to central N atoms in azide group. For the p-B2N4 structure all of

the charge given in Table 3 is depleted to the N atoms as depicted by the charge density

plot in Fig. 3.3(c). Finally for p-B4N2 monolayer again the charge depletion occurs from

B atoms to N atoms.

3.3. Elastic Constants

The stiffness can be explained as the rigidity or the flexibility of a material. The

parameter which shows the mechanical response of a material to an applied stress is called

the Poisson’s ratio. It is defined as the ratio of the transverse contraction strain to the lon-

gitudinal extension strain in the direction of stretching force. The in-plane stiffness and

the Poisson’s ratio can be deduced from the relationship between the strain and the to-

tal energy. To calculate the mentioned parameters, we apply strain εx and εy to these

materials by changing the lattice constants along x and y directions. The strain range

is from -0.02 to 0.02 with a step of 0.01 which gives a data grid of 25 points. At each

grid point, the atomic positions are relaxed and the strain energy ES , which is the en-

ergy difference between strained and unstrained structures, is calculated. In the harmonic

region the strain energy can be fitted as ES = c1εx
2 + c2εy

2 + c3εxεy. The in-plane

stiffness along x and y directions can then be calculated as Cx = (1/S0)(2c1 − c3
2/2c2)

and Cy = (1/S0)(2c2 − c3
2/2c1) where S0 is the unstretched area of the supercell. The

Poisson’s ratio along x and y directions can be obtained by νx = c3/2c2 and νy = c3/2c1,

respectively. For all pentagonal structures we find that the in-plane stiffness and the Pois-

son’s ratio along x and y directions are equal.
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(a) (b)

(c) (d)

Figure 3.3. Charge density difference of pentagonal (a) graphene, (b) AgN3, (c) B2N4

and (d) B4N2.

The calculated in-plane stiffness and Poisson’s ratio are listed in Table 3. It can be

seen that p-graphene has the largest in-plane stiffness of 16.71 eV/Å2, indicating strong

bonding between carbon atoms. However, this value is smaller than that of graphene,

which has an in-plane stiffness of 20.91 eV/Å2. (Topsakal et al., 2009) This can be at-

tributed to different number of bonds in p-graphene and graphene. In graphene, each

C atom is 3-fold coordinated, while in graphyne the average coordination number of C

atom is 2.67. P-graphene has fewer number of bonds than graphene, so it has relatively

smaller in-plane stiffness. The calculated Poisson’s ratio for p-graphene is -0.08 which is

consistent with the value calculated by Zhang et al. (Zhang et al., 2015)

The p-AgN3 has a large Poisson’s ratio of 0.90, revealing its strong ability to

preserve the equilibrium area when strain is applied. The Poisson’s ratio for p-B4N2 is

-0.19, this is consistent with the calculation of in-plane stiffness. P-B2N4 has an in-plane

stiffness of 3.62 eV/Å2, much smaller than the p-graphene. For p-B4N2, the in-plane

stiffness is 7.59 eV/Å2. It is interesting to note that the p-graphene, the p-B2N4 and the p-

B4N2 have negative Poisson’s ratio values, contrary to the most of the existing materials.

Therefore, they belong to the so-called auxetic structures. When uniaxial tensile strain is

applied to these structures, the lattice along the transverse direction expands rather than

compresses. Normally, this ratio is positive and most of the solids expand in the trans-
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verse direction when they are subjected to a uniaxial compression. The materials with

negative Poisson’s ratio unfolds when they are stretched. Therefore, they are isotropic in

two dimensions for certain lengths and angles. It has been reported that some artificial

materials have negative Poisson’s ratio and they exhibit excellent mechanical properties

(Burns, 1987; Jiang and Park, 2014). In contrast to structure-engineered bulk auxetics, the

negative Poisson’s ratio is intrinsic in single layers of p-graphene, p-B2N4 and p-B4N2.

We also consider higher values of strain from 0.04 to 0.40 in uniform expansion,

in order to see structural deformations and determine the linear and non-linear elastic

regions for each pentagonal structure. For this purpose, we prefer a fully symmetric

square lattice with well defined high symmetry points in the BZ. Again the calculations

are performed in a 2 × 2 supercell. Increasing the strength of applied strain, increases

the total energy of the structure. The p-graphene has no structural deformation up to the

strain value of 40% but the buckling of the layer decreases to 0.66 Å. Under 40% strain,

the C2-C2 and C1-C2 bond lengths are 1.35 Å and 2.15 Å, respectively. P-AgN3 also does

not have any structural deformation up to 40% strain. It remains in the same form but

with a higher Ag-N1 bond length of 3.47 Å while the bond lengths in azide group remain

the same. The situation is different for pentagonal structures of B and N, because they

both have deformations in their structures at some critical strain values. P-B2N4 has not

a pentagonal shape structure when 12% strain is applied. Therefore one may say that it

is the critical strain value for p-B2N4 between linear and non-linear elastic regions. Non-

linear elastic region refers to a region in which irreversible structural changes occur in

the system and it transforms into a different structure. This critical strain value is slightly

greater for p-B4N2. After the strain strength of 16%, p-B4N2 transforms into a different

structure.

As an important feature of mechanical properties we also examine the dynamical

stability of pentagonal monolayer structures by performing phonon calculations. Here, the

dynamical matrix and the vibrational modes were calculated using the small-displacement

method (SDM) (Alfe, 2009) with forces obtained from VASP. As shown in Fig. 3.3,

while pentagonal structures of graphene and B2N4 have real vibrational eigenfrequen-

cies in the whole Brillouin zone, p-AgN3 and p-B4N2 have some phonon branches with

zero-frequency modes at several points in the Brillouin zone. This is an indication of

irreversible deformations that can be induced by those vibrational modes. It appears that

although the total energy calculations yield optimized atomic structures of p-AgN3 and

p-B4N2 these structures are dynamically unstable. Our calculations also reveal that p-

graphene and p-B2N4 not only possess dynamically stable crystal structures but also have
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Figure 3.5. Phonon modes of pentagonal (a) graphene (b) AgN3, (c) B2N4, (d) B4N2.

quite high-frequency phonon modes indicating strong bond formation in these materials.

3.4. Conclusions

Motivated by the unique properties of the recently reported p-graphene we have

investigated the structural, mechanical and electronic properties of three novel pentagonal

structures as well as p-graphene. Our calculations demonstrate that pentagonal structures

of graphene and BN have buckled geometries while p-AgN3 has a planar geometry. Cal-

culated band structures show that although hexagonal graphene is a zero-band gap semi-

conductor, the band dispersion of p-graphene displays an indirect-band-gap semiconduc-

tor behavior. Also the band dispersion of p-AgN3 displays semiconducting behavior with

an indirect band gap. However, pentagonal structures of BN are metallic while hexagonal

BN monolayer is a wide-band-gap semiconductor. For all of the pentagonal structures in-

vestigated in this study only p-B4N2 has a magnetic ground state while the other structures

have nonmagnetic ground states. We have also studied the mechanical properties of these

structures and calculated their in-plane stiffness and corresponding Poisson’s ratios. The

stiffest monolayer is found to be the p-graphene among the four structures. p-graphene,

p-B2N4 and p-B4N2 all have negative Poisson’s ratio while the p-AgN3 has a positive

Poisson’s ratio. Also the uniform strain calculations indicate that p-graphene and p-AgN3
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do not show any irreversible structural deformations for up to large strain values while

p-B2N4 and p-B4N2 deform into different phases at some certain strain strengths.
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CHAPTER 4

PREDICTION OF NOVEL 2D MONOLAYERS OF HOLEY

GRAPHENE CRYSTALS

The lack of a band gap is the major obstacle for the use of graphene in electronic

applications such as field-effect transistors (Wang et al., 2009), and electrodes in solar

cells (Xue et al., 2012; Osella et al., 2012). Thus, tuning its electrical properties through

opening of a band gap is of great technological importance (Wang et al., 2009; Berger

et al., 2006; Wei et al., 2009). Nitrogen doping has been widely studied as one of the

most feasible methods to modulate the electronic and other properties of graphene and its

derivatives (Dai, 2013; Zhang et al., 2013; Dai et al., 2012; Gong et al., 2009; Zhao et al.,

2011).

A series of covalent organic frame-works (COFs) (Xiang and Cao, 2013; Col-

son and Dichtel, 2013; Colson et al., 2011; Feng et al., 2012) have been designed to

form large graphene-like honeycomb networks. In 2005, Yaghi et al. demonstrated the

utility of the topological design principle in the synthesis of porous organic frameworks

which are connected with covalent bonds, which are the first successful examples of these

COFs (El-Kaderi et al., 2007). Since COFs are composed of light-weight elements linked

by strong covalent bonds, they have low mass densities and possess high thermal stability.

The successful realization of COFs with molecular graphene-type building blocks would

provide covalent frameworks that could be functionalized into light-weight materials op-

timized for gas storage, photonic, and catalytic applications (El-Kaderi et al., 2007; Han

et al., 2008).

N-doped graphene-like honeycomb structures are important examples of COF ma-

terials. In a recent study by Mahmood et al. (Mahmood et al., 2015) the design and prepa-

ration of a two dimensional holey crystal, C2N, with uniform holes and nitrogen atoms

was reported. The structure and band gap of C2N were studied by using both experimen-

tal techniques and DFT-based calculations. This new structure is layered like graphite

with a different interlayer distance and is highly crystalline. It exhibits a direct band

gap which was determined as 1.96 eV by using ultraviolet visible spectroscopy, while a

slightly smaller band gap of 1.70 eV is obtained from density functional theory (DFT) cal-

culations. In another study, Sahin investigated the structural and phononic characteristics

of the C2N structure (Sahin, 2015). The formation of heterostructures of holey graphenes

and the resulting Moiré patterns were investigated by Kang et al (Kang et al., 2015). Very
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recently Zhang et al. investigated the structural and electronic properties of few-layer

C2N by considering different stacking orders and number of layers (Zhang et al., 2015).

In the study by Xu et al. energy barriers for the adsorption of H2, CO2 and CO molecules

on C2N monolayer were calculated for a possible H2 dissociation (Xu et al., 2015).

Motivated by the recent experiment on synthesis of C2N monolayer (Mahmood

et al., 2015) and by the studies on graphene-like networks composed of COFs, we in-

vestigate the structural, electronic and mechanical properties of 2D holey crystals of C2X

(X=N, P or As) stoichiometry. The mechanical properties of these hexagonal structures

are examined under uniaxial strain, and the in-plane stiffness and the Poisson ratio values

are obtained. In addition, the most probable types of atomic scale disorder, formation of

N, P and As defects, are investigated for these holey structures.

The chapter is organized as follows: Discussions about electronic and magnetic

properties of these monolayer crystals are given in Sec. 4.2. In Sec. 4.3 the mechanical

properties are discussed by examining the in-plane stiffness and the Poisson ratio for

each structure. Electronic and geometric properties of defect and H-impurities in C2X

monolayers are discussed in Sec. 4.4. Finally we conclude in Sec. 4.5

a

b

X

C

Figure 4.1. Top view of C2X holey graphene monolayer structure where X represents
N, P or As atoms.

The cohesive energy per atom in a primitive unit cell was calculated using the

formula;

Ecoh = [12EC + 6EX − EC2X]/18 (4.1)

where EC and EX denote the magnetic ground state energies of the single C and X atoms,

respectively while EC2X denotes the total energy of the monolayer C2X. Calculations on

elastic constants were performed by considering a 2× 2 supercell containing 72 atoms.
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Table 4.1. The calculated ground state properties of C2X-structures, structural geom-
etry, lattice parameters of primitive unit cell, a (see Fig. 4.1); the distance
between C-X atoms, dC−X ; the distance between two carbon atoms, dC−C ;
the average charge donated to (+) of from (−) each C atom, ∆ρ; the cohe-
sive energy per atom in primitive unitcell, Ecoh; the energy band gap of the
structure calculated within, GGA with the inclusion of SOC, EGGA

g ; and
HSE06, EHSE

g ; workfunction, Φ; Poisson’s ratio, ν; and in-plane stiffness
C. Calculated parameters for graphene and h-BN are given for compari-
son. 1 (Lee et al., 2008) and 2 (Berseneva et al., 2013)

a dC−X dC−C ∆ρ Ecoh EGGAg EHSEg Φ ν C

(Å) (Å) (Å) (e) (eV) (eV) (eV) (eV) (eV/Å2)
C2N 8.33 1.34 1.47 −0.6 7.64 1.66(d) 2.47(d) 5.23 0.26 9.27
C2P 9.33 1.76 1.42 +0.6 6.84 0.22(i) 0.94(d) 4.90 0.21 6.69

C2As 9.72 1.92 1.41 +0.3 5.78 0.43(d) 1.16(d) 4.89 0.21 5.83
Graphene 2.46 - 1.42 0.0 7.97 - - 4.51 0.161 21.251

h-BN 2.51 1.45 (B-N) - +2.1 7.10 4.48(d) 5.56(d)2 5.80 0.22 17.12

4.1. Structural Properties

Generic forms of the monolayer structures, C2N, C2P and C2As, display honey-

comb symmetry as shown in Fig. 4.1. All calculated parameters for their relaxed geome-

tries are listed in Table 4.1. In the primitive unit cell there are 12 C atoms and 6 X atoms,

X being N, P or As. The C2N crystal has a planar two dimensional structure with a lattice

constant of 8.33 Å which is consistent with the value reported by Mahmood et al. (Mah-

mood et al., 2015) The calculated C-C bond length is 1.47 Å while the C-N bonds are

1.34 Å with the C-N-C bond angle being 118 degrees. This bond angle is the largest

one of all three structures. This means that the hole between the benzene rings is nearly

a perfect hexagon in C2N. Bader charge analysis shows that an average 0.6 e of charge

depletion per atom occurs from C atoms to the neighboring N atoms. The cohesive energy

per atom is highest for the C2N structure with a value of 7.64 eV, as calculated using Eq.

(4.1).

Optimized lattice constant of the C2P monolayer crystal is calculated to be 9.33 Å.

The C-C bond length is 1.42 Å as in graphene hexagons and the C-P bond length is 1.76

Å . The C-P-C bonds have a narrower angle than that of the C-N-C bonds with a value of

108 degrees. According the Bader charge analysis, opposite to the C2N case an average

of 0.6 e charge is transfered to each C atom from the P atoms. The cohesive energy per

atom, 6.84, eV is less than that of C2N.

For the C2As monolayer structure the lattice constant is 9.72 Å with a correspond-
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ing C-C bond length of 1.41 Å which is nearly the same as the C-C bond in C2P. The

longest bond length between a C atom and its X neighbor is found for the C-As bond with

a value of 1.92 Å. The angle between two C-As bonds, 108 degrees, is smaller than that of

the C-N bonds. We found that the charge transfer occurs in this structure from As atoms

to each C atom with a value of 0.3 e. The charge transfer occurs from P and As atoms

to the C rings for C2P and C2As, respectively. However, it occurs from C rings to the N

atoms in C2N.

