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In this paper, nonlinearly coupled identical Chua’s circuits, when driven by sinusoidal signal have
been analyzed in the time-domain by using the steady-state analysis techniques of piecewise-
linear dynamic systems. With such techniques, it has become possible to obtain analytical ex-
pressions for the transfer functions in terms of the circuit parameters. The proposed system
under consideration has also been studied by analog simulations of the overall system on a
hardware realization using off-the-shelf components as well as by a time-domain analysis of the
synchronization error.
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1. Introduction

Dynamics of coupled identical Chua’s circuits [Chua
et al., 1986] has been extensively investigated
by many researchers [Anishchenko et al., 1995;
Kapitaniak & Chua, 1994; Galais & Ogarzalek,
1999; Kazantsev & Nekorkin, 2002]. Synchroniza-
tion is the most frequently described phenomena
in coupled dynamic systems. The phenomenon of

synchronization was observed for the first time by
Christian Huygens in the 17th century who reported
that two clocks hung on the same wall tend to
synchronize by nonlinear coupling through the
elasticity of the wall. More than two centuries later
Rayleigh, Van der Pol, Andronov–Witt and the
other scientists [Minorsky, 1962] have developed
the theory of this phenomenon. Based on these
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theoretical frameworks various notions of chaos
synchronizations such as generalized synchroniza-
tion [Afraimovich et al., 1987] complete synchro-
nization [Pecora & Carroll, 1990], partial synchro-
nization [Maistrenko & Popovych, 2000] and phase
synchronization [Rosenblum et al., 1997] have been
developed. The pioneering work [Pecora & Carroll,
1990], has increased the interest in synchronization
after having recently found many applications par-
ticularly in telecommunications [Abel & Schwarz,
2002], in mechanical systems [Blekhman et al., 1995]
and in control theory [Nijmeijer, 2001].

Furthermore, synchronization phenomena has
also been investigated in periodically forced chaotic
systems [Carroll & Pecora, 1993; Carroll, 1994;
Pikovsky et al., 1997; Suykens et al., 1997] and it
was shown in [Carroll & Pecora, 1993] that the syn-
chronizing of chaotic circuits may also be extended
to periodically forced circuits by using a feedback
device to compensate the zero exponent due to pe-
riodic frequency which avoids the synchronization
of the response system with the drive system.

In this paper, two coupled identical Chua’s cir-
cuits which are externally driven [Carroll & Pecora,
1993] have been investigated in the time-domain
by modeling the system as the piecewise-linear dy-
namic system and using the well-known techniques
given in [Hajj & Skelboe, 1981; Armanazi, 1973],
and then the transfer functions between the syn-
chronization error and the input signal have been
analytically found.

The proposed system which is composed of two
coupled identical Chua’s circuits can be viewed as
unidirectionally coupled neurons: one of the neurons
(first Chua’s circuit “the master or drive circuit”)
is excited by an external sinusoidal input and its
output is fed to the other neuron (second Chua’s
circuit “the slave or response circuit”). The neu-
ron models used here are the same in the sense of
chaotic Cellular Neural Networks (CNN [Chua &
Yang, 1988]) introduced in [Güzeliş, 1993] as a third
order special case of generalized cellular neural net-
works of [Güzeliş & Chua, 1993]. Each neuron with
unity self-feedback becomes equivalent to a Chua’s
circuit [Chua et al., 1986] if it is isolated from the
other neuron and from the external input. These
neurons are indeed obtained from Chua’s circuit by
decomposing Chua’s diode into a linear positive re-
sistor, a non-linear voltage controlled voltage source
and a linear voltage controlled current source. As
seen from Fig. 1(a) defining the voltages of the

dependent sources as port voltages, a neuron can be
considered as a two-port nonlinear dynamical cir-
cuit element and also as an input–output system
and the output is the voltage of the second port.
Such a neural based treatment of Chua’s circuit
provides:

(i) Obtaining a new hardware realization for
Chua’s circuit by means of voltage transfer
functions synthesis [Yalçın et al., 1996] as an
alternative to the known realizations [Kennedy,
1992], and

(ii) Having new ways for excitation and also for
nonlinear coupling of Chua’s circuits.

