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Abstract. We study the electronic structure and correlations of vitamin Bi2 (cyanocobalamine) by using
the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity
in a semiconductor host. The parameters of the effective Haldane-Anderson model are obtained within the
Hartree-Fock (HF) approximation. The quantum Monte Carlo (QMC) technique is then used to calculate
the one-electron and magnetic correlation functions of this effective model. We observe that new states form
inside the semiconductor gap found by HF due to the intra-orbital Coulomb interaction at the impurity 3d
orbitals. In particular, the lowest unoccupied states correspond to an impurity bound state, which consists
of states from mainly the CN axial ligand and the corrin ring as well as the Co e4-like orbitals. We also
observe that the Co (3d) orbitals can develop antiferromagnetic correlations with the surrounding atoms
depending on the filling of the impurity bound states. In addition, we make comparisons of the HF+QMC
data with the density functional theory calculations. We also discuss the photoabsorption spectrum of

cyanocobalamine.

1 Introduction
1.1 Metalloproteins and metalloenzymes

Proteins are important building blocks of organisms.
About one third of proteins have a metal atom such as
iron, cobalt or zinc, and also about half of enzymes contain
a metal atom [1-4]. The metal atom in these organometal-
lic molecules is usually coordinated with nitrogen, oxygen
or sulphur atoms. This kind of proteins and enzymes are
called as metalloproteins and metalloenzymes. An exam-
ple for metalloproteins is hemoglobin which contains iron,
and is involved in the transportation of oxygen and car-
bon dioxide in blood. An example for metalloenzymes is
vitamin Bi2, which contains a cobalt atom and plays an
important role in the production of red blood cells and in
the functioning of the nervous system and the brain.
Metalloenzymes and metalloproteins form an unusual
class of organometallic molecules with important catalytic
functions; they enable various chemical reactions to take
place in the biological environment of the organisms in-
stead of requiring, for example, higher values for pressure
or temperature. The mechanisms for the functioning of
metalloenzymes and metalloproteins have been studied for
more than half a century. However, much still remains to
be understood about these organometallic molecules. In
particular, we think that it is important to know whether
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their unique chemical functions have a common underly-
ing electronic mechanism.

As an example for metalloenzymes, in this paper we
study the electronic structure of vitamin B1s, which is also
called cobalamin (Cbl), by using the techniques of many-
body physics. We have chosen to study Cbl because it
contains relatively few atoms and is suitable for numerical
calculations in addition to its biological importance. The
molecular structure of Cbl was determined by X-ray mea-
surements [5], and consists of a ligand and a nucleotide at-
tached to a corrin ring as shown in Figure 1a. In the corrin
ring, four nitrogen atoms are attached to the cobalt atom
which is located at the center. Here, we concentrate on
the cofactor cyanocobalamin (CNCbl) with the chemical
formula Cg3HggsCoN14014P, in which a CN molecule is at-
tached to Co as the axial ligand. The other two cofactors of
Cbl are adenosylcobalamine (AdoCbl) and methylcobal-
amin (MeCbl), in which either an adenosyl or a methyl
CHj group is attached to Co instead of CN as the axial
ligand.

1.2 Comparison with the dilute magnetic
semiconductors

The CNCbl exhibits an energy gap of about 2.2 eV in
its electronic spectrum [6] and contains a transition metal
atom. In this respect, it is similar to an entirely different
class of compounds, the dilute magnetic semiconductors
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Fig. 1. (a) Schematic plot of the molecular structure of
cyanocobalamine (Cgz3HgsCoN14O14P). (b) Schematic plot
of the simpler truncated structure for cyanocobalamine,
Im-[Co™(corrin)]-CN™T, for which we perform numerical
calculations.

(DMS) [7,8]. The DMS materials such as (Ga,Mn)As
are obtained by substituting transition metal impurities
into a semiconducting host material. They exhibit inter-
esting physical properties such as long-range ferromag-
netic correlations, which are found to exist between the
Mn magnetic moments at elevated temperatures. The
transport measurements have shown that, in the dilute
limit, an impurity bound state exists near the top of
the valence band in the semiconductor gap [9]. The im-
purity bound state, which is a sharp resonant state in
the single-particle spectrum consisting of spectral weight
from the Mn impurity and the host, plays a crucial role
in determining the electronic and magnetic properties of
(Ga,Mn)As [10-12] when studied within the framework of
the Haldane-Anderson [13] model. For example, the long-
range ferromagnetic correlations among the Mn impurities
disappear rapidly as the impurity bound state becomes
occupied with electrons.

1.3 Motivation

The comparison with the DMS materials leads natu-
rally to the following questions: Do similar many-body
effects play a role in determining the electronic and mag-
netic properties of CNCbl as well as the functioning of
metalloenzymes and metalloproteins in general? What
is the special role of the transition metal atom in the
organometallic molecules? In metalloenzymes and metal-
loproteins, are there electronic states which are analogous
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to the impurity bound state found in the DMS materials?
If so, what role do they play in the catalytic functioning of
these molecules? Is there a common underlying electronic
mechanism for the functioning of the metalloproteins and
metalloenzymes? The research presented in this paper is
motivated mainly by these questions.

