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On the Helmholtz Theorem and Its Generalization for
Multi-Layers
Alp Kustepeli

Department of Electrical and Electronics Engineering, Izmir Institute of Technology, Izmir, Turkey

ABSTRACT
The decomposition of a vector field to its curl-free and divergence-
free components in terms of a scalar and a vector potential function,
which is also considered as the fundamental theorem of vector
analysis, is known as the Helmholtz theorem or decomposition. In
the literature, it is mentioned that the theorem was previously pre-
sented by Stokes, but it is also mentioned that Stokes did not
introduce any scalar and vector potentials in his expressions, which
causes a contradiction. Therefore, in this article, Stokes’s and
Helmholtz’s representations are examined in detail to reveal and
emphasize their differences, similarities and important points. The
Helmholtz theorem is obtained for all kinds of spaces by using the
theory of distributions in a comprehensive and rigorous manner with
detailed explanations, which also leads to a new surface version of
the Helmholtz theorem or a new surface decomposition, resulting in
the canonical form; hence, it is different than the one suggested
previously in terms of two scalar functions. The generalized form of
the Helmholtz theorem is also presented by employing the same
approach when there is a multi-layer on the surface of discontinuity,
which also corresponds to the extension of the theorem to fields with
singularities of higher order.
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1. Introduction

The Helmholtz theorem was introduced by Helmholtz in his 1858 paper on vortex
motion. A translation of Helmholtz’s paper into English was presented by Tait right
after its appearance (Helmholtz, 1867). Even though it was mentioned by Tait that the
translation did not pretend to be an exact one, it can be considered as a complete one
since it was revised by Helmholtz. Another translation was presented by Parpart
(Helmholtz, 1978). The theorem is also considered as the fundamental theorem of
vector analysis of determining of a vector field of known divergence and rotation
(Borisenko & Tarapov, 1979; Sprossig, 2010). The theorem states that any vector field
in space can be split into curl-free parts (irrotational or the gradient of a scalar
function or potential) and divergence-free parts (solenoidal or the curl of a vector
function or potential) (Morse & Feshbach, 1953; Plonsey & Collin, 1961; Collin, 1991;
Arfken & Weber, 1995; Sprossig, 2010; Van Bladel, 1960, 1993a, 2007, p. 1005). Vector
and scalar potential representations are valid and very important in almost every field
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theory, and Helmholtz theorem can be used to obtain the vector and scalar potentials
(Morse & Feshbach, 1953; Kobe, 1984; Amrouche et al., 1998; Lindell & Dassios, 2001;
Kurokawa, 2001, 2008; Chubykalo et al., 2006, 2011; Chew, 2014). In the literature
(Papas, 1988; Dassios & Lindell, 2002; Zhou, 2007), it is mentioned that the theorem
was previously presented by Stokes (1849), and it is also said in Zhou (2007) that
Stokes did not introduce any scalar and vector potentials in his representations,
resulting in an inconsistency. Therefore, in this article, Stokes’s and Helmholtz’s
approaches and expressions are examined first to determine and present their
differences.

The Helmholtz theorem is indispensable and very important in all of mathematical
physics (Dassios & Lindell, 2002), and there are some generalizations of the theorem
suggested for various applications previously and very recently (Kobe, 1984; Lindell
& Dassios, 2000, 2001, 2003; Sprossig, 2010; Ortigueira et al., 2015). Physical dis-
tributions can be correctly described in terms of mathematical distributions
(Schwartz, 2008, p. 77; Van Bladel, 1995, p.18), and hence, the distribution theory
is very convenient for the examination of physical problems. In addition to that, the
principal advantages of using a distributional approach are that distributional expres-
sions include all space and generate and include all discontinuities in the same
equation (Gagnon, 1970; İdemen, 1973; Van Bladel, 1999; Lindell, 1995). Therefore,
in this study, it is also intended to employ that approach to obtain the theorem for
all kinds of spaces, which may lead to a new surface version of the Helmholtz
theorem or a new surface decomposition in the canonical form. The main informa-
tion about the theory of distributions and its application in the electromagnetic field
theory can be found in Schwartz (1950, 2008), Friedman (2005), Kanwal (2004),
Friedlander and Joshi (1998), Vladimirov (2002), Taylor (1956, 1958), Gagnon
(1970), Rădulet and Ciric (1971), İdemen (1973, 1990, 2011), Van Bladel (1995),
and Polat (2005, 2006, 2011).

