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a b s t r a c t

In this paper, the problem of accurate positioning of an unactuated surface vessel by using multiple uni-
directional tugboats is investigated. Specifically a robust controller that ensures asymptotic position
tracking is designed. The control design procedure is implemented in two steps: Initially by locating
opposing tugboats to specific configurations, the overall problem is transformed into a second order
system with an uncertain non-symmetric input gain matrix. Then via a matrix decomposition, a novel
robust controller methodology is proposed. The stability of the overall system is ensured via rigorous
stability analysis where asymptotic position tracking is ensured. Numerical simulation results are pre-
sented to demonstrate the efficiency of the proposed controller.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Position control of large surface vessels like barges, offshore
platforms and unactuated ships, throughout a narrow canal or in
crowded harbors is an extremely delicate and important applica-
tion as these large vessels usually are not designed, or not able to
generate the necessary control effort to maneuver in these cir-
cumstances. Manipulation with multiple tugboats is a feasible
solution for maneuvering these type of surface vessels. The motion
objective is realized via a group of tugboats that are strategically
positioned along the vessel's hull. When this operation is per-
formed manually, due to the radio communication between all
involved tugboats, the overall control performance is effected
dramatically. Although, the communication performance is
increased with advanced global positioning systems, control of
these type of systems is still challenging due to possible problems
that may arise in the communication system during the manip-
ulation. As a result, positioning of unactuated surface vessels has
attracted attention of automatic control researchers.

In the last decade, different types of automatic controller
designs have been proposed for these type of applications.
Recently, in Vlachos and Papadopoulos (2013), modeling of a novel
triangle-shaped floating marine vessel was presented along with
the design of a feedback linearization controller. The controller
proposed required accurate model knowledge and achieved
: þ90 232 7506599.
ultimately bounded position tracking result. In Feemster et al.
(2006), orientation tracking control of an unactuated vessel
through the utilization of a swarm of vehicles operating in a
decentralized fashion was achieved via a robust control strategy. In
this design, the influence of other swarm vehicles was treated as a
force disturbance acting on system dynamics. In Smith et al.
(2007), an exact model knowledge position and orientation
tracking controller was proposed for an unactuated surface vessel.
Feemster and Esposito (2011) designed a tracking controller sub-
ject to control saturation due to the limitations of the tugboats
where accurate knowledge of the dynamic model of the unac-
tuated surface vessel was utilized in the control design. In Brag-
anza et al. (2007), an adaptive position control strategy that does
not require the location of the tugboats about the vessel hull was
proposed. The adaptive controller proposed in Braganza et al.
(2007) also did not require a communication link between the
tugboats. Another adaptive control strategy was presented in Bui
et al. (2010) that took the uncertainty of system parameters into
account. In Esposito et al. (2008), an optimization based force/
torque allocation was employed and compared against a com-
mutation based force/torque allocation strategy. In Bui and Kim
(2011), position tracking control of ship berthing with assistance of
autonomous tugboats was provided by using sliding mode control
approach, while, a robust approach was presented in Ji et al.
(2013). Recently in Tran and Im (2012), artificial neural networks
were utilized to address the same problem. While several control
aspects of the problem was researched, most of the above men-
tioned works required poses of the tugboats relative to the center
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of mass of the unactuated surface vessel to remain unchanged (i.e.,
static positioning was considered) which is usually not the case
due to several disturbances. An attempt to relax the static posi-
tioning of the tugboats was discussed in Topp and Feemster (2010)
for a simple one degree of freedom scenario. Unfortunately the
extension of the result to manipulation of an unactuated surface
vessel with multiple tugboats problem was unclear.

In this paper, a robust controller is proposed for the position
tracking control of a large surface vessel manipulated by 6 uni-
directional tugboats where the surface vessel was considered to be
under the influence of added mass effects. The control problem is
further complicated by the lack of accurate positions and orien-
tations of tugboats. To illustrate the problem in hand, first the
dynamic model of a 3 degree of freedom unactuated surface vessel
manipulated by 6 uni-directional tugboats is given. Upon specifi-
cation of the initial configurations of the uni-directional tugboats,
the control is considered to be performed by 3 bi–directional
tugboats where a force decomposition and commutation strategy
is employed. Next, the open-loop error system is obtained where
an uncertain input gain matrix, which includes uncertain inertia
matrix of the surface vessel and uncertain thrust configuration
matrix including uncertain possibly time-varying positions and
orientations of tugboats, is obtained. A matrix decomposition is
applied to initiate the control design. A robust controller, which
does not require the configurations of the 3 bi-directional tug-
boats, is then proposed. Detailed stability analysis is presented
where asymptotic tracking is ensured. Numerical simulations are
performed where the positions and orientations of the tugboats
are perturbed with sinusoidal terms are also presented to illustrate
the performance of the proposed method.
2. System model