1.4 Haldane-Anderson model

As it was done previously for the DMS materials [10-12],
in this paper we study the electronic structure and corre-
lations of CNCbl by using the Haldane-Anderson model
of a transition metal impurity in a semiconducting host.
For this purpose, we first map the electronic structure
of CNCbl onto the multi-orbital single-impurity Haldane-
Anderson model by making use of the Hartree-Fock (HF)
approximation. Then we study this effective Anderson
Hamiltonian [14] by using QMC calculations with the
Hirsch-Fye algorithm [15]. Hence, we study CNCbl by
combining the HF and the QMC techniques, which is
called as HF+QMC. There have been many previous stud-
ies of the electronic state of Cbl and other metalloproteins
by using the density functional theory [16-27]. In contrast,
here we study Cbl from the perspective of many-body
physics within the framework of the Haldane-Anderson
impurity model by using the HF+QMC approach.

The multi-orbital single-impurity Anderson
Hamiltonian [14] is given by

H = Yo ot + Y6 — i)ilater

+ Z (le,C;fm,d,,g + V,fwd:f,acma)

m,v,o

—|—ZUynl,Tnyl, (1)

where ¢ (cmo) creates (annihilates) an electron in host
state m with spin o, d}, (d,) is the creation (annihilation)
operator for a localized electron at the Co (3d,) orbital,
and Ny, = dladw. Here, €, and €4, are the energies of
the host and the 3d, impurity states, respectively, V,,, is
the hybridization matrix element between these states and
U, is the intra-orbital Coulomb repulsion. We have intro-
duced a chemical potential p since the QMC calculations
are performed in the grand canonical ensemble.

This form of the Hamiltonian does not include the
inter-orbital Coulomb interaction along with the Hund’s
coupling. In cobaltates, the Hund’s coupling plays an im-
portant role [28], and we expect it to be important in
Cbl also. In the present HF+QMC calculations the inter-
orbital Coulomb correlations are taken into account only
at the HF level, and not in the QMC calculations.

We note that the charge and spin states of Fe in
hemoglobin were studied previously by using mean-field
theory within the extended Haldane-Anderson model
which contains the inter-orbital Coulomb interaction and
the Hund’s coupling [29]. In addition, the high-spin to
low-spin transition due to oxygen binding in myglobin
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was studied by using mean-field theory for the extended
Haldane-Anderson model [30].

1.5 Truncated molecular structure
for cyanocobalamine

We perform these calculations by using the simplified
molecular structure Im-[Co'(corrin)]-CNT shown in Fig-
ure 1b, as has been done in previous DFT calculations [24].
Here, it is clearly seen that Co is coordinated by 5 N and
1 C atoms, which forms an approximately octahedral con-
figuration. In order to obtain this simplified structure, the
nucleotide group attached to the corrin ring is truncated
and the side chains of the corrin ring are replaced by hy-
drogen atoms. The resulting Im-[Co!(corrin)]-CN* has
56 atoms, instead of 181 in CNCbl, and contains 238 elec-
trons instead of 718. Our use of this truncated structure
for modelling CNCbl decreases the number of the host
eigenstates and the computational cost of the QMC cal-
culations, because in the HF+QMC approach it is neces-
sary to calculate all of the host Green’s functions in order
to determine the chemical potential as will be discussed
below.

1.6 Outline of the paper

The outline of this paper is as follows. In Section 2, in or-
der to obtain the one-electron parameters of the Anderson
Hamiltonian, we perform Hartree-Fock calculations with
the Gaussian program [31]. In particular, we first write
the HF solution for the Fock matrix, which is defined
in Section 2.1, in the orthogonal basis set of the natu-
ral atomic orbitals (NAO) [32,33]. From this, we obtain
the one-electron parameters &,,, €4, and V,,,. The HF
calculation finds an energy gap of 8.5 eV for the host elec-
tronic states. In addition, the hybridization matrix ele-
ments are largest between the Co e4-like states and the
atoms around Co, in particular, the CN axial ligand. For
the intra-orbital Coulomb repulsion U,,, we use the value
obtained from the two-electron integrals. However, we also
perform calculations for different values U, in order to see
the dependence of the results. In the HF+QMC approach,
the intra-orbital Coulomb repulsion is taken into account
by both the HF and the QMC parts of the calculations. In
order to eliminate this double-counting, the bare Co (3d,)
energy levels €4, are shifted by a constant amount.

In Section 3, we present QMC data on the single-
particle and magnetic correlation functions for the effec-
tive Anderson Hamiltonian. We note that the QMC results
on the electronic state and the magnetic correlations, and
the resulting analysis presented in Section 3 are similar to
the previous QMC study of the Haldane-Anderson model
within the context of the DMS materials [11,12]. Here,
in Section 3, the Hartree-Fock calculations find that the
host eigenstates have a semiconducting gap in the energy
interval —10.2 eV < ¢ < —1.7 eV. The HF+QMC re-
sults presented in Section 3 show that new single-particle
states are induced in the intervals —10 eV Se S —8.5 eV
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and —=5.5 eV SeS —2 eV, We find that the states in

the interval —10 eV SeS —8.5 eV arise mainly from
the doubly-occupied Co ty4-like states, while containing
smaller amount of states from the corrin ring. On the
other hand, based on the QMC data on the single-particle
and magnetic correlation functions, we conclude that the

