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Abstract: Cable-stayed bridges with long spans are excited by different support vibrations on both sides of the main span. Therefore, a realis-
tic seismic structural analysis of the bridge must involve multiple-support excitation. The dynamic equation of motion, in which all degrees of
freedom are solved at once, can be solved directly. A modal analysis might also be possible, but care must be taken with the number of modes
used in the analysis. If the ground motion is described in terms of displacement and velocity, which is referred to as displacement loading, then
a static correction that will account for the unconsidered higher modes must be performed. In this study, the procedure of multiple-support ex-
citation through the use of modal transformation is explained in detail. The effects of changes in damping levels that affect the analysis results
are investigated by using the static correction method in displacement loading. An example is given to illustrate the mentioned problem by
using a finite-element model of the cable-stayed Bill Emerson Memorial Bridge. DOI: 10.1061/(ASCE)BE.1943-5592.0001041. © 2017
American Society of Civil Engineers.

Author keywords: Multiple-support excitation; Static correction method; Damping effect; Modal analysis; Displacement loading.

Introduction

The seismic analysis of structures that have long spans, such as
cable-stayed or suspension bridges, pipelines, and domes, need fur-
ther consideration when modal superposition in conjunction with
ground displacement is to be used. As it is known from the literature,
if the supports of the structure are far apart, a traveling wave results
in different support excitations (Su et al. 2007; Zhang et al. 2009).

Displacement loading excites high-frequency modes (Wilson
2002), and errors are likely to occur if these high-frequency modes
are omitted in the modal analysis. To circumvent this problem, sev-
eral studies have established an analysis procedure to minimize the
computational model errors in the case of displacement loading.
Tsai (1998) proposed the static correction method to provide con-
vergence between the solutions obtained by displacement-loading
and conventional acceleration-loading analyses. Tsai (1998) gave
examples to illustrate the effect of the static correction method on
the results of convergence analysis obtained by displacement and
acceleration loadings for uniform excitation. Wilson (2002)
described the general characteristics of displacement loading and
probable numerical errors that emerge in the closed-form solution.
Wilson (2002) highlighted the effect of damping on the consistency
of analysis. Furthermore, the author noted that as the damping ratio
increased, the analysis results were increasingly inconsistent. Li
and Yang (2008) analyzed the seismic response of a long continu-
ous rigid-frame bridge subjected to multiple-support excitation by
displacement loading. They used the direct integration method,
which provides a closed-form solution without modal analysis by

neglecting the damping effect. Tian and Yang (2009) compared
acceleration and displacement loading by using the direct integration
solution and focused on the numerical errors caused by the integra-
tion time step and their effect on the convergence analysis by
neglecting the damping effects. Yau and Frýba investigated the
response of suspension bridges with moving loads against multisup-
port displacement motion (Yau and Frýba 2007; Frýba and Yau
2009; Yau 2009). In their studies, these authors modeled the center
span of a suspension bridge as an equivalent Euler–Bernoulli beam
that includes the stiffness of the cables for dynamic analysis. Du et
al. (2012) analyzed a coupled bridge–train system that was subjected
to displacement ground motion. In their study, a modal analysis was
performed to obtain the dynamic response of the bridge–train sys-
tem. However, the effect of static correction was overlooked.

Multisupport-excitation analysis is well known and widely used
by engineers, and acceleration loading is generally used in such
applications (Soyluk 2004; Abdel Raheem et al. 2011; Ye et al.
2012; Jiao et al. 2013; Wang and Kiureghian 2014; Surh et al.
2015). Cui and Gao (2011) investigated the traveling-wave effect in
long-span cable-stayed bridges, and they concluded that research
on long-span cable-stayed bridges needs to not only account for the
traveling wave effect but also include wave refraction, reflection,
and scattering in different media. Li et al. (2014) investigated the
effect of support flexibility on seismic responses of a reticulated
dome under multiple-support excitation with spatially correlated
and coherent excitations. The properties of spatial correlation and
coherency of multiple-support excitations were highlighted, and the
study revealed that coherency affected the seismic response. Wang
et al. (2015) investigated the apparent wave-velocity effect on the
seismic performance of the Taizhou suspension bridge. They pre-
sented a review of the critical issues in analyzing the traveling-wave
effect and proposed characteristics of the shear force and bending
moment distributions of the towers and the traveling-wave effect on
those force distributions.