Finally, the application of the distributional theory is investigated to obtain the most
general form of the Helmholtz theorem when there is a multi-layer on the disconti-
nuity surface or boundary, which also corresponds to the extension of the theorem to
fields with singularities of higher order. The intent for the investigation of the
application of the distribution theory is to obtain the Helmholtz representations
without the need of confusing and complicated mathematical manipulations that
might be necessary especially for problematic cases, such as higher order singularities
or multi-layers.

2. The differences and similarities between Stokes’s and Helmholtz’s
representations

The literature (Papas, 1988; Dassios & Lindell, 2002; Zhou, 2007) addressed the
theorem presented by Stokes (1849) and how Zhou (2007) exposed that Stokes did
not introduce any scalar and vector potentials in his representations, resulting in an
inconsistency. Therefore, Stokes’s and Helmholtz’s approaches and expressions must
be examined to reveal their differences or similarities. Since Stokes’s representations
had been presented earlier, their examination is taken into consideration first. Stokes
(1849) first examined the problems in Section I (Preliminary Analysis) of Part I
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(Theoretical Investigation) and presented the results and expressions in Subsections 5
thru 8. In Subsection 5, the vector field ð�; η; ζÞ, herein denoted by ~F, which is not
supposed to become infinite and to vanish at an infinite distance, was determined in

infinite space if ��~F ¼ 0 and � �~F ¼ δ, where δ has finite values within a finite
portion of space and vanishes elsewhere. Stokes obtained the result very elegantly by

proposing that by the condition ��~F ¼ 0, �dxþ ηdyþ ζ dz is an exact differential
dψ, which leads to

~F ¼ �ψ; (1)

where ψ is a scalar potential function. By taking the divergence of~F, the Poisson equation

is obtained as Δψ ¼ � �~F and its solution is

ψ ¼ � 1
4π

ð
�0 �~F
R

d#0; (2)

where R ¼ j~Rj ¼ j~r �~r 0j is the distance from observation point ~r to source point ~r 0.
Stokes used r ¼ ~r Stokesj j for that distance, but R is preferred here for the sake of simplicity

and ~R ¼ �~r Stokes. By extraordinary mathematical manipulations, Stokes also obtained two

other forms for vector ~F as

~F ¼ � 1
4π

ð
�0ð�0 �~FÞ

R
d#0 (3)

and

~F ¼ 1
4π

ð
�0 �~F R̂

R2
d#0; (4)

where R̂ ¼ ~R=R is the unit vector. As a result, for vector ~F with the conditions ��~F ¼ 0

and � �~F�0, Stokes presented three representations given in Eq. (1) with Eq. (2), which is
the scalar potential representation, and Eq. (3) and Eq. (4). In his Subsection 6, vector field
~F is determined in infinite space if ��~F ¼ 2ðω0;ω00;ω000Þ ¼ 2~ω and � �~F ¼ 0, where ~ω

has finite values throughout a finite space and vanishes elsewhere. Since ��~F ¼ 2~ω,
Stokes observed that � �~ω ¼ 0, and therefore, the components of ~ω are not independent.

By considering � �~F ¼ 0, Stokes again obtained Poisson equation �� ��~F ¼ 2��
~ω ¼ �Δ~F and its solution as

~F ¼ 1
4π

ð
�0 � �0 �~F

R
d#0; (5)

and in a similar manner to Eqs. (3) and (4), he wrote Eq. (5) as

~F ¼ 1
4π

ð
�0 �~F
� �� ~R

R3
d#0: (6)

As a result, for vector ~F with conditions ��~F�0 and � �~F ¼ 0, Stokes presented two
representations, given in Eqs. (5) and (6), which do not include a vector potential
representation as in the Helmholtz theorem. One can certainly obtain the form
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~F ¼ �� 1
4π

