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Simultaneous determination of ternary mixtures of caffeine, paracetamol and metamizol in commercial
tablet formulations using UV-visible spectrophotometry combined with classical least squares (CLS) and
genetic algorithm (GA) based multivariate calibration methods were demonstrated. The three genetic
multivariate calibration methods are named as Genetic Classical Least Squares (GCLS), Genetic Inverse
Least Squares (GILS) and Genetic Regression (GR). The GR method is based on a genetic algorithm based
wavelength selection followed by a simple linear regression step whereas the GCLS and GILS are multivariate
calibration methods modified by a wavelength selection principle using a genetic algorithm. The sample
data set contains the UV-visible spectra of 47 synthetic mixtures (4 to 48 μg/mL) and 16 tablets containing
these components from two different producers. The spectra cover the range from 200 to 330 nm in 0.1 nm
intervals. Several calibration models were built with the four methods for the three components. Overall, the
standard error of calibration (SEC) and the standard error of prediction (SEP) for the synthetic data were in
the range of 0.04 and 2.34 μg/mL for all the four methods. Predictive ability of the calibration models
generated with synthetic samples was tested with actual tablet samples and results obtained from four
methods were compared. The SEP values for the tablets were in the range of 0.31and 15.44 mg/tablets.
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The resolution of mixtures containing two or more
compounds without any separation in the presence of
excipients existing in samples is one of the main issues of
simultaneous quantitative determination. Among the
various analytical techniques available for the
simultaneous determination of caffeine (CAF),
paracetamol (PAR), metamizol (MET) and their mixtures
with other compounds are spectrophotometry [1–5], HPLC
[6, 7], and voltammetry [8].

Modern spectroscopic instruments produce hundreds
of spectra in a few minutes for a given sample that may
contain multiple components. Unfortunately, univariate
calibration methods are not suitable for this type of data,
as they require an interference free system. Multivariate
calibration deals with data containing instrument
responses measured at multiple wavelengths for a sample
that usually contains more than one component. In recent
years, advances in chemometrics and computers have lead
to the development of several multivariate calibration
methods [9–12] for the analysis of complex chemical
mixtures.

Genetic regression (GR) is a calibration technique that
optimizes linear regression models using a genetic
algorithm (GA) and has been applied to a number of multi-
instrument calibration and wavelength selection problems
[13–17]. GAs are non-local search and optimization
methods that are based upon the principles of natural
selection [18–22]. For a given set of full spectrum data, GR
selects an optimum linear combination of wavelengths
and simple mathematical operators to build a linear
calibration model using simple least squares method.
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Classical Least Squares (CLS) extends the classical
Beer’s Law model in which the absorbance at each
wavelength is directly proportional to the component
concentrations. Inverse Least Squares (ILS) is based on
the inverse of Beer’s Law where concentration of an
analyte is modeled as a function of absorbance
measurements.  Genetic Classical Least Squares (GCLS)
and Genetic Inverse Least Squares (GILS) are modified
versions of original CLS and ILS methods in which a small
set of wavelengths are selected from a full spectral data
matrix and evolved to an optimum solution using a genetic
algorithm.

In this work, CLS and three different genetic algorithms
based calibration methods GCLS, GILS and GR were tested
with the aim of establishing calibration models that have a
high predictive capacity for the simultaneous determination
of caffeine (CAF), paracetamol (PAR), metamizol (MET)
and their mixtures in commercial tablet formulations using
the UV-visible spectrophotometry.