4.2. Electronic And Magnetic Properties

The calculated lattice constant and electronic band gap of C2N are in agreement

with the values reported by Mahmood et. al. (Mahmood et al., 2015) C2N monolayer has

a direct band gap of 1.66 eV and 2.47 eV in GGA and HSE06 levels, respectively as seen

in Fig. 4.2(a). The overall dispersion characteristic of the bands are not affected by the

inclusion of HSE06. The valence band maximum (VBM) and conduction band minimum

(CBM) of the C2N monolayer lies at the Γ point of the Brillouin zone. Relatively large

value of the C2N energy band gap makes it a suitable semiconductor for various device

applications. It also appears from the energy band structure that spin up and spin down

states are degenerate throughout the Brillouin Zone and therefore the structure does not

exhibit any spin polarization in its ground state. Due to the pairing of pz electrons of 3-

coordinated C atoms and 2-coordinated N atoms, the structure has a nonmagnetic ground

state.

The electronic band dispersion for the C2P monolayer crystal indicates that it has

an indirect band gap of 0.22 eV and a direct gap of 0.94 eV in GGA and HSE06 levels,

respectively. Since the VBM of C2P monolayer consists of localized states, these states

are affected by the HSE06 functional and the VBM point of the band structure moves to

the Γ point as shown in Fig. 4.2(b). Like the C2N monolayer, C2P has also a nonmagnetic

ground state.

In Table I, the workfunctions of the monolayer holey graphenes are also shown.

It is seen that the workfunction values of these compounds are smaller than that of the

h-BN and larger than the value for graphene. Comparing the workfunction values of the

monolayers a decreasing trend can be seen from nitrogenated one to the arsenicated one.

This result can be explained by the decreasing ionization energy of the elements in the

periodic table from top to bottom rows.

The C2As monolayer crystal is a semiconductor with a direct band gap of 0.43
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(b)

AFM-1

AFM-2

(a)

Figure 4.3. Charge density difference, ρup-ρdown, of C2As monolayer structure for
(a) fully anti-ferromagnetic (AFM-1) order and (b) anti-ferromagnetic or-
der in the benzene ring (AFM-2) where green/yellow color is for minor-
ity/majority spin states. The plotted isosurface values are 10−3 e/Å3 and
10−5 e/Å3 for (a) and (b) respectively.

eV and 1.16 eV in GGA and HSE06 levels, respectively. Similiar to the case of C2N, the

inclusion of HSE06 functional increases the energy gap and does not change the disper-

sion characteristic of the band structure (see Fig. 4.2(c)). Both the VBM and the CBM of

C2As lie between the Γ and the M points. Interestingly, there is an isolated Dirac point

in the conduction band of C2As which can be populated using doping or a gate potential.

The net magnetic moment for this structure is zero like for the other two monolayers. But

the ground state is obtained for anti-ferromagnetic (AFM-1) ordering given in Fig. 4.3(a)

in which all the neighboring C and As atoms have equal but opposite local magnetic mo-

ments in their sublattices. In the AFM-2 magnetic ordering, the C atoms in a ring, have

opposite magnetic moments while the As atoms have ferromagnetically ordered moments

as seen in Fig. 4.3(b). The net magnetic moments of the two configurations, AFM-1 and

AFM-2, are zero with an energy difference of 50 meV, AFM-1 being the ground state.

4.3. Mechanical Properties

The elastic properties of homogeneous and isotropic materials can be represented

by two independent constants, the in-plane stiffness C and the Poisson ratio ν. The stiff-

ness parameter is a measure of the rigidity or the flexibility of a material. The mechanical
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Figure 4.4. (a) Change of total energy of the three holey graphene monolayers under
applied strain. Structural changes under applied strain of (b) C2N, (c) C2P
and (d) C2As.

response of a material to an applied stress is called the Poisson ratio. It is also defined

as the ratio of the transverse contraction strain to the longitudinal extension strain in the

direction of the stretching force, that is ν=−εtrans/εaxial.
To calculate the elastic constants of C2N, C2P and C2As monolayers, a 2 × 2

supercell containing 72 atoms is considered. The strains εx and εy are applied to the

monolayer crystals by varying the lattice constants along the x and y directions. The

strain parameters εx and εy are varied between ±0.02 with a step size of 0.01. For this

purpose three different sets of data are calculated; (i) εy=0 and εx varying, (ii) εx=0 and

εy varying and (iii) εx=εy. At each configuration, the atomic positions are fully relaxed

and the strain energy, ES , is calculated by subtracting the total energy of the strained

system from the equilibrium total energy. The calculated data is fitted to the equation

ES = c1εx
2 + c2εy

2 + c3εxεy, so that the coefficients ci are determined. The in-plane

stiffness C can then be calculated from C = (1/A0)(2c− c3
2/2c) where we let c1=c2=c

due to isotropy of the unit cell and A0 is the unstretched area of the 2 × 2 supercell. The

Poisson ratio is obtained as ν = c3/2c. Due to the symmetry of the honeycomb lattice,

the in-plane stiffness and the Poisson ratio are the same along the x and y directions.

As indicated in Table 4.1, the calculated in-plane stiffness for C2N is 9.27 eV/Å2

which has the highest value among the three monolayer structures. This value indicates

a strong bonding between the C and N atoms. Although it is the highest value, it is still

smaller compared to that of graphene and h-BN (Lee et al., 2008). The calculated Poisson
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ratio for the C2N monolayer is 0.26 which is in the range for usual two dimensional ma-

terials. This means that when the material is compressed in one direction, it will expand

in the other direction as well. The in-plane stiffness value is for C2P is calculated (6.69

eV/Å2) with a corresponding Poisson ratio of 0.21, which means that the C2P crystal is

less responsive than C2N under compression. The lowest in-plane stiffness for the C2As

monolayer is 5.83 eV/Å2 with the corresponding Poisson ratio of 0.21 which is equal to

that of the C2P crystal. All the holey monolayers have Poisson ratios which are larger

than that of graphene and close to that of h-BN.

We next consider the behavior of the monolayer structures under higher values of

uniform strain ranging from 0.04 to 0.40. For this purpose the calculations are performed

in a 2 × 2 supercell. The change of strain energy of all the monolayers under applied

biaxial strain is given in Fig. 4.4(a). Although C2N is the stiffest crystal, structural

deformations start to form beyond 12% strain which is small compared to those of C2P and

C2As. By structural deformation we mean that the N atoms connecting the C pairs start

to form C4N2 isolated hexagonal rings. The distance between two neighboring C atoms

in different hexagonal rings become 1.79 Å at 12% strain. This distance increases up to

3.10 Å at 40% strain. The deformation path seems to be the same for the C2P monolayer

structure. Up to a strain value of 20%, P atoms are still bonded to the hexagonal C rings

and there is no drastic change in the structure of the monolayer. However beyond 20%

strain hexagonal rings are formed composed of 4-C and 2-P atoms as in the case of C2N.

The C-C bond lengths in C pairs are approximately 1.30 Å at 20% strain and there exist

C-C pairs connected by P atoms as shown in Fig. 4.4(c). Among the monolayer structures

considered, only in the C2As crystal the hexagonal C rings preserve their form under large

strains. The bond angle of C-As-C bond gets larger as the applied strain is increased. As

given in Fig. 4.4(d), at 24% strain this angle becomes 158 degrees and there is no longer

bonding between the C and As atoms. Compared with the other two structures, C2As

has the smallest in-plane stiffness value and it is the softest material among the three

monolayers. The C2X monolayer structures can be viewed as an ordered phase of 6-C

rings linked by the X atoms. It seems that the linker atoms N and P have stronger bonds

to their C neighbors so that the structure dissociates into isolated rings by breaking the

C-C bonds under high strain. For As, however, the C-C bonds must be stronger than the

C-As bonds so that the crystal yields at the linker sites.
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Figure 4.5. Optimized X-vacancy and their H substituted structures of (a) C2N, (b)
C2P, (c) C2As respectively.

4.4. Effect Of Defects

Considering the synthesis procedure of the mentioned holey crystals in which the

ingradient molecules are self-assembled, the atomic scale disorders like vacant N, P and

As sites are the most probable disorders in C2N, C2P and C2As monolayers, respectively.

The existence of H-impurities at these vacant-sites are also possible since the C2N holey

structure is synthesized as a result of the interactions of hexaaminobenzene and hexake-

tocyclohexane molecules which contain H atoms in their composition. In this section, we

investigate the effects of these vacant sites and substitutional H-impurities on the geomet-

ric and the electronic properties of the monolayer holey structures.

Optimized geometries of the defected structures are shown in Fig. 4.5. For the

N-defected C2N and P-defected C2P holey crystals (Figs. 4.5(a) and (b)), removal of a

single N or P atom results in a bond formation between the two C atoms at the vacant

site. However, in the case of As-defected C2As the optimized geometric structure does

not lead to an additional bonding (see Fig. 4.5(c)). Geometry optimizations indicate

that for X-vacant structures only the C2N retainsits planar geometry while the other two

structures get buckled. Our Bader analysis shows that charge depletion of 1.1 e per atom

occurs from the C atoms to the neighboring N atoms in N-defected C2N. For P-defected

C2P, an average of 0.6 e charge is transferred to each C atom except for the two C atoms
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at the vacant sites since these C atoms keep approximately their initial charges. For As-

defected C2As the charge is depleted to the C atoms with a value of 0.3 e per atom on

the average. We found that the N-defected C2N has a nonmagnetic ground state while

P-defected C2P and As-defected C2As have magnetic ground states with a net moment of

1 µB. Total DOS calculations indicate that X-missing structures of C2N and C2P become

metallic monolayers while the As-defected C2As is still a semiconductor with a lower

band gap energy than its perfect form (see Fig. 4.6(c)). Calculated cohesive energies per

atom in the supercells demonstrate that for all three structures the highest Ecoh occur for

X-missing structures of C2N and C2P while for the C2As monolayer most energetic case

is 1H-impurity case as seen in Table 4.2.

Table 4.2. The calculated ground state properties of defected C2X-structures, struc-
tural geometry, lattice parameters of 2× 2 supercell, a and b, the net mag-
netic moment of the structure, µ, and the cohesive energy per atom in su-
percell Ecoh.

Geometry a b µ Ecoh

(Å) (Å) (µB) (eV)
N-vacant-C2N planar 16.44 16.44 0 6.77
P-vacant-C2P buckled 17.66 17.67 1 6.02

As-vacant-C2As buckled 19.27 19.27 1 5.61
1H-imp.-C2N planar 16.63 16.63 0 6.71
1H-imp.-C2P buckled 18.37 18.15 0 5.97

1H-imp.-C2As buckled 18.37 19.04 0 5.65
2H-imp.-C2N planar 16.79 16.79 1 6.67
2H-imp.-C2P planar 18.71 18.71 1 5.93

2H-imp.-C2As planar 19.46 19.45 1 5.58

As seen in Fig. 4.5(a), the C2N structure having a single H substitution at the

N-vacant site preserves the geometry of C2N monolayer. The geometries of other two

monolayers with 1H-impurity get buckled as seen in Fig. 4.5. The result of the Bader

analysis for all three monolayers for 1H-impurity case show that 0.1 e of charge is trans-

ferred to the C atom at the vacant site from H atoms. The inclusion of single H-impurity

gives rise to a non-magnetic ground state for all C2X monolayers as in their bare cases.

For 1H-impurity structures the total DOS calculations indicate that all three monolayers

preserve their semiconducting character but with lower values of band gap energies (see

Fig. 4.6).

In our study, inclusion of 2H-impurities at the X-vacant sites is also considered.

In all three defected structures each H atom binds to a single C atom as expected (see Fig.
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4.5). Addition of the second H atom to the vacancy sites restores the planar geometry of

all three monolayers. In this case, the charge is donated to each C atom at the vacant site

from the H atoms such that the final charges on C atoms are the same as their values in the

perfect crystals. 2H impurities result in a magnetic ground state for all three monolayers

with a 1 µB of net magnetic moment. The total DOS calculations demonstrate that inclu-

sion 2H-impurities in C2X structures preserves the semiconducting behaviors of the three

monolayers with lower band gap energies (see Fig. 4.6). The corresponding cohesive

energies per atom are also given in Table 4.2 which indicate that the C2N monolayer has

the highest Ecoh than that of C2P and C2As monolayers.

-1 0 1 -1 0 1 -1 0 1

Energy (eV)

D
O

S
 

2H-impurity

(a)

(b)

(c)

1H-impurityX-vacancy

Figure 4.6. Total DOS for defected and H-impurity structures of (a) C2N, (b) C2P, and
(c) C2As respectively.

4.5. Conclusion

Motivated by recent experiments on the C2N monolayer and graphene-like COF

networks, we investigated structural, mechanical and electronic properties of two other

monolayer structures, C2P and C2As. We found that C2N has the highest Ecoh among the

three monolayers and the calculated values of Ecoh are comparable with that of graphene

and h-BN. Moreover, it is calculated that, the workfunction values of the monolayers are

decreasing from C2N to C2As which is consistent with the trend in ionization energy of

each element. Energy-band structure calculations show that the holey monolayers are
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direct band gap semiconductors. Our calculations on mechanical constants suggest that

the stiffest material is the C2N structure with the highest Poisson ratio among the three

monolayers. Moreover, the vacancy defects of N and P atoms in holey structures lead to

metallic ground states while the substitutional H-impurities do not change their semicon-

ducting character but can create net magnetization on the monolayer. Finally, we point

out that holey graphene monolayers are new two dimensional materials that are mechani-

cally stable and they are flexible semiconductors which may be favorable for applications

in optoelectronics.
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CHAPTER 5

FLEXIBLE MONOLAYERS OF

GA-MONOCHALCOGENIDES (GAS AND GASE)

GaS and GaSe structures are layered semiconductors in their bulk form possessing

direct or indirect gap character depending on the type of chalcogenide atom. They consist

of weakly bound atomic thin layers in which there are two sheets of Ga layers sandwiched

between chalcogenide layers (in order of X-Ga-Ga-X, where X=S or Se). The intralayer

bonding of PTMCs has strong covalent character while the interlayer interaction has weak

vdW character. Bulk GaSe crystal was reported to be a direct-gap semiconductor with

band gap of 2.0 eV while bulk GaS was found to be an indirect-gap semiconductor with

a band gap of 2.4 eV (Tatsuyam.C et al., 1970; Yamamoto et al., 2001). In recent years

large area ultrathin layers of GaS and GaSe crystals were successfully synthesized on

SiO2/Si substrates by using micromechanical cleavage technique (Late et al., 2012; Ho

et al., 2006; Aono et al., 1993; Hu et al., 2012). Chen et al. studied theoretically the

electronic and magnetic properties of substitutionally doped monolayer GaS and found

that the N atom is the most promising candidate for p-type doping among non-metal and

transition metal dopants. They also investigated the electronic and magnetic properties of

native defects in GaS monolayer and found a half-metallic behavior for Ga vacancy (Chen

et al., 2015a,b). Li et al. studied the interlayer orientations and stackings of 2D bilayer

GaSe crystals and reported that the rotational energy barriers increase as the size of the

system increases (Li et al., 2015). Moreover, Zhou et al. studied the second harmonic

generation in layered GaSe crystals and found that the strongest second-harmonic gener-

ation intensity is observed for GaSe among all 2D crystals (Zhou et al., 2015).