ð
�0 �~F

R
d#0

 !
; (7)

leading to the vector potential representation ~F ¼ ��~A from Stokes’s representations
by mathematical manipulations, especially if those in his article, presented here from
Eqs. (1) to (3), are taken into consideration; it can hence be considered that the vector
potential representation is implicit in the equations, but it was not given explicitly by
Stokes. In his Subsection 7, Stokes combined the above results and added the expres-

sions to obtain a vector field ~F satisfying conditions � �~F�0 and ��~F�0. Therefore,

vector field ~F is obtained by any combination of the three expressions given in Eqs. (1),
(3) and (4) with the two given in Eqs. (5) and (6). One can also conclude from the
above results that Stokes used a scalar potential representation for the curl-free
(irrotational) part, but he did not use a vector potential representation for the diver-
gence-free (solenoidal) part. Even though Stokes used a scalar potential function for the
curl-free part, he did not propose the usage of that function at the beginning and

obtained it as a result. In his Subsection 8, Stokes decomposed a vector field ~F into its
curl-free and divergence-free parts by first obtaining the curl-free part and subtracting

it from the vector ~F itself, which certainly gives the decomposition and the divergence-
free part, but again not in a vector potential form.

When the famous article of Helmholtz (1858) is examined, it is seen that Helmholtz’s
motivation and handling is actually very different. Helmholtz examined the problem of
finding the vector ðu; v;wÞ, which is again denoted by ~F here, if ��~F ¼ �2ð�; η; ζÞ is
known and � �~F ¼ 0 in a bounded region S, not in an infinite space, in other words,

obtaining vector ~F with the conditions ��~F�0 and � �~F ¼ 0 in a finite region. On
p. 38 of his article, Helmholtz claimed that the solution can be obtained in terms of a

vector function ~A and up to an additive gradient of a scalar function P in a general
form of

~F ¼ �P þ ��~A: (8)

The gradient of an arbitrary scalar function P can be added since �� �P ¼ 0, and if

� �~A ¼ 0, which he proved later by taking into consideration � � ��~F
� � ¼ 0 in the

region and n̂ � ��~F
� � ¼ 0 over the whole boundary where n̂ is the unit normal vector,

Eq. (8) leads to the Poisson equation Δ~A ¼ ���~F for the vector function ~A, and its

solution is obvious. Since � �~F ¼ 0 in the finite region, Helmholtz obtained the Laplace
equation ΔP ¼ 0 for scalar function P. As a conclusion, Helmholtz employed scalar
funtion P to satisfy the boundary conditions with its gradient. Function P can be
determined by using and integrating another arbitrary function k due to an external
mass χ. In his article, Helmholtz (1858) availed himself of the analogies of fluids and
electromagnetism, and therefore, it can be concluded that k can be thought of as

�� �~F�ð4πÞ and the Poisson equation for P is ΔP ¼ � �~F in the whole space, even if it
is not written explicitly, and since all the integrals are extended to the exterior of the finite
region to cover the boundary conditions, final formulation is also considered to be valid
for all space as
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~F ¼ ��
1
4π

ð
�0 �~F
R

d#0
 !

þ �� 1
4π

ð
�0 �~F

R
d#0

 !
; (9)

which is the very well-known expression of the Helmholtz theorem.
As can be seen from the above discussions, there are actually different aspects of the

two representations, and moreover, the expressions for the divergence-free (solenoidal)
part given by Stokes and Helmholtz have different representations, but one can certainly
obtain one from the other by mathematical manipulations. At that point, it is beneficial to
repeat the general comment made by Tait about the works of Stokes and Helmholtz at the
end of his translation (Helmholtz, 1867, p. 511):

A portion of the contents of the paper had been anticipated by Professor Stokes in various
excellent papers in the Cambridge Philosophical Transactions; but the discovery of the nature
and motions of vortex-filaments is entirely novel, and of great consequence.

The representations presented by Stokes and Helmholtz might be considered to be in a
less complete form, especially in terms of uniqueness (Papas, 1988; Lindell & Dassios,
2000, 2001). A comprehensive and rigorous examination of the representations was
presented by Blumenthal (1905), including the uniqueness. Blumenthal’s expressions
(Blumenthal, 1905; Van Bladel, 1993a) are very similar, in a sense, to both of those
presented by Stokes and Helmholtz. Moreover, Blumenthal mentioned that the expres-
sions are also valid in the plane if 1 = ~r �~r 0j j in the equations is replaced by log j~r �~r 0j.
Additional discussions about the uniqueness and existence as well can be seen in Morse
and Feshbach (1953), Van Bladel (1960), Borisenko and Tarapov (1979), Arfken and
Weber (1995), and Dassios and Lindell (2002).