In this study, the modal analysis procedure for long-span struc-
tures subjected to displacement loading is analyzed by using a
finite-element model of the cable-stayed Bill Emerson Memorial
Bridge, which has been studied by many researchers (Dyke et al.
2003; Caicedo et al. 2003; Koh and Dyke 2007; Domaneschi and
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Martinelli 2014; De Mari et al. 2015). The static correction method,
applied for consistency of the displacement and the base shear
response, is investigated. The pseudostatic effects of the support
reactions are also studied. The compatibility of mass, stiffness, and
static-load participation ratios with the exact modal variation of dis-
placement and base shear force response are investigated. In addi-
tion, the effect of damping in the modal analysis is evaluated. To the
knowledge of the authors, neither a comprehensive investigation of
modal contributions on analysis results nor a study on damping in
multiple-support displacement loading has been performed so far.

Formulation of Multiple-Support Excitation

Two different methods are used to solve the equation of motion of
long-span bridges subjected to support excitation, the displacement-
loading and acceleration-loading methods. They are classified
according to the construction of the external load function. In con-
ventional acceleration loading, the external load function is obtained
by multiplying the mass matrix of unconstrained degrees of freedom
(DOF), the ground acceleration, and its expansion vector (Chopra
2013). Because the mass matrix is associated with this procedure,
this loading type can be consideredmass proportional. In displace-
ment loading, the external load function is constructed by multiply-
ing the stiffness matrix and the displacement vector of the con-
strained (support) DOF. Therefore, this type of loading can be
considered stiffness proportional.

The equation of motion of a long-span structure subjected to
support excitation can be written as

M Mg

MT
g Mgg

� �
þ €ytðtÞ

€ygðtÞ
� �

þ C Cg

CT
g Cgg

� �
_ytðtÞ
_ygðtÞ

� �

þ K Kg

KT
g Kgg

� �
ytðtÞ
ygðtÞ

� �
¼ 0

FgðtÞ
� �

(1)

where M, C, and K = mass, damping, and stiffness matrices of
unconstrained DOF, respectively;Mgg, Cgg, and Kgg = mass, damp-
ing, and stiffness matrices of constrained DOF, respectively; and
Mg, Cg, and Kg = coupling mass, damping, and stiffness matrices of
constrained and unconstrained DOF, respectively. yt(t) and yg(t)
denote the absolute displacement vector of unconstrained and con-
strained DOF, respectively. Fg(t) denotes the total force acting on
the support DOF. The equation of motion given in Eq. (1) can be
separated into two parts as follows:

M€ytðtÞ þ C _ytðtÞ þ KytðtÞ ¼ �KgygðtÞ � Cg _ygðtÞ
�Mg€ygðtÞ (2)

MT
g€y

tðtÞ þMgg€ygðtÞ
n o

þ CT
g _y

tðtÞ þ Cgg _ygðtÞ
n o

þ KT
g y

tðtÞ þ KggygðtÞ
n o

¼ FgðtÞ (3)

Eqs. (2) and (3) denote the equation of motion of the uncon-
strained and constrained DOF, respectively.

In common practice, the third term on the right-hand side of Eq.
(2) is much smaller than the first and second terms. Thus, the third
term is neglected [Eq. (4)].

M€ytðtÞ þ C _ytðtÞ þ KytðtÞ ¼ �KgygðtÞ � Cg _ygðtÞ (4)

Because the right side of Eq. (4) includes both ground displace-
ment and velocity input, the external load can be referred to as dis-
placement and velocity loading. For low damping values, the sec-
ond term of the right side of Eq. (4) is negligible. In this case, the
external dynamic loading is referred to as displacement loading in
the literature. Then, the equation of motion of unconstrained DOF
takes the following form:

M€ytðtÞ þ C _ytðtÞ þ KytðtÞ ¼ �KgygðtÞ (5)