Although the electronic, magnetic and optical properties of monolayer GaS and

GaSe crystals have been studied extensively, their mechanical properties are still un-

known. Therefore, we comparative study of the mechanical properties of single layer

crystal structures of GaS, GaSe, graphene and MoS2 in terms of their elastic constants.

In addition, the effect of charging the system on the mechanical properties of monolayer

GaS and GaSe are investigated.

The chapter is organized as follows: Structural and electronic properties of mono-

layers of graphene, MoS2, GaS and GaSe are presented in Sec. 5.1. In Sec. 5.2, the

mechanical properties of these monolayers and the effect of charging on their elastic con-

stants are discussed in detail. Finally, we conclude in Sec. 5.3.
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Figure 5.1. Top and side view of monolayer (a) GaS and (b) GaSe. Red dashed lines
represent the rectangular unit cell and a and b are the lattice vectors. h is the
thickness of the monolayer GaS and GaSe crystals. The charge distribu-
tion on the individual atoms for monolayer (c) GaS and (d) GaSe are shown
in side view. Increasing charge density is shown by a color scheme from
blue to red with linear scaling between zero (blue) and 6.7 e/Å3 (red). (e)
and (f) show the calculated energy-band structure within GGA+SOC and
GGA+SOC+GW approximations for monolayer GaS and GaSe, respec-
tively. The Fermi energy (EF ) level is set to the valence band maximum.
The red dashed lines indicate the GW band structure while blue lines indi-
cate the indirect GGA+SOC band structure.
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Table 5.1. The calculated ground state properties of monolayer graphene, MoS2, GaS
and GaSe crystals: proper thickness hp, magnetic state, the amount of
charge received by the a chalcogenide atom ∆ρ, calculated energy band
gap within GGA (EGGA

g ), SOC (ESOC
g ), GW (EGW

g ), and workfunction Φ,
in-plane stiffness C, Poisson ratio ν, ultimate strength σU , ultimate strain
εU , and fracture strain εF . 1 (Shi et al., 2013)

hp Magnetic ∆ρ EGGAg ESOCg EGWg Φ C ν σU εU εF
(Å) State (e) (eV) (eV) (eV) (eV) (N/m) - (GPa) (%) (%)

Graphene 3.35 NM - - - - 4.40 330 0.19 96 20 26
MoS2 6.15 NM 0.5 1.64 1.56 2.801 5.88 122 0.26 26 22 24

GaS 7.76 NM 0.8 2.59 2.59 3.88 6.10 91 0.26 12 24 29
GaSe 7.96 NM 0.6 2.21 2.18 3.68 5.59 77 0.25 10 23 30

The optical band gaps of monolayer GaS and GaSe were calculated by solving

the Bethe-Salpeter equation (BSE) on top of the GW (G0W0) calculation including the

spin-orbit coupling (SOC). For these calculations 6× 6× 1 Γ centered k-point sampling

was used and 160 bands were included in our calculations. The cutoff energy for the

plane-waves was chosen to be 400 eV.

5.1. Structural and electronic properties

Monolayers of GaS and GaSe crystals consist of 4-atom-layers in the order X-Ga-

Ga-X (see Figs. 5.1(a) and 5.1(b)) where X stands for S or Se atoms. The calculated lattice

parameters are 3.58 and 3.75 Å for monolayers of GaS and GaSe structures, respectively.

These results are compatible with the calculated Ga-X bond lengths i.e. 2.35 and 2.47 Å

for the Ga-S and Ga-Se bonds, respectively (2.41 Å for Mo-S bond in monolayer MoS2).

The thickness of the monolayers were calculated to be 4.66 and 4.82 Å for GaS and GaSe,

respectively. In both monolayers charge donation occurs from Ga to chalcogenide atoms.

In monolayer GaS each Ga atom donates 0.8 e to each S atom which indicates the strongly

ionic character of the Ga-S bond see Fig. 5.1(c). As seen in Fig. 5.1(d), the amount of

charge depletion from Ga to Se atoms decreases to 0.6 e per atom in monolayer GaSe

which indicates the mostly covalent character of the Ga-Se bond. This because of the

charge depletion between Ga atoms which is seen by small red area in Fig. 5.1(d). The

work function values were calculated as 6.10 and 5.59 eV for GaS and GaSe, respectively.

The work function of monolayer MoS2 is smaller than that of monolayer GaS with the

value of 5.88 eV. Monolayer GaSe has a work function of 5.59 eV which is lower than that
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values for monolayer (a) GaS and (c) GaSe. The Fermi energy (EF ) level
is set to the VBM of each structure. The change in the band gap with
applied strain for monolayer (b) GaS and (d) GaSe.

of GaS due to the higher ionizations energy of S atom as compared to the Se atom. For

both of the monolayers, work functions decrease upon charging the structures. When 0.1 e

per primitive cell is added, extra charges accumulate to pz orbitals of chalcogenide atoms.

Thus, work function shows a rapid decreasing since it is calculated from the surface of

the material. However, when 0.1 e per primitive cell is added, now the extra charges

are depleted to inside the monolayers. Therefore, the work function shows a decreasing

with small amount of energy difference. In addition, charging the structures expands the

lattice and thus, the lattice constant tend to increase upon charging. The cohesive energy

decreases for larger stuctures. Therefore, the cohesive energies show decreasing trend

upon charging the system.

Although they exhibit different semiconducting characters in their bulk forms,

monolayers of GaS and GaSe are indirect bandgap semiconductors. Their valence band

maximum (VBM) lies between the K and Γ points in the Brilloin Zone (BZ). However,

it is important to note that the valence band edge in between Γ and M points differs only
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by 6 meV energy than VBM of the monolayers. The conduction band minimum (CBM)

resides at the M point in monolayer GaS while it resides at the Γ point in monolayer GaSe

(see Figs. 5.1(e) and (f)). The calculated GGA+SOC band gaps are 2.59 and 2.18 eV for

monolayer GaS and GaSe, respectively. These values of the band gap will increase when

we perform GW calculation within SOC. Our calculated GW band gaps are 3.88 and 3.68

eV for monolayer GaS and GaSe, respectively.
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Figure 5.3. (a) The change of strain energy and (b) the created stress in the different
monolayer materials under applied biaxial strain. (c) The geometries of
each monolayer crystals at fracture strain values.

Before the detailed investigation of the mechanical characteristics of monolayer

GaS and GaSe, we show how the electronic structure responds against applied biaxial

strain. In order to investigate the response of the electronic band structure of the mono-

layers to applied biaxial strain, we considered the BZ of the rectangular unit cell shown

in Fig. 5.2. As seen in Figs. 5.2(b) and (d), the band gap of the two monolayers decreases

monotonously with increasing applied strain. Electronic band structure of GaS displays

metallic behavior firstly at ε=17%. The indirect-gap character of GaS is not affected by

the applied strain only the value of the gap decreases. As the applied strain increases, the

energy difference between two valence band edges also increases. Similar shift in VBM

of hexagonal Aluminium Nitride (h-AlN) was reported by Bacaksiz et al. (Bacaksiz et al.,

2015). The VBM of GaS consists of pz orbitals of the Ga and S atoms. Thus, the out-of-

plane orbitals are not affected by the applied in-plane strain. Differing from the atomic

orbital character of VBM, CBM consists of both pz orbital of S atom and px, py orbitals of

Ga atom. The in-plane orbitals of Ga atom are strongly affected by the in-plane strain and

thus, the energy of CBM decreases (see Fig. 5.2(a)). The same behavior of band struc-
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ture can be seen in monolayer GaSe under applied biaxial strain. The metallic behavior

of GaSe is first seen at ε=14% which is smaller than that of GaS. Although we reported

the critical strain values for semiconductor-metal transition, it should be noted that these

values depend also on the value of the band gap. If one considers the GW gaps or band

gaps calculated within HSE06, critical strain values may be found to be higher. Since

the VBM of GaSe consists of pz orbitals of Ga and Se atoms, it is also unaffected by the

applied strain. Only a small energy difference occurs between the valence band edges at

K-Γ and Γ-M (6 meV). However, CBM of GaSe consists of s orbital of Ga and pz and s

orbitals of Se atoms.

5.2. Linear and Non-Linear Elastic Properties

The elastic properties of homogeneous and isotropic materials can be represented

by two independent constants, the in-plane stiffness C and the Poisson ratio ν. To ex-

amine the brittleness or ductility of materials, the fracture strain values must be obtained

from the stress-strain curve. In the following we mind a comparative investigation of the

mechanical properties of monolayer GaS, GaSe, graphene and MoS2 crystals in terms of

these elastic constants.

For the determination of the elastic constants of the four different monolayer struc-

tures, the rectangular unit cell shown in Fig. 5.1(a) was first optimized and then a 2×2

supercell (containing 32 atoms) was considered. The strains εx and εy were applied to

the monolayer crystals by varying the lattice constants along the x and y directions. The

strain parameters εx and εy were varied between ±0.02 with a step size of 0.01. For this

purpose three different sets of data were calculated; (i) εy=0 and εx varying, (ii) εx=0 and

εy varying and (iii) εx=εy varying. At each configuration, the atomic positions were fully

relaxed and the strain energy, ES , was calculated by subtracting the total energy of the

strained system from the equilibrium total energy. The calculated data was fitted to the

equation ES = c1εx
2 + c2εy

2 + c3εxεy, and the coefficients ci were determined.

5.2.1. In-plane Stiffness

The in-plane stiffness, C, is a measure of the rigidity or the flexibility of a material

and depends on the geometry of the considered structure. Graphene is known to be the

stiffest material among the 2D monolayers. The value of C can be calculated by the
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formula C = (1/A0)(2c − c3
2/2c) where we let c1=c2=c due to the isotropy of the

unit cell and A0 is the strain-free area of the supercell. To understand the flexibility of

monolayer GaS and GaSe, it is meaningful to compare their in-plane stiffness with that of

well known 2D materials, as graphene and MoS2. Our calculated in-plane stiffness values

are 91 and 77 N/m for GaS and GaSe, respectively which are close to the value for MoS2

(122 N/m), but lower than that of graphene (330 N/m). Our results for graphene and MoS2

are consistent with the reported experimental values (Bertolazzi et al., 2011b; Lee et al.,

2008). Although monolayer GaS and GaSe have much lower in-plane stiffness values than

graphene, they are stiffer than silicene and germanene (Sahin et al., 2009). The difference

in the in-plane stiffness values between two Ga-chalcogenides can be explained through

the lattice constants and cohesive energies of two monolayers. The lattice constant of

GaS is smaller than that of GaSe and parallel to ionizations energies of chalcogenide

atoms, the cohesive energy per atom is higher for GaS (these two parameters, lattice

constant and cohesive energy, are also in good agreement). However, when we compare

the two monolayers with the same chalcogenide atom, S, monolayer MoS2 is stiffer than

monolayer GaS. This can be understood when the total charge densities are analyzed; the

electronsare mostly localized on the S atom in GaS while they are shared between Mo and

S atoms in monolayer MoS2 which indicates the more covalent bond characters in MoS2.

As seen in Figs. 5.5(a) and (b), in-plane stiffness decreases with increasing lattice

constant and the cohesive energy per atom. This is expected because a smaller lattice
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constant means a smaller bond length between the individual atoms which indicates a

higher in-plane stiffness. In contrast, as seen in Fig. 5.5(c), in-plane stiffness decreases

with increasing work function. The work function of a material is proportional to the

ionization energy of individual atoms in the material. So higher ionization energy means

higher work function which correlates with the higher in-plane stiffness.

In order to tune the elastic properties of monolayer GaS and GaSe crystals, extra

electrons were added to the monolayers. We considered two different amounts of charges,

0.1 and 0.2 e/cell, respectively. For monolayer GaS, we find that the in-plane stiffness

decreases to 58 and 56 N/m for 0.1 and 0.2 e/cell charging. In the case of monolayer

GaSe, the trend in the in-plane stiffness is the same. The 0.1 and 0.2 e/cell-charged cases

decrease the value of C to 54 and 46 N/m, respectively.

As shown in Fig. 5.4 when 0.1 e/cell is added, the extra charges are depleted to

the pz orbitals of S and Se atoms in both monolayers. Therefore, following the increase

in Ga-X bond lengths, the in-plane stiffness shows a sharp decrease with 0.1 e charg-

ing. However, GaS and GaSe have a different behavior for further charging. Our charge

density difference analysis shown in Fig. 5.4 reveals that for 0.2 e/cell charged GaS, the

additional charges are donated to both in-plane and out-of-plane orbitals (see Fig. 5.4)

However, in the case of monolayer GaSe additional charges are accumulated mostly to

out-of-plane orbitals of the Se atoms. Therefore, in-plane-located extra charges of GaS

makes it stiffer than GaSe even at 0.2 e charging and decrease in in-plane stiffnes of GaS

is less than GaSe.

5.2.2. Poisson Ratio

The mechanical response of a material to an applied stress is called the Poisson

ratio. It is also defined as the ratio of the transverse contraction strain to the longitudinal

extension strain in the direction of the stretching force, that is ν=−εtrans/εaxial. The

Poisson ratio was obtained as ν = c3/2c. Due to the symmetry of the honeycomb lattice,

the elastic constants were found to be the same along the x and y directions. Calculated

Poisson ratio values for GaS and GaSe are 0.26 and 0.25, respectively, which are nearly

the same as that of monolayer MoS2 (0.26) but larger than that of graphene (0.19). This

means that GaS and GaSe crystals are more sensitive to applied uniaxial strain. Indeed,

for the same applied uniaxial strain, a longer is found contraction in the perpendicular

direction to the applied strain direction.

In connection with the value of C in the absence of charging, the Poisson ratio
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of the monolayer is also strongly affected. When the monolayer GaS is charged, it be-

comes more flexible as mentioned and the corresponding Poisson ratio value increases.

This situation is expected because a flexible material can contract much smaller in the

transverse direction when stretched along the axial direction. We found ν to be 0.43 and

0.39 for GaS and 0.36 and 0.33 for GaSe under 0.1 and 0.2 e/cell charging, respectively.

Opposite to the trends in C, the Poisson ratio value first increases under charging by 0.1

e/cell and then decreases under charging by 0.2 e/cell. But in both cases the Poisson ratio

is higher than those for bare monolayers. When the structures are charged, monolayers

become more flexible which indicates more extention of the lattices under small uniaxial

strains. Thus, the Poisson ratio values demonstrate a rapid increase because of the lattice

expansion under charging.