states in the interval —5.5 eV Se S —2 eV represent im-
purity bound states arising from the strong hybridization
of the Co eg4-like states with the host eigenstates from
the valence band. These impurity bound states have suffi-
cient spectral weight to accommodate 2 electrons includ-
ing spin. Interestingly, only 0.4 of these electrons originate
from the Co e4-like orbitals, the remaining 1.6 electrons
originate from the host states which consist of orbitals
mainly from the CN axial ligand and to a lesser extent
from the corrin ring. In Section 3, we also present QMC
data on the magnetic correlation functions. We study the
magnetic moment formation as a function of the elec-
tron filling, which is similar to the previous QMC stud-
ies on the DMS materials [11,12]. In addition, we show
that magnetic moments develop in the valence-band host
eigenstates which are strongly hybridized with the Co eg4-
like orbitals. The size of these magnetic moments depend
sensitively on the filling of the impurity bound states lo-
cated at ~—5.5 eV and ~—4 eV. In addition, the magnetic
moments of these host states are coupled antiferromag-
netically to the Co e4-like magnetic moments, and these
correlations vanish rapidly with the electron filling of the
impurity bound states. It is because of this filling depen-
dence that we attribute the induced states at ~—5.5 eV
and ~—4 eV to be arising from impurity bound states. It
would be useful to experimentally look for signatures of
the antiferromagnetic correlations which are predicted by
the HF+QMC calculations. It would also be useful to look
for experimental evidence that the states in the interval
—5.5eVSeS —2 eV indeed arise from impurity bound
states in CNCbl.

In Section 4, we present a discussion in which we com-
pare the HF+QMC data with the DFT calculations on the
same molecule. With respect to the HF results, the DFT
calculations find that new single-particle spectral weight
is induced in the intervals —10.5 eV < & < —8.0 eV
and —5.5 eV < ¢ < —1.7 €V. This is similar to the
HF+QMC data. However, the overall distributions of the
spectral weight obtained by the DFT and the HF+QMC
calculations are very different. In the DFT calculations,
the states in the interval —10.5 eV < ¢ < —8.0 ¢V do
not arise from the upper-Hubbard states of the doubly-
occupied Co tp, orbitals. In addition, the states in the
interval —5.5 eV < e < —1.7 ¢V do not correspond to an
impurity bound state. Furthermore, the magnetic correla-
tions are absent in the DFT calculations. In Section 4, we
also compare the HF+QMC data with the experimental
data on the photoabsorption spectrum of CNCbl, which is
characterized by several distinctive peaks. The HF+QMC
data suggest that the lowest-energy excitations are domi-
nated by the electron transfer from the Co to4-like states
to the impurity bound states. In Section 4, we also dis-
cuss that the combined DFT+QMC technique may also be
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applied to the same problem. In addition, we note that the
inter-orbital Coulomb interaction with the Hund’s cou-
pling needs to be included in the QMC calculations be-
fore carrying out quantitative comparisons with the ex-
perimental data on CNCbl.

Section 5 gives the summary and conclusions of the

paper.

2 Construction of the effective Anderson
Hamiltonian

Various methods for the ab initio calculation of the param-
eters of the Anderson Hamiltonian had been developed
for rare-earth, actinide and 3d compounds [34]. Here, we
use the Hartree-Fock approximation to determine the pa-
rameters of the effective Haldane-Anderson model for the
truncated molecule Im-[Co™!(corrin)]-CNT.

In Section 2.1, we first define the Fock matrix and then
discuss how the self-consistent Hartree-Fock solution for
the Fock matrix is obtained. In Section 2.2, we introduce
the natural atomic orbitals (NAO’s) which form an or-
thogonal basis [32]. In Section 2.3, we use the Fock matrix
written in the NAO basis to determine the bare energy
levels and the hybridization parameters of the effective
Haldane-Anderson model. In Section 2.4, we present re-
sults on the density of states obtained from the Hartree-
Fock approximation. By mapping to the effective Haldane-
Anderson model, the energies of the host states ¢, and
the impurity levels €4, are obtained. Here, we show the
density of states of the host part of the model along with
the positions of the bare Co (3d,) levels. The hybridiza-
tion matrix elements obtained from the mapping to the
Anderson Hamiltonian are presented in Section 2.5. In
Section 2.6, we discuss the values of the onsite Coulomb
repulsion used in the QMC simulations. In order to elim-
inate the effects of the double counting of the Coulomb
interaction in HF+QMC, the Co (3d,) energy levels are
shifted by upc, which is discussed in Section 2.7. The re-
sults presented in Section 2 are based on reference [35].

At this point, it is necessary to discuss how the atomic
coordinates of the molecule Im-[Co™(corrin)]-CN*, which
are needed as input parameters for the Hartree-Fock calcu-
lations, are determined. Here, we use the approach taken
by Kornobis et al. [24], which may be summarized as fol-
lows. X-ray measurements had been used to obtain with
high accuracy the geometrical parameters for the molecule
MeCbl [36]. In order to have an initial estimate of the
atomic coordinates of CNCbl, the axial ligand CHs in
MeCbl was replaced by CN. The resulting molecular struc-
ture for CNCbl was then truncated obtaining the sim-
plified structure Im-[Co™(corrin)]-CN*. The final atomic
coordinates were determined after performing an opti-
mization on the coordinates of the simplified structure by
using the DFT technique with the 6-31G(d) Gaussian ba-
sis set [31] and the BP86 exchange correlation function-
als [37,38]. This way we obtain a reasonable set of values
for the geometrical parameters, which are used as input
in the Hartree-Fock calculations. The atomic coordinates

Eur. Phys. J. B (2016) 89: 113

used in this paper for Im-[Co'(corrin)]-CN* are the same
as in reference [24].