In dynamic analysis, the relative displacement vectors of
unconstrained DOF are used in general, and therefore, the exter-
nal load function consists of the mass matrix multiplied by the
ground-acceleration vector. As a result, this type of loading is
called mass proportional and/or acceleration loading. If the equa-
tion of motion is based on relative displacements, then the absolute
displacement can be separated as shown by Chopra (2013).

ytðtÞ
ygðtÞ

8<
:

9=
; ¼

ysðtÞ
ygðtÞ

8<
:

9=
;þ

yðtÞ
0

8<
:

9=
; (6)

and

_ytðtÞ ¼ _ysðtÞ þ _yðtÞ
€ytðtÞ ¼ €ysðtÞ þ €yðtÞ (7)

where ys(t) = pseudostatic displacement of unconstrained DOF that
arises because of movement of the constrained DOF; and y(t) = rela-
tive displacement vector of unconstrained DOF with respect to the
pseudostatic configuration. Thus, the equation of motion is written
according to the relative coordinates for acceleration loading per
Tsai (1998)

M€yðtÞ þ C _yðtÞ þ KyðtÞ ¼ �M‘€ygðtÞ (8)

where ‘ is called the influence matrix, which is expressed as
follows:

‘ ¼ �K�1Kg (9)

The pseudostatic displacements are written as follows:

ysðtÞ ¼ ‘ygðtÞ (10)

Modal Analysis Procedure

Modal Analysis Formulation of Displacement Loading

The total displacement vector of the structural unconstrained DOF
can be expressed as the superposition of its modal contributions

ytðtÞ ¼
XN
i¼1

UiY
t
i ðtÞ (11)

whereAi, Yi
t(t), andN = ith mode shape vector, the ith normal coor-

dinate, and the number of unconstrained DOF, respectively. Thus,
the equation of motion obtained for displacement and velocity load-
ing can be written in the following form by substituting Eq. (11)
into Eq. (4):
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M
XN
i¼1

Ui€Y
t
iðtÞ þ C

XN
i¼1

Ui _Y
t
iðtÞ þ K

XN
i¼1

UiY
t
i ðtÞ

¼ �KgygðtÞ � Cg _ygðtÞ (12)

and premultiplying byAT
j

�Mi€Y
t
iðtÞ þ �Ci _Y

t
iðtÞ þ �KiY

t
i ðtÞ ¼ �UT

i KgrugðtÞ � UT
i Cgr _ugðtÞ

(13)

�Mi ¼ UT
i MUi

�Ci ¼ UT
i CUi

�Ki ¼ UT
i KUi (14)

and

ygðtÞ ¼ rugðtÞ (15)

where �Mi, �Ci, and �Ki = generalized mass, damping, and stiffness,
respectively, of the ith mode; and ug(t) and r = ground displacement
and its expansion vector, respectively. The expansion vector can be
written as

r ¼ r1 r2 r3 ; :::; rNg
� � T

(16)

where r1 though rNg = scalar values in the case of uniform excitation
that indicate the ground-motion effects on the specific support
DOF; and Ng = number of constrained DOF. In this study, only uni-
directional investigation is performed. Thus, ri = 1 for DOF along
the longitudinal direction, and otherwise, ri = 0.

If the damping force at the right side of Eq. (13) is neglected,
then the equation of motion of the ith mode can be written as

€Y
t
iðtÞ þ 2j v i _Y

t
iðtÞ þ v 2

i Y
t
iðtÞ ¼ �CK

i ugðtÞ (17)

whereCK
i =modal participation factor of the ith mode.

CK
i ¼ UT

i Kgr
�Mi

(18)

The equivalent external load vector acting on the unconstrained
DOF is determined by the multiplication of Kg and the ground dis-
placement while neglecting the velocity input; therefore, this load-
ing type can be considered stiffness proportional. The right side of
Eq. (18) has units of force per mass. The unit of CK

i is 1 divided by
time squared, which brings to mind v 2

i . Therefore, C
K
i and the driv-

ing force in Eq. (17) can be considered modal stiffness proportional.
In Eq. (18), the vector Kg� r denotes the spatial distribution of

earthquake forces caused by uniform ground-displacement loading,
which can be decomposed into its modal contributions.