5.2.3. Ultimate Strength

The ultimate strength is the maximum value of stress that a material can resist

before the fracture point. This value can be directly investigated from the maximum point

of the stress-strain curve of a material. For this purpose, large biaxial strain was applied

to the monolayers up to the value of ε=0.40. As seen in Fig. 5.3(b), monolayer GaS

and GaSe have much lower ultimate strength values than that of graphene and monolayer

60



MoS2. Our results indicate that monolayer GaS has σU=12 GPa which is higher than that

of monolayer GaSe which is calculated to be 10 GPa as given in Table 5.1. The very

high value of σU for graphene is due to the very strong sp2 C-C bonds. Although, these

two monolayers have lower σU , they can resist higher values of applied biaxial strain than

graphene and MoS2. The calculated ultimate strains for GaS and GaSe are εU=0.24 and

εU=0.23, respectively. They are calculated to be εU=0.20 and εU=0.22 for graphene and

MoS2, respectively. These values indicate that Gas and GaSe crystals are more ductile

than graphene. In addition, monolayers of GaS and GaSe crystals have high values of

fracture strain as seen in Fig. 5.3(b). εF values were calculated as 0.29 and 0.30 for GaS

and GaSe which are larger than that of graphene (0.26) and monolayer MoS2 (0.24).
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Figure 5.6. Poisson ratio values: (a) lattice constant, (b) cohesive energy per atom,
and (c) work function of monolayer GaS and GaSe crystals. The numbers
above the symbols refer to the amount of added charge per unit cell.

5.2.4. Dynamical Instability

The stress-strain relation can used for extracting many mechanical parameters for

a material. In order to calculate these mechanical constants and to determine the me-

chanical characteristics, we plot the theoretical stress-strain relation under applied biaxial

strain. To compute the stress strain relationship, a series of incremental tensile strains are

applied to the monolayers. The maximum stress point of a stress-strain curve is critical

for determining the fracture strain point of the material. Beyond that point, the structure
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becomes elastically unstable by fracture. However, this does not mean that the mate-

rial remains dynamically stable up to the fracture point at the stress- strain curve. When

phonon frequencies were calculated for monolayer GaS and GaSe under biaxial strain, we

found that GaS and GaSe crystals are no longer dynamically stable after 17% and 18%

biaxial strain values, respectively.

As seen from the Fig. 5.7, both monolayers undergo phonon instability which is

dictated by an out-of-plane soft-mode. The instability occurs at the wave vector between

the K and the Γ points. When related to the wavelength of this unstable acoustic phonon

mode, the wave vector has a value of 0.804 1/Å. Thus, higher value of the wave vector

reveals the smaller value of the wave length for which the material has instability. In

addition, we found that increased biaxial strain causes the region of unstable wave vectors

to grow significantly before reaching elastically unstable strain point that correspond to

the peak of the stress-strain curve. Here the underlying mechanism can be explained

through the bond angles (X-Ga-X bond) in the upper and the lower Ga-X layers. As

the applied biaxial strain is increased, this bond angle also increases and thus, the upper

and lower Ga-X layers become more planar which softens the out-of-plane acoustic (ZA)

mode of the monolayer structures. Similar to graphene and other 2D materials, phonon

instability, that stems from the out-of-plane soft mode, occurs before the elastic instability

in monolayer GaS and GaSe.

5.3. Conclusion

In conclusion, we have investigated the mechanical properties of novel 2D mono-

layer GaS and GaSe crystals in terms of in-plane stiffness, Poisson ratio and ultimate

strength. We compare their values with those of graphene and monolayer MoS2. Our

results revealed that due to the more ionic character of the Ga-S bond as compared to

the Ga-Se one, monolayer GaS is a slightly stiffer material than monolayer GaSe. Cal-

culated stress-strain curves for each monolayer crystal indicates that they have smaller

critical strength values than graphene and monolayer MoS2 but higher ultimate strains. In

addition, monolayer GaS and GaSe crystals have higher fracture strain values when com-

pared to graphene and monolayer MoS2 which is a signiture of their ductility. By further

analysis, decreasing trend in band gap values of monolayer GaS and GaSe crystals were

found under biaxial strain at 17% and 14% for GaS and GaSe, respectively. Our results on

charging the structures indicate that extra charges are depleted to the out-of-plane orbitals

which expands the structures by repulsive interaction resulting in reduction of C values.
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Our study reveals that single layer crystals of GaS and GaSe, together with their (i) high

flexibility, (ii) high ductility, (iii) strain-dependent electronic behavior and (iv) charge tun-

able mechanical properties, are very promising materials for nanoscale electromechanical

applications.
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CHAPTER 6

HYDROGEN-INDUCED STRUCTURAL TRANSITION IN

SINGLE LAYER ReS2

Similar to other TMDs, the bulk forms of Re-dichalcogenides, ReSe2 and ReSe2,

were reported to be in a form of van der Waals layered structure. (Lamfers et al., 1996;

Wildervanck and Jellinek, 1971; Alcock and Kjekshus, 1965) Raman bands and their

relative intensities depending on the number of layers and the layer-stacking-order were

investigated for ReSe2. (Wolverson et al., 2014) Recently, Yang et al. showed that lo-

cally induced strain by generation of wrinkles in monolayer ReSe2 modulates the optical

gap, enhances light emission, induces magnetism, and modulates the electrical proper-

ties. (Yang et al., 2015) The structural properties of bulk ReS2 were studied by the X-ray

diffraction experiments and the symmetry properties were reported (Wilson and Yoffe,

1969). Monolayer form of ReS2 was successfully isolated and its unique properties such

as a weak band-renormalization, absence of interlayer registry and weak interlayer cou-

pling arising from Peierls distortion of the 1T structure were reported (Tongay et al.,

2014). It was also showed by Tongay et al. that the monolayer ReS2 has a direct band gap

of 1.55 eV which was confirmed by photoluminescence measurements (Tongay et al.,

2014). Pradhan et al. investigated the field-effect transistor performance of few-layer

ReS2. (Pradhan et al., 2015) They found that ReS2 on SiO2 behaves as an n-type semi-

conductor at low electron densities n. For higher values of n the resistivity decreases, and

a metallic behavior is observed. Yu et al. studied electronic properties of ReS2 depending

on applied strain and the number of layers. (Yu et al., 2015) They reported that character-

istics of the band structure and its band gap are insensitive to the applied strain. Moreover,

the charge carrier mobilities were found to be nearly independent of the number of ReS2

layers. Vibrational properties, especially the low frequency modes, of ReS2 were studied

to understand coupling of ReS2 layers. He et al. studied the ultra low-frequency Ra-

man spectra of ReS2 and reported that the layers are coupled and orderly stacked in few

layer ReS2 (He et al., 2016). In addition, the same analysis were reported by Lorchat et

al. in terms of the calculated force constants between ReS2 layers (Lorchat et al., 2016).

The optical properties of monolayer ReS2 were also paid much attention due to strong

anisotropy in the structure (Zhong et al., 2015; Chenet et al., 2015a; Aslan et al., 2015).

Zhong et al. (Zhong et al., 2015) reported that the huge excitonic effects dominate the

optical spectra of monolayer ReS2 with an exciton binding energy of about 1 eV.
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Figure 6.1. For the monolayer ReS2; (a) top and side views of the structure, (b) the
phonon-band structure, (c) VBM and CBM surfaces. (d) The correspond-
ing partial density of states.

Tuning the physical properties of 2D materials became an important issue for

their versatile use in next generation nanodevice technology. Surface functionalization

of 2D monolayers with various types of atoms such as H, F, and Li, is one useful way to

achieve that (Şahin et al., 2011; Sahin and Peeters, 2013; Çakır et al., 2014; Nasr Esfahani

et al., 2015). Among these atoms, H was widely used in experiments and considered

also theoretically. For instance, it was first shown for graphene that hydrogenation of the

sample bilaterally tunes the electronic properties significantly. Sofo et al. predicted a form

of fully saturated hydrocarbon which they named as graphane. (Sofo et al., 2007) They

found that the graphane is a dynamically stable material with a comparable binding energy

with other hydrocarbons such as benzene and cyclohexane. Following the study of Sofo et

al., two years later Elias et al. successfully synthesized graphane (Elias et al., 2009) and

observed that this new 2D material is an insulator. In addition, the transmission electron

microscopy (TEM) measurements revealed that the graphane is a crystalline material and

retains the hexagonal lattice. Moreover, it was reported that the reaction of graphene

with hydrogen atoms is reversible which means graphene can be restored after annealing

the graphane layer. In recent years, the hydrogenation of other novel 2D monolayers,

such as TMDs, has came into prominence. Pan et al. investigated the electronic and

magnetic properties of hydrogenated monolayer VTe2 and found that the hydrogenated

VTe2 exhibits a transition from semiconductor to metal and further to half-metal under

the effect of applied tension (Pan, 2014). Shi et al. studied the electronic and magnetic
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Table 6.1. For the monolayer ReS2 and 1TRe2-ReS2H2 structures; structure, calcu-
lated lattice parameters a and b, the average charge donation of a Re atom,
∆ρ, the energy band gap of the structures calculated within; GGA (EGGA

g ),
SOC on top of GGA (ESOC

g ), and the work function Φ.

Structure a b ∆ρ Eg
GGA Eg

SOC Φ
(Å) (Å) (e) (eV) (eV) (eV)

ReS2 Re4-cluster 6.46 6.38 0.9 1.45(d) 1.34(d) 5.56
1TRe2-ReS2H2 Re2-dimer 7.46 6.65 0.7 0.60(i) 0.75(i) 2.47

properties of hydrogenated monolayer MoS2 under applied biaxial strain and found that

the ferromagnetic (FM) ground state occurs as the applied strain is increased (Shi et al.,

2013).

In this chapter, we investigate the structural phase transition in monolayer ReS2

by full-surface hydrogenation. The new crystal structure, 1TRe2-ReS2H2, is found to be

dynamically stable and it is an indirect semiconductor. In addition, the effect of hydro-

genation on the mechanical properties is investigated. The chapter is organized as follows:

Structural and electronic properties of monolayers of ReS2, single H-adsorbed ReS2, and

1TRe2-ReS2H2 are presented in Sec. 6.1. Mechanical properties of bare and hydrogenated

monolayer crystals in terms of in-plane stiffness, C , effective Young modulus, E, Pois-

son ratio, ν, and bending rigidity, D are presented in Sec. 6.2. Finally, we conclude in

Sec. 6.3.

6.1. Structural and Electronic Properties

6.1.1. Monolayer ReS2

Differing from most of the TMDs having 1T or 1H phases, monolayer ReS2 has

a distorted crystal form named as 1T’ phase (Tongay et al., 2014) which corresponds to

point group symmetry Ci. The primitive unitcell of 1T’ phase is formed of eight S atoms

coordinated around four-atom-cluster of Re (Re4) as shown in Fig. 6.1(a). Our structural

optimization confirms the 1T’ phase of the monolayer ReS2 as the ground state. As given

in Table 6.1, the lattice parameters a and b are found to be 6.46 and 6.38 Å, respectively.
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Top and side views of single H adsorbed monolayer ReS2 and (c) the cor-
responding partial density of states (PDOS).

The Re-Re bond lengths in a Re4 cluster are 2.81 and 2.71 Å for side and diagonal Re

atoms, respectively. In addition, the Re-S bond length varies from 2.36 to 2.51 Å. Bader

charge analysis reveals that the bond between Re and S is covalent-type with a charge

depletion of 0.5 e from Re to S atom. The phonon analysis confirms that the monolayer

ReS2 is dynamically stable as shown in Fig. 6.1(b).

Electronic properties of the monolayer ReS2 are also investigated. We find that

it possesses a direct band gap of 1.45 eV calculated within GGA+SOC. As given in Fig.

6.1(c), we plot the highest of the valence band (VB) and the lowest of the conduction

band (CB) energy levels as surfaces. The valence band maximum (VBM) and conduction

band minimum (CBM) appear at the Γ point in BZ. The DOS calculation demonstrates

that both VBM and CBM are dominated by the Re states.

6.1.2. Single H-atom Adsorption on Monolayer ReS2

The adsorption of atoms to the surface of a material is an efficient way to tune

their physical properties. For the 2D materials, H atom is widely used for such purposes.

In regard to functionalize the monolayer ReS2, we first investigate the single H adsorption

to the surface of the monolayer. In the unitcell, top of two Re and four S atoms are con-

sidered as the possible adsorption sites as shown in Fig. 6.2(a). Among these 6 different

sites, the site-I is found to be the energetically favorable one with the bond length of 1.42

Å (see Fig. 6.2(b)). The binding energy of the H atom to the surface is calculated to be
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0.81 eV which is smaller than that of on graphene (0.98 eV) (Sahin and Ciraci, 2012).

The single H adsorption leads to mid-gap states which appear at 0.5 eV above the VBM

as shown in Fig. 6.2(c). The contributions to those mid-gap states are mainly from the

Re atoms and relatively small contributions also exist from the S and H atoms. A net

magnetic moment of 1 µB appears at the vicinity of the H bonding site.

6.1.3. Full-Hydrogenation of Monolayer ReS2

Following the analysis of the single H adsorption, we investigate the full-surface

hydrogenation of the monolayer ReS2. The full hydrogenation refers to that all the S

sites are occupied by H atoms as shown in Fig. 6.3(a). The H atoms prefer to bind

perpendicular to the surface plane instead of being inclined as in single H case. The full

hydrogenation expands the lattice such that the parameters a and b increase to 7.46 and

6.65 Å, respectively. The most significant change in the structure is that a Re4 cluster

is broken into two Re2 dimers as shown in Fig. 6.3(d). In this new structure which we

name as 1TRe2-ReS2H2, the Re-Re bond length increases to 2.90 Å, however, the Re-S

bonds do not change significantly. The Bader charge analysis shows that each H atom

is donated 0.1 e charge. In addition, the calculated phonon-band structure reveals the

dynamically stability of monolayer 1TRe2-ReS2H2 as shown in Fig 6.3(c). Although,

the crystal structure of monolayer 1TRe2-ReS2H2 resembles the perfect 1T phase, the

hydrogenated perfect 1T phase is not dynamically stable (see Fig. 6.3(b)). Thus, it is

clearly seen that the formation Re2 dimers contribute to the dynamical stability of 1TRe2-

ReS2H2.

The hydrogenation also modifies the electronic properties significantly. In Fig

6.4(a), the surface plots of the VBM and CBM are shown and it is found that the 1TRe2-

ReS2H2 is an indirect semiconductor. Its band gap is 0.75 eV which is approximately

half of that of monolayer ReS2. The band extrema points do not appear at the ordinary

symmetry points. The VBM of the monolayer resides between Γ and M2 points along b2

vector while the CBM lies between Γ and M1 points along b1 vector. As seen from the

partial density of states (PDOS) in Fig. 6.4(b), the domination of Re states at the VBM

and CBM persists.