3. The Helmholtz theorem for all kinds of spaces by distributional approach

As seen from the previous section, the Helmholtz theorem is obtained by using the
potential theory via the scalar and vector Poisson equations, which is always the
main approach in various methods used to determine the representations for
the theorem in infinite and finite spaces as well. Morse and Feshbach (1953) used
the vector identity and found the solution of the vector Poisson equation in ~F ¼
�Δ~W ¼ ��ð� � ~WÞ þ �� ð�� ~WÞ ¼ �φþ ��~A to obtain the theorem in finite
and infinite spaces. Plonsey and Collin (1961) used the integration of the Poisson
equation, with the properties of �ð1=RÞ and Δð1=RÞ, except the singular point R ¼ 0,
and mathematical manipulations similar to those in Morse and Feshbach (1953)
for the representation of the theorem in finite space. Collin (1991) used a similar
method to Plonsey and Collin (1961) with the only difference of using the delta
function property of Δð1=RÞ. Van Bladel (1993a, 2007, p. 1005) used the derivative
operators in the sense of distributions in the representation of the theorem in infinite
space to obtain the representations in finite space or for piecewise continuous
vectors. The last two can also be considered as the special applications of the theory
of distributions. There were also some other attempts (Zhou, 2007; Gui & Dou, 2007)
to obtain the theorem for discontinuous vector fields, such as the one presented by
Kurokawa (2001), but if the field components are discontinuous, their derivatives
become infinite and the differential forms are not valid everywhere in the classical
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sense. Therefore, mathematical details are very important and the representations
must be given accordingly and rigorously (İdemen, 1973; Lindell, 1995; Kurokawa,
2001).

The Helmholtz theorem can be associated with fields and sources resulting in disconti-
nuities as well (Plonsey & Collin, 1961; Lindell & Dassios, 2001), and since physical
distributions can be correctly described in terms of mathematical distributions (Schwartz,
2008, p. 77; Van Bladel, 1995, p. 18), the distribution theory is very convenient for the
examination of physical problems. In addition, the principal advantages of using a distribu-
tional approach are that distributional expressions include all space and generate and
include all discontinuities in the same equation (Gagnon, 1970; İdemen, 1973; Van Bladel,
1999; Lindell, 1995). Moreover, the Poisson equation used to determine the Helmholtz
representations is valid in the sense of distributions throughout the whole space (Schwartz,
2008, p. 122; Van Bladel, 1995, p. 22). Therefore, it might be beneficial to consider the
comprehensive and rigorous investigation of the application of the distribution theory to
obtain the Helmholtz theorem, especially for the usage or extension of the theorem in
complicated cases, such as multi-layers or fields with singularities of higher order.

If the distributional form of the Poisson equation

ΔV ¼ �ρ=ε0 (10)

is considered, where V is the potential distribution, ρ is the volume charge density, and ε0
is the permittivity of free space, the solution is obtained as

Vð~r Þ ¼ ρ � 1
4πε0r

¼ 1
4πε0

ð
ρð~r 0Þ
~r �~r 0j j d#

0; (11)

the convolution of the two distributions, the charge distribution ρ, and the distribution
1=ð4πε0rÞ, where r ¼ j~rj is the distance from the origin to the point~r (Schwartz, 2008,
p. 122; Gagnon, 1970; Kanwal, 2004, p. 197; Vladimirov, 2002, p. 68). As can be seen in
Schwartz (2008, p. 117), the convolution in Eq. (11) actually has the meaning

ρð~r 0Þ ; 1
4πε0~r �~r 0j j

� �
(12)

by considering 1=ð4πε0~r �~r 0j jÞ as a function of only ~r 0, which is in D representing the
space of test functions with compact support, where~r is fixed. hi is defined by

f ; th i ¼
ð
f t d#; (13)

