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Magnetic phases of graphene nanoribbons under potential fluctuations
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We investigate the effects of long-range potential fluctuations and electron-electron interactions on the
electronic and magnetic properties of graphene nanoribbons with zigzag edges using an extended mean-field
Hubbard model. We show that electron-electron interactions make the edge states robust against potential
fluctuations. When the disorder is strong enough, the presence of electron-hole puddles induces a magnetic phase
transition from antiferromagnetically coupled edge states to ferromagnetic coupling, in agreement with recent
experimental results.
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I. INTRODUCTION

Graphene [1,2], a two-dimensional honeycomb lattice of
carbon atoms, has been the subject of intense investigation
for nanoelectronic and spintronic applications due to its high
electric and thermal conductivity and intrinsic magnetism
[3–8]. Although pure graphene is not expected to be magnetic,
if the sublattice symmetry of the honeycomb lattice is broken,
there is a possibility to induce magnetism [9]. In particular,
atomic-scale engineered graphene nanoribbons with zigzag
orientation are expected to exhibit magnetized edges with
antiferromagnetic coupling between the opposite edges as
confirmed by a large number of theoretical literature [10–21]
in agreement with Lieb’s theorem [9]. However, most likely
due to limited control over edge structure in real applications,
direct experimental observation is still lacking. Recently, a
semiconductor-to-metal transition as a function of ribbon
width was observed in nanotailored graphene ribbons with
zigzag edges [22]. This transition is attributed to a magnetic
phase transition from the antiferromagnetic configuration
to the ferromagnetic configuration, raising hopes for the
fabrication of room-temperature graphene-based spintronic
devices.

The observation of a magnetic phase transition in graphene
nanoribbons is a surprising result due to the experimental
difficulties for fabricating clean nanostructures with properly
passivated and well defined edges [23–27], and free from
imperfections in the lattice or in the substrate. A possible
source of irregularity in a graphene structure is the formation
of the so-called electron-hole puddles [5,28–30]. Those highly
inhomogeneous charge distributions were observed by Martin
et al. [31] by mapping the charge neutrality point. Later,
Crommie et al. [32] reported that impurities between the
substrate and the graphene sheet induce a distorted electron
liquid, which is in agreement with earlier theoretical works as
well [28,33]. A different study stated that corrugations are the
mechanism behind the formation of charge inhomogeneities
[34]. On the other hand, it was predicted from tight-binding
calculations that the presence of electron puddles can mask
Anderson localization effects favoring metallic behavior [30].

In this work, we investigate the effect of electron-hole
puddles resulting from a long-range potential fluctuation on the
edge magnetism of finite nanoribbons, using extended mean-
field Hubbard calculations. We show that, electron-electron
interactions increase the robustness of edge states against

disorder as compared to the tight-binding approach in finite
graphene nanoribbons. More importantly, a transition from
antiferromagnetic to ferromagnetic edge phase is observed
as the strength of the disorder is increased. These results
are consistent with a recent experimental observation of a
semiconductor-to-metal transition as a function of nanoribbon
width [22].

This paper has the following structure. In Sec. II, we
introduce the Hamiltonian model describing the nanoribbon
system under investigation, electron-electron interactions,
and the long-range potential fluctuations. In Sec. III, the
results including the effects of disorder potential on the
electronic properties within the tight-binding and mean-field
models are discussed. The antiferromagnetic-ferromagnetic
phase transition is investigated in detail for different disorder
configurations and interaction strength. Section IV contains a
brief summary.

II. METHOD AND MODEL

Our starting point is a single-band tight-binding model
for pz orbitals, where s, px , and py orbitals are neglected
as they mainly contribute to the mechanical properties of
graphene. Within the mean-field extended Hubbard model,
the Hamiltonian is constructed as follows:

HMFH =
∑
i,j ,σ

(tij c
†
i,σ cj,σ + H.c.)

+ U
∑

i

(
〈ni,↑〉 − 1

2

)
ni↓ +

(
〈ni,↓〉 − 1

2

)
ni↑

+
∑
i,j

Vij (〈nj − 1〉ni↓ + 〈nj − 1〉ni↑)

+
∑
iσ

Vimp(i)c†iσ ciσ . (1)

The first term corresponds to the tight-binding approxi-
mation where the hopping parameters tij are taken to be
tnn = −2.8 eV for the nearest neighbors and tnnn = −0.1 eV
for the next-nearest neighbors [1]. The operators c

†
i,σ and ci,σ

create and annihilate an electron at the ith orbital with spin σ ,
respectively. The terms 〈ni,σ 〉 denote the expectation value of
electron densities. The second and third terms are the on-site
and long-range Coulomb interaction terms, respectively. Here,
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FIG. 1. (a) Graphene nanoribbon lattice structure. (b) Randomly
generated impurity potential landscape. (c) Total electron density
showing the formation of electron-hole puddles (regions denoted by
n and p), obtained from mean-field Hubbard calculations.