In addition, for further examination of the stability of the monolayer ReS2 and

1TRe2-ReS2H2 structures, we perform molecular dynamics (MD) simulations under grad-

ually increasing temperature. We consider two sets of calculations; in the first set, the

temperature of each structure is increased from 0 to 800 K in a time interval of 0-16 ps,
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Table 6.2. Elastic parameters along⊥- (perpendicular to Re4 chains) and ‖-directions
(parallel to Re4 chains) for the monolayers of ReS2 and 1TRe2-ReS2H2

structures; calculated in-plane stiffness C⊥ and C‖, Poisson ratio ν⊥ and
ν‖, effective Young modulus E⊥ and E‖.

C⊥ C‖ ν⊥ ν‖ E⊥ E‖
(J/m2) (J/m2) - - (GPa) (GPa)

ReS2 166 159 0.19 0.19 497 477
1TRe2-ReS2H2 128 97 0.38 0.29 329 250

and we find that both structures remain stable as shown in Figs. 6.5(a) and (c). In the

second set, the temperatures are increased from 700 to 1500 K in the time interval of 0-20

ps for each structure. For the second case, the monolayer ReS2 remains stable (see Fig.

6.5(b)) while 1TRe2-ReS2H2 dissociate after 2 ps at around 1000 K by firstly releasing the

hydrogen atoms (see Fig. 6.5(d)). The corresponding structures are shown in the lower

panel of Fig. 6.5.

6.2. Linear Elastic Properties of Monolayer ReS2 and 1TRe2-ReS2H2

Crystals

The elastic properties of two dimensional homogeneous monolayer materials can

be represented by two independent constants, the in-plane stiffness, C, and the Poisson

ratio, ν. In addition, the effective Young modulus, E, can be defined for a 2D monolayer

material in terms of its proper thickness, hp, and C to simulate its bulk behavior. In

this part of the study, we analyze and discuss the mechanical properties of both of the

monolayers, ReS2 and 1TRe2-ReS2H2, in terms of the elastic parameters.

The elastic constants of the monolayer ReS2 and 1TRe2-ReS2H2 are determined

by using the energy-strain relation. 48- and 80-atom supercells are constructed for mono-

layer ReS2 and 1TRe2-ReS2H2, respectively. The supercell vectors are stretched and com-

pressed along the ⊥ and ‖ directions, respectively. The ⊥ is defined as the perpendicular

direction to Re4 chains and ‖ is taken to be parallel to Re4 chains. However, in the case

of 1TRe2-ReS2H2, these two directions are defined the same as for Re2 dimers. The strain

parameters ε⊥ and ε‖ are varied between ±0.02 with a step size of 0.01. Then, three

different sets of data are calculated; (i) ε‖=0 and ε⊥ varying, (ii) ε⊥=0 and ε‖ varying

and (iii) ε⊥=ε‖ varying. At each configuration, the atomic positions are fully relaxed
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and the strain energy, ES , is calculated by subtracting the total energy of the equilib-

rium state from the strained structure. Then, the calculated data is fitted to the equation;

ES = c1ε⊥
2 + c2ε‖

2 + c3ε⊥ε‖ (Nye, 1985), and the coefficients ci are determined.

The in-plane stiffness, C, is a measure of the rigidity of a material under applied

load. Direction-dependent C can be calculated by two formulas; C⊥ = (1/A0)(2c1 −
c3

2/2c2) (Kang et al., 2015) and C‖ = (1/A0)(2c2 − c3
2/2c1) (Kang et al., 2015) where

c1 6=c2 due to the anisotropy of the unit cell and A0 is the strain-free area of the super-

cell. The rigidity of monolayer ReS2 and 1TRe2-ReS2H2, may clearly be understood by

comparing their in-plane stiffness with that of other 2D materials. Our calculated val-

ues of C are 166 and 159 N/m for C⊥ and C‖ (see Table 6.2), respectively for mono-

layer ReS2 which are slightly different indicating very small anisotropy between these

two directions. When compared with that of graphene (330 N/m (Sahin et al., 2009)

and monolayer h-BN (267 N/m (Sahin et al., 2009), monolayer ReS2 has a smaller C.

However, due to its non-planar structure, it is meaningful to compare C of monolayer

ReS2 with that of other TMDs and other non-planar monolayers. ReS2 is a stiff mate-

rial when compared other monolayer TMDs such as MoS2 (124 N/m) (Kang et al., 2015),

MoSe2 (101 N/m) (Kandemir et al., 2016) WS2 (135 N/m) (Guzman and Strachan, 2014),

and WSe2 (112 N/m) (Guzman and Strachan, 2014) are considered. In addition, it is

much stiffer than monolayers of GaS (91 N/m) (Yagmurcukardes et al., 2016) and GaSe

(77 N/m) (Yagmurcukardes et al., 2016), non-planar monolayers of post-transition metal

chalcogenide family. The rigidity of the monolayer occurs due to the covalent bonding

between Re atoms in Re4 clusters.

By the same methodology, C is calculated for monolayer 1TRe2-ReS2H2 and we

find that C⊥ and C‖ decreases to 128 and 97 N/m, respectively. As reported for graphane

(243 N/m) (Topsakal et al., 2009), hydrogenation reduces the value of C. In our case, the

reduction in C is due to the existing of Re2 dimers instead of Re4 clusters in monolayer

1TRe2-ReS2H2. Thus, the monolayer ReS2 becomes more flexible material upon full

hydrogenation.

The Young modulus, E, is an intrinsic property of a material and generally, it

is defined as the ratio of stress to the applied strain in the harmonic regime. For 2D

monolayer materials an effective Young modulus can be defined in terms of hp and C to

picture out the bulk behavior of that monolayer. We calculateE by the following formula;

E=C/hp, where hp is calculated from the optimized bulk structure of the monolayer.

The proper thickness of monolayer ReS2 is calculated to be 5.95 Å and the corre-

sponding E values are 497 and 477 GPa for E⊥ and E‖, respectively. These values are
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73



about half of that of graphite (988 GPa). In addition, these values are higher than twice

of that of monolayer MoS2 (202 GPa) (Kang et al., 2015). Since the values of C is re-

duced by full hydrogenation in monolayer ReS2, we expect the same trend for E since

they are related to each other by a factor of hp. Our geometry optimizations for the bulk

form of 1TRe2-ReS2H2 demonstrate that the interlayer distance decreases due to the H-H

interactions at the surface of 1TRe2-ReS2H2 layers. Thus, hp decreases to 5.12 Å and the

corresponding E values become 329 and 250 GPa for E⊥ and E‖, respectively.

The Poisson ratio is defined as the ratio of the transverse contraction strain to the

longitudinal extension strain in the direction of the stretching force, that is ν=−εtrans/εaxial.
By using the parameters ci, the Poisson ratio values along two perpendicular directions

are calculated by the following formulas; ν⊥ = c3/2c2 (Kang et al., 2015) and ν‖ =

c3/2c1 (Kang et al., 2015). ν⊥ and ν‖ are found to be the same with a value of 0.19

for monolayer ReS2. This value is smaller than the values reported for other monolayer

TMDs (0.25 for MoS2, 0.22 for WS2, and 0.23 for MoSe2) (Guzman and Strachan, 2014).

Generally, stiffer materials are known to posses small Poisson ratio value. Thus, reduc-

tion in C by full hydrogenation, results in the increase of ν⊥ (0.38) and ν‖ (0.29) for

monolayer 1TRe2-ReS2H2. This increase in ν values demonstrates that under same lon-

gitudinal extension, the response of monolayer 1TRe2-ReS2H2 will be bigger than that of

monolayer ReS2.

In addition to in-plane mechanical constants, the bending rigidity which demon-

strates the behavior of a monolayer material under bending deformation is of fundamental

significance for applications in flexible device technology (Kudin et al., 2001). Here, the

calculated bending rigidities are 9.9 and 18.2 eV for monolayer ReS2 and 1TRe2-ReS2H2,

respectively along ⊥ direction while 9.5 and 13.8 eV are found for ‖ direction for mono-

layer ReS2 and 1TRe2-ReS2H2, respectively. The calculated values for monolayer ReS2

are slightly greater than those of other monolayer TMDs such as MoS2(6.72 eV) (Lai

et al., 2016), MoSe2(6.48 eV) (Lai et al., 2016), WS2(7.60 eV) (Lai et al., 2016), and

WSe2(7.21 eV) (Lai et al., 2016). In addition, our results indicate that although the in-

plane stiffness decreases upon full hydrogenation, the bending rigidity increases due to

the increase in the thickness of monolayer ReS2 with hydrogenation.

6.3. Conclusion

In this study, we investigated the stability of the structure (1TRe2-ReS2H2) formed

upon full hydrogenation of monolayer ReS2. Firstly, we found that single H atom can
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be adsorbed to the surface of monolayer ReS2 with a considerable binding energy (0.81

eV). Following the analysis of single H adsorption, we showed that full hydrogenation of

monolayer ReS2 results in a dynamically stable crystal structure, 1TRe2-ReS2H2, formed

by Re2 dimers. Our ab-initio MD simulations demonstrated that the 1TRe2-ReS2H2 re-

mains stable up to moderate temperatures, however, the hydrogen atoms dissociate at

around 1000 K. Electronic-band structure calculations revealed that monolayer ReS2 turns

into an indirect-gap semiconductor upon full hydrogenation with a decreasing band gap.

In addition, the analysis of elastic parameters, C, E, and ν, demonstrated that; (i) mono-

layer ReS2 is a stiff material, (ii) it is not highly anisotropic in terms of elastic constants

along the considered directions, and (iii) it becomes a more flexible material upon full

hydrogenation. Overall, we concluded that monolayer ReS2 can exhibit a different, dy-

namically stable structure upon full hydrogenation which is a flexible material suitable

for nanoscale mechanical applications.
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CHAPTER 7

Mg(OH)2-WS2 HETEROBILAYER: ELECTRIC FIELD

TUNABLE BANDGAP CROSSOVER

Beyond being novel atomic-thick materials, lateral and vertical heterostructures

of novel 2D monolayer crystals have received considerable attention. As constituents of

possible heterostructures TMDs are very promising. Those new members of 2D mono-

layer materials have tunable electronic properties from metallic to wide-gap semicon-

ducting (Wilson and Yoffe, 1969; Ataca et al., 2012) and excellent mechanical proper-

ties (Castellanos-Gomez et al., 2012). Moreover, TMDs can be used in various fields

such as nanoelectronics (Radisavljevic et al., 2011; Li et al., 2012; Popov et al., 2012),

photonics (Eda et al., 2011; Mak et al., 2013), and for transistors (Wang et al., 2012),

catalysis (Drescher et al., 2012), hydrogen storage (Seayad and Antonelli, 2004), and

Li-ion battery applications (Chang and Chen, 2011). Among TMDs, WS2 has been stud-

ied intensively. It is an indirect-gap semiconductor in its bulk form while it shows a

transition to direct-gap character in its monolayer form (Boker et al., 2001; Klein et al.,

2001; Thomalla and Tributsch, 2006). It was shown by Ramasubramaniam that the op-

toelectronic properties of WS2 and MoX2 (X=S or Se) monolayers are tunable through

quantum confinement of carriers within the monolayers (Ramasubramaniam, 2012). Shi

et al. showed that the electron effective mass decreases as the applied strain increases,

and monolayer WS2 possesses the lightest charge carriers among the TMDs (Shi et al.,

2013). In addition, strong excitonic features of WS2, including neutral and redshifted

charged excitons were observed by Mak et al. (Mak et al., 2013) Due to these interesting

electronic and optical properties, one may go a step further and construct 2D heterostruc-

tures incorporating monolayer WS2 with other 2D monolayer with the potential to achieve

enhanced functionalities.

Recently synthesized monolayer of Mg(OH)2, a member of alkaline-earth hydrox-

ides (AEH), with formula X(OH)2 where X = Mg or Ca, are candidate materials for

constructing such heterostructures. Magnesium and calcium hydroxides are multifunc-

tional materials which have many important applications in industry, technology, solid-

state electronics, and in photovoltaic devices (Estrela et al., 1998; Ghali et al., 2004; Cao

et al., 2012). Recently, we studied Ca(OH)2 monolayer crystals and found that the num-

ber of layers of Ca(OH)2 does not affect the electronic, structural, and magnetic properties

qualitatively while the intrinsic mechanical stiffness of each layer becomes slightly larger
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as the structure changes from monolayer to bilayer. Very recently, Torun et al. (Torun

et al., 2016) investigated the electronic and optical properties of the heterobilayer struc-

ture GaS-Ca(OH)2 and found that it is a type-II heterojunction where spatially separated

charge carriers can be formed. The optical spectra of different stacking types exhibit

distinct properties. Like Ca(OH)2, Mg(OH)2 has a layered structure in its bulk form pos-

sessing the trigonal symmetry of the space group P3m1 (brucite) (Desgranges et al., 1996;

Catti et al., 1995). Mg(OH)2 itself is a wide-gap insulator with a band gap of 7.6 eV found

experimentally for the bulk structure (Murakami et al., 2011). They reported properties

of C-doped Mg(OH)2 films and found that the material becomes transparent in the visi-

ble region and electrically conducting which are favorable properties for applications in

photovoltaic devices (Murakami et al., 2011). Huang et al. (Huang et al., 2011) found

experimentally a spectral peak near the band edge corresponding to strongly localized

excitons with an exciton binding energy of 0.53 eV. This indicates a strong localization of

the hole and electron to the oxygen px and py states. Most recently, successful synthesis

of Mg(OH)2 monolayers on MoS2 and their optical properties were reported by Suslu et

al. (Suslu et al., 2016)

Here, we predict an electric field dependence of the electronic properties of the

Mg(OH)2-WS2 heterobilayer structure. Our results reveal that monolayer crystal of Mg(OH)2

combined with TMDs may lead to the emergence of novel multifunctional nanoscale op-

toelectronic devices.

The chapter is organized as follows: Structural and electronic properties of mono-

layers of Mg(OH)2 and WS2 are presented in Sec. 7.1 while the structural properties of

the Mg(OH)2-WS2 heterobilayer are presented in Sec. 7.2. The effect of an external elec-

tric field on the electronic properties of the heterobilayer structure is given in Sec. 7.3.

Finally, we conclude in Sec. 7.4.

The binding energy per unit cell was calculated by using the following formula:

Ebind=EWS2+EMg(OH)2-Ehetero, where EWS2 and EMg(OH)2 denote the total energies of WS2

and Mg(OH)2 monolayers, respectively, while Ehetero denotes the total energy of the het-

erobilayer structure.