2.1 Hartree-Fock solution and the Fock matrix

According to the electronic structure theory, the many-
body wave function ¥ of the molecule is given by the Slater
determinant of the one-electron molecular orbitals ,,.
Within the Hartree-Fock mean-field approximation [39],
the one-electron wave function ), (r) is determined from
the self-consistent solution of

) Un(r)

_ h? 2 3 /|wm
( 2m V * Vion(r +Z/d [r —1/|
Z/d3 lw r—r/ |( )wm(r) = Enn(r) (2)

with E,, the molecular-orbital energy. Here, the left-hand
side includes the kinetic-energy and the electron-ion po-
tential Vion(r) terms in addition to the Hartree and the
Fock contributions.

The molecular orbitals [¢,) can be expressed in terms
of the N atomic orbitals |¢;),

N
) = Zcm|¢i>, (3)

where C),; are the elements of the coefficient matrix C. By
substituting equation (3) into equation (2), the so-called
Roothan equation is obtained [40],

CF=ECS. (4)

Here, the overlap matrix S has the matrix elements S;; =
(¢i|#;). Since the atomic orbitals |¢;) do not form an or-
thogonal basis, the overlap matrix is not diagonal. The
matrix E is diagonal with the diagonal elements giving
the molecular orbital energies, E,;, = 0nmEm. The ele-
ments of the Fock matrix F are given by:

Fy = /d% % (1) (— 252 VIt Vion(r)> b;(r)

+ZD”/d3 /d3’¢ r,(|)

< (6(x) gy (x') = ¢ (r)¢; (x')) ()

where

Nel
Dij = Z ancnj (6)

forms the density matrix. Here, N, denotes the total num-
ber of the electrons and also twice the number of the
occupied molecular orbitals. For Im-[Co!!(corrin)]-CN*,
we have N = 238. Using as input the one- and two-
electron integrals, the solution of the Roothan equation for
E,, and the density matrix are obtained self-consistently
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through iteration. In order to obtain the HF solution for
Im-[Co™(corrin)]-CNT, we have used the Gaussian pro-
gram [31] with the 6-31G basis set and N = 347 ba-
sis functions. We perform the HF calculations with the
Gaussian 6-31G basis set instead of the 6-31G(d) set!,
which was used in the initial optimization, in order to
increase the speed of the QMC calculations reported in
Section 3. After the HF solution has been obtained, we
have formed the Fock matrix. From the Fock matrix we
have obtained the one-electron parameters of the effective
Anderson Hamiltonian through a procedure outlined in
the following two subsections.

2.2 Basis of the natural atomic orbitals

The overlap matrix S defined above is not diagonal, since
the atomic orbitals do not form an orthogonal basis set.
A convenient orthogonal basis for expressing |1,,) is pro-
vided by the basis of the natural atomic orbitals |¢;) [32].
The NAO’s form a maximally localized basis set; they are
similar to the atomic orbitals but they are also orthogo-
nal. The NAQ’s are obtained by minimizing the function

Swi [ i) - 6i0) (7

where w; denotes the electron occupation number of the
atomic orbital |¢;) obtained by the Hartree-Fock calcu-
lation. Here, we will first express the Fock matrix in the
NAO basis, and from this deduce the parameters of the
Anderson Hamiltonian except for the Coulomb repulsion.

Using the basis of the NAQ’s, the molecular orbitals
|thn) can be expressed as:

5 N-5
|wn> = Zﬁnu'édu> + Z ﬁnz|éz>v (8)
v=1 =1

where, |pa,)’s represent the five NAO’s for the Co (3d,)

orbitals, and |¢;)’s represent the remaining NAO’s. We
have obtained the elements of the Fock matrix within the
NAO basis by using the Gaussian program [31] along with
the NBO 6.0 software package [33].

2.3 One-electron parameters of the Anderson
Hamiltonian from the Fock matrix

Within the HF+QMC approach, we determine the one-
electron parameters of the Anderson Hamiltonian from

! When we use the Gaussian 6-31G basis set in the Hartree-
Fock calculation of the Fock matrix, the number of the basis
functions including the Co (3d,) states is 347. This number
increases to 504 when we use the Gaussian 6-31G(d) basis set.
Since the QMC calculations require more computer time as the
number of the host states increases, here we present results for
the Gaussian 6-31G basis set. However, for comparison, we
have also performed HF+QMC calculations by using the 6-
31G(d) basis set for selected model parameters and we find
negligible differences between the results for the 6-31G and
6-31G(d) basis sets.
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Fig. 2. (a) Sketch of the Fock matrix F in the natural atomic
orbital basis. Here, the 3d and the host parts of the Fock matrix
are separated as F3q and Fy, respectively. The hybridization
parts are M and MT. The host part Fo is not diagonal in
the NAO basis. (b) Sketch of the Fock matrix F’ which is
obtained after diagonalizing the host part. We obtain the one-
electron energies and the hybridization matrix elements of the
effective Haldane-Anderson model from F’. Eigenvalues of the
host part of the Fock matrix F’ yields €, the host energy levels
of the Anderson model. The off-diagonal matrix elements yield
the hybridization parameters V,,, between the host states and
the Co (3d,) NAQO’s. Since t,,, are negligible, €4,’s become
the energy levels of the impurity states.