Experimental Part
 Materials

Stock solutions containing 100 mg/100 mL caffeine
(CAF), paracetamol (PAR) and metamizol (MET) were
prepared in 0.1 M HCl. A calibration set consisting of 31
sample solutions containing 4–40μg/mL CAF, 8–40 μg/mL
PAR and 12–48 μg/mL MET were obtained from the stock
solutions. A prediction set consisting of 16 synthetic mixture
solutions in the concentration range of 4–40 μg/mL CAF, 8–
40 μg/mL APAP and 12–48 μg/mL MET was prepared by
using the same stock solutions. All the solutions were
prepared freshly and protected from light.
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Two commercial tablet formulations (Remidon® tablets
produced by Deva Pharm., Turkey, Batch no. 306 1582,
consisting of 50 mg CAF, 200 mg PAR and 200 mg MET per
tablet and Pirosal® tablets produced by Saba Pharm., Turkey,
Batch no. 48, consisting of 30 mg CAF, 160 mg PAR and
220 mg MET per tablet) were investigated. Deva Pharm.
Ind. and Saba Pharm. Ind. kindly donated the active
compounds. In order to test the new methods for the real
samples, a total of 16 tablets (8 for the Remidon® and 8 for
the Pirosal®) were accurately weighed and powdered in a
mortar. An amount equivalent to one tablet was dissolved
in 0.1 M HCl in a 100 mL calibrated flask with the aid of
mechanical shaking for 20 min. This solution was filtered
into a 100 mL calibrated flask through Whatman No. 42
filter paper. The residue was washed three times with 0.1
M HCl and the solutions for the Remidon® and Pirosal®
tablets were diluted to 1:100 and 1:62.5, respectively with
the same solvent.

Methods
Sample spectra were measured on a Shimadzu UV-1600

double beam UV-visible spectrophotometer (Shimadzu,
JAPAN) from 200 to 330 nm with 0.1 nm intervals. Quartz
cells with 1 cm path lengths were used. The CLS and the
three new genetic algorithms based multivariate
calibration methods (GR, GCLS and GILS) were written in
MATLAB programming language using Matlab 5.3
(MathWorks Inc, Natick, MA). The text files for calibration,
validation and prediction sets were generated with the use
of Microsoft Excel (MS Office 97, Microsoft Corporation,
CA).

Results and Discussion
Genetic Regression

Genetic Algorithms (GA) are global search and
optimization methods based upon the principles of natural
evolution and selection as developed by Darwin.
Computationally, the implementation of a typical GA is
quite simple and consists of five basic steps including
initialization of a gene population, evaluation of the
population, selection of the parent genes for breeding and
mating, crossover and mutation, and replacing parents with
their offspring. These steps have taken their names from
the biological foundation of the algorithm.

Genetic Regression (GR) is an implementation of a GA
for selecting wavelengths and mathematical operators to
build linear calibration models. GR is a hybrid calibration
between univariate and multivariate calibration techniques
in which it optimizes simple linear regression models
through an evolving selection of wavelengths and simple
mathematical operators (+, -, *, /). GR follows the same
basic initialize/ breed/mutate/evaluate algorithm as other
GAs but is unique in the way it encodes genes. A gene is a
potential solution to a given problem and the exact form
may vary from application to application. Here, the term
gene is used to describe the collection of instrumental
response pairs combined with the above mentioned
operators. These pairs, called ‘base pairs’, are then
combined with an addition operator to produce a score,
which relates the instrumental response to component
concentration. The term ‘population’ is used to describe
the collection of individual genes in the current generation.

In the initialization step, the first generation of genes is
created randomly with a fixed population size. Although
random initialization helps to minimize bias and maximize
the number of possible recombinations, GR is designed to
select initial genes in a somewhat biased random fashion
in order to start with genes better suited to the problem

than those that would be randomly selected. Biasing is
done with a correlation coefficient by plotting the scores
of initial genes against the component concentrations. The
size of the gene pool is a user defined even number in
order to allow breeding of each gene in the population. It is
important to note that the larger the population size, the
longer the computation time. The number of base pairs in
a gene is determined randomly between a fixed low limit
and high limit. The lower limit was set to 2 in order to allow
single point crossover whereas the higher limit was set to
eliminate over fitting problems and reduce the computation
time. Once the initial gene population is created, the next
step is to evaluate and rank the genes using a fitness
function, which is the inverse of the standard error of
calibration (SEC).

The third step is where the basic principle of natural
evolution is put to work for GR. This step involves the
selection of the parent genes from the current population
for breeding using a roulette wheel selection method
according to their fitness values. The goal is to give a higher
chance to those genes with high fitness so that only the
best performing members of the population will survive in
the long run and will be able to pass their information to
the next generations. Because of the random nature of the
roulette wheel selection method, however, genes with low
fitness values will also have some chance to be selected.
Also, there will be genes that are selected multiple times
and some genes will not be selected at all and will be
thrown out of the gene pool. After the selection procedure
is completed, the selected genes are allowed to mate top-
down in pairs whereby the first gene mates with the second
gene and the third one with the fourth one and so on as
illustrated in the following example:

Parents

S1 = (A347 * A251) # + (A379 +A218) (1)

S2 = (A225 * A478) # + (A343 / A250) + (A451- A358)+
         + (A231- A458)              (2)

The points where the genes are cut for mating are
indicated by #.