The dynamic model of a 3 degree of freedom unactuated sur-
face vessel manipulated by six tugboats can be written as (Fossen,
1994, 2002; Skjetne et al., 2004; Arrichiello et al., 2006; Ihle et al.,
2006; Fossen, 2011)

Ms _νþDs ¼ F ð1Þ
Fig. 1. System description sh
_x ¼ Rν ð2Þ

where F ¼ Fx; Fy;Mz
� �TAR represents the total forces and

moments applied to the vessel and acting on the center of mass of
the vessel by the tugboats. The inertia matrix is denoted by Ms νð Þ
AR3�3 and obtained as (Fossen, 1994)

Ms ¼MRBþMA ð3Þ

where MRB νð ÞAR3�3 denotes the positive definite, symmetric rigid
body part of the inertia matrix while the effects due to added mass
is represented by MA νð ÞAR3�3. It should be noted that MA is not
necessarily symmetric, resulting in a possibly non-symmetric Ms

(Fossen, 1994). However, in this study it is assumed that the added
mass term does not lead to a rank deficiency in Ms (i.e., Ms is full
rank). The vector Ds νð ÞAR3 contains drag, damping, and other

parasitic effects while x tð Þ ¼ xp tð Þ; yp tð Þ;ψ tð Þ
h iT

AR3 represents the

composite inertial position xp, yp, and heading ψ of the vessel
while body fixed linear and angular velocity signals are repre-
sented by ν tð Þ ¼ u tð Þ; v tð Þ; _ψ tð Þ� �TAR3. The rotation matrix is
denoted by R ψ

� �
ASO 3ð Þ and has the following form:

R ψ
� �¼ cos ψ

� � � sin ψ
� �

0
sin ψ
� �

cos ψ
� �

0
0 0 1

2
64

3
75: ð4Þ
2.1. Force decomposition and commutation strategy

The unactuated vessel is moved via thrust inputs, provided
from six tugboats in contact with the vessel's hull as illustrated in
Fig. 1. Accordingly, F in (1) is a result of the combined efforts
provided from six tugboats and is expressed as

F ¼ B1U1 ð5Þ

where U1 tð Þ ¼ u1a;u1b;u2a;u2b;u3a;u3b½ �TAR6 denotes a thrust
input vector from six tugboats while the thrust configuration is
owing the vessel frames.
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shown by B1AR3�6 and has the following structure:

B1 ¼

1 0 0
�1 0 0
Cα2a Sα2a Ly2aCα2a�Lx2aSα2a
Cα2b Sα2b Ly2bCα2b�Lx2bSα2b
Cα3a Sα3a �Ly3aCα3aþLx3aSα3a
Cα3b Sα3b �Ly3bCα3bþLx3bSα3b

2
6666666664

3
7777777775

T

ð6Þ

where Cθ ¼ cos θ
� �

and Sθ ¼ sin θ
� �

. The opposite tugboats can
then be placed as

α2b ¼ α2aþπ Lx2b ¼ Lx2a Ly2b ¼ Ly2a
α3b ¼ α3a�π Lx3b ¼ Lx3a Ly3b ¼ Ly3a ð7Þ
which allows the force equation in (5) to be rewritten as

F ¼ BU ð8Þ
where U tð Þ ¼ u1;u2;u3½ �TAR3 is the combined bi–directional con-
trol efforts from the opposing uni-directional tugboats with
ui ¼ uia�uib, 8 i¼ 1;2;3 and BAR3�3 is the thrust configuration
matrix obtained as

B¼
1 Cα2a Cα3a
0 Sα2a Sα3a
0 Ly2aCα2a�Lx2aSα2a �Ly3aCα3aþLx3aSα3a

2
64

3
75: ð9Þ

It is remarked that, similar to Braganza et al. (2007), the tug-
boats are considered to be placed according to the configurations
in (7). In this study, unlike Braganza et al. (2007), we consider the
configurations in (7) are the initial configurations and that they
may vary after the motion starts. This relaxes the static positioning
assumption in Braganza et al. (2007) and is an important novel
departure from the existing literature.