the matrix elements of the Fock matrix expressed in the
orthogonal NAO basis. This procedure is sketched in Fig-
ures 2a and 2b. Here, the N x N Fock matrix F consists
of the 3d part Fsq, the host part Fy, and the hybridiza-
tion parts M and its transpose M7 as illustrated in Fig-
ure 2a. The host part of the Fock matrix Fy is not diago-
nal in the NAO basis. By diagonalizing Fg, we obtain the
host energy levels ¢, of the effective Haldane-Anderson
model, and the corresponding host eigenstates |u,,). In
turn, the hybridization matrix elements V;,,, between the
host eigenstates |u,,) and the Co (3d,) NAO’s |¢g4,) are
obtained. We denote by F’ the Fock matrix expressed in
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the basis formed from the Co (3d,) NAO’s and the or-
thogonal host states, which is illustrated in Figure 2b. We
determine the one-electron parameters of the Anderson
Hamiltonian from F’. The impurity energies €4, of the ef-
fective model are given by the diagonal matrix elements
of F345. We neglect the off-diagonal elements of F34, which
are denoted by t,, in Figure 2b, since they are negligible
in comparison to the diagonal terms.

Using the procedure outlined above, we obtain the
model parameters €,,, €4, and V,,,,, from the transformed
Fock matrix F’. Considering the effective Hamiltonian
equation (1), we note that now df,_ (d,,) creates (anni-
hilates) a fermion in the Co (3d,) NAO state |@q, ), while
cl . (cmo) creates (annihilates) a fermion in the orthogo-
nal host eigenstate |u,,). Hence, the V,,,’s represent the
hybridization matrix elements between the host eigen-
states |u,,) and the Co(3d,) NAO’s.

There have been many previous studies where the elec-
tronic structure calculations are combined with the many-
body techniques [41]. The use of NAO’s here for the case
of a molecule is similar to the use of maximally-localized
Wannier orbitals [42] to obtain the model parameters for
various compounds [43,44].

2.4 Host density of states and the Co (3d,) energy
levels

Figure 3a shows the total density of states D(e) defined by:

N
D(e) = 3 8(c — En) ©)

where E,, are the eigenvalues of the Fock matrix. Here,
the highest occupied molecular orbital (HOMO) is located
at —10.2 eV, and the lowest unoccupied molecular orbital
(LUMO) is at —1.7 eV. Hence, the occupied and the unoc-
cupied states are separated by an energy gap of 8.5 eV. In
Figure 3b, the density of the host eigenstates defined by:

N-5
Du(e) = 8(c —em), (10)

where ¢, are the energy levels of the host eigenstates, is
shown. We observe that in Figure 3b the HOMO and the
LUMO levels are slightly shifted in comparison to Fig-
ure 3a. The energy levels of the Co (3d, ) NAO states, 4.,
are also shown as vertical lines in Figure 3b. We observe
that the 2z, 2 —1?, and yz orbitals are degenerate and are
much lower in energy with respect to the 322 — r? and zy
orbitals, which are located above the energy gap and near
the LUMO level.

In CNCbI, the 5 nitrogen atoms and the C atom sur-
rounding Co form roughly a local octahedral environ-
ment for Co. Hence, the Co (3d,) levels separate into two
groups, one containing the 322 —r2 and zy orbitals and the
other containing the zz, 2 — 32, and yz orbitals. This is
similar to the separation of the 3d orbitals into the groups
of e, and ty, orbitals in a crystal field with cubic sym-
metry. However, here we have taken a coordinate system
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Fig. 3. (a) Total density of states of Im-[Co'(corrin)]-CN™,
D(e), obtained within the Hartree-Fock approximation by us-
ing the Gaussian program. The vertical solid and dashed lines
denote the HOMO and LUMO levels, respectively. (b) Den-
sity of states of the host eigenstates of the effective Haldane-
Anderson model, Dy (). Here, the HOMO and LUMO levels
are slightly different than in (a). In addition, the energy levels
of the Co (3d,) NAO’s are indicated by the vertical lines.

such that the x and y axis are located at 45 degrees to the
Co-N bond direction in the corrin layer instead of being
parallel to the Co-N bond direction. Hence, the 22 — 3?2
and zy orbitals have been exchanged. In the following, be-
cause of our choice of the coordinate system which is the
same as that of the Gaussian program, we will denote the
322 — r? and wzy orbitals as the eg-like states, and the xz,
x? — y?, and yz orbitals as the to,-like states.

At this point, it is useful to have a visual description
of the Co(3d,) NAO states. In Figure 4, we show the
Co (3dy) NAO’s in terms of the atomic orbitals. Here, the
ey symmetry of the 322 —r? and zy NAO’s is clearly seen
as well as the ¢y, symmetry of the zz, 2 — 2, and yz
NAO’s.

2.5 Host-Co (3d,) hybridization

In this section, we present Hartree-Fock data on the
hybridization matrix elements of the Haldane-Anderson
model, which were obtained as discussed in Subsection 2.3.


http://www.epj.org

Eur. Phys. J. B (2016) 89: 113

Fig. 4. Tllustration of the Co (3d,) natural atomic orbitals in
terms of the atomic orbitals. Color coding of the atomic sites
is the same as in Figure 1b.