The sinusoidal input signal drives to the first Chua’s
circuit via current source by ensuring the double-
scroll regime by choosing the amplitude of the sinu-
soidal signal sufficiently small and also by adjusting
the frequency of the input signal higher than the
frequency of the first-harmonic of the limit-cycle of
the double-scroll (free or autoperiodic frequency)
in the driver and then the output of the first cir-
cuit is coupled to the second circuit by means of
a dependent current source. Such a choice of the
input signal frequency (heteroperiodic or external
frequency) is for avoiding the supression of free
(autoperiodic) oscillation (and hence the supression
of the double-scroll regime) by external frequency
[Minorsky, 1962]. Otherwise, the well-known phe-
nomena “frequency entrainment” (i.e. the free oscil-
lation is locked with the frequency of input signal)
occurs. Proper choice of the spectrum of the input
signal to ensure the chaotic mode of operation has
also been investigated in [Pecora & Carroll, 1991;
Murali & Lakshmanan, 1992].

The feature of the proposed coupled system is
that driver and response circuits are not synchro-
nized whenever the driver is excited by a sinusoidal
input signal, but synchronization error is an infor-
mation bearing signal from which the input signal
can be recovered.

Section 2 presents the state equations and cir-
cuit structure of the proposed coupled system. The
system has been analyzed in Sec. 3 by solving the
state equations where synchronization errors are
state variables and then by finding asymptotical
synchronization error between the input and output
of the second neuron in terms of the input signal.
Analog simulation results obtained in a hardware
realization of the system are presented in Sec. 4.
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Fig. 1. (a) Proposed unidirectionally coupled chaotic system. (b) R, L, C equivalent of linear, dynamical 2-terminal element
denoted by ZRLC. (c) Piecewise-linear transfer characteristic of voltage-controlled voltage sources.

2. Time Domain Analysis of the

Coupled System

A circuit realization of the proposed coupled sys-
tem by using ideal circuit elements is shown in
Fig. 1(a). The first neuron circuit is equivalent to
original Chua’s circuit if transfer characteristics f(·)
of nonlinear dependent voltage source are as shown
in Fig. 1(c), the self-feedback coefficient is chosen
to be unity, and the linear dynamical 2-terminal el-
ement ZRLC is defined as in Fig. 1(b).

The state equations of the proposed coupled
system are given as:

The state equations of the first neuron (drive
circuit):

ẋ1 = [−(1 + δ)x1 + y1 + a00f(x1)

+ a10f(x2) + m(t)] (1)

ẏ1 = x1 − y1 + z1 (2)

ż1 = −βy1 . (3)

The state equations of the second neuron
(response circuit):

ẋ2 = α[−(1 + δ)x2 + y2

+ a11f(x2) + a01f(x1)] (4)

ẏ2 = x2 − y2 + z2]] (5)

ż2 = −βy2 . (6)

where, the piecewise-linear function f(·) with defin-
ing m0 = Ga/G and m1 = Gb/G can be given as:

f(x) = m1x +
1

2
(m0 −m1)(|x + B| − |x−B|) (7)

In Fig. 1(a) a unidirectionally coupled neuronal
system consist of identical Chua’s circuits where
a10 =0.

In the sequel, it will be shown that the input
signal m(t) can be recovered from the signal m̂(t)
which is defined to be the difference between the
input f(x1) and the output f(x2) of the second
neuron as

m̂(t)
def
= f(x1) − f(x2) (8)
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By defining the error vector E to be the difference of the state vectors of the first neuron X1 = [x1 y1 z1]
T

and the second neuron X2 = [x2 y2 z2]
T as

E
def
= X1 −X2 (9)

and substracting the state equations of the first neuron from the state equations of the second neuron, the
following equations are obtained.

Ė =





−α(1 + δ) α 0

1 −1 1

0 −β 0



E +





α(a00 − a01)

0

0



 f(x1) +





−α(a11 − a10)

0

0



 f(x2) +





α

0

0



m(t) (10)

Using the lemma in [Hajj & Skelboe, 1981], the following relation can be written

f(x2) − f(x1) = sk(x2 − x1) + O(|x2 − x1|) (11)

where sk is the slope of x−f(x) characteristics in the region where x1 lies, for the time interval tk−1 ≤ t ≤ tk,
hence sk ∈ {m0, m1} and the residue term “O(|x2 − x1|)” is as