Kgr ¼ SK ¼
XN
i¼1

SKi (19)

By a reverse calculation in Eq. (19), the effective modal stiffness
of the ith mode can be written as follows:

SKi ¼ CK
i MUi (20)

To obtain a cumulative stiffness participation ratio for a number
of considered modes, an energy approach is developed. The vector

SK corresponds to the force of the structural DOF caused by uniform
unit ground displacement, and K−1� SK is the corresponding struc-
tural displacement vector. Thus, the total structural energy is

E ¼ 1
2

K�1SKð ÞTSK ¼ � 1
2

‘rð ÞTSK (21)

Accordingly, the relative energy ratio accumulated by the first n
modes can be written as

Ks
n ¼

‘rð ÞT Pn
i¼1

CK
i MUi

‘rð ÞTSK
(22)

where Eq. (22) also corresponds to the cumulative static-load par-
ticipation ratio of displacement loading. In acceleration loading,
however, the external load consists of the mass multiplied by the
ground acceleration. A similar energy approach can be used to de-
velop a relative energy ratio for this type of loading in which the
force is now based on uniform unit acceleration, and the corre-
sponding displacement is equivalent to the uniform unit accelera-
tion divided by v 2

i . Thus, the resultant normalized value given in
Eq. (23) corresponds to the cumulative static-load participation ra-
tio of acceleration loading

Ms
n ¼

K�1SMð ÞT Pn
i¼1

CM
i MUi

K�1SMð ÞTM‘r
(23)

where SM denotes the spatial distribution of earthquake forces
caused by uniform ground acceleration (Chopra 2013).

SM ¼ M‘r (24)

Note that the modal participation factor in Eq. (23) is written as
follows for acceleration loading:

CM
i ¼ UT

i M‘r
�Mi

(25)

In addition, the effect of the widely used cumulative-effective
mass-participation ratio shows the difference with respect to the
energy approach.

Me
n ¼

‘rð ÞT Pn
i¼1

CM
i MUi

‘rð ÞTM‘r
(26)

where the vector of (‘r)T represents the unconstrained DOF based
on unit acceleration along the x-directional (longitudinal) con-
strained DOF.

In addition, if the cumulative effective stiffness participation,
Ke
n, is obtained in the same manner, then the result will be equiva-

lent to the static-load participation ratio of displacement loading, as
given in Eq. (22).

The variation of the static-load participation ratio denotes the
energy contribution of modes on vibration. In contrast, cumula-
tive effective mass and stiffness participation ratio represent the
total load contribution of the vibration modes. In common prac-
tice, 90% participation is sufficient for reasonable convergence to
an exact solution. For acceleration loading, only a few low-
frequency modes are usually enough to accomplish this

© ASCE 04017009-3 J. Bridge Eng.
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requirement. In displacement loading, however, the number of
modes that need to be considered should be close to the number of
unconstrained DOF because the higher modes are effective on
this type of loading.

In the case of the support DOF subjected to different ground dis-
placements, the right side of Eq. (17) can be written as

��C
K
i ygðtÞ (27)

where

yg tð Þ ¼ ug;1 tð Þ ug;2 tð Þ ug;3 tð Þ ; :::; ug;Ng tð Þ� �T
(28)

where ug,1(t), …, ug,Ng(t) = prescribed displacement of the corre-

sponding support DOF. C
K
i is the vector of size 1�Ng and denotes

the modal participation vector of the ith mode, and it is defined as
follows:

�C
K
i ¼ UT

i Kg

�Mi
(29)

Static Correction Method

Asmentioned earlier, the equations of motion obtained for displace-
ment and acceleration loadings are different from each other

Pier-II Pier-III

Pier-IVBent-I

142.70m 142.70m175.30m175.30m

Fig. 1. Schematic view of the Bill EmersonMemorial Bridge
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because of the construction of the effective external load. The solu-
tions to equations of motion obtained by implicit methods are iden-
tical for displacement and acceleration loadings. To the contrary, if
not all modes are considered in the dynamic analysis, the solution
obtained by modal superposition might not be consistent with that
for displacement loading, which excites higher modes. The spatial
distribution of the effective external load is defined as a matrix for
acceleration loading