U is taken to be 16.522/κ eV, where κ is an effective dielectric
constant taken to be as a control parameter. The long-range
interaction parameters Vij are taken to be 8.64/κ eV and
5.33/κ eV (the Coulomb matrix elements are calculated
numerically by using Slater πz orbitals [35]) for the first two
neighbors, and 1/dij κ for distant neighbors. Vimp(i) represents
a smooth long-ranged potential fluctuation, which can be
attributed to charge impurities in the substrate.

Our finite structure contains 5740 atoms, respectively,
giving rise to about 60 edge states. The length of the
lattice vectors are |�a1,2| = 0.151 nm. The total length of the
ribbon is 25.08 nm and the width is 5.83 nm as shown in
Fig. 1(a). The mean-field Hamiltonian is solved self-
consistently in the subspaces of the z component of the
total spin Sz = (n↑ − n↓)/2 (by fixing the number of up
and down electrons), and the calculations are performed
for several different Sz values (see for instance Fig. 5) in
order to find the ground-state magnetic configuration. Each
calculation was repeated several times starting from different
initial density matrices to ensure the convergence to a global
energy minimum.

Modeling of the long-range electron-hole puddle disorder,
which can be attributed to charged impurities on the structure,
is carried out with a superposition of Gaussian electrostatic
potentials Vimp, which are randomly distributed over the
sample, creating a smooth potential landscape [see Fig. 1(b)].
The impurity potential is given by

Vimp(i) =
∑

n

Vn e
− (�ri−�rn )2

2σ2 . (2)

Vn is the potential peak value (randomly chosen between a
minimum and a maximum value) of the nth impurity located
at �rn, σ is the width of the potential, which is taken to be ten
times the lattice constant for this study [32]. For such long-
ranged scatterers, Anderson localization effects are expected

FIG. 2. Electronic density profile corresponding to the 30 highest
occupied valence states (top panels), and the 60 highest occupied
valence states (bottom panels), obtained using tight-binding (left
panels) and mean-field Hubbard calculations (right panels). Electron-
electron interactions restore the edge states.

to be suppressed due to the formation of electron-hole puddles
[30]. For all calculations, a total of 16 impurity sources are
used, and the calculations are repeated for randomly generated
configurations. Figure 1(c) shows the formation of electron-
hole puddles (i.e., negatively and positively charged regions) in
the system calculated by subtracting the positive background
charge from the total mean-field electron density.

III. RESULTS

Before discussing the magnetic properties of the nanorib-
bons, we first focus on the combined effect of long-range
potential fluctuations and electron-electron interactions on
the electronic properties of edge states. Figure 2 shows the
electronic density profile corresponding to the 30 highest
occupied valence states (top panels), and the 60 highest
occupied valence states (bottom panels), obtained using tight-
binding (left panels) and mean-field Hubbard calculations
(right panels), for the disorder configuration given in Fig. 1.
We note that in the absence of disorder, valence states include
about 30 edge states. In the absence of electron-electron
interactions, the main effect of including disorder is to disrupt
the edge states, creating highly localized edge states. Note that
the (hole) edge states observed in the tight-binding results are
not localized in the p regions indicated in Fig. 1(c). Within
the extended Hubbard model, however, an electrostatically
more correct spin-dependent filling order of the edge states is
obtained, and the hole edge states close to the Fermi level are
now located mostly at the p regions. Another important effect
of electron-electron interactions is that the edges states are
recovered within the 60 highest valence states. Thus electron-
electron interactions make the edge states more robust against
disorder by partially restoring the symmetry of the system. The
appearance of bulk impurity states is also visible in Fig. 2. An
interesting question that arises is how the magnetic properties
are affected by the combined effect of disorder and electronic
interactions, which will be the focus of the rest of this work.

In Fig. 3, we show the mean-field energy spectra for antifer-
romagnetic (AFM, top panels) and ferromagnetic (FM, bottom
panels) phases, for various degrees of disorder strengths. When
no disorder is present, the ground state is AFM and the
energy spectrum reveals a gap of the order of 0.17 eV, in
agreement with previous theoretical work [10,22,36,37] and
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FIG. 3. Mean-field Hubbard spectra for antiferromagnetic (top panels) and ferromagnetic (bottom panels) phases, for various degrees of
disorder strengths, characterized by Vimp. EF spin up and spin down show the spin-dependent Fermi levels.

recent experimental results [22]. When disorder is included
such that |Vimp| < |tnn|/6, the AFM gap is reduced to 0.1 eV,
and the ground state is still AFM. However, when the disorder
strength is doubled, the AFM gap is practically closed and the
system becomes FM. We note that these results are consistent
with the experimental results of Ref. [22], where a closing of
the gap was observed for a ribbon with widths larger than 7 nm,
which was attributed to temperature and doping effects. Here,
we show that, although our system is globally charge neutral,
local formation of electron-hole puddles due to long-ranged
potential fluctuations can also induce an AFM-FM transition.