O(|x2 − x1|) =











































































































|x2 − B|

|x2 − x1|
(m1 − m0)(x2 − x1) x1 ∈ P0, x2 ∈ P+

|x2 − B|

|x2 − x1|
(m0 − m1)(x2 − x1) x1 ∈ P+, x2 ∈ P0

|x2 − (−B)|

|x2 − x1|
(m1 − m0)(x2 − x1) x1 ∈ P0, x2 ∈ P−

|x2 − (−B)|

|x2 − x1|
(m0 − m1)(x2 − x1) x1 ∈ P−, x2 ∈ P0

(

|x2 − (−B)|

|x2 − x1|
−

|x2 − B|

|x2 − x1|

)

(m0 − m1)(x2 − x1) x1 ∈ P−, x2 ∈ P+

(

|x2 − (−B)|

|x2 − x1|
−

|x2 − B|

|x2 − x1|

)

(m1 − m0)(x2 − x1) x1 ∈ P+, x2 ∈ P−

0 x1 and x2 in the same region

where the regions P 0, P+ and P− have been shown in Fig. 1(c).
This residue term is nonzero only when x1 and x2 are at different regions and its magnitude approaches

to zero whenever |x2−x1| approaches to zero. If x2(t) (and/or x1(t)) is rapidly changing then the probability
that x1 and x2 are placed at different regions will be very high and this nonzero residue term will frequently
occur.

By substituting the relation (11) into (10), the following state equations defined for each time interval

Tk
def
= [tk−1 tk] have been obtained as:

Ė =





−α[(1+δ)+(a00−a11)sk] α 0

1 −1 1

0 −β 0



E +





α(a00−a01−a11+a10)

0

0



 f(x1)+bNO(|x2−x1|)+bm(t)

(12)
where

b = [α 0 0]T , bN = [−α(a11 − a10) 0 0]T .

By choosing the connection weights to satisfy the relation a00 − a01 − a11 − a10 = 0 without loss of a
generality, Eq. (12) is further simplified as

Ė = AkE + bm(t) + bNO(|x2 − x1|) for t ∈ Tk (13)
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where Ak is a time-varying state matrix

Ak =





−α[(1 + δ) + (a00 − a11)sk] α 0

1 −1 1

0 −β 0





which is equal to strictly Hurwitz constant ma-
trix A(m0) (and respectively A(m1)) for the times
whenever x1 ∈ P0 (and respectively for the times
when x1 ∈ P+ ∪ P−).

The state transition matrix of the time-varying
state equation system of

Ė = AkE t ∈ Tk (14)

can be obtained using the approach given in
[Armanazi, 1973] as:

Φ(t, 0)=eAn(t−tn−1)eAn−1hn−1 , . . . , eA1h1 for t∈Tn

(15)

where hj
def
=: tj − tj−1 for j ∈ {1, 2, . . . , n − 1} and

t0 = 0.
Since each of Ak matrices is either A(m0) or

A(m1) both of which are strictly Hurwitz matri-
ces, then there exists a finite number K, such that
‖Φ(t, 0)‖ ≤ K < ∞, ∀ t. This is a consequence
of the fact that each ‖eAk(t−t0)‖ ≤ Nke

αk(t−t0) for
some Nk > 0, αk < 0 ∀ t > t0 and then

‖Φ(t, 0)‖

≤

(

n
∏

i=1

Ni

)

e(αn(t−tn−1)+αn−1hn−1+···+α1h1)

t ∈ Tn . (16)

When the time increases indefinitely, the sum αn(t−
tn−1)+αn−1hn−1+· · ·+α1h1 tends to minus infinity
and then limt→∞ ‖Φ(t, 0)‖ = 0.

The complete solution of (12) for the times
tn−1 < t < tn is

E(t)=Φ(t, 0)E(0) +

∫ t

0
Φ(t, τ)bm(τ)dτ

+

∫ t

0
Φ(t, τ)bNO(|x2(τ)−x1(τ)|)dτ (17)

The first term will approach zero when t approaches
to infinity. The forced solution due to O(|x2 − x1|)
can be neglected since the occurrence of the nonzero
residue term |O(|x2 − x1|)| is not frequent. This
is because the probability of x1 and x2 being at
the different regions is small since x1 and x2 are
slowly changing as a result of the assumption that
the input signal frequency is very high compared

to the fundamental frequency of the limit-cycle of
the double-scroll regime. The forced solution term
of (17) Eforced(t) due to m(t) can be found as

Eforced(t)

=Epn
(t)−e

An(t−tn−1)e
An−1hn−1 , . . . , e

A1h1
Ep1

(0)

+e
An(t−tn−1)e

An−1hn−1 , . . . , e
A2h2 [Ep1

(t1)−Ep2
(t1)]