�SM ¼ M‘ ¼
XN
i¼1

�SMi ¼
XN
i¼1

MUi
�C
M
i (30)

where
Fig. 3. Finite-element model of the Bill EmersonMemorial Bridge

Rigid Links

Lumped Masses

Cable Elements

Beam Element

(a) (b)

Rigid Link

Cable Element
Beam Element

Fig. 4. Connection details of the finite-element model: (a) tower cable; (b) deck cable

Fig. 5. Free-vibration mode shapes of the finite-element model of the Bill EmersonMemorial Bridge: (a) Mode Shape 1 (vertical); (b) Mode Shape 2
(vertical); (c)Mode Shape 3 (torsional); (d)Mode Shape 4 (torsional); (e)Mode 5 (vertical); (f) Mode 6 (lateral and torsional)
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�CM
i ¼ UT

i M‘
�Mi

(31)

Then, the influence matrix, ‘, can be obtained alternatively as

‘ ¼
XN
i¼1

Ui
�C
M
i (32)

If only nmodes are considered, then an error term persists

‘ ¼
Xn
i¼1

Ui
�C
M
i þ error (33)

This error reflects the pseudostatic displacement as follows:

yserror ¼ ‘�
Xn
i¼1

Ui
�C
M
i

 !
ygðtÞ (34)

Eq. (34) corresponds to the structural pseudostatic displacement
caused by unconsidered high-frequency modes in displacement
loading. These modes are not considered in a regular modal analysis
(if n<N), but they are essential for obtaining a correct structural
response (Tsai 1998). Thus, the total displacement vector can be
updated by using the following equation:

ytðtÞSC ¼ ‘�
Xn
i¼1

Ui
�C
M
i

 !
ygðtÞ þ

Xn
i¼1

UiY
t
iðtÞ (35)

where yt(t)SC = statically corrected displacement vector, and the sec-
ond term on the right-hand side denotes the displacement response
caused by the first nmodes.

Finite-Element Model of the Bill Emerson
Memorial Bridge

The Bill Emerson Memorial Bridge is located in Cape Girardeau,
Missouri (Fig. 1). It consists of two towers and one pier (Fig. 2),
which are referred to as Piers II, III, and IV, respectively. The main
span is 350.60 m, and the end spans are 142.70 m long. The towers
are connected to the deck by 128 cable elements. The outer ends of
the deck are connected to Bent I and Pier IV. The connections in
Bent I restrain the deck from vertical and lateral movements and
allow longitudinal displacement and rotation about the vertical axis.
The deck-to-tower connections in Piers II, III, and IV restrict the
displacement in vertical and lateral directions and have lock-up
devices that allow movement in the longitudinal direction only
when caused by temperature changes. (The lock-up devices are not
implemented in the finite-element model of this study; instead, the
deck-to-pier connections restrain longitudinal movements, as do the
lateral and vertical constraints.)

The finite-element model of the bridge was constituted in
MATLAB to obtain an efficient dynamic simulation model, which
was accomplished by following the modeling technique proposed
byWilson and Gravelle (1991). In the finite-element model (Fig. 3),
the deck and piers are represented as beam elements, and cables are
represented as truss elements. Each construction joint of the bridge
is selected as a node for the deck-and-pier models. The deck is mod-
eled as a spinal beam with lumped masses, as shown in Fig. 4, to
obtain an equivalent polar moment of inertia of the bridge deck. A
rigid link used in this model consists of multipoint constraints
among the two outer nodes. Deck–cable and cable–tower connec-
tions were established by using the rigid links (Fig. 4). Deck–tower
connections in Piers II, III, and IV were constituted by using kine-
matic constraints in which displacements of the deck and tower
were equal in the x, y, and z directions at the deck–tower connection
point. A static condensation procedure was applied to reduce the
DOF. The finite-element model consists of 45 support DOF and
415 structural DOF.
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Fig. 6. Cumulative participation ratios in the longitudinal direction (Note: Disp. = displacement; Acc. = acceleration)