where f is a distribution, t is a test function, and the integral sign without the limits
indicates that the integration is extended over all space (Schwartz, 2008, p. 77; Gagnon,
1970; Kanwal, 2004, p. 22; Friedman, 2005, chap. 2; Van Bladel, 1995, p. 6, 2007, p.
1090). Even though t is considered in D, as mentioned by Schwartz (2008, p. 77),
many expressions as in Eqs. (12) and (13) and must be evaluated in physical problems,
although t does not in general belong to D, and each distribution f can be extended as
a functional over a set of functions larger than D, and the test functions are not
required to have compact support, e.g., the space E (Kanwal, 2004, sec. 7.6). In
addition to that, from the discussion presented in Kanwal (2004, Sec. 7.6), it is seen
that the test functions of compact support lead to the distributions of arbitrary
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support, whereas the test functions of arbitrary support yield the distributions of
compact support and Cauchy representation of a distribution, which is very similar
to Eq. (12), is presented as an example for that case. One can appreciate these remarks
if the differences between the generalized functions and distributions are examined
(Friedman, 2005, chaps. 2 and 3). Even though they are often used interchangeably in
the literature, many theorems that are valid for distributions do not have analogies for
arbitrary generalized functions, but they can still be extended to some classes of
generalized functions (Friedman, 2005, chap. 2). As can also be seen in Friedman
(2005, chap. 3) that for generalized functions, test functions do not need to have a
compact support, and a test function that has a compact support is called a finite test
function. In addition to that, it is seen that the definition of a derivative for a
distribution fits with that of a generalized function (Friedman, 2005, pp. 36 and 52),
leading to the well-known formulation

Δ f ; th i ¼ f ;Δ th i; (14)

which can be obtained for both cases. The solution of the Poisson equation given in Eq.
(11) can also be obtained by considering Eq. (14) in primed coordinates with Eq. (10) in a
similar manner to Eq. (12), t ¼ 1=R and the Laplacian of t with respect to the primed
coordinates, which is Δ0 t ¼ Δ0 1=Rð Þ ¼ Δ 1=Rð Þ ¼ � 4πδð~r �~r 0Þ:

By employing the distribution theory and the above information, one can easily obtain
the Helmholtz theorem in infinite space and in finite space or for piecewise continuous
vector fields in the canonical form

~F ¼ ��V þ ��~A (15)

by considering the scalar and vector Poisson equations in the sense of distributions,
obtained in terms of V and ~A as

ΔV ¼ �� �~F (16)

and

Δ~A ¼ ���~F; (17)

respectively, where � �~A ¼ 0. By obtaining the solutions of Eqs. (16) and (17) and using the

distributional approach presented above and Eqs. (10) thru (15), the vector ~F can also be
expressed as Eq. (9).

The benefit of employing the theory of distributions is more appreciable if one con-
siders the discontinuous field components and their derivatives that become infinite. For a
piecewise continuous vector field in the whole space, the Helmholtz theorem or decom-
position can be obtained by taking into consideration the distributional forms of diver-
gence and curl (Gagnon, 1970; Rădulet & Ciric, 1971; İdemen, 1973; Van Bladel, 1999),

� �~F ¼ � �~F� �þ n̂ � ~F
	 
	 


δðSÞ; (18)

��~F ¼ ��~F
� �þ n̂� ~F

	 
	 

δðSÞ; (19)

in Eqs. (16) and (17), respectively, where S is the surface of discontinuity, which
separates the two contiguous regions #1 and #2, where~r‚S. If a vector field considered
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in those regions is represented as ~F ¼ ~F
� �

, fg will later be called the regular part of

the quantity considered, its jump across S is denoted by ~F
	 
	 
 ¼~F 2 �~F 1 in Eqs. (18)

and (19), where ~F 2 and ~F 1 are the boundary values of ~F on S from #2 and #1,
respectively. The unit normal vector of the surface is again denoted by n̂, and it is
directed into #2. δðSÞ denotes the Dirac delta distribution concentrated on S. In
addition to Eqs. (18) and (19), many other useful distributional relations can be
found in Gagnon (1970). Finally one obtains

~F
� �¼��

ð
�0 �~F� �þn̂0 � ~F

	 
	 

δðSÞ

4πR
d#0

 !
þ��

ð
�0�~F
� �þn̂0� ~F

	 
	 

δðSÞ

4πR
d#0

 !
; (20)

and the volume integrals can be replaced by the surface integrals due to δðSÞ, resulting in

~F
� �¼��

ð
�0�~F� �
4πR

d#0þ
ð
S

n̂0� ~F
	 
	 


4πR
dS0

 !
þ��

ð
�0�~F� �
4πR

d#0þ
ð
S

n̂0� ~F
	 
	 