In the subsequent sections, the control input U tð Þ will be
designed to obtain satisfactory tracking performance. The follow-
ing commutation strategy can then be applied to U tð Þ to specify
uni-directional thrust effects provided by the bi-directional tug-
boats (de Queiroz and Dawson, 1996)

uia ¼ 1
2 uiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
i þϵ20

q� �
ð10Þ

uib ¼ 1
2 �uiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
i þϵ20

q� �
ð11Þ

for i¼ 1;2;3 and where ϵ0ARþ denotes a controller parameter
selected to obtain non-zero uia tð Þ and uib tð Þ to prevent the tugboats
from losing contact with the vessel.

2.2. Open–loop operation

The time derivative of (2) is taken to obtain

€x ¼ _RνþR _ν ð12Þ
which contains the time derivative of R ψ

� �
that can be obtained as

follows as a result of the special orthogonal structure of the
rotation matrix:

_R ¼ RS3 ð13Þ
where S3 _ψ

� �
AR3�3 is a skew–symmetric matrix defined as

S39 _ψ
0 �1 0
1 0 0
0 0 0

2
64

3
75: ð14Þ

After substituting (13) into (12), the right–hand side of (12) can be
re–arranged as

€x ¼ �R M�1
s Ds�S3ν

	 

þRM�1

s BU ð15Þ
where (1) and (8) were utilized. A more compact form of the above
model is obtained as follows by rewriting its right–hand side as

€x ¼ hþGU ð16Þ
with the functions h x;νð ÞAR3 and G x;νð ÞAR3�3 defined in the
following form:

h9�R M�1
s Ds�S3ν

	 

G9RM�1

s B: ð17Þ
We would like to note that since G x;νð Þ is a real matrix with non-
zero leading principal minors, the following matrix decomposition
is possible (Costa et al., 2003; Morse, 1993)

G¼ SDUu ð18Þ
where S x;νð ÞAR3�3 represents a symmetric positive definite
matrix, while a diagonal matrix with entries being 71 and a unity
upper triangular matrix are denoted by DAR3�3 and
Uu x;νð ÞAR3�3, respectively. As a result of applying the above
matrix decomposition to the models that are available in the lit-
erature, D came out to be an identity matrix. Despite this, the
derivations given in this paper will be presented for the general
case where it is assumed that D is available for control design (see
Chen et al., 2008) for the precedence of this type assumption).

After taking the time derivative of (16), we obtain

x
…¼φþSDUu

_U ð19Þ
where (16) and (18) were utilized, and φ x; _x; €x

� �
AR3 is an aux-

iliary term defined as

φ9 _hþ _GG�1 €x�h
� �

: ð20Þ
At this point, we would like to define the inverse of S as

M x;νð ÞAR3�3. It is remarked that M is symmetric and positive
definite because of symmetry and positive definiteness of S. In
addition to this, the following bounds are valid for M x;νð Þ:
m Jχ J2rχTM x;νð Þχrm Jχ J2 8χAR3 ð21Þ
where mAR and m x;νð ÞAR denote a positive bounding constant
and a positive non-decreasing bounding function, respectively.

The following equation can be obtained by multiplying both
sides of (19) with M

Mx
…¼ f þDUu

_U ð22Þ
where f x; _x; €x

� �
9MφAR3.
3. Error system development

Ensuring a good tracking performance for inertial positions and
heading of the vessel for a given reference trajectory and guar-
anteeing the boundedness of all signals under the closed-loop
operation constitute our main control objectives. The subsequent
control design is based on the availability of x tð Þ and _x tð Þ (i.e., full–
state feedback).

The output tracking error, e1 tð ÞAR3, is defined as follows to
quantify the tracking control objective:

e19xd�x ð23Þ
where xd tð ÞAR3 is a smooth reference trajectory that is chosen in
the sense that

xdðtÞAC3 and x ið Þ
d tð ÞAL1; i¼ 0;1;2;3: ð24Þ

In order to eliminate the higher order time derivatives from the
subsequent Lyapunov-based stability analysis, the auxiliary error
signals, e2 tð ÞAR3 and r tð ÞAR3 are defined as follows:

e29 _e1þe1 ð25Þ
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r9 _e2þΓe2 ð26Þ
where ΓAR3�3 denotes a positive-definite, diagonal, constant gain
matrix. The following expression is obtained by taking the time
derivative of (26) and multiplying the result from left with M:

M _r ¼M x
…
dþ €e1þΓ _e2

� �� f �DUu
_U ð27Þ

where (22) and the time derivatives of (23) and (25) were utilized.
The right-hand side of (27) can be re-arranged as