The square of the hybridization matrix elements |V, |?
between the mth host eigenstate |u,,) and the Co (3d,)
NAO are shown as a function of the host energy e, in
Figures 5a and 5b. Here, we observe that the magnitude
of |V |? for the cobalt 322 —r? and xy orbitals can be an
order of magnitude larger than those for zz, z°—y? and y=z.
This is not surprising since the 322 — 72 and xy orbitals
lie along the Co-N and Co-C bond directions according to
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Fig. 5. Hartree-Fock results on the square of the hybridization
matrix elements |V, |* between the host eigenstates |y, ) and
the Co (3d,) NAO states |¢q4,) plotted as a function of the
energy of the mth host eigenstate ,,. In (a) results are shown
for the e,-like v = 322 — r? and xy orbitals, and in (b) for the
tag-like v = xz, 2 — y?, and yz. Here, the vertical solid and
dashed lines denote the HOMO and LUMO levels, respectively.
We observe that the host states m = 114, 111, 112 and 116
have the strongest hybridization matrix elements. The matrix
elements with the t24-like states are much smaller than those
with the eg4-like states.

the coordinate system used here. Figure 5a shows that, for
the v = 322 — 72 orbital, |V, |* has the largest values at
m = 114 and 116. For v = xy, the largest values occur at
m = 111 and 112. In Section 3, we will see that the host
eigenstates m = 114, 111, 112 and 116 are the states which
are most affected by the presence of the cobalt atom.

We note that |V, |*’s have large values for a few host
states, while being negligibly small for the remainder. This
feature may be used in the future to increase the speed of
the numerical calculations without losing accuracy.

2.6 Coulomb repulsion at the Co (3d,) orbitals

The intra-orbital Coulomb repulsion at the Co (3d,)
atomic orbitals is given by the two-electron integral

1
U, = /d?’r/d3r/|¢)dl,(r)|2|r_r,||¢du(r/)|2' (11)
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Using the 6-31G Gaussian basis set [31], we obtain U, =
36.8 eV for the Co (3d,) orbitals. However, we note that
the value of U, depends on which Gaussian basis set is
used. While for the 3-21 basis set U, = 42.8 eV, for the
6-31G and the 6-31G(d) sets, we obtain U, = 36.8 eV.

Since the effective Anderson Hamiltonian introduced
above uses the basis of the Co (3d,) NAO’s, the Coulomb
two-electron integrals also need to be evaluated in this
basis instead of the basis of the Co (3d,) atomic orbitals.
When we evaluate the inter-orbital Coulomb repulsion
given by equation (11) using the Co (3d,) NAO’s with
the Gaussian 6-31G basis set, we obtain a28 eV.

In the remaining of this paper, we will use a constant U
for U,, and present QMC results particularly for U vary-
ing between 28 eV and 36 eV. We are neglecting the
inter-orbital Coulomb interactions in the QMC calcula-
tions, which are actually close in value to the intra-orbital
terms. Hence, in the QMC part of the calculations, we
are taking into account the effects of the Coulomb repul-
sion at a simple level, treating U more as a variable than
a true ab initio parameter. Inclusion of the inter-orbital
Coulomb interaction will clearly provide more accurate
results as discussed in Subsection 4.4.

2.7 Double counting in HF+-QMC

At this point, it is necessary to note that in the HF+QMC
approach the onsite Coulomb repulsion U is taken into ac-
count twice, once in the Hartree-Fock calculation, and a
second time in the QMC calculations. In order to pre-
vent the double-counting of the effects of U in the many-
body approaches which combine the electronic-structure
calculations with the QMC simulations, a constant upc
is usually subtracted from the Co(3d,) levels [45-48],
Edv — Edv = Edv — HUDC- Here, HUDC is given by

nHF>

(ng
=U 12
HDC 10 ° (12)

where (nllF) is the total number of the electrons (including
spin) in the Co (3d) levels obtained within Hartree-Fock.
Since the Hartree-Fock calculations yield (nfF') = 6.8, we
use upc = 0.68U in this paper.

It is possible to argue that, because we are using only
the intra-orbital Coulomb repulsion in QMC, the double-
counting shift should be orbital dependent and given by
whe = UniF) /2. where (nflF) is the orbital depen-
dent Co (3d,) occupation number including spin from the
HF calculation. However, if we include the inter-orbital
Coulomb interaction in QMC, then the shift would be or-
bital independent. Since we try to model the actual system
as much as possible, we use a constant upc.

In Figure 6, the shifted Co(3d,) NAO energy levels
&gy are shown for U = 36 eV and upc = 0.68U. Also,
shown here is the host density of states Dj(¢). For these
parameters, the zz, 2 —y? and yz states are located below
the bottom of the valence band, while the 322 — 72 and xy
states are located in the middle.
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Fig. 6. Density of states of the host states of the effective
Haldane-Anderson model Dp(g) from the Hartree-Fock calcu-
lation. Here, the Co (3d,) levels have been shifted by upc in
order to compensate for the double-counting of the Coulomb
repulsion by the HF+QMC approach. The shift upc has been
evaluated for U = 36 eV.