Table 1. Natural Frequencies of First Six Modes and Comparison with
Earlier Studies

Mode
number

Natural frequency (Hz)

Present
study

Turan et al.
(2009)

Caicedo et al.
(2003)

Koh and Dyke
(2007)

1 0.267 0.267 0.290 0.290
2 0.379 0.372 0.370 0.380
3 0.452 0.455 0.468 0.440
4 0.526 0.502 0.516 0.480
5 0.566 0.565 0.581 0.600
6 0.625 0.645 0.649 0.660
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Free-vibration mode shapes based on the finite-element models
of the Bill Emerson Memorial Bridge are shown in Fig. 5. Modes 4,
5, and 6 have frequencies with differences of less than 10%, which
implies that coupling will take place during broadband excitations
such as earthquakes. Natural frequencies of the bridge obtained in
this and earlier studies are provided in Table 1. The differences
between the current study and that of Turan et al. (2009) lie in the
member-stiffness formulations. The current study evaluates the
member-stiffness matrices with an in-house software program,
whereas the Turan et al. (2009) study incorporated the member-
stiffness matrices from an Abaqus static analysis and assembled
them by using the same in-house software used in this study.

Fig. 6 shows the variations in cumulative static load and
effective participation ratios of displacement and acceleration
loadings attributable to a uniform unit excitation along the
bridge’s longitudinal direction. These participation ratios help to
determine the sufficient number of modes to be taken into
account in the dynamic analysis. The higher modes show greater
participation than the lower modes in displacement loading,

which is a finding opposite that of acceleration loading. As seen
in Fig. 6, according to the criterion of 90% static-load participa-
tion for acceleration loading, the sufficient mode number should
be 65. In contrast, 185 modes are required to satisfy the criterion
of 90% mass participation. In addition, these criteria are satisfied
if 405 modes are taken into account for displacement loading.
The variations of cumulative static-load and effective stiffness
participation ratios are the same. However, to obtain a realistic
solution, nearly all vibration modes should be considered. For
this reason, a static correction procedure is required in the dis-
placement loading to reduce the required number of modes in the
analysis.

Numerical Analysis and Discussion

A dynamic analysis of the Bill Emerson Memorial Bridge with pre-
scribed support displacements is carried out here. The effect of mul-
tisupport displacement and acceleration loading together with
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Fig. 7. Ground-acceleration data for Piers II, III, and IV
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damping is investigated. Simulations that involve modal and
Rayleigh damping are compared in the analyses.

The 1940 El Centro earthquake record is used for the simulation
of this bridge. To relate the presented cumulative static-load partici-
pation ratio from a single input to the shear force response, only the
North–South component of ground-motion data is prescribed for
the longitudinal direction of Piers II, III, and IV with time delays.
These delays are calculated by assuming the traveling velocity of
the earthquake wave at 100 m/sec under the assumption of soft soil
(Yilmaz 2015). This speed is much lower than the 3,000-m/sec
wave speed adopted by Caicedo et al. (2003) in their benchmark
control study. The displacement and velocity data of these records
(Fig. 8) are obtained by integrating ground acceleration data given
in Fig. 7.

The damping matrix is constructed through two different
approaches. The first approach assumes modal damping. Here, the
effect of three different modal damping ratios, 2, 10, and 20%, are
considered. Although 10 and 20% damping ratios might not seem

reasonable for current standing-bridge structures, these ratios ena-
ble one to pinpoint the differences in the responses with respect to
the chosen damping matrix models. The damping matrix of the
unconstrained DOF was constructed from a reverse calculation of
the modal damping values, as follows (Chopra 2013):

C ¼ M
XN
i¼1

2j iv i

�Mi
UiU

T
i

 !
M (36)

In the second approach, a simple Rayleigh damping model is
assumed. This approach is considered simple, because a directional
separation of the modes is not considered (Chopra 2013).