M _r ¼ �1
2
_Mr�e2�DUu

_UþN ð28Þ
where N x; _x; €x; xd; _xd; €xd; x

…
d; t

� �
AR3 is an auxiliary term defined as

N9M x
…
dþ €e1þΓ _e2

� �� f þe2þ1
2
_Mr: ð29Þ

The auxiliary function N can be partitioned as a sum of two newly
defined auxiliary terms denoted by N tð Þ, ~N tð ÞAR3. These auxiliary
terms are defined as

N9Njx ¼ xd ; _x ¼ _xd ; €x ¼ €xd
ð30Þ

~N9N�N : ð31Þ
After substituting the above definitions, the final form of open-
loop error system can be obtained as follows:

M _r ¼ �1
2
_Mr�e2�DUu

_Uþ ~NþN : ð32Þ
4. Controller formulation

Motivated by the subsequent stability analysis and based on the
open–loop error system in (32), the control input U tð Þ is designed
as

U ¼DK e2 tð Þ�e2 t0ð ÞþΓ
Z t

t0
e2 σð Þ dσ

� �
þDΠ ð33Þ

where the auxiliary signal Π tð ÞAR3 is generated according to the
update law

_Π tð Þ ¼ CSgn e2 tð Þð Þ with Π t0ð Þ ¼ 03: ð34Þ
In (33) and (34), K, CAR3�3 denote positive definite, diagonal,
constant gain matrices while a vector of zeros is represented by
03AR3 and Sgn �ð ÞAR3 is the vector signum function. The control
gain is chosen as K ¼ I3þkpI3þdiag kd;1; kd;2;0


 �
where kp, kd;1, kd;2

AR are positive, constant controller gains, the notation diag �f g
represents a diagonal matrix, and I3AR3�3 is the standard identity
matrix. The following closed–loop error system is obtained by
substituting the time derivative of (33) into (32) and then adding
and subtracting DKr tð Þ
M _r ¼ �1

2
_Mr�e2�Krþ ~NþN

�D Uu� I3ð ÞDKr�DUuDCSgn e2ð Þ ð35Þ
where (34) and the fact that DD¼ I3 were utilized.

Before presenting the accompanying stability analysis, a more
detailed examination of the last two terms of (35) are given. The
D Uu� I3ð ÞDKr term can be rewritten as

D Uu� I3ð ÞDKr¼
Λ1

Λ2

0

2
64

3
75þ

Φ1

Φ2

0

2
64

3
75 ð36Þ

where the auxiliary signals Λ1 tð Þ, Λ2 tð Þ,Φ1 tð Þ,Φ2 tð ÞAR are defined
as

Λ19d1d2k2 ~Uu1;2 r2þd1d3k3 ~Uu1;3r3 ð37Þ

Λ29d2d3k3 ~Uu2;3 r3 ð38Þ

Φ19d1d2k2Uu1;2 r2þd1d3k3Uu1;3r3 ð39Þ
Φ29d2d3k3Uu2;3r3 ð40Þ
with the following definitions of Uu1;2 tð Þ, Uu1;3 tð Þ, Uu2;3 tð Þ, ~Uu1;2 tð Þ,
~Uu1;3 tð Þ, ~Uu2;3 tð ÞAR as

Uui;j 9Uui;j j x ¼ xd ; _x ¼ _xd
ð41Þ

~Uui;j 9Uui;j �Uui;j ð42Þ
where Uui;j x;νð ÞAR represents the (i,j)-th entry of Uu x;νð Þ. From (29),
it can be seen that Λ2 tð Þ depends on k3, and from (37), it is clear that,
Λ1 tð Þ depends on k3 and k2. From (39) and (40), it can also be seen
that Φ1 tð Þ depends on k3 and k2 while Φ2 tð Þ depends on k3.

On the other hand, the following decomposition can be applied
to DUuDCSgn e2ð Þ term:

DUuDCSgn e2ð Þ ¼ Ψ T
;0

h iT
þΘ ð43Þ

where two newly defined auxiliary terms denoted by Ψ tð ÞAR2

and Θ tð ÞAR3 have the following forms:

Ψ T
;0

h iT
¼D Uu�Uu

� �
DCSgn e2ð Þ ð44Þ

Θ9DUuDCSgn e2ð Þ ð45Þ
where Uu xd; _xdð Þ9Uu j x ¼ xd ; _x ¼ _xd

AR3�3 is a function of reference
trajectory and its time derivative, and Ψ i tð ÞAR, i¼1,2 and
Θi tð ÞAR, i¼ 1;2;3, are defined as