Offspring

S3 = (A347 * A251) + (A343 / A250) + (A451- A358) +
        +(A231- A458) (3)

S4 = (A225 * A478) + (A379 + A218) , (4)

where A347 represents the absorbance at the wavelength
given in subscript, S1 and S2 represent the first and second
parent gene scores and S3 and S4 are the corresponding
gene scores for the offspring.   Here the first part of S1 is
combined with the second part of the S2 to give the S3,
likewise the second part of the S1 is combined with the
first part of the S2 to give S4. This process is called the single
point crossover and is common in GR. Single point
crossover will not provide different offspring if both parent
genes are identical, which may happen in roulette wheel
selection, when both genes are broken at the same point.
Also note that mating can increase or decrease the number
of base pairs in the offspring genes. After crossover, the
parent genes are replaced by their offspring and the
offspring are evaluated. The ranking process is based on
their fitness values following the evaluation step. Then, the
selection for breeding/mating starts all over again. This is
repeated until a predefined number of iterations are
reached. Since GR is an iterative procedure it is possible
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that the model can easily be over fitted for the calibration
samples but fails for the independent validation samples.
In order to avoid this problem, the algorithm is set to run
with a leave one out cross validation step for the samples
in the calibration set.

Mutation which introduces random deviations into the
population was also introduced into the GR during the
mating step at a rate of 1% as is typical in GAs. This is
usually done by replacing one of the base pairs in an existing
gene with a randomly generated new base pair. Mutation
allows the GR to explore the search space and incorporate
new material into the genetic population. It helps to keep
the search moving and can eject GR from a local minimum
on the response surface. However, it is important not to set
the mutation rate too high since it may keep the GA from
being able to exploit the existing population. In the end,
the gene with the lowest SEC obtained from cross validation
is selected for the model building. This model is used to
predict the concentrations of component being analyzed
in the independent validation (test) sets. The success of
the model in the prediction of the validation set is evaluated
using standard error of prediction (SEP). The termination
of the algorithm can be done in many ways. The easiest
way is to set a predefined iteration number for the number
of breeding/mating cycles.

GR has some major advantages over classical univariate
and multivariate calibration methods. It is a hybrid
calibration method that uses the full spectral information
and reduces it to a single score upon which simple
calibration models are built. First of all, it is as simple as
univariate calibration in terms of the mathematics involved
in the model building and prediction steps, but at the same
time it has the advantages of the multivariate calibration
methods since it uses the full spectrum to extract genetic
scores. It automatically corrects baseline fluctuations with
the use of simple mathematical operators while forming
the base pairs. Note that no data pretreatment is necessary
before calibration, which saves time in the data processing.

Genetic Classical Least Squares
The classical least squares (CLS) method extends the

classical Beer’s Law model in which the absorbance at
each wavelength is directly proportional to the component
concentrations. Model errors are assumed to be in the
measurement of the instrument responses as it was in the
classical univariate method. In matrix notation, the CLS
model for m calibration samples containing l chemical
components whose spectra contain n wavelengths is
described as:

(5)

Where A  is the m x n matrix of the calibration spectra,
C is the m x l matrix of the component concentrations, K  is
the l x n matrix of absorptivity-pathlength constants and EA
is the m x n matrix of the spectral errors or residuals not fit
by the model. Here the K matrix represents the first order
estimates of the pure component spectra at unit
concentration and unit pathlength. The method of least-
squares can be used to estimate the K matrix. The least-
squares estimate of the K is defined as:

(6)

Once the estimated  matrix obtained, the
concentrations of an unknown sample can be predicted
from its spectrum by:

(7)

Where a is the spectrum of the unknown sample and  
is the vector of the predicted component concentrations.
Because CLS uses full spectral information however,
concentrations of all constituents must be known to be
able to generate robust calibration models. For real
samples, this is almost impossible since there are always
impurities in the samples where no concentration
information is available. Although selection of a sub set of
wavelengths from full spectra may improve the prediction
of calibration models, it may be the most time consuming
part of the calibration depending on the method used to
select wavelengths.