7.1. Single layer Mg(OH)2 and WS2

Monolayer Mg(OH)2 consists of hydroxyl (OH) groups bonded to Mg atoms. As

seen in Fig. 7.1, the layer of Mg atoms is sandwiched between the OH groups in which

O and H atoms are strongly bonded to each other. The calculated lattice parameters
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Figure 7.1. Top and side view of monolayers of (a) Mg(OH)2 and (b) WS2. The charge
distribution on the individual atoms are shown in top and side views of (c)
Mg(OH)2 and (d) WS2. Increasing charge density is shown by a color
scheme from blue to red with the formula F(N)=1× 1000N/step where step
size taken to be 10 and N ranges from -1 to 2.

Table 7.1. The calculated ground state properties of monolayer and their heterobi-
layer structures: structure, lattice parameters of primitive unit cell, a and
b (see Fig. 7.1), the distance between the individual atoms contained in
each monolayer dX−Y , magnetic state, the total amount of charge received
by the O or S atoms ∆ρ, the energy band gap of the structure calculated
within GGA (EGGA

g ), SOC (ESOC
g ) and HSE06 (EHSE

g ), and workfunction
Φ determined from Mg(OH)2 side.

Geometry a b dMg-O dO-H dW-S µ ∆ρ EGGAg ESOCg EHSEg Φ

(Å) (Å) (Å) (Å) (Å) (e) (eV) (eV) (eV) (eV)
Mg(OH)2 1T 3.13 3.13 2.09 0.96 - NM 2.9 3.25 3.22 4.75 4.15

WS2 1H 3.18 3.18 - - 2.41 NM 1.1 1.86 1.54 2.30 5.29
Heterobilayer 1T 3.16 3.16 2.10 0.96 2.41 NM - 1.05 0.97 2.24 4.34
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for monolayer Mg(OH)2 are a=b=3.13 Å. The thickness of monolayer Mg(OH)2 is 4.01

Å. The bond length of Mg-O and O-H bonds are calculated to be 2.09 Å and 0.96 Å,

respectively. Bader charge analysis shows that ionic bond character is present in the

Mg(OH)2 monolayer. In the structure each H atom donates 0.6 e to neighboring O atom

and each Mg donates 0.85 e per O atom.

Generic forms of monolayer structures of TMDs display honeycomb lattice sym-

metry with the 1H phase for the dichalcogenides of Mo and W atoms. The calculated

lattice parameters for the 1H phase of WS2 monolayer are a=b=3.18 Å which is very

close to that of Mg(OH)2 monolayer. The W-S bond length in WS2 is calculated to be

2.42 Å. The thickness of the layer is 3.13 Å which is thinner than monolayer Mg(OH)2.

In the monolayer WS2 0.55 e of charge accumulation occurs from a W atom to each of

the S atoms and the corresponding bonding character is covalent.

The calculated band structures within HSE06 correction are shown in Fig. 7.2.

Monolayer Mg(OH)2 is found to be a direct band gap semiconductor with a band gap

of 4.75 eV. Both the valence band maximum (VBM) and the conduction band minimum

(CBM) reside at the Γ point in the Brillouin zone (BZ). The states in the VBM of the

Mg(OH)2 monolayer are composed of px and py orbitals of the O atoms.

Similar to the monolayer Mg(OH)2, monolayer WS2 is also a direct band gap

semiconductor but with a lower band gap of 2.30 eV. As in other TMDs, both the VBM

and CBM of single layer WS2 lie at the K point in the BZ. As seen in Fig. 7.2(b), spin-

orbit interaction at the VBM states is much stronger since the states are composed of dx2

and dz2 orbitals of W atoms. There is an energy splitting of 430 meV at VBM which is

much larger than that of monolayer Mg(OH)2 which is calculated to be 25 meV.

7.2. Heterobilayer

The calculated lattice constants of Mg(OH)2 and WS2 monolayers are very close

to each other and therefore it is possible to construct a heterostructure of these monolayers

where we may assume a primitive unit cell containing 8 atoms in total. We considered

three different high-symmetry stacking configurations of the monolayers (see Fig. 7.3).

We found that two of the stacking configurations have binding energies very close to each

other but the one with the W atoms residing on top of an interface OH group is the ground

state with a binding energy of 147 meV. We also performed energy-band structure calcu-

lation for the stacking configuration given in Fig. 7.3(c). The energy-band structures of

two configurations have exactly the same properties. Thus in this paper we only studied
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Figure 7.2. Calculated energy-band structure of monolayer (a) Mg(OH)2 and (b) WS2.
The Fermi energy (EF ) level is set to the valence band maximum.

the electronic properties of the ground state configuration (see Fig. 7.3(b)). For the lowest

energy stacking configuration the interlayer distance is calculated to be 2.09 Å and the in-

dividual atomic bond lengths remain the same as in their isolated layers. The analysis for

the charge transfers between the individual layers demonstrate that there is no depletion

from one layer to the other for all the stacking geometries shown in Fig. 7.3. This result

is expected due to the weak vdW interaction between the individual layers.

2.09 Å 2.09 Å2.48 Å

E     = 114 meVbind E     = 147 meVbind E     = 145 meVbind

(a) (b) (c)

Mg W S O H

Figure 7.3. Different possible stacking configurations for the heterobilayer structure.
(a) W atom on top of Mg atom, (b) W atom on top of upper OH group, and
(c) W atom on top of lower OH group.

The calculated energy-band structure for the heterobilayer displays a semicon-
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Figure 7.4. The band structure (left) and the corresponding partial density of states
(PDOS) (right) of the heterobilayer structure calculated within SOC. The
Fermi energy (EF ) level is set to the valence band maximum.

ducting character with an indirect band gap of 2.24 eV. As seen in Fig. 7.4, the VBM

of the heterobilayer that originates from the Mg(OH)2 layer lies at the Γ point while the

CBM of the structure which arises from the WS2 layer lies at the K point. Calculated

energy-band diagram of the heterostructure also indicates the weak interlayer interaction.

As seen in Fig. 7.4, the partial DOS (PDOS) indicates that the VBM of heterobilayer ex-

clusively consists of px and py orbitals of the O atoms while the CBM is characterized by

the orbitals of W and S atoms. This also demonstrates the type-II nature of the heterojunc-

tion: the two band edges originate from different individual layers and consequently the

excited electrons and holes are confined in different layers which leads to the formation

of spatially indirect excitons.

7.3. Effect of External Electric Field

Applying an external electric field is one of the common method to modify or

tune the physical properties of materials. In the field of 2D materials, a perpendicular

electric field can lead to doping and in the case of bilayers it can induce charge transfer

between layers. Castro et al. reported that the electronic band gap of a graphene bilayer

structure can be controlled externally by applying a gate bias. They showed that the band
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gap changes from zero to midinfrared energies for field values ≤ 1 V/nm (Castro et al.,

2007). Chu et al. showed a continuous bandgap tuning in bilayer MoS2 with applied gate

voltage (Chu et al., 2015). Here we present our results for the effect of a perpendicular

electric field on the electronic and optical properties of the heterobilayer.

As seen in Fig. 7.5(a), the heterostructure is an indirect band gap semiconductor

when there is no external electric field, in which the VBM is at Γ but the CBM is at the

K point. Appyling a positive electric field decreases the band gap (from 0.97 eV to 0.34

eV for E= +0.6 V/Å). The reason for such decreasing band gap is the shift of the band

edges at the Γ and the K points. Increasing the value of the positive electric field shifts

the VBM of Mg(OH)2 up in energy while it shifts the CBM of WS2 down resulting in a

decrease of the energy gap. The indirect character of the energy gap is not affected by the

field. However, changing the direction of the applied electric field widens the band gap

and ultimately leads to an indirect-to-direct band-gap-crossover as seen in Fig. 7.5(a).

When the strength of the electric field is -0.6 V/Å, it is clearly seen that both

VBM and CBM of the heterobilayer reside at the K high symmetry point in the BZ.

Thus, a transition from staggered gap to a straddling gap (type-I heterojunction) occured

as shown in Fig. 7.5(b). In fact, the critical electric field value for which this indirect-

to-direct band-gap-crossover occurs is calculated to be 0.51 V/Å. At this critical value

of the applied electric field, the valence band edge energy of the bands at the Γ and K

points become degenerate. As seen in Fig. 7.5(a), the bands at the valence band edge of

the K point, which originate from the WS2 layer, shift up while the bands at the Γ point

which originate from the Mg(OH)2 layer shift down when making the external electric

field more negative. Due to these opposite shifts of the VBM of the individual layers (see

Fig. 7.5(b)) a transition from indirect-to-direct gap is predicted at a certain value of the

applied field. After the transition to type-I heterojunction both type of charge carriers are

confined to the WS2 layer which is desirable for applications in optoelectronic devices

and for semiconductor laser applications. It is also important to point out that including

quasiparticle energies might slightly change the band gap and the electric field value for

which the indirect-to-direct band-gap-crossover occurs. However, the overall tunability

characteristic of the heterobilayer using electric field would remain the same.

7.4. Conclusion

We investigated the structural, electronic and optical properties of the monolayers

Mg(OH)2 and WS2 and its heterobilayer structure. In addition the effect of an applied
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out-of-plane electric field on the electronic and optical properties of the heterobilayer

were investigated. We found that both Mg(OH)2 and WS2 are direct-gap semiconductors

while the Mg(OH)2-WS2 heterobilayer structure is an indirect-gap semiconductor. Our

results demonstrated that both the band gap and the energy-band dispersion of the het-

erobilayer structure can be tuned by the application of an external perpendicular electric

field. At an applied electric field of -0.51 V/Å a transition from a staggered to a straddling

gap heterojunction occurs which can be used for optoelectronic and semiconductor laser

applications. It appears that heterobilayers of TMDs and AEHs may find applications in

various nanoscale optoelectronic devices.
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CHAPTER 8

STRAIN-DEPENDENT VIBRATIONAL PROPERTIES OF

NOVEL TWO DIMENSIONAL SINGLE LAYER

CRYSTALS

Raman spectroscopy (Raman, 1928) is a powerful characterization technique which

crop information about the nature of the material medium entities by monitoring the char-

acteristic vibrational energy levels of the structure. It is also very useful due to providing

non-destructive analysis and requiring minimum sample preparation. Development of

the experimental techniques in recent years allow us to make more accurate and reliable

Raman measurements as compared to the past decades. Raman measurement can reveal

information about substrate-free layer-number identification of layered materials, (Qiao

et al., 2015) the strength of the interlayer coupling in layered materials (Tan et al., 2011)

and interface coupling in van der Waals heterostructures (Wu et al., 2015, 2014). Absolute

and relative intensities of the Raman peaks lead to the determination of different-phase

distributions in a material. (Colomban, 2003; Gouadec and Colomban, 2007; Havel et al.,

2004) Raman spectroscopy can also gives information about electronic structure, thick-

ness, and can be used to probe strain, stability, stoichiometry, and stacking orders of 2D

materials (Zhang et al., 2015).

The strain can alter materials electronic and vibrational properties. (Guinea et al.,

2009; He et al., 2013) Nonetheless, Raman peak positions and intensities are significantly

affected in the presence of strain. (Ni et al., 2008; Huang et al., 2010) Although Raman

spectroscopy has been widely studied in literature, (Ferrari and Basko, 2013; Berkdemir

et al., 2013; Chenet et al., 2015b; Frostig et al., 2015) detailed theoretical investigation

of the strain effects on Raman peak positions and intensities for the 2D materials are

still waiting revisits. Here, we theoretically investigate the strain dependencies of the

vibrational properties of diverse 2D materials in terms of Raman activity and intensity of

the vibrational modes.

The vibrational properties of all monolayer crystals were calculated in terms of

the off-resonant Raman activities of phonon modes at the Γ point. For this purpose, the

vibrational phonon modes at the Γ point were calculated using finite-difference method

as implemented in VASP. Each atom in the primitive unitcell was initially distorted 0.01

Å and the corresponding dynamical matrix was constructed. Then, the vibrational modes
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Figure 8.1. Top and side view of typical single-layer structures; (a) mono-atomic, (b)
diatomic, (c) TMDs, (d) anisotropic single-layer structures, and (e) black
phosphorus. Color code of atoms given in corresponding figure. Primitive
cells are indicated with red solid lines.

Table 8.1. For the single-layer crystal structures; the structure, planar (PL), low-
buckled (LB), or puckered (P), calculated lattice parameters a and b, the
point group of the single-layer, total number of Raman active phonon
modes, the in-plane static (low-frequency) dielectric constant, ε, and the
energy-band gap of the structures calculated within SOC on top of GGA
(ESOC

g ). Note : ∗ The average in-plane static dielectric constant taken for
anisotropic materials. 1 (Gmitra et al., 2009), 2 (Tabert and Nicol, 2013),
3 (Liu et al., 2011), 4 (Kim, Hsu, Jia, Kim, Shi, Dresselhaus, Palacios, and
Kong, Kim et al.), 5 (Hüser et al., 2013), and 6 (Ramasubramaniam, 2012).

Point Raman
Structure a b Group Active εcal εrep Eg

SOC

(Å) (Å) Modes (eV)
Graphene PL 2.47 2.47 D3h 2 23.31 (24×10−6)1

Si LB 3.85 3.85 D3d 3 8.01 0.001-0.012

Ge LB 4.01 4.01 D3d 3 9.04 0.02-0.13

h-BN PL 2.51 2.51 D3h 2 1.5 2-44 4.68(d)
h-AlN PL 3.13 3.13 D3h 2 1.46 3.61(i)
h-GaN PL 3.27 3.27 D3h 2 1.71 2.37(i)
MoS2 1H 3.19 3.19 D3h 5 4.46 4.2-7.65 1.56(d)

MoSe2 1H 3.32 3.32 D3h 5 5.02 4.746 1.33(d)
WS2 1H 3.18 3.18 D3h 5 4.12 4.136 1.53(d)

WSe2 1H 3.33 3.33 D3h 5 4.67 4.636 1.19(d)
ReS2 1T′ 6.46 6.38 C1h 18 4.18* 1.34(d)

ReSe2 1T′ 6.71 6.60 C1h 18 4.71* 1.27(d)
BP P 4.57 3.31 D2h 6 4.32* 0.88(d)
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were determined by a direct diagonalization of the dynamical matrix. The calculations

were performed using GGA functional with the inclusion of DFT-D2 method of Grimme

vdW functional with a k-point set of 24×24×1. The k-point set was increased step by

step until the convergence for the frequencies of acoustic modes was reached (0.0 cm−1

for each acoustic mode). Once the accurate phonon mode frequencies were obtained at

the Γ point, the change of macroscopic dielectric tensor was calculated with respect to

each vibrational mode to get the corresponding Raman activities.

8.1. Strain-Dependent Raman Activity

Raman spectroscopy is a special technique for the observation of vibrational modes

in a sample. It is a fingerprint for distinguishing different crystal phases of a material and

also for distinguishing layer number in layered materials. Basically in the Raman the-

ory, inelastic scattering of incident photons is detected and the intensity of the scattered

radiation from the oscillating dipoles in the crystal is measured.