The results of Fig. 2 were obtained for the particular
disorder configuration shown in Fig. 1. In order to check the
consistency of the results, we have repeated the calculations for
a total of 30 different impurity configurations and strengths.
Figure 4(a) shows the energy difference per atom between
the AFM and FM phases, a negative value indicating that the
ground state is AFM. For impurity strengths |Vimp| < |tnn|/6,
no significant effect of disorder is observed. However, for
|Vimp| < |tnn|/3, FM phase becomes more dominant. Finally,
for |Vimp| < |tnn|, all but one out of ten random impurity
configurations give a FM ground state. In Fig. 4(b), we
plot AFM spectra energy gaps corresponding to the same
configurations in Fig. 4(a), showing that the gap quickly
decreases as the disorder strength increases.

As discussed earlier, the AFM phase corresponds to Sz = 0
and the FM phase corresponds to Sz = 32. In order to make
sure that no other magnetic phases (which could be due to
the presence of electron-hole puddles) were not missed in our
calculations, we have also performed mean-field calculations
for other values of Sz between 0 and 35. Figure 5 shows

FIG. 4. (a) Energy difference per atom between the AFM and FM
phases and (b) the antiferromagnetic phase energy gap for 30 different
disorder configurations with various degrees of disorder strengths. A
strong disorder effect causes the system to become ferromagnetic.
For lower potentials, the chance of a phase transition reduces.
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FIG. 5. Total energy of a nanoribbon as a function of magneti-
zation Sz. For the clean case, the ground state has Sz = 0, and for
the disordered case Sz = 32, indicating a FM-AFM phase transition
without involving other possible magnetic phases.

the total energy of the clean and disordered nanoribbon as
a function of Sz, for the disorder configuration shown in
Fig. 1(b). Clearly, within the mean-field approximation, the
most important magnetic states that dominate the low-energy
physics are the AFM and FM phases. We observed similar
behavior for other disorder configurations as well.

Up to this point, we performed all calculations with
κ = 6 whose value determines the magnitude of electron-
electron interaction. As there are three main energy variables
in our Hamiltonian—hopping parameter, impurity strength,
and interaction strength—it is also worth investigating the
effect of changing κ . To see the interplay between κ and
magnetism, same calculations are performed within the 1/κ =
[0.3,0.002] interval. A convenient way of investigating the
AFM phase is to use staggered magnetism, which is defined
as (−1)x(ni↑ − ni↓)/2 where x is even for A and odd for B
sublattice sites. In Fig. 6, the change of staggered magnetism
as a function of dielectric constant is shown. For the clean
system, no phase transition is observed in this range. On
the other hand, the disordered system shows FM behavior
between 1/κ = [0.167,0.04]. The recovered AFM phase for
1/κ > 0.167 is due to strong electron-electron interactions that
suppress the effect of impurities. These results are consistent
with our previous results. For the 1/κ < 0.04 region, magnetic
properties can be neglected.

FIG. 6. Staggered magnetism as a function of dielectric constant
κ . The clean system (upper line) shows AFM (solid line) coupled
edges for all values within the 1/κ = [0.33,0.002] range. How-
ever, a FM (dashed line) phase transition occurs between 1/κ =
[0.167,0.04] after introducing the impurity landscape (lower line).
For lower κ values, electronic interaction effects become dominant
over the impurities hence the system shows an AFM phase again.

IV. CONCLUSIONS

To conclude, we have investigated the combined effects
of electron-electron interactions and random potential fluctu-
ations on the stability of edge states and magnetic phases. The
electronic stability of edge states is found to be surprisingly
robust against disorder due to electron-electron interactions.
Moreover, as the disorder potential strength is increased, the
system goes through an antiferromagnetic-to-ferromagnetic
phase transition, in agreement with the experimental results of
Ref. [22]. Although the possibility of such a transition is well
known from previous calculations [37] for a charged system,
here, the nanoribbon is charge neutral. Thus the magnetic
transition is due to the formation of electron-hole puddles,
i.e., local breaking of charge neutrality.

ACKNOWLEDGMENTS

This work was supported by The Scientific and Technolog-
ical Research Council of Turkey (TUBITAK) under the 1001
Grant Project No. 114F331 and by Bilim Akademisi - The
Science Academy, Turkey under the BAGEP program.

[1] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,
666 (2004).

[3] Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature (London) 444,
347 (2006).

[4] M. Wimmer, I. Adagideli, S. Berber, D. Tomanek, and K.
Richter, Phys. Rev. Lett. 100, 177207 (2008).

[5] J. Bundesmann, M. H. Liu, I. Adagideli, and K. Richter, Phys.
Rev. B 88, 195406 (2013).
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