Genetic Classical Least Squares (GCLS) is a modified
version of the original CLS method in which a small set of
wavelengths are selected from full spectral data using a
genetic algorithm. The algorithm used to select the
optimum number of wavelengths in GCLS is quite similar
to the GR algorithm, but differs in the way it encodes the
gene. In GCLS, the term ‘gene’ describes a vector whose
elements are selected wavelengths. The size of the vector
is also determined in a random fashion with an upper limit
to reduce computation time.

In the initialization step, an even number of genes are
formed from full a spectral data matrix and each gene is
used to form a CLS model. These models are then evaluated
and ranked using the fitness function described in GR. The
roulette wheel method is then used to select the gene
population for breeding. After the selection procedure is
completed, the selected genes are allowed to mate top-
down without ranking whereby the first gene mates with
second gene and third one with fourth one and so on as
described in above with one difference. Since the genes
used in GCLS are only vectors of wavelengths and contain
no base pairs as described in GR, for each gene a random
number is generated between 1 and one less than the
length of the gene and the single point crossover process
is performed using this number. After crossover, the parent
genes are replaced by their offspring and the offspring are
evaluated. The ranking process is based on their fitness
values and follows the evaluation step. Then the selection
for breeding/mating starts all over again. This is repeated
until a predefined number of iterations are reached. In each
iteration,  the best gene with the lowest SEC is stored in
order to compare it with the best gene of the next
generation. If the next generation produces a better gene
then it is replaced with the older one; otherwise the old
one is kept for further iterations.  At the end, the gene with
the lowest SEC is selected for model building. This model
is used to predict the concentrations of component being
analyzed in the validation (test) sets as described in GR.

Genetic Inverse Least Squares
The major drawback of the CLS is that all of the

interfering species must be known and their concentrations
included in the model. This need can be eliminated by using
the inverse least squares (ILS) method which uses the
inverse of Beer’s Law. In the ILS method, concentration of
a component is modeled as a function of absorbance
measurements. Because modern spectroscopic
instruments are very stable and provide excellent signal-
to-noise (S/N) ratios, it is believed that the majority of errors
lie in the reference values of the calibration sample, not in
the measurement of their spectra. In fact, in many cases
the concentration data of calibration set are generated from
another analytical technique that already have its inherent
errors which might be higher than those of the
spectrometer (for example, Kjeldahl protein analysis used
to calibrate NIR spectra).
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The ILS model for m calibration samples with n
wavelengths for each spectrum is described by:

C = AP  +  EC  (8)

where C and A are the same as in CLS, P is the n x l matrix
of the unknown calibration coefficients relating l
component concentrations to the spectral intensities and
EC is the m x l matrix of errors in the concentrations not fit
by the model. In the calibration step, ILS minimizes the
squared sum of the residuals in the concentrations. The
biggest advantage of ILS is that equation 8 can be reduced
for the analysis of single component at a time since
analysis is based on an ILS model is invariant with respect
to the number of chemical components included in the
analysis. The reduced model is given as:

      (9)

where c is the m x 1 vector of concentrations for the analyte
that is being analyzed, p is n x 1 vector of calibration
coefficients and ec is the m x 1 vector of concentration
residuals not fit by the model. During the calibration step,
the least-squares estimate of p is:

(10)
where   is the estimated calibration coefficients. Once 
is calculated, the concentration of the analyte of interest
can be predicted with the equation below.

            (11)

where    is the scalar estimated concentration and a is the
spectrum of the unknown sample. The ability to predict
one component at a time without knowing the
concentrations of interfering species has made ILS one of
the most frequently used calibration methods.