4πR
dS0

 !
; (21)

which is the Helmholtz theorem in the whole space for a piecewise continuous vector field
~F ¼ ~F

� �
, and it can be considered as the fundamental expression to obtain the Helmholtz

theorem for all kinds of spaces, such as those in Van Bladel (1960, 2007, p. 1008),
Kurokawa (2001, 2008), Zhou (2007) and, Gui and Dou (2007). The Helmholtz theorem
in a finite space or in a closed region #1 ¼ # and its boundary denoted by @# ¼ S can be

obtained from Eq. (21).~F can be chosen to be the vector field inside # and be zero outside

of it, then ~F
	 
	 
 ¼ 0�~F ¼ �~F on S, which is only a function of surface coordinates, if Eq.

(21) is rewritten to

~F¼��
ð
#

�0 �~F
4πR

d#0 �
I

@#¼S

n̂0 �~F
4πR

dS0
 !

þ��
ð
#

�0 �~F
4πR

d#0 �
I

@#¼S

n̂0 �~F
4πR

dS0

0
@

1
A; (22)

which is the Helmholtz theorem in a finite region (Morse & Feshbach, 1953; Plonsey &
Collin, 1961; Collin, 1991; Van Bladel, 1993a, 2007, p. 1007). As a result, it is seen that the
Helmholtz theorem can easily be obtained by a distributional approach for all kinds of
spaces and discontinuities.

4. A new surface version of the Helmholtz theorem

In view of the Helmholtz theorem, an attempt to obtain the decomposition for the
special case of the surface electric current on a conducting body can be seen in
Scharstein (1991). In that study, the representation for the decomposition was proposed
in terms of two scalar functions as ~JS ¼ �SΦþ �S � ðn̂ΩÞ, which seems to be equiva-

lent to that given by Van Bladel (1993b, 1993c, 2007, p. 1008) as ~JS ¼ �S ϕþ n̂� �S θ
with Φ ¼ ϕ and Ω ¼ � θ, where �S represents the surface gradient given by Van
Bladel (2007, p. 1027). Tai (1992, p. 80) used another approach and presented a
different representation for the surface gradient; this study uses Van Bladel’s treatment,
which is the classical approach for the surface operators given by Weatherburn (1955).
Even though the two representations and Poisson equations to be used for the solution
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of the two scalar functions appear to be the same, one must be careful about the
interpretation, expression, and usage of the surface curl presented for a tangential
surface field by Eq. (7) in Scharstein (1991). Since the vector n̂Ω is not a tangential
surface field and is perpendicular to the contour of the integral on the surface, the term
�S � ðn̂ΩÞ in the decomposition can be thought to be zero with that definition, which
may result in an inconsistency.

After using the theory of distributions in the previous section to obtain the Helmholtz
theorem in infinite or finite spaces, and since distributional expressions include all space,
it is now intended to employ the same approach to obtain the surface version of the
Helmholtz theorem or surface decomposition in the canonical form as well, using a
scalar and a vector potential function, which is therefore different than those with the
above-mentioned two scalar functions. A general surface vector field ~F to be considered

on a surface S can be expressed in the sense of distributions as ~F ¼~F 0δðSÞ, and it is

obvious that ~F
� � ¼ 0. To obtain the representation, one must first obtain the divergence

and curl of that vector. Considering �δðSÞ � n̂ ¼ @δðSÞ=@ n, or in general

�δ ðkÞðSÞ ¼ n̂ δ ðkþ1ÞðSÞ, which can be obtained by combining the Cartesian derivatives

presented in Eq. (5.4.8) of Kanwal (2004, p. 112), where δ ðkÞðSÞ denotes the normal
derivative of the Dirac delta distribution of arbitrary order k � 0, the identities for scalar

and vector distributions given in Gagnon (1970), and taking into account that ~F 0 may
only be a function of surface coordinates in the Dupin coordinate system (Van Bladel,
2007, p. 1027; Tai, 1992, p. 15), give

� �~F ¼ � � ~F 0 δðSÞ
� �

;

¼ � �~F 0
� �

δðSÞ þ �δðSÞ �~F 0

¼ �S �~F 0
� �

δðSÞ þ n̂ �~F 0δ
ð1ÞðSÞ;

(23)

and similarly,

��~F ¼ �� ~F 0 δðSÞ
� �

¼ �S �~F 0
� �

δðSÞ þ n̂�~F 0δ
ð1ÞðSÞ :

(24)

Considering Eqs. (23) and (24) in Eqs. (16) and (17), respectively, gives

~F0 ¼� �
1
4π

ð
�0

S �~F 0
� �

δðSÞ þ n̂0 �~F 0δ
ð1ÞðSÞ

R
d#0

 !