Ψ i ¼ di
X3

j ¼ iþ1

djCj
~Uui;jsgn e2;j

� � ð46Þ

Θi ¼ di
X3
j ¼ i

djCjUui;jsgn e2;j
� �

: ð47Þ

Remark 1. The following upper bounds can be developed by
utilizing the Mean Value Theorem (Khalil, 2002)

J ~N �ð ÞJrρ ~N JzJð ÞJzJ ð48Þ

J ~Ui;j �ð ÞJrρi;j JzJð ÞJzJ ð49Þ

where ρ ~N �ð Þ, ρi;j �ð ÞAR are non-negative, globally invertible, non-
decreasing functions of their arguments, and z tð ÞAR9 is defined as

z9 eT1 eT2 rT
� �T

: ð50Þ
It can be seen from (30) and (41) that N tð Þ and Uui;j tð Þ can be upper
bounded as

Ni tð Þ
�� ��rζNi

ð51Þ

Uui;j tð Þ
�� ��rζUui;j

ð52Þ

where ζNi
, ζUui;j

AR are positive bounding constants. Based on

(37)–(40), (46) and (47), following upper bounds can be obtained:

Λi
�� ��rρΛi

JzJð ÞJzJ ð53Þ

Φi
�� ��rζΦi

JzJ ð54Þ

Ψ i
�� ��rρΨ i

JzJð ÞJzJ ð55Þ
for i¼1,2 and the following upper-bound can also be obtained

Θi
�� ��rζΘi

ð56Þ
for i¼ 1;2;3 where (48)–(52) were utilized. From (56), it is clear
that JΘJrζΘ is provided for some positive bounding constant
ζΘAR, and from (53)–(55), we obtain

Λi
�� ��þ Φi

�� ��þ Ψ i
�� ��rρi JzJð ÞJzJ ð57Þ
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where ρi JzJð ÞAR i¼1,2, are non-negative, globally invertible,
non-decreasing functions satisfying

ρΛi
þρΨ i

þζΦi
rρi: ð58Þ

After this point, we can continue with the Lyapunov–based
boundedness and convergence analysis of the proposed robust
controller design.
5. Stability analysis

Proving the boundedness of the error signals under the closed–
loop operation using Lyapunov-type stability analysis is the first
purpose of this section. Then, we will present a lemma and obtain
an upper bound for the integral of the absolute values of the
entries of the time derivative of e2 tð Þ by making use of the
boundedness result. This upper bound will be utilized in another
lemma to prove the non-negativity of a Lyapunov-like function.
Finally, asymptotic stability of the overall closed-loop system will
be proven by using the results of this lemma.

Theorem 1 (Boundedness proof). The controller in (33) and(34)
guarantee the boundedness of the closed-loop system including the
error signals in (23), (25) and(26) provided that the controller gains
kd;1, kd;2 and kp are chosen large enough compared to the initial
conditions of the system and the following condition is satisfied:

λ min Γð ÞZ1
2 ð59Þ

where λmin Γð Þ is the minimum eigenvalue of the gain matrix Γ.

Proof. The non-negative function V1 zð ÞAR is defined as1

V191
2 e

T
1e1þ1

2 e
T
2e2þ1

2 r
TMr: ð60Þ

The Lyapunov function in (60) can be lower and upper bounded as
follows by utilizing (21):

λ1 JzJ2rV1 zð Þrλ2 JzJ2 ð61Þ
with λ191

2 min 1;m

 �

and λ29 max 1; 12m JzJð Þ
 �
and the terms

m, m JzJð Þ were defined in (21) and z(t) was defined in (50). The
following inequality is obtained by taking the time derivative of
(60), making necessary substitutions, and then performing
straightforward mathematical manipulations and grouping

_V 1r�β1V1þδ1 ð62Þ
where β1, δ1AR denote positive constants. The boundedness of V1 tð Þ
can be obtained from (60) and (62) (i.e., V1 tð ÞAL1), therefore e1 tð Þ,
e2 tð Þ and r tð Þ are uniformly ultimately bounded. Utilization of the
standard signal chasing arguments allows us to prove the bound-
edness of all remaining signals under the closed-loop operation.□

Lemma 1. Provided that e2 tð Þ and _e2 tð Þ are bounded, the following
expression for the upper bound of the integral of the absolute value of
the i–th entry of _e2 tð Þ i¼ 1;2;3 can be obtainedZ t

t0

_e2;i σð Þ
�� ��dσrκ1þκ2

Z t

t0
e2;i σð Þ
�� ��dσþ e2;i

�� �� ð63Þ

where κ1, κ2AR are some positive bounding constants.