+e
An(t−tn−1)e

An−1hn−1 , . . . , e
A3h3 [Ep2

(t2)−Ep3
(t2)]

+ · · · +e
An(t−tn−1)[Epn−1

(tn−1)−Epn
(tn−1)] (18)

where Epk
(t) is the particular solution during the

time interval Tk for the truncated state equation
system of

Ėpk = AkEpk + bm(t) (19)

due to a sinusoidal input signal m(t) = M Cos(wt).
The expression (18) has been obtained by an

interval-wise application of the relation which gives
the forced solution to a linear system in terms of its
particular solution and state transition matrix, and
by imposing the final value at the present interval
on the linear state equations of the next interval as
the initial condition.

The particular solution, Epk
(t), is an approx-

imate particular solution of (13) since the correct
particular solution Epck

should satisfy

Ėpck
= A(sk)Epck

+ bm(t)

+ O(|x2pck
− x1pck

|) . (20)

The approximate particular solution is found as

Epk
(t)=





ε1(w, sk)Cos(wt+θ1(w, sk))

ε2(w, sk)Cos(wt+θ2(w, sk))

ε3(w, sk)Cos(wt+θ3(w, sk))



 t∈Tk

(21)

The amplitude and phase of the first component are
given for δ = 1 as in (22) and (23) while the others
which are not related to m̂(t), are omitted here.

ε1(w, sk) = M

√

ς2
1 (w, sk) + ς2

2 (w, sk)

ζ(w, sk)
(22)

θ1(w, sk) = arctan

(

ς2(w, sk)

ς1(w, sk)

)

(23)

where

ask
= −α(1 + δ + sk(a00 − a11))

ς1(w, sk) = −α[ask
w4 + (2βask

+ ask
+ α)w2

+ (ask
β + αβ)w + ask

β2] ,

ς2(w, sk) = wα[w4 + (−2β + 1 + α)w2

− 2βw + β2 − βα]
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∧

∧

Fig. 2. M̂ (f) magnitude spectrum for unity input amplitude, i.e. M = 1.

and

ζ(w, sk) = −w6 + (2β − 2α − ask
− 1)w4 + βw3

+ (β[−β + 2(ask
+ α)] − [ask

+ α]2)w2

+ (−βask
α − βask

)w − β2a2
sk

.

The forced solution in (18) is approximately equal
to Epn

(t) at the steady-state since the vectors
[Epn−1

(tn−1)−Epn
(tn−1)] are almost equal to zero

vector which can be seen from the closeness of the
characteristics in Figs. 3 and 4 obtained for different
slopes m0, m1, and since matrix exponentials mul-
tiplying these small constant vectors are decreasing
with time t.

The recovered signal m̂(t) defined in (8) at the
time interval Tk is

m̂(t) = skC
TE(t) + O(|x2 − x1|)

with C = [1 0 0]T t ∈ Tk (24)

and at the steady-state m̂(t) ∼= skC
TEpk

(t) since
the forced solution due to m(t) is approximately
equal to the particular solution Epk

(t) at the
steady-state.

Hence, using (22) and (23) the recovered signal
can be obtained as:

m̂(t) ∼= skε1(w, sk)Cos(wt + θ1(w, sk)) (25)

M̂(w)
def
= ε1(w, sk) the magnitude and θ̂(w)

def
=

θ1(w, sk) the phase characteristics for a frequency

range, where double-scroll regime has been observed

to be preserved (see Sec. 4), are given for both m0

and m1 in Figs. 2 and 3 where a00 = 1, a11 = 0.1,

a01 = 0.9, a10 = 0.

The critical frequency fc = 4.3 kHz around

which the characteristics fail to be flat is the fre-

quency closest to the natural frequencies of (19).

In other words, as f (external input frequency)

approaches to fc, the particular solutions of (19)

become undefined.

It should be noted that the overall system

behaves like a filter having the characteristics in

Figs. 3 and 4. Their unwanted effects on the input

signal can be compensated by a post filter. As ob-

served from analog simulations, for the frequency

range considered in the above figures, the double

scroll regimes of the first neuron and second neu-

ron Chua’s circuits are preserved. This means that

an input signal having upto ≈40 kHz bandwidth

might be recovered well by the proposed system.

Input signals, which have frequencies falling out of

the frequency range, can be brought into this region

by using a sinusoidal carrier signal.
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Ù

∧

Fig. 3. θ̂(f) phase spectrum for zero message phase.