3 Quantum Monte Carlo results

In this section, we present QMC data on the effective
Haldane-Anderson model for Im-[Co!!(corrin)]-CN*, of
which parameters were obtained in the previous section.
For this model, we have performed QMC calculations by
using the Hirsch-Fye QMC algorithm [15]. In particu-
lar, we have calculated the Co (3d,) and the host single-
particle Green’s functions and the magnetic correlations
functions.

In Section 3.1, we introduce the correlation functions
which we evaluate with QMC. In Section 3.2, we present
data on the electron occupation number and the mag-
netic moment formation at the Co (3d,) NAO’s. Here,
we observe that in-gap states develop arising from the
Co (3d,) states in the semiconductor energy gap. The in-
duced in-gap states reduce the value of the semiconduc-
tor gap found by the Hartree-Fock calculation. We find
that the Co (3d,) states induced above the top of the va-
lence band correspond to the upper Hubbard states of
the Co ta4-like orbitals. On the other hand, the Co (3d,)
states induced in the middle of the semiconductor gap
correspond to the impurity bound states originating from
the Co eg4-like states. We reach this assignment based on
the QMC results on the chemical potential dependence
of the Co (3d,) electron occupation number and magnetic
moment formation, host electron occupation numbers and
magnetic moment formation as well as the antiferromag-
netic correlations between the Co e, states and the host
eigenstates.

The QMC results on the host electrons are shown in
Section 3.3. Here, we observe that the host electrons form
new states inside the semiconductor gap at the same en-
ergies where the Co (3d,) NAQO’s develop in-gap states.
These host states are the ones which have the strongest
hybridization matrix elements with the Co e,-like states.
These host states also develop magnetic moments which
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depend strongly on the electron filling of the impurity
bound states.

In Section 3.4, we present data on the antiferromag-
netic correlations which develop around the Co atom.
We find that the antiferromagnetic correlations develop
mainly between the Co eg4-like states and the electron spins
at the CN axial ligand, and they depend strongly on the
filling of the impurity bound states. The results presented
in Section 3 are based on reference [49)].

The QMC calculations are performed within the grand
canonical ensemble, and the total electron number (ny) is
obtained by evaluating with QMC,

5 N-—5
<7’LT> = Z Z<dladl’0> + Z Z<Cinacm0>'

v=1 o m=1 o

(13)

In presenting the QMC data in the next section, we will
obtain results as a function of p and evaluate the corre-
sponding (nr) also with QMC. For the truncated struc-
ture Im-[Co™(corrin)]-CN*, the total electron number is
Ne = 238. By comparing (nyp) with Ny, we obtain the
corresponding value for pu.

3.1 QMC measurements

The Matsubara-time dependent single-particle Green’s
function for the Co (3d,) NAO states is defined by

Guo (1) = —(Trdys (T)le/a (0)), (14)

where T’ is the usual Matsubara 7-ordering operator and
dyo(7) = e7d,,e "7, Similarly, the host Green’s func-
tion is defined by

Gimo(T) = —(TrCmo (T)CTma (0)).

In addition, we calculate the square of the magnetic mo-
ment at each Co (3d,) orbital, {(M?)?), where

(15)

M; =dldyy —d dy,. (16)
In order to probe the magnetic correlations around the
Co atom, we also calculate the equal-time Co (3d,)-host
magnetic correlation function (MZM?Z), where
M: = CInTCmT - cjnlcml. (17)
We present data on ((MZ)?) as well. We note that this
presentation of the QMC results on CNCbl is similar to
the previous QMC study on the DMS materials [11,12].
In the following subsections, we show QMC data on
the Co (3d,) electron number (n,) and the square of the
Co (3d,) moments ((M7)?) as a function of the chemical
potential 1. We also present data on the total host electron
number (ny) as well as the total electron number (nr) as
a function of p. In addition, we study the local moment
formation at the host eigenstates and their magnetic cou-
pling to the Co (3d,) NAO’s. We find that antiferromag-
netic correlations develop between the Co e, states and
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Fig. 7. (a) QMC results on the electron occupation number
(ny) of the Co (3d,) natural atomic orbitals plotted as a func-
tion of the chemical potential p. (b) Square of the magnetic
moment ((MZ)?) at the Co (3d,) natural atomic orbitals versus
the chemical potential u. Here, the vertical solid and dashed
lines denote the HOMO and the LUMO levels, respectively.
These results are for U = 36 eV.

the electronic spins at the CN axial ligand depending on
the value of pu.

In obtaining the QMC data shown below, Matsubara-
time discrete steps between Ar = 0.04 eV~! and
0.07 eV ! were used. The results are presented for temper-
ature T' = 2000 K in the grand canonical ensemble. Hence,
a temperature broadening of order 0.17 eV is expected for
the energy resolution of the QMC data.

3.2 QMC results on the Co (3d,) electrons

We begin presenting QMC data with Figure 7a which
shows the electron number (n,) of the Co(3d,) NAO
states as a function of the chemical potential p for U =
36 eV. Similarly, Figure 7b shows the square of the mag-
netic moment ((M7)?) at the Co (3d,) orbitals as a func-
tion of u. We observe that the results for the Co (3d) xz,
22 — 92, and yz states are similar to each other. The re-
sults for the 322 — r2 and zy states are also similar. From
the p dependence shown in these figures it is possible to
extract information on the single-particle spectral weight
distribution and the local moment formation.