Proof. Readers can refer to Bidikli et al. (2013a) for the proof.□

Remark 2. As a result of the fact that Uu tð Þ being unity upper
triangular, Θ tð Þ in (45) can be rewritten as

Θ¼ I3þΩ
� �

CSgn e2ð Þ ð64Þ
1 A highlight of the proof is given. The detailed proof for the n-th order version
of the system, which can straightforwardly be adopted this proof, can be found in
Bidikli et al. (2013a).
where Ω tð Þ9D Uu� I3
� �

DAR3�3 is a strictly upper triangular
matrix. Since it is a function of the reference trajectory and its time
derivatives, its entries, denoted by Ωi;j tð ÞAR, are bounded in the
sense that

Ωi;j
�� ��rζΩi;j

ð65Þ

where ζΩi;j
AR are positive bounding constants.

Lemma 2. Consider the term

L9rT N� I3þΩ
� �

CSgn e2ð Þ� �
: ð66Þ

Provided that the entries of the control gain matrix C are chosen to
satisfy in an orderly fashion

C3ZζN 3
1þ κ2

Γ3

� �
ð67Þ

C2Z ζN 2
þζΩ2;3

C3

	 

1þ κ2

Γ2

� �
ð68Þ

C1Z ζN 1
þζΩ1;2

C2þζΩ1;3
C3

	 

1þ κ2

Γ1

� �
ð69Þ

where Γi for i¼ 1;2;3 denotes the i-th diagonal element of Γ, then it
can be concluded that

Z t

t0
L σð ÞdσrζL ð70Þ

where ζLAR is a positive bounding constant defined as

ζL9κ1
X2
i ¼ 1

X3
j ¼ iþ1

ζΩi;j
Cjþκ1

X3
i ¼ 1

ζNi
þ
X3
i ¼ 1

Ci e2;i t0ð Þ
�� ��: ð71Þ

Proof. Readers can refer to Bidikli et al. (2013a) for the proof.□

Theorem 2 (Asymptotic convergence proof). Given the dynamic
model in (1) and (2), the controller of (33) and (34) ensures the
convergence of the tracking error e1 tð Þ asymptotically to the origin in
the sense that

Je1 tð ÞJ-0 as t-þ1 ð72Þ

provided that Γ is chosen to satisfy (59), the entries of C are chosen to
satisfy (67)–(69), and kp, kd;1, kd;2 are chosen large enough.

Proof. See Appendix for the proof.□

Remark 3. The entries of the control gain matrix C are required to
satisfy (67) which depends on the constant upper bounds of
uncertain system functions, and the entries of the control gain
matrix K are required to be chosen large enough compared to the
initial conditions of the system. While this may seem like a
weakness of the proposed controller, we will address this issue by
utilizing the self-tuning strategy that we recently designed in
Bidikli et al. (2013b, 2014) for the family of the controllers in Xian
et al. (2004) as an add-on to adjust the entries of C and K. Speci-
fically, the entries of gain matrices C and K are updated according
to

Ci tð Þ ¼ e2i tð Þ
�� ��� e2i tð Þ

�� ��þΓi

Z t

0
e2i σð Þ
�� �� dσ ð73Þ

Ki tð Þ ¼ kciþ
1
2
e22i tð ÞþΓi

Z t

0
e22i σð Þ dσ ð74Þ



Fig. 2. Tracking errors.
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for i¼ 1;2;3 where kciAR are the positive constant parts of the
time-varying gain.
6. Simulation results

The performance of the proposed robust controller was
demonstrated via numerical simulations. The ship model in (1)
was utilized with the following inertia matrix (Fossen, 2002)

Ms xð Þ ¼
mþX _u 0 0

0 na nd

0 nc nb

2
64

3
75 ð75Þ

where the auxiliary terms na, nb, nc and nd are defined as

na ¼m�Y _v ; nb ¼ Iz�N _r ;

nc ¼mxg�N _v ; nd ¼mxg�Y _r : ð76Þ
In the above inertia matrix, constant terms Y _r and N _v are selected
as

Y _r ¼ 0:0; N _v ¼ �1:0 ð77Þ
to reflect the effects of added mass which result in a non-
symmetric2 inertia matrix. The damping matrix has the follow-
ing form