The major disadvantage of ILS is that the number of
wavelengths in the calibration spectra should not be more
than the number of calibration samples. This is a big
restriction since the number of wavelengths in a spectrum
will generally be much more than the number of calibration
samples and the selection of wavelengths that provide the
best fit for the model is not a trivial process. Several
wavelength selection strategies, such as stepwise

wavelength selection and all possible combination
searches, are available to build an ILS model that fits best
the data. Here we used the same genetic algorithm
described in GCLS to build genetic inverse least squares
(GILS) models with one difference. This difference is in
the way the mating and single point crossover operations
are carried out. Because the number of wavelengths is
restricted in absorbance data matrix in the ILS, the size of
the largest gene is restricted to one less than the number
of calibration samples in the concentration vector.
However, if the single point crossover is set to take place in
any point of a gene, then the mating step could produce
new genes that have a larger number of wavelengths than
the number of calibration samples even though all the
genes in the initial gene pool were set to have smaller
number of wavelengths than the size of the concentration
vector. In order to avoid this problem, the crossover
operation is performed around the middle of each gene in
GILS so that the new generations will have a small chance
to have larger sizes than the number of calibration samples.
The rest of the algorithm is the same as the one used in
GCLS.

Table 1 and table 2 show concentration profiles of
calibration and validation samples, respectively. In addition,
16 samples of commercial tablets having each constituent
were used to build prediction set. UV spectra of pure
metamizol (20 μg/mL), paracetamol (16 μg/mL), and
caffeine (19 μg/mL) in 0.1 M HCl along with a ternary
mixture of the three components between 200 and 320
nm wavelength range are shown in figure 1. As seen from
the figure, paracetamol and metamizol show maximum
absorbance around 242 and 259nm, respectively whereas
pyridoxine has a maximum absorbance around 272 nm.
Their mixture spectrum, however, indicates strong overlap
over the entire region which indicates that the use of
multivariate methods would be needed to resolve these
components. Through the genetic multivariate calibration
process, it is expected that these overlaps will be resolved
and reveal the information necessary to build successful
calibration models otherwise almost impossible with
univariate calibration methods.

Several calibration models were generated with the four
methods and table 3 shows the results of ternary mixtures
for calibration and validation sets. Here, the CLS method
was applied to whole spectrum data set and in the case of

Table 1
COMPOSITION OF THE CALIBRATION SET CONTAINING CAF, PAR AND MET COMPOUNDS
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Table 2
COMPOSITION OF THE PREDICTION SET CONTAINING CAF, PAR AND MET COMPOUNDS

genetic algorithm based methods (GCLS, GILS and GR)
the algorithms were set to run with 20 gene and 100
iterations. The results given in table for GCLS, GILS and GR
are from the runs that generate the lowest SEC. Then these
models were used later to predict the actual tablet samples
and compared with each other based on their success of
predicting actual samples as shown in table 4–6.

A close examination of the results given in table 3
indicates that GR, GCLS and GILS methods generates very
similar results for caffeine and metamizol in which the
standard error of calibration (SEC) and standard error of
prediction values ranging between 0.04 and 0.37 μg/mL.
On the other hand, the CLS method generated relatively
high SEC and SEP results ranging between 1.78 and 2.34
μg/mL for the same components. The same conclusion
can also be made for the average recovery and relative

Table 3
RESULTS OF TERNARY MIXTURES IN CALIBRATION AND PREDICTION SETS CONTAINING CAFFEINE,

PARACETAMOL AND METAMIZOLE OBTAINED WITH FOUR MULTIVARIATE
CALIBRATION METHODS (CLS, GCLS, GILS AND GR)

standard deviation (RSD) of average recovery values. The
reason why CLS generated relatively larger results even for
the synthetic samples could be the fact that the whole
spectra of the ternary samples are strongly overlapped.
On the other hand, the rest of the three methods are based
on the wavelength selection which gives an advantage of
possibility to improve the prediction ability of calibration
models through the evolutionary process. The results for
the component paracetamol were quite different for all
four methods in which the GILS method generated the
lowest calibration and prediction errors.