þ �� 1
4π

ð
�0

S �~F 0
� �

δðSÞ þ n̂0 �~F 0δ
ð1ÞðSÞ

R
d#0

 !
;

(25)

in which the normal derivative of the Dirac delta distribution δ ð1ÞðSÞ ¼ @δðSÞ=@ n is seen.
By employing the distributional approach, it becomes possible to easily transfer the
normal derivative to test function t. One might consider

@δðSÞ
@ n

; t

� �
¼ � δðSÞ ; @ t

@n

� �
(26)
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for the transfer as given in the literature (Schwartz, 2008, p. 88; Van Bladel, 1995, p. 19,
1999, 2007, p. 1097; Vladimirov, 2002, p. 30), but Eq. (26) is not correct and

@δðSÞ
@ n

; t

� �
�� δðSÞ ; @ t

@n

� �
: (27)

The correct form is given by Kanwal (2004, p. 109) as

@δðSÞ
@ n

; t

� �
¼ � δðSÞ ; @ t

@n
� J t

� �
; (28)

implying

δ ðkÞðSÞ ; t
D E

¼ �1ð Þ k δðSÞ ;
@

@n
� J

� �k

t

* +
; (29)

which will be used later for the generalization, where J ¼ 1=R 1 þ 1=R 2 is the first
curvature of the surface of discontinuity S with R 1 and R 2 being the two principal radii
of curvature (Van Bladel, 2007, p. 1026). Considering Eq. (28) and t ¼ 1=R according to
the discussions presented in the previous section, Eq. (25) can be rewritten to

~F0 ¼� �
ð
S

�0
S �~F 0

4πR
dS0 �

ð
S

n̂0 �~F 0

4π
@

@n0
� J

� �
1
R

 �
dS0

 !

þ ��
ð
S

�0
S �~F 0

4πR
dS0 �

ð
S

n̂0 �~F 0

4π
@

@n0
� J

� �
1
R

 �
dS0

 !
;

(30)

which is the surface version of the Helmholtz theorem or surface decomposition for a
general surface vector field ~F ¼~F0δðSÞ; it is obtained in the canonical form as well. If
~F0 is a tangential vector function as in the case of a surface current density~J ¼ ~JSδðSÞ,
the second integral in the gradient operator in Eq. (30) vanishes since n̂ �~JS ¼ 0, and
one can easily obtain the surface decomposition for a surface current. In that case, the
part with the gradient in Eq. (30) corresponds to the longitudinal term given in Van
Bladel (1993b), but the part with the curl in Eq. (30) is different than the transverse
term; therefore, even if it is considered for a tangential surface vector, the representa-
tion presented in Eq. (30) can be considered as a new surface version of the Helmholtz
theorem or a new surface decomposition when it is compared with the one suggested
previously in terms of two scalar functions (Scharstein, 1991; Van Bladel, 1993b, 1993c,
2007, p. 1008).

5. Generalization of the Helmholtz theorem for multi-layers

In the previous two sections, the Helmholtz representations for the vector fields ~F ¼
~F
� �

in spaces and ~F ¼~F0δðSÞ on surfaces, which represents a single layer on S, were
obtained by using a distributional approach. From the linearity of the equations, it is

obvious that the Helmholtz representation can easily be obtained for a vector field ~F ¼
~F
� �þ~F0δðSÞ by adding the expressions obtained in the last two sections, namely
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those given in Eqs. (21) and (30), accordingly. Considering these results and a theorem
that a distribution with compact support has a finite order (Friedman, 2005, chap. 3;
Friedlander & Joshi, 1998, chap. 3; Vladimirov, 2002, p. 36; Polat, 2011), it can be
concluded that the general distributional representation including multi-layers can be
given as

~F ¼ ~F
� �þXN

k¼0

~F kδ
ðkÞðSÞ (31)

for a vector. In Eq. (31), ~F
� �

denotes the regular part as mentioned previously, and the
term with the summation represents the singular part of the distribution, which consists of
the linear combination of the Dirac delta distribution δðSÞ and its normal derivatives