C ¼ a0M þ a1K (37)

where a0 and a1 = proportional constants of mass and stiffness mat-
rices, which can be computed by using Eq. (38)
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Fig. 8. Ground-displacement and -velocity data for Piers II, III, and IV
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a0 ¼
2j 1;2v 1v 2

v 1 þ v 2

a1 ¼
2j 1;2

v 1 þ v 2
(38)

where j 1,2, v1, and v2 = damping ratio and natural angular fre-
quencies of the first two modes, respectively. The natural angular
frequencies v1 and v2 are calculated from Table 1, and j 1 is
assumed to be equal to j 2. Again, three different damping matrices
are obtained for j 1,2 (i.e., 2, 10, and 20%). The calculated Rayleigh
damping ratios for the vibration modes are presented in Fig. 9,
which shows that modes higher than 205, 117, and 88 are over-
damped for j 1,2 = 2, 10, and 20%, respectively.

Figs. 10–13 show the variations in the top displacement of Pier
III versus the considered mode numbers for modal and Rayleigh
damping. At first view, differences between the displacement
response of displacement loading and displacement-velocity load-
ing for the damped cases, j = 10 and 20%, can be seen. These dif-
ferences are measured as 4% [Fig. 12(b)] and 8% [Fig. 13(b)] for
Rayleigh damping, which correspond to j 1,2 = 10 and 20%, respec-
tively. For modal damping, the approximate differences are 0.8%
[Fig. 12(a)] and 1.6% [Fig. 13(a)] for j 1,2 = 10 and 20%, respec-
tively. According to these figures, all maximum displacement val-
ues converge to the exact value when more modes are considered,
but to acquire responses without static correction requires many
more modes to be considered. A large error in maximum displace-
ment values without static correction is present when fewer than
100 modes are considered. The variance decreases as a higher num-
ber of modes are considered for both modal and Rayleigh damping
analyses. The maximum top displacement of Pier III shows fluctua-
tions in the uncorrected responses for uniform excitation as the
number of considered modes increases. The fluctuations for both
modal and Rayleigh damping are similar, and they both damp out
rapidly. Note that, for the undamped case shown in Fig. 10,
displacement-velocity loading and displacement loading result in
the same response because the ground velocity is ineffective.

The ground motion results in a force, Fg(t), that is transferred
from the base system to the superstructure. The elastic forces of
constrained DOF, which involve the base shear force, overturning
moment, and base axial force of Piers II, III, and IV, can be calcu-
lated by using Eq. (39).

fgðtÞ ¼ KT
g y

tðtÞ þ KggygðtÞ (39)

Substituting the first row of Eq. (8) into Eq. (39) results in

fgðtÞ ¼ KT
g yðtÞ þ f sg ðtÞ (40)

where

f sg ðtÞ ¼ ðKT
g ‘þ KggÞygðtÞ (41)

In this case, f sg ðtÞ denotes the pseudostatic support reactions and
dominates the response of Eq. (40) with the application of static cor-
rection. The contribution of the first term, which depends on the
structural relative displacements, is on the order of 0.1% of the total
response, as can be seen in Fig. 14. If static correction is not applied
and an insufficient number of modes is selected in the calculation,
then the effect of the first term in Eq. (40) constitutes 150% of the
exact value.

The variation of the maximum base shear force of Pier III attrib-
utable to displacement loading and displacement-velocity loading
versus the considered mode numbers are presented in (Figs. 15–18)
for modal (with j = 0, 2, 10, and 20%) and Rayleigh (with j 1,2 = 0,
2, 10, and 20%) damping. It can be seen that the maximum base
shear force, Vb,max, which is obtained without the application of
static correction, is as much as 60% larger than the correct value.
By using the first 380 mode shapes, the exact value of the maximum
base shear force is obtained. In contrast, the exact value can be
obtained with one mode by applying the static correction method.
In this particular calculation, the exact base shear in the longitudinal
direction of the bridge is found exactly by using only the first mode.
This one-mode approximation is the result of f sg ðtÞ being the gov-
erning term in Eq. (40). In this case, the pseudostatic displacement
happens to be dominant over that caused by the structural vibration.
Therefore, a one-mode calculation for the base shear force seems
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sufficient. On the contrary, more than 100 modes are required for
variations in ySCmax and ymax to be tolerable (Figs. 10–13). For this
reason, the static correction method should be used for the calcula-
tion of internal forces when displacement-type loading is consid-
ered. In addition, for the Rayleigh-damping approach, an error up to
4% is observed for displacement loading, starting at the 200th
mode, and this error does not diminish when all modes are