DsðνÞ ¼
d11 0 0
0 d22 d23
0 d32 d33

2
64

3
75 ð78Þ

with its entries defined as

d11 ¼ �Xuþð�X uj ju urj j�Xuuuu2
r Þ ð79Þ

d22 ¼ �Yvþð�Y vj jv urj j�Yrv _ψ
�� ��Þ ð80Þ

d33 ¼ �Nrþð�Y vj jv urj j�Y rj jv _ψ
�� ��Þ ð81Þ

d23 ¼ �Yrþð�Y vj jr urj j�Y rj jv _ψ
�� ��Þ ð82Þ

d32 ¼ �Nvþð�N vj jv vrj j�Nrv _ψ
�� ��Þ: ð83Þ
2 In the other control approaches about this subject available in the literature,
especially in Braganza et al. (2007), the inertia matrix was selected as a symmetric
matrix (i.e., same values were selected for Y _r and N _v in (77)). In our study, the
inertia matrix was selected to be non-symmetric. This is one of the important
advantages of our controller.
The desired vessel position was given as

xdðtÞ ¼
10 sin ð0:1tÞ½m�
10 cos ð0:1tÞ½m�
�0:1t½rad�

2
64

3
75: ð84Þ

The initial positions were set xð0Þ ¼ ½0:3; 2:5; �π
4�T and the initial

velocities were vð0Þ ¼ 03. The control gains K and C were obtained
via the self–tuning strategy in (73) and (74) as

K ¼ diagf168:2;112:3;118:6g; C ¼ diagf3:2;6:4;5:1g ð85Þ

and the other control gain Γ and ϵ0 are selected as

Γ ¼ diagf1;5;2:3g; ϵ0 ¼
ffiffiffi
5

p
: ð86Þ

In order to obtain a proper time-dependent nature for the
tugboats' positions without losing their contact with the vessel's
hull, the tugboats were positioned at the following locations with
respect to the center of mass of the vessel

L1a ¼ �0:5;0:1 sin tð Þ½ �
L1b ¼ 0:5;0:1 sin tð Þ½ �
L2a ¼ �0:25þ0:5 sin tð Þ; �0:145½ �
L2b ¼ �0:25þ0:5 sin tð Þ;0:145½ �
L3a ¼ 0:1 sin tð Þ;0:145½ �
L3b ¼ 0:1 sin tð Þ; �0:145½ � ð87Þ

while the incident angle of each tugboat with respect to the ves-
sel's hull was selected as follows

α1a ¼ π=180
� �

sin tð Þ
α1b ¼ π� π=180

� �
sin tð Þ

α2a ¼ π=2þ π=180
� �

sin tð Þ
α2b ¼ α2aþ π=180

� �
sin tð Þ

α3a ¼ 3π=2þ π=180
� �

sin tð Þ
α3b ¼ α3a�πþ π=180

� �
sin tð Þ: ð88Þ

In (87) and (88), time-varying sinusoidal perturbations are added
to demonstrate disturbance effects.

The position tracking errors and the control inputs are shown
in Figs. 2–5, respectively. From Fig. 2, it can be clearly seen that
unactuated surface vessel tracked the desired composite inertial
positions and heading successfully which demonstrates that our
tracking objective was successfully met.



Fig. 3. Control torques.

Fig. 4. Time varying gains Ki for i¼1; 2; 3.

Fig. 5. Time varying gains Ci for i¼1; 2; 3.
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7. Conclusion

In this paper, a robust controller for an unactuated surface
vessel manipulated by autonomous tugboats was designed. The
controller was designed under the restriction that the dynamic
model of the surface vessel is uncertain. Furthermore, unlike the
similar works in the literature, the surface vessel was considered
to be under the influence of added mass effects which resulted in a
non-symmetric inertia matrix. The control problem is further
complicated by the lack of accurate positions and orientations of
tugboats. As a result of these issues, the resulting open-loop error
system had an uncertain input gain matrix. A matrix decomposi-
tion method was applied and a robust controller was designed.
The stability of the closed-loop system was investigated via
detailed Lyapunov-type tools where asymptotic tracking was
proven. Numerical simulations were performed where the posi-
tions and the orientations of the tugboats were considered to be
disturbed by sinusoidal perturbations. Satisfactory tracking per-
formance was obtained.

The novelties of the proposed control design and the accom-
panying stability analysis can be listed as:

� Different from the existing works on this application non-
symmetric inertial added mass effects were considered and
dealt with.