δ ðkÞðSÞ concentrated on the surface of discontinuity S. The singular part on S might be

denoted by ~F
	 


S. N is the order of the distribution and is finite due to the theorem. The
information about the generalized forms of the Poisson equation and its solution for the
most general case including multi-layers can be found in Kustepeli (2015). It is now
intended to obtain the most general form of the Helmholtz theorem when there is also a
multi-layer on the discontinuity surface or in the presence of higher order singularities. In

that case, since the Helmholtz representations were obtained for ~F ¼ ~F
� �

and
~F ¼~F 0δðSÞ, to obtain the generalized Helmholtz theorem, it will be enough to find the

Helmholtz representations for each~F ¼~Fkδ
ðkÞðSÞ on surface S. Taking the divergence and

curl similar Eqs. (23) and (24) gives

� � ~F kδ
ðkÞðSÞ

� �
¼ �S �~F k
� �

δðkÞðSÞ þ n̂ �~Fkδ
ðkþ1ÞðSÞ; (32)

�� ~F kδ
ðkÞðSÞ

� �
¼ �S �~F k
� �

δðkÞðSÞ þ n̂�~Fkδ
ðkþ1ÞðSÞ; (33)

and the representation can be obtained similar to Eqs. (25) and (30), considering
Eq. (29), as

~F k δ
ðkÞðSÞ¼�� �1ð Þk

ð
S

�0
S �~F k

4π
@

@n0
�J

� �k 1
R

" #
dS0þ �1ð Þkþ1

ð
S

n̂0 �~F k

4π
@

@n0
�J

� �kþ1 1
R

" #
dS0

 !

þ�� �1ð Þk
ð
S

�0
S�~F k

4π
@

@n0
�J

� �k 1
R

" #
dS0þ �1ð Þkþ1

ð
S

n̂0�~F k

4π
@

@n0
�J

� �kþ1 1
R

" #
dS0

 !

(34)

for k ¼ 0; 1; . . . ; N on surface S. Finally, the generalized Helmholtz theorem or

decomposition for ~F given in Eq. (31) can be obtained by using the expressions for

its regular part ~F
� �

given by Eq. (21) and its singular part represented by Eq. (34).

The Helmholtz representation for the singular part ~F
	 


S on the surface of discontinuity

S can be obtained by adding ~Fkδ
ðkÞðSÞ presented in Eq. (34) for k ¼ 0; 1; . . . ; N

accordingly, which might be written as

ELECTROMAGNETICS 145

D
ow

nl
oa

de
d 

by
 [

Iz
m

ir
 Y

uk
se

k 
T

ek
no

lo
gi

 E
ns

tit
us

u]
 a

t 0
7:

51
 0

7 
A

ug
us

t 2
01

7 



~F
	 


S ¼� �
ð
S

�0
S �~F 0

4πR
dS0

 

þ
XN
k¼1

�1ð Þk
ð
S

�0
S �~F k þ n̂0 �~F k�1

4π
@

@n0
� J

� �k 1
R

" #
dS0

þ �1ð ÞNþ1
ð
S

n̂0 �~FN

4π
@

@n0
� J

� �Nþ1 1
R

" #
dS0
!

þ ��
ð
S

�0
S �~F 0

4πR
dS0

 

þ
XN
k¼1

�1ð Þk
ð
S

�0
S �~F k þ n̂0 �~F k�1

4π
@

@n0
� J

� �k 1
R

" #
dS0

þ �1ð ÞNþ1
ð
S

n̂0 �~FN

4π
@

@n0
� J

� �Nþ1 1
R

" #
dS0
!
:

(35)

6. Conclusion

In this article, Stokes’s and Helmholtz’s representations have been reviewed in detail to
reveal their differences and similarities. The Helmholtz theorem has been obtained for
all kinds of spaces by using the theory of distributions in a comprehensive and rigorous
manner, which has also led to a new surface version of the Helmholtz theorem or
surface decomposition, resulting in the canonical form, and therefore, it is different
than the one suggested previously in terms of two scalar functions. By employing the
same approach, the extension of the Helmholtz theorem has been presented when there
is a multi-layer on the surface of discontinuity, which corresponds to fields with
singularities of higher order.
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