The treatment of Raman intensities is based on Placzek’s classical theory of po-

larizability. According to the classical Placzek approximation, the intensity of a Raman

active phonon mode is proportional to |ês.R.êi|2 where ês and êi stand for the polarization

vectors of scattered radiation and incident light, respectively. R is a 3×3 second rank ten-

sor called ’Raman tensor’ whose elements are derivatives of polarizability of the material

with respect to vibrational normal modes,
∂α11

∂Qk

∂α12

∂Qk

∂α13

∂Qk
∂α21

∂Qk

∂α22

∂Qk

∂α23

∂Qk
∂α31

∂Qk

∂α32

∂Qk

∂α33

∂Qk

 (8.1)

where the Qk is the normal mode describing the whole motion of individual atoms par-

ticipating to the kth vibrational mode. αij is the polarizability tensor of the material.

Generally, Raman tensor is written with the knowledge of group theory for every vibra-

tional mode.The term |ês.R.êi|2 is called as the Raman activity which is calculated from

the change of polarizability. For a back scattering experimental geometry, if orientational

averaging is considered, the Raman activity is represented in terms of Raman invariants

given by,
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αs ≡
1

3
(α̃xx + α̃yy + α̃zz) (8.2)

β ≡1

2
{(α̃xx − α̃yy)2 + (α̃yy − α̃zz)2 + (α̃zz − α̃xx)2

+ 6[(α̃xy)
2 + (α̃yz)

2 + (α̃xz)
2]} (8.3)

where α̃s and β represents the isotropic and anisotropic parts of the derivative of polariz-

ability tensor, respectively. The α̃ represents the derivative of polarizability with respect

to a normal mode. The importance of representing the intensity in terms of these two vari-

ables is being invariant to a change in the sample orientation. Finally, using these forms

of isotropic and anisotropic polarizability derivative tensors, the Raman activity, RA, can

be written as,

RA = 45α̃2 + 7β2 (8.4)

.

8.1.1. Mono-Elemental Single-Layer Crystals

As mono-atomic single-layer crystals, graphene, silicene, and germanene, have

hexagonal crystal structures. Due to sp2 hybridization of C atoms in graphene, its struc-

ture is planar and belongs to P 6̄/mmm space group symmetry. On the other hand, sp3

hybridization in silicene and germanene results in a buckled geometry (see Fig. 8.1(a)).

The structure of these two mono-atomic buckled single-layers belong to P 3̄m1̄ space

group. Different from graphene, silicene and germanene exhibit tiny electronic band gap

(1.55-7.90 meV (Tabert and Nicol, 2013) and 24-93 meV (Liu et al., 2011) for silicene

and germanene, respectively) due to spin-orbit coupling effect.

Mono-elemental single-layers, graphene, silicene, and germanene, have 2-atomic

primitive unitcell which corresponds to 6 phonon branches that consist of 3 acoustic and

3 optical branches. These single-layers have 3 optical phonon modes one of which is out-

of-plane (ZO) mode. Our calculated frequencies for ZO mode are 872.8, 193.8, and 172.2

cm−1 for graphene, silicene, and germanene, respectively. The strength of atomic bond-

ing between the atoms determines the position of all phonon modes in frequency space.

The ZO mode is a Raman inactive mode for graphene due to its planar crystal structure.

However, as result of buckled geometry of silicene and germanene ZO should be a Ra-

man active mode. It was reported that both silicene and germanene were synthesized on
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Figure 8.2. The response of activity of Raman active modes to the applied biaxial
strain for (a) graphene, (b) silicene, and (c) germanene. The insets in (b)
and (c) are for ZO phonon mode.
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different substrates and they are not stable in their free standing forms. Thus, because of

the effect of substrate on this Ag-like phonon mode, it is not possible to observe ZO mode

in experiments.

The other two optical modes, transverse optical (TO) and longitudinal optical

(LO), are doubly degenerate for these single-layer crystals. The frequencies are calculated

to be 1555.0, 559.6, and 296.8 cm−1 for graphene, silicene, and germanene, respectively.

This Raman active mode is a characteristic peak and known as the G-peak observed in

experiments. As mentioned above, ZO mode is Raman inactive for graphene and calcu-

lated to be Raman active for silicene and germanene. The calculated Raman activity of

ZO mode in silicene and germanene is smaller than that of LO and TO modes about 104

times (see Figs. 8.2(b) and 8.2(c)).

In addition to the analysis of these optical phonon branches, we also investigate

the effect of biaxial strain on the activity of these modes. The biaxial strain is applied

in the harmonic regime (between ±2%). For all 3 single-layer materials, as shown in

Fig. 8.4(a) we find that a significant phonon softening occurs under tensile biaxial strain

while a phonon hardening is investigated under compressive strain. This trend can be

expected because of the varying atomic bond lengths which affects the strength of the

bonds. Our calculated Raman activities demonstrate that ZO and LO-TO phonon modes

have opposite trends under applied biaxial strain (see Fig. 8.2). The activity of ZO mode

decreases with the increase of tensile strain while increases under compressive strain. It is

found that when the applied tensile strain is increased, buckling of silicene and germanene

decreases and the Raman activity of ZO mode approaches to zero. On the other hand, the

Raman activity of LO-TO phonon modes increases under tensile strain while it decreases

with compression of the structure.

8.1.2. Diatomic Single-Layer Crystals

Similar to graphene crystal structure, diatomic single-layers of group-III Nitrides

(h-BN, h-AlN, and h-GaN) have planar, one-atom-thick structure as shown in Fig. 8.1(b).

These crystal structures belong to space group of P63/mmc.

The crystal structure of these 3 single-layers is planar like graphene structure and

thus, the same trends in both frequencies and Raman activities of phonon modes are

expected for the diatomic single-layers. Due to number of atoms in the primitive unitcell

of the single-layers, 6 phonon branches are calculated as in the case of mono-elemental

single-layer crystals. The inter-atomic bond lengths of atoms decrease from h-BN to
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Figure 8.3. The response of activity of Raman active modes to the applied biaxial
strain for single-layer (a) h-BN, (b) h-AlN, and (c) h-GaN. The given re-
sponse is for the LO-TO phonon mode which is the only Raman active
mode for diatomic single-layers.

h-GaN that determines the position of frequencies of the optical phonon modes. As in

the case of graphene, ZO phonon mode is a Raman inactive mode for these diatomic

single-layer crystals. The frequencies of ZO mode are calculated to be 800.9, 412.5, and

263.6 cm−1 for h-BN, h-AlN, and h-GaN, respectively. When a biaxial strain is applied,

a significant phonon softening is observed from compressive strain to tensile strain as

shown in Fig. 8.4(a).

Our calculated Raman activities indicate that single-layers of h-BN, h-AlN, and h-

GaN have only degenerate TO-LO phonon modes to be Raman active. The frequencies of

this doubly degenerate optical modes are calculated to be 1343.4, 855.5, and 721.6 cm−1

for h-BN, h-AlN, and h-GaN, respectively. Under applied compressive biaxial strain,
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the frequencies of these modes shift to 1457.7, 936.9, and 793.2 cm−1 while a phonon

softening to 1235.5, 779.4, and 653.5 cm−1 frequencies is seen under tensile biaxial strain

for h-BN, h-AlN, and h-GaN, respectively. When the response of Raman activities are

analyzed, the largest response to applied strain can be seen for single-layer h-GaN under

tensile strain as 157% increase.

8.1.3. TMDs Single-Layer Crystals

The single-layer of TMDs has a hexagonally packed structure in which the sub-

layer of metal (M) atom is sandwiched between two sub-layers of chalcogen (X) atoms

(see Fig. 8.1(d)). Thus, the structural unit is formulated by MX2. Most of the single-layer

TMDs crystallize in either 1H or 1T phases. Here, we consider single-layers of Mo- and

W-dichalcogenides all of which have 1H crystal structure. These single-layer crystals

have P 6̄/m2̄ space group symmetry. Our structural analysis reveals that depending on

the atomic radii, single-layers of MSe2 (M=Mo or W) have larger lattice constants than

that of MS2.

Monolayers of Mo- and W-dichalcogenides with S or Se atoms, have 3-atomic

primitive unitcell and thus, totally 9 phonon branches are calculated. Out of 3 acoustic

phonon branches, 6 optical phonon branches exist in their phonon-band structure. The

in-plane shear modes are known to be doubly degenerate for in-plane isotropic single-

layer TMDs, MoS2, MoSe2, WS2, and WSe2. These in-plane optical phonon modes,

LO-TO modes, are known as the E′ , the chalcogen atoms move in opposite direction to

the transition metal atom, and E′′ , the transition metal atom is stationary and the chalcogen

atoms move in opposite directions. These two doubly degenerate modes are expected to

be Raman active since their motion have an in-plane inversion symmetry which results in

the change of polarizability. The E′′ phonon mode is the lowest frequency optical mode

for all these single-layer TMDs. The calculated frequencies are 277.8, 162.5, 289.5, and

167.9 cm−1 for single-layer MoS2, MoSe2, WS2, and WSe2, respectively. As it is seen for

Mo-dichalcogenides there is a huge difference in frequencies of the phonon modes which

is a natural result of Mo-S and Mo-Se bonds. When the S and Se atoms are compared,

both the atomic radius and masses are larger for Se atom which results in longer M-X

bond length. The same trend can be seen when the transition metal atom is changed

from Mo atom to W. In fact, all the factors affecting the frequencies of phonon modes are

strongly related (atomic masses, radii, bond lengths, etc..). In this phonon mode, since

only the chalcogen atoms move in opposite directions, the change in the dielectric tensor
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is very small. Thus, the lowest Raman activity is calculated for E′′ optical phonon mode.

When compared with the Raman activity of other two modes, activity of E′′ is in the order

of 10−4 for TMDs with S-atom while it is in the order of 10−3 for TMDs with Se-atom.

The response of the Raman activity of this phonon mode to the applied biaxial strain is

in the same order with its unstrained value. Thus, experimentally it still difficult to be

observed since there is no significant change in the Raman activity (see left panel of Figs.

8.5(a)-(d)).

The group theory analysis indicate that these single-layer TMDs have all D3h

symmetry group which should give totally 5 Raman active modes. Our calculations well

match with this knowledge that in addition to E′′ phonon mode we have another doubly

degenerate Raman active mode, E′ , and a singly degenerate ZO Raman active mode called

as A1 as shown in bottom panel of Fig. 8.5. Differing from E′′ phonon mode, in the

characteristic of E′ mode the chalcogen atoms move in opposite direction to the transition

metal atom. In all single-layers, the frequency of this Raman active mode is higher than

that of E′′ which is due to the additional motion of transition metal atom. The calculated

frequencies are 375.8, 278.3, 348.2, and 239.0 cm−1 for single-layer MoS2, MoSe2, WS2,

and WSe2, respectively. It was reported in many experiments that this E′ phonon mode

is a characteristic Raman active mode observed for single-layer TMDs. As in the case

of another single-layer crystals, the response of the Raman activity of E′ phonon mode

shows an increasing trend from compressive biaxial strain to tensile one. The frequency

of E′ phonon mode is smaller than that of A1 mode except for single-layer MoSe2 while

its Raman activity is only smaller for single-layer MoSe2 than that of A1 mode. The

change in the activity of E′ phonon mode is meaningless itself because there are two

characteristic Raman active modes and thus, the relative activities of E′ and the A1 mode

should be taken into account.

The A1 phonon mode is the only Raman active out-of-plane mode for these single-

layer TMDs. Another out-of-plane phonon mode, A′′2 , is a Raman inactive mode which

represents the opposite vibrations of chalcogen and transition metal atoms move in out-

of-plane direction. This mode in fact is known to be an infrared active phonon mode from

the group theory analysis. The frequency of A1 mode is higher than that of E′ phonon

mode except for the single-layer MoSe2. Our calculated frequencies for A1 mode are

401.0, 237.3, 412.4, and 244.4 cm−1 for single-layer MoS2, MoSe2, WS2, and WSe2,

respectively. The large difference in frequencies occur due to the larger vertical distance

between Se atoms. Due to this larger distance of Se-Se atoms, the out-of-plane stiffness

will be smaller for Se-based TMDs and thus, the frequencies of out-of-plane phonon
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modes will be softer. For the response of Raman activity of the Raman active modes to

the applied biaxial strain, we will discuss only the E′ and A1 phonon modes and their

relative activities. For the unstrained crystal structures, the ratios of Raman activities

of E′ mode to A1 mode ( IE′
IA1

) are calculated to be 5.35, 0.53, 8.32, and 1.37 for single-

layer MoS2, MoSe2, WS2, and WSe2, respectively. As a general behavior the in-plane

and out-of-plane modes are affected oppositely from the applied biaxial strain. When the

single-layer material is compressed about 2%, the activity of A1 phonon mode increases

while the activity of E′ decreases. Therefore, we will expect that the ratio ( IE′
IA1

) gets

smaller than its unstrained value. For the maximum compression (-2%) the calculated

ratios are, 0.87, 0.12, 1.11, and 0.26, respectively. It is seen that the significant change in

these ratios can be a fingerprint for determining the amount of compressive strain on the

single-layer TMDs. In contrast when the single-layer is stretched at a maximum strain

(+2%), the activity of A1 decreases and the ratio will increase. Our calculated values are

574.82, 4.47, 203.29, and 51.37, respectively. It is seen that the change in ratios of Raman

activities is more sensitive to applied biaxial tensile strain. Thus, one can identify the

amount of tensile strain originated in the structure by analyzing these activity ratios. The

significant change in IE′
IA1

for especially S-based TMDs occurs due to the sharp decrease

in the Raman activity of A1 phonon mode under tensile strain.
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mode and (b) A1.

8.1.4. Anisotropic Single-Layer Crystals

8.1.4.1. Rhenium Dichalcogenides (ReS2 and ReSe2) Single-Layer

Crystals

Besides the perfect hexagonal lattice, there are also in-plane anisotropic single-

layer crystals such as ReS2, ReSe2 and black phosphorus (BP). As shown in Fig. 8.1(e),

single-layers of ReS2 and ReSe2 have distorted 1T (1T′) crystal structure, which belongs

to space group of P1̄. (Tongay et al., 2014) Unit cell of 1T′ phase consists of eight chalco-

gen atoms coordinated around diamond-like Re4 clusters . The angle between the in-plane

unit cell vectors is 61.1◦ due to distortion in the crystal structure.

Monolayer crystals of Rhenium dichalcogenides (ReS2 and ReSe2) are both dif-

ferent than other well-known 2D TMDs which have 1H or 1T phase in their ground state.