� While positions and orientations of the uni-directional tugboats
were specified and combined models of the opposite tugboats
were obtained, these positions and orientations were consid-
ered to be available initially and then they were allowed to vary.
This was demonstrated in the numerical simulations and can be
seen from (87) and (88). It is noted that Braganza et al. (2007)
did not allow positions and orientations of the tugboats to vary.

� The self–tuning strategy (Bidikli et al., 2013b, 2014) was
employed as an add-on in the numerical simulations to ease
the control gain tuning process.
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Appendix A. Asymptotic convergence proof

The auxiliary function P tð ÞAR is defined as

P9ζL�
Z t

t0
L σð Þdσ: ð89Þ

where the terms ζL and L(t) were defined in (66) and (71),
respectively. When the entries of the control gain matrix C are
chosen to satisfy (67)–(69), from the proof of Lemma 2 in Bidikli
et al. (2013a), we can conclude that P tð Þ is non-negative.

At this stage, consider the Lyapunov function V2 z; tð ÞAR

defined as

V29V1þP ð90Þ
where s tð ÞAR10 is defined as

s9 zT
ffiffiffi
P

ph iT
ð91Þ

and V1 zð ÞAR was defined in (60). The Lyapunov function in (91)
can be lower and upper bounded as follows by utilizing (21)

W1 sð ÞrV2 s; tð ÞrW2 sð Þ ð92Þ
where W1 sð Þ, W2 sð ÞAR are defined as

W19λ1 JsJ2;W29λ2 JzJð ÞJsJ2: ð93Þ
Taking the time derivative of V2, utilizing the time derivative of

(70), canceling common terms yields

_V 2 ¼ �eT1e1þeT1e2�eT2Γe2�rT r

þ rT ~N�kprT r
h i

þ �
Xm�1

i ¼ 1

ri ΛiþΨ iþΦi
� ��X2

i ¼ 1

kd;ir
2
i

" #
ð94Þ

which can be rearranged to have the following form:

_V 2r�1
2
Je1 J2� λ min Γð Þ�1

2

� �
Je2 J2�rT r

þ
ρ2

~N
JzJð Þ

4kp
JzJ2þ

X2
i ¼ 1

ρ2
i JzJð Þ
4kd;i

JzJ2

r� λ3�
ρ2

~N
JzJð Þ

4kp
�
X2
i ¼ 1

ρ2
i JzJð Þ
4kd;i

 !
JzJ2 ð95Þ

where λ39 min 1
2; λmin Γð Þ�1

2


 �
. When the controller gains kp, kd;1,

kd;2 are selected large enough such that the regions defined by Dz

9 z : JzJrRf g and Ds9 s : JsJrRf g with R being defined as

R¼ min ρ�1
~N 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kp
1�β2

3

r !
; ρ�1

i 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd;i

1�β2

3

r !( )
ð96Þ

for i¼1,2, are non-empty. From (95), (96) and the definition of s,
one can then restate

_V 2r�β2 JzJ
29W sð Þ 8sADs ð97Þ

where β2AR is a positive constant that satisfies 0rβ2o1. From
(90) and (97), it is obvious that V2 tð ÞAL1, and from the proof of
Theorem 1, we concluded that all signals in the closed-loop error
system are bounded and furthermore, from the boundedness of
_W ðsÞ, we can state W sð Þ is uniformly continuous.

Based on the definition of Ds, another region, S, can be defined
in the following form:

S9 sADs : W2 sð Þoλ2 ρ�1
~N 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kp
1�β2

m

r ! !2
8<
:

9=
;

\ sADs : W2 sð Þoλ2 ρ�1
1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd;1

1�β2

3

r ! !2
8<
:

9=
;

\ sADs : W2 sð Þoλ2 ρ�1
2 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd;2

1�β2

3

r ! !2
8<
:

9=
;: ð98Þ

A direct application of Theorem 8.4 in Khalil (2002) can be used to
prove that Jz tð ÞJ-0 as t-þ1 8s t0ð ÞAS. Based on the definition
of z tð Þ, it is easy to show that Je1 tð ÞJ ; Je2 tð ÞJ ; Jr tð ÞJ-0 as t-þ1
8s t0ð ÞAS. From (26), it is clear that J _e2 tð ÞJ-0 as t-þ1
8s t0ð ÞAS. By utilizing (25), it can be proven that J _e1 tð ÞJ-0 as
t-þ1, 8s t0ð ÞAS. Note that the region of attraction can be made
arbitrarily large to include any initial conditions by choosing the
controller gains kp, kd;1 and kd;2. This fact implies that the stability
result obtained by the proposed method is semi-global.
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