In general, it seems like GILS produces better results
than other three. However, this could be a very misleading
conclusion if one considers the results given in table 4–6
where the results of metamizol, paracetamol and caffeine
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in commercial tablet formulations are given, respectively.
It can be seen that the three genetic algorithm based
methods generate comparable results. However, it is
evident that the CLS method is unable to predict the
composition of actual tablets as good as the genetically
modified multivariate methods. The reason for this result
is that the composition of the actual tablet samples is
different than the synthetic calibration samples. In addition,
the GILS method produced relatively high SEP values for
the tablets even though it generated the lowest SEC values
for the synthetic mixtures which might be the indication of
slightly over fitted models. In fact, while GR method
performs worst than GILS in the determination of synthetic
samples, it generated better prediction results for the actual
tablets. One possible explanation of this is that GR is able
to do automatic background correction by using subtraction
operator in base pairs whereas GCLS and GILS are not
able to do this. Another reason could be the possible
nonlinearities in the spectra that GR may be able to correct
but others are not. The regression coefficients (R2) were
ranged between 0.998 and 1.000 for the GR, GCLS and

GILS methods indicating very good fit between actual and
predicted concentrations. In terms of the overall
performance of the four methods it can be said that the
genetically modified methods perform better than CLS for
actual tablet samples.

In order to determine whether the genetic algorithm
selected wavelengths corresponds the particular
component absorbance region, the GCLS, GILS and GR
methods were also set to run 50 times with 20 genes and
100 iterations. The overall distribution of the selected
wavelengths for each component along with a pure
component spectrum is shown in figure 2 for GR method.
As can be seen from the figure, the genetic regression
method select the wavelengths that correspond the each
component absorption region even though the algorithm
starts with the whole spectrum information at the
beginning of each run and each wavelength has equal
chance of being selected. The explanation of this is in the
evolutionary nature of GR method where the wavelength
that is suited for the particular component survives in the
long run of iterations and others do not. This gives an

Table 5
RESULTS OF TWO DIFFERENT COMMERCIAL

PHARMACEUTICAL DOSAGE FORMS
CONTAINING PARACETAMOL

(200 mg REMIDON® TABLET) AND
(160 mg PIROSAL® TABLET) OBTAINED WITH

FOUR MULTIVARIATE CALIBRATION METHODS
(CLS, GCLS, GILS AND GR)

Table 4
RESULTS OF TWO DIFFERENT COMMERCIAL

PHARMACEUTICAL DOSAGE FORMS
CONTAINING METAMIZOL

(200 mg REMIDON® TABLET) AND
(220 mg PIROSAL® TABLET) OBTAINED WITH

FOUR MULTIVARIATE CALIBRATION METHODS
(CLS, GCLS, GILS AND GR)
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Table 6
RESULTS OF TWO DIFFERENT COMMERCIAL PHARMACEUTICAL DOSAGE FORMS CONTAINING
CAFFEINE (50 mg REMIDON® TABLET) AND (30 mg PIROSALÂ TABLET) OBTAINED WITH FOUR

MULTIVARIATE CALIBRATION METHODS (CLS, GCLS, GILS AND GR)

Fig.1.  UV spectra of pure Metamizol
(20 μg/mL), Paracetamol (16 μg/mL), and Caffeine

(19 μg/mL) in 0.1 M HCl along with a ternary
mixture of the three components between 200

and 320 nm wavelength range

Fig.2. Frequency of the wavelengths selected by
GR method in a total of 100 runs for Metamizol,

Paracetamol and Caffeine along with UV spectra of
each component between 200 and 320 nm

wavelength range.
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advantage to the genetic algorithm based methods where
only the information related to the particular component
are used to construct the model thereby reducing the noise
in the overall information.

Figure 3 and Figure 4 show the overall distribution of the
selected wavelengths for each component along with a
pure component spectrum obtained with GILS and GCLS,
respectively. However, these two genetic algorithm based
method do not seem to do a component specific
wavelength selection as opposed to GR method. The
reason for this is the difference in the form of the genes in
GR method and GILS and GCLS methods. Genes for GR
contains base pairs whereas genes for GILS and GCLS are
just vectors of wavelengths.

Conclusions
This study illustrates the application of the CLS and three

genetic algorithms based multivariate calibration methods
to simultaneous determination of pharmaceuticals in
synthetic and actual tablet formulations. It can be said that
GR, GCLS and GILS methods generate acceptable results
in the given concentration range of the components. These
methods coupled with UV-visible spectroscopy could be
an alternative to other methods such as chromatography,
which is more expensive and time consuming.
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