3. Hardware Realization

In this section, the time domain analysis has been
confirmed by experimental observations done on a
hardware realization. In the realization, off-the-shelf
R, L, C components with C1 = 1 nF, C2 = 22 nF,
R = 10 kΩ, L = 68 mH, RN = 10 kΩ and
the op amps TLC-082 for the synthesis of depen-
dent sources based on the voltage controlled volt-
age source approach [Yalçın et al., 1996] have been
used for both the first neuron and second neuron
Chua’s circuits. For a large f(x) signal to be trans-
ferred and also for a voltage transfer characteristic
x − f(x) that is easy to implement by op amps,
firstly, voltage dependent sources have been real-
ized for the slopes GA = 15/7 and GB = 12/7, and
then, the resulting scaled f(x) has been applied to
voltage controlled current sources with a gain fac-
tor 10−4; resulting in a characteristic having the
slopes GA = 15

7 10−4 and GB = 12
7 10−4 to obtain

double-scroll regime. This indicates an implemen-
tation advantage of the neural based treatment of
Chua’s circuit.

The current m(t) driving the first neuron has
been obtained as the current of a voltage controlled
current source with a gain factor 10−5 mho such
that the peak to peak value of the control volt-

age Vm is in the interval of [2V, 11V ]. It has been
observed that excitation by such an input signal
m(t) having the frequency range [4 kHz, 100 kHz]
does not destroy the double-scroll regime of the
first neuron.

The VC1 − VC2 plot for the first neuron driven
by the source with Vm of 10 V peak to peak value
and with f = 17 kHz; and the V̂C1 − V̂C2 plot for
the second neuron are given in Figs. 4(a) and 4(b).

The waveforms of the source Vm(t) with
the abovementioned amplitude and frequency, the
transmitted signal, i.e. 104f(VC1(t)), and the recov-
ered signal m̂(t) are given in Figs. 5(a) and 5(b).

As mentioned before, the input signal can be
recovered by using the synchronization error. This
fact can be seen from the following “VC1(t) versus

V̂C1(t)” and “Vm(t) versus m̂(t)”. Figure 6(a) shows
the synchronization error and Fig. 6(b) indicates
the phase delay between m(t) and m̂(t).

In order to examine the robustness of the pro-
posed system against channel noise, a (0–100 kHz)
white-noise with 0.3 V peak to peak value which
is supplied by an analog noise generator is added
to the transmitting signal. The observed waveform
for the recovered signal m̂(t) together with the
original is given in Fig. 7. Considering 13 V peak
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(a)

(b)

Fig. 4. (a) VC1 − VC2 plot for the first neuron (1 V/div–0.2 V/div). (b) V̂C1 − V̂C2 plot for the second neuron (1 V/div–
0.2 V/div).
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(a)

(b)

Fig. 5. (a) The transmitted signal 104f(VC1(t)) (5 V/div–2 msn/div). (b) The input voltage Vm(t) (the signal above)
(5 V/div–50 µsn/div), the recovered signal m̂(t) (1 V/div–50 µsn/div).
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(a)

(b)

Fig. 6. (a) VC1(t) − V̂C1(t) plot (2 V/div–1 V/div). (b) m̂(t) − Vm(t) (0.5 V/div–2 V/div).
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(a)

(b)

Fig. 7. (a) The input Vm(t) (5 V/div–20 µsn/div). (b) The recovered input m̂(t) under the channel noise effect (0.5 V/div–
20 µsn/div).
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to peak value of the transmitted signal, the %23
noise/signal ratio is obtained.

4. Conclusion

The presented time-domain analysis approach
based on the steady-state analysis of piecewise-
linear dynamic systems has yielded analytical ex-
pressions for the magnitude and phase characteris-
tics which can be used to determine the recovered
signal. These characteristics are very similar to the
magnitude and phase characteristics obtained by
using the harmonic balance analysis in [Savaci &
Yalçın, 1997]. The given approach does not analyt-
ically give the magnitude and frequency range for
the input signal which is necessary to preserve the
chaotic regimes of both Chua’s circuits but the in-
put signal’s magnitude must be small compared to
the amplitude of the first harmonic of the limit cycle
of the double scroll regime and also the frequency of
the input signal must be high compared to the fun-
damental frequency of the limit cycle. With such a
choice for the input signal frequency, the magnitude
of the forced response due to the residue term could
be low, hence the input signal and the recovered sig-
nal would be very similar at the steady-state.
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