In the structure of ReS2 and ReSe2 a distortion occurs due to strong interaction between

Re atoms which form Re4 diamond like chains. Thus, the primitive unitcell of these in-
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plane anisotropic single-layers can be represented by twelve atoms (four Re and eight

chalcogen atoms). As a result of this unitcell configuration, there are totally 36 phonon

modes for these two single-layers 3 of which are acoustic. Due to their distorted and

anisotropic crystal structure, all of the Raman active phonon modes are non-degenerate

modes. The 18 of the 36 phonon modes of single-layer ReS2 and ReSe2 are known to be

Raman active from the group theory (Feng et al., 2015).

First, we analyze the Raman spectrum of single-layer ReS2. The total 18 Raman

active phonon modes of single-layer ReS2 can be divided into Ag (representing out-of-

plane motion of atoms), Eg (representing in-plane motion of atoms), and the other modes

in which both motions are coupled. There are 4 Ag phonon modes for single-layer ReS2

two of which contain the motion of Re atoms and the other two contain motion of S

atoms. The modes calculated at frequencies 132.6 and 139.9 cm−1 represent the out-

of-plane motion of Re atoms while the modes at 429.0 and 402.7 cm−1 represent that

of S atoms. Our calculated Raman activities for these Ag modes demonstrate that the

activities of the low frequency modes that correspond to the motion of Re atoms, are

smaller than those for the modes of S atoms. This is expectable since the bonding between

Re atoms in a Re4 cluster is stronger than that of a Re-S bond. Thus, the response of the

vibration of Re atoms to the external incident light will be smaller. The total number of

Eg modes for single-layer ReS2 is known to be 6 four of which represent the in-plane

motion of Re atoms while the other two represent that of S atoms. The same frequency

trend is calculated for these Eg modes that is the motion of Re atoms occur again at lower

frequencies than those of S atoms. Our calculated frequencies are 151.3, 165.0, 218.9, and

239.5 cm−1 for the Eg phonon modes of Re atoms and 298.2 and 307.0 cm−1 for those of

S atoms. The calculated Raman activities of these modes also indicate the strong bonding

between Re atoms in a Re4 cluster. The remaining 8 Raman active modes represent the

both in-plane and out-of-plane motion of Re and S atoms. Six of these modes contain

the knowledge about the motion of only S atoms while for the other two modes both Re

and S atoms are vibrating. Since an opposite trend is observed for the responses of Ag

and Eg phonon modes to the applied biaxial strain, the responses of these coupled phonon

modes will totally be smaller than those of Ag and Eg modes, separately. When the Raman

activities of other modes are analyzed, it is seen that there are no significant changes in

the activities which can be a result of rigidity of single-layer ReS2. Because, at this level

of applied strain (±2%) no significant deformations can be observed due to the formed

Re4 clusters in the structure. The most significant change is observed for the coupled

phonon mode with frequency 412.0 cm−1. In this mode the motion of atoms in out-of-
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Figure 8.7. The response of frequencies and Raman activities of 18 Raman active
modes of single-layer ReS2 to the biaxial strain.

plane direction is dominant to that of in-plane. Thus, the activity of the mode displays a

decreasing trend under tensile strain at a rate of 36% while a rate of increment (47%) is

calculated under compressive strain.

In the case of single-layer ReSe2, the frequencies of the Raman active phonon

modes significantly change due to same reasons mentioned for other 2D single-layers in

this study. When S atoms are replaced by Se atoms, the Re-Se bond lengths gets larger

and so the lattice. This results in a decrease of in-plane stiffness in the single-layer which

results in softening of the phonon modes. Therefore, the highest Raman active phonon

mode of single-layer ReSe2 is calculated at 290.7 cm−1 which is found as 429.0 cm−1 for

single-layer ReS2. The Ag phonon modes of Re atoms are calculated to be at frequencies

106.5 and 116.0 cm−1 while they are found at 157.0 and 176.2 cm−1 for the Ag phonon

modes of Se atoms. As it is seen there is a large difference in the frequencies of out-of-

plane modes representing the motions of chalcogen atoms. Since the mass of Se atom

is larger than that of S atom, the frequency of the modes for S atoms is much higher

than that of Se atoms. The response of the Raman active modes of single-layer ReSe2 to
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Figure 8.8. The response of frequencies and Raman activities of 18 Raman active
modes of single-layer ReSe2 to the biaxial strain.

applied strain can be significantly detected for the most intense peak which is at 260.9

cm−1. This Raman active mode describes the coupled motion of both Re and Se atoms

and the calculated to be the most intense peak in 18 peaks. Under compressive strain the

activity of this mode increases about 50% of its unstrained value while it decreases about

55%. As it is seen the response of the mode is approximately symmetric. This mode can

be a finger print in experiments to detect the stress on the single-layer ReSe2. However,

due to the strong Re-Re bonds in these two single-layers, one can not observe significant

changes in the relative activities of Raman active modes in these single-layers.

8.1.4.2. Monolayer Black Phosphorus Single-Layer Crystal

Monolayer black phosphorus is a recently synthesized, in-plane anisotropic mem-

ber of 2D single-layer family. Due to its puckered crystal structure (see Fig. 8.1(e)),

single-layer BP possesses anisotropic physical properties which make this material an
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Figure 8.9. (a) The response of frequencies and (b) Raman activities of 6 Raman active
modes of single-layer BP to the biaxial strain. Vibrational motion of P
atoms in each phonon mode are given below.

important candidate for various applications. There are 4 P atoms in its rectangular prim-

itive unitcell. The crystal structure of single-layer BP belongs to Cmca space group.

Phonon-band structure of single-layer BP demonstrates that due to its 4-atomic

primitive unitcell, totally 12 phonon modes exist 3 of which are acoustical phonon branches.

According to the group theory analysis, single-layer BP has 6 Raman active phonon

modes which are called as B1g, B1
3g, A1

g, B2
3g, B2g, and A2

g. The Raman active modes

B1g, B1
3g, B2

3g, and B2g represent the in-plane vibration of P atoms while A1
g and A2

g

represent out-of-plane motion. Although, it has 6 Raman active phonon modes only 3

of them (A1
g, B2g, and A2

g) exhibit prominent Raman scattering intensity as observed in

experiments (Wang et al., 2015; Favron et al., 2015). Our calculated frequencies are

352.1, 424.2, and 455.2 cm−1 for A1
g, B2g, and A2

g, respectively. When compared with

the reported experimental results(361, 438, and 466 cm−1 for A1
g (Wang et al., 2015),

B2g (Wang et al., 2015), and A2
g (Wang et al., 2015), respectively), our calculated fre-

quencies are underestimated due to our methodology (GGA+vdW). For the unstrained

single-layer BP, calculated Raman activities demonstrate that the A1
g and A2

g have much

higher activities than that of B2g which was also observed in the experiment (Favron et al.,

2015). However, since the relative intensities of Raman active modes depend strongly on

the experimental conditions, here we will focus on the response of these modes to applied

strain.

When single-layer BP is biaxially compressed up to 2%, the frequency of A2
g
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Figure 8.10. The response of 3 prominent Raman active modes of single-layer BP to the
applied biaxial strain.

phonon mode displays a hardening from 455.2 to 462.6 cm−1 while a softening to 446.9

cm−1 is found under 2% tensile biaxial strain. The Raman activity of A2
g phonon mode is

highly affected by the applied strain that it displays the same trend calculated for single-

layer TMDs. If we normalize the Raman activity of this peak to 1, we find that the Raman

activity of A2
g increases up to 5.4 times of its unstrained value under 2% of compressive

strain. However, its Raman activity is found to be less sensitive to tensile strain when

compared with that of compressive strain. Our results demonstrate that under 2% of ten-

sile strain, the Raman activity decreases about 68% of its initial value which is much

lower than that of compressive value. The frequency of B2g phonon mode displays the

same trend as the A2
g mode under biaxial strain. A softening to 403.5 cm−1 and a hard-

ening to 442.9 cm−1 are found for the frequency of B2g phonon mode under tensile and

compressive strains, respectively. It is seen that for the strain range of ±2%, the response

of frequency of B2g is much larger than that of A2
g mode. The calculated Raman activity

of B2g phonon mode is approximately 375 times smaller than that of the value for A2
g

mode for the unstrained crystal structure. For the Raman activity of B2g mode nearly a

symmetric response is calculated under compressive and tensile biaxial strains. We find

that the activity of this mode decreases(increases) about 10 times of its unstrained value

under tensile(compressive) biaxial strains. Due to the out-of-plane nature of the mode, the

same trend is also illustrated for B2g mode. Another characteristic Raman active mode of

single-layer BP is A1
g which represents the out-of-plane vibrations of the P atoms in upper

and lower layer of single-layer BP in opposite directions. The frequency of this phonon

mode softens to 343.7 cm−1 under 2% of tensile strain while it hardens to 358.2 cm−1
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under that of compressive strain. The calculated Raman activity of A1
g phonon mode is

in the order of that of A2
g mode in unstrained structure. Since the two modes display the

same trend under biaxial strain, it will be meaningful to compare the Raman activity of A1
g

with its unstrained value. When 2% of compressive strain is applied, the Raman activity

of A1
g increases about 7 times of its unstrained value while a decrease to 1/4 of its initial

value.

As we mentioned, totally 6 Raman active modes exist for single-layer BP 3 of

which have very low Raman activities (at the order of 10−5 of the value of A2
g mode).

The Raman active modes B1g and B1
3g are calculated to have frequencies 193.8 and 232.8

cm−1, respectively. Our results show that both the frequencies and their Raman activities

are mostly insensitive to the applied biaxial strain. A small amount of shift, from 193.8

to 192.8 cm−1, is found for B1g while a shift from 232.8 to 231.8 cm−1 is found for

B1
3g under tensile strain. The response of frequencies is about 1 cm−1 which is very

small when compared to other Raman active modes of single-layer BP. Their frequency

responses to the compressive strain are also very small (193.8 to 193.9 cm−1 and 232.8

to 233.1 cm−1 for B1g and B1
3g, respectively). Thus, the frequencies of these two Raman

active modes are not key for determination of the strain on the structure. In addition to

their frequencies, Raman activities of B1g and B1
3g modes are mostly insensitive to the

applied biaxial strain. We find that the activities mostly stay in the same range of their

unstrained values. So, the direct detection of these modes in experiments under biaxial

strain will not be clear as in the unstrained case.

8.2. Conclusions

In this study, the first-order off-resonant Raman spectra of 2D single-layers of

mono-atomic (graphene, Si, and Ge), diatomic (h-BN, h-AlN, and h-GaN), in-plane isotropic

TMDs (MoS2, MoSe2, WS2, and WSe2), and in-plane anisotropic crystals (ReS2, ReSe2,

and BP) and their strain-dependent behaviors were investigated by performing DFT-based

calculations. Our results well fit into the reported experimental results for the first-order

off-resonant Raman activities. In addition, the effect of biaxial strain on the Raman spec-

tra of these single-layer crystals was analyzed in terms of their phonon frequencies and

Raman activities. Our findings can be summarized as follows; (i) strain can be directly

observed in Raman scattering experiments by the knowledge of the peak positions of

Raman active phonon modes, (ii) the ZO phonon mode of the single-layer Si and Ge

disappear under sufficient tensile strain, (iii) in the case of isotropic single-layer TMDs
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(MoS2, MoSe2, WS2, and WSe2) the intensity ratio of E′ to A1 phonon mode, IE′
IA1

, is

a key for the determination of the induced strain since this ratio significantly increases

when a tensile strain is applied while it decreases under compressive strain due to the

opposite responses of these phonon modes to the applied strain, and (iv) finally, a remark-

able point for the anisotropic single-layers of ReX2 is that there is no significant change

in Raman intensities under strain. Our study elucidates the substrate-induced strain effect

on Raman spectrum of the several single-layer materials. This is of importance for the

characterization and utilization of the materials in nanoelectronic device applications.
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CHAPTER 9

CONCLUSION

The electronic and mechanical properties of ultra-thin 2D materials are of great

interest due to their use in optoelectronic and nanomechanical applications. Despite lack

of a band gap in graphene, it has a large variety of use in most applications due to its

extreme mechanical properties. Thus, searching for other novel 2D monolayer materials

with even small or large electronic band gaps became an important issue.

In this thesis, electronic, magnetic, and mechanical properties of novel 2D mono-

layer materials such as pentagonal monolayers, holey graphene crystals, Ga-chalcogenides,

functionalized ReS2, heterobilayer crystal structure of Mg(OH)2 and WS2, and other

novel 2D monolayer materials were investigated by means of first-principles calculations

based on DFT. Following the prediction of monolayer p-graphene, we demonstrated that

penta-B2N4 can exist as a dynamically stable auxetic material. Even though penta-B4N2 is

energetically feasible, it was found to be dynamically unstable monolayer. Motivated by

the successful synthesis of monolayer C2N, we predicted the feasibility of othe monolayer

holey graphene structures with As or P atoms instead of N atom. Calculated cohesive en-

ergies suggest that these two monolayer crystals are potential candidate for experimental

synthesis with their mechanically flexible properties.

A detailed mechanical property analysis was demonstrated for monolayers of Ga-

monochalcogenides (GaS and GaSe). It was shown that these two monolayer structures

are highly flexible materials which can be important for their flexomechanical applica-

tions. In addition, their electronic and mechanical properties were shown to be tunable

under external biaxial strain and electron charging. The mechanical properties of in-plane

anisotropic monolayer ReS2 and effect of hydrogenation on its structural, electronic, and

mechanical properties were reported as another study. We found that full hydrogenation

of monolayer ReS2 lead to the formation of a new, dynamically stable structural phase

which is mechanically more anisotropic and flexible when compared with its bare struc-

ture.

Apart from mechanical properties, electronic properties of a possible heterobi-

layer structure composed of monolayers Mg(OH)2 and WS2 were investigated under the

effect of an external out-of-plane electric field. It was demonstrated that electronically a

transition from type-II (staggered) heterobilayer to type-I (straddling) heterobilayer can

be observed after a critical value of the external field. In addition, it was predicted that
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the low energy spectrum of the heterobilayer are dominated by the intralayer excitons of

WS2 monolayer.

The Raman measurement is a powerful and commonly used tool for characteri-

zation of 2D materials. In addition to experimental observations, the theoretical inves-

tigations of Raman intensities take an important place in scientific community. In this

thesis, we also investigated the effect of biaxial strain on the Raman spectra of novel 2D

monolayer materials. Our results demonstrated that strain can significantly affect the po-

sition(frequency) and intensity of Raman active modes in these materials which can be

a finger print for determination of the effect of substrates on the synthesized monolayer

material. We believe that our findings in this thesis will be helpful; (i) to understand the

limitations of both elastic and non-elastic mechanical properties of 2D monolayer mate-

rials for their applications in nanomechanics and (ii) to distinguish the structural phases

of a monolayer material through its Raman spectrum.
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İzmir -Turkey

Thesis Title: ELECTRONIC, MAGNETIC, AND MECHANICAL PROPERTIES

OF NOVEL TWO DIMENSIONAL MONOLAYER MATERIALS

Supervisor: Prof. Dr. R. Tuğrul SENGER
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