considered. This phenomenon is not observed in the displacement-
velocity loading because it is associated with the stiffness propor-
tional part of the coupled damping matrix, Cg. In addition, the base
shear forces obtained for displacement loading and displacement-
velocity loading are similar for the modal damping case, but a dif-
ference is observed in the displacement response as mentioned ear-
lier. This effect might depend on the structural model.
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According to Figs. 14–18, the widely used cumulative effective
mass participation ratio that is shown in Fig. 6(a) does not reflect
the modal base shear force response that is obtained by acceleration
loading. Similarly, variations in the cumulative static-load partici-
pation ratio [Fig. 6(b)] are not compatible with variations in the cor-
responding base shear force. These differences might be explained
by the pseudostatic effect, f sg ðtÞ, which dominates the base shear
force response but is not considered in the calculation of participa-
tion ratios. In contrast, the cumulative effective stiffness participa-
tion ratio reveals the same trend as the modal variations of the base

shear force obtained without static correction. Because f sg ðtÞ is not
dominant on the modal base shear force obtained without static cor-
rection, the cumulative effective stiffness participation ratio helps
to determine the number of required modes.

Conclusions

In this study, application of the static correction method in displace-
ment loading with and without velocity input was investigated and
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numerically applied to a finite-element model of the Bill Emerson
Memorial Bridge. In addition, the effects of the increasing damping
ratios on the convergence analysis results are were investigated.
The convergences of the modal displacement and base shear force
obtained with and without application of the static correction
method were presented.

The nature of the problem in displacement loading lies in the
structural absolute displacements, which are a combination of

structural dynamic response and structural deformation caused by
support displacement (pseudostatic displacements). In modal
analysis, the absolute dynamic response was disintegrated into its
modal components. In this case, the selected number of modes
was considered for the structural and pseudostatic displacements.
However, the pseudostatic displacement of the structure does not
depend on mode frequency; instead, it relies on the full set of
modal shapes that represent the required pseudostatic structural
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Fig. 16. Variations in base shear force of Pier III: (a) modal damping (j = 2%); (b) Rayleigh damping (j 1,2 = 2%)
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configurations. Thus, the effect of the unconsidered modes for the
pseudostatic displacement must be reintegrated into the structural
response. The following conclusions summarize the findings of
this study:
• In multiple-support excitation with relative response values of

structural DOF (acceleration loading), the structural pseudo-
static displacements must be added to the solution. This is an
essential part that can be overlooked when absolute structural
displacements are not sought.

• The displacement responses obtained without applying
static correction approach the expected value when few
modes are considered, but it oscillates around this value
with an error up to 15% when more modes are considered.
The exact value is reached when high-frequency modes are
also considered in the analysis. This error persists under var-
ious damping ratios.

• The base shear forces without static correction are affected
much more than the displacement responses. Convergence is
obtained only when the considered mode numbers are very
close to the total number of modes.

• Dynamic responses obtained for displacement loading with
static correction converges to the responses based on accelera-
tion loading.

• The 90% participation requirement of cumulative static load
and effective mass for acceleration loading is based on the base
shear force accumulation with an increasing number of modes
for regular-type buildings. However, a three-dimensional bridge
has a response that is very different than that of a regular build-
ing; therefore, one should use a sufficient number of modes
depending on the response value of interest. The required num-
ber of modes might change significantly for different response
values of the bridge.

• In displacement loading without static correction, the cumula-
tive static-load and effective stiffness participation ratio pro-
vide direct information on the base shear force.

• Damping causes an error in the displacement response if the
velocity term in the displacement loading is neglected. This
error is similar for modal and Rayleigh damping.

• The base shear force does not seem to be affected when modal
damping is considered. However, an error is observed for
Rayleigh damping caused by a number of high-frequency
modes, which can be associated with the stiffness proportional
part of the coupled damping matrix, Cg.
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