The bare energy levels &4, of the Co (3d) xz, 2% — y?,
and yz NAO states are almost degenerate and are located


http://www.epj.org

Page 10 of 21

at € &~ —45 eV below the lower edge of the valence
band, as seen in Figure 6. In Figure 7a we see that for
these orbitals (n,) exhibits a jump of unit magnitude at
w =~ —45 eV. These orbitals remain singly occupied as

p is increased upto the interval —10 eVSpuS —8 eV,
at which point these orbitals become nearly doubly oc-
cupied. In Figure 7b, we see that the magnetic moments
at these orbitals have their maximum value in the inter-
val —45 eV S S —10 eV. Above ~—10 eV, these mo-
ments decrease rapidly due to double occupancy. The in-
gap states in the energy interval —10 eV SeS —8 eV
have sufficient spectral weight to accommodate a total of
nearly three electrons, and their location corresponds to
approximately &4, + U. Hence, we deduce that these in-
gap states correspond to the upper-Hubbard states of the
Co ta4-like orbitals. We note that they are located inside
the gap, and hence new impurity states are formed inside
the gap found by HF.

Figure 6 shows that the bare energy levels &4, of the
322 —r? and xy orbitals are near —25 eV. In Figure 7a we
observe that for these two orbitals, (n,) becomes finite at
u ~ —38 eV, increases rapidly around pu ~ —30 eV, and
remains less than one until u reaches ~—5.5 eV. This type
of 1 dependence suggests that the U = 0 single-particle
spectral weight, which is a J-function near —25 eV, has
been shifted down in energy and has been broadened.
These orbitals remain less than singly occupied until p
reaches ~—5.5 eV, where (n,,) exhibits a sudden increase
of about 0.2. We think that this sudden increase corre-
sponds to an impurity bound state as found in the mean-
field solution of the Haldane-Anderson model [13]. For the
322 — r? orbital, a similar increase occurs at a slightly
higher energy of ~—4 eV. We note that these jumps take
place in the energy gap found by HF. Hence, new im-
purity states are formed in the energy gap. As seen in
Figure 7b, the magnetic moments at the ry and 322 — r?
orbitals also exhibit sudden increases at these energies.
The occupation numbers of these states remain constant
at unit magnitude as p is increased upto =10 eV. This
value of p corresponds approximately to €4, + U for the
xy and 322 — r? orbitals. Above this energy, the xy and
322 —r? orbitals rapidly become doubly occupied, and the
magnetic moments decrease.

In summary, from Figure 7a we deduce that new in-
gap states originating from the Co (3d) xz, 22 —y? and yz
orbitals form in the energy interval —10 eV Se S —8 €V,
while new states from the zy and 322 —r2 orbitals form at
energies ~—5.5 eV and ~—4 eV, respectively. These newly
formed states reduce the value of the semiconductor gap
found by the Hartree-Fock calculation, which is 8.5 eV,
down to ~3 eV.

Figure 8a shows the QMC data on the total electron
occupation of the Co (3d,,) states

(na) = Z Z<dladua>

v=1 o

(18)

versus the chemical potential u. Here, results are shown
for various values of U in order to see the dependence
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Fig. 8. (a) Total electron occupation number (ng) of the
Co (3d) natural atomic orbitals as a function of the chemi-
cal potential p. (b) Total number of the host electrons (ns)
versus p. (c) Total number of electrons, (nr) = (n4) + (na),
versus u. Here, results are shown for various values of the intra-
orbital Coulomb repulsion U. In addition, the vertical solid and
dashed lines denote the Hartree-Fock results for the HOMO
and LUMO levels, respectively.

on U. We note that in these calculations, as U is varied,
€4y also varies according to equation (12).

For U = 36 ¢V, we observe that (ng) increases as y
is varied from —10 eV to —8 eV, because the zz, 2% — 32
and yz orbitals become nearly doubly occupied in this
interval. In the energy gap, for —8 eVSpu S —5.5 eV,
we get (ng) &~ 7.55. In comparison, the X-ray scatter-
ing experiments find that the value of (ng) in CNCbl is
7.7 £ 0.1 [22]. Above u ~ —5.5 eV, we observe two step-
like increases in (ng) coming from the xy and 322 — r?
states. For U = 36 eV, the energy gap between the high-
est occupied and the lowest unoccupied Co (3d) levels is
~3 eV. In comparison, the experimental value for the
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semiconductor gap of CNCbl is about 2.2 eV [6]. As U
is decreased from 36 eV to 28 eV, we observe that the
in-gap states move closer to the semiconductor gap edges,
and the magnitude of the energy gap increases.

Also shown in Figure 8a are results for U = 0, in which
case we obtain (ng) = 6.8 in the interval —12 eV < pu <
0 eV. As seen in Figure 3b, for U = 0, the bare energy
level for the xz, 2 — 3% and yz orbitals is ~—20 eV,
while for the 322 — 72 and xy orbitals one has ~—1 eV
and ~0 eV, respectively. If the hybridization is turned on
while keeping U = 0, then spectral weight of the 322 — 12
and xy orbitals are broadened and shifted to higher ener-
gies. For this reason, (ng) remains constant in the interval
—12eV<pu<0eV for U =0.

Finally, we note that the hybridization matrix elements
Vi's are dependent on the atomic coordinates used in the
HF calculation. Because of uncertainties in the atomic co-
ordinates, it is necessary to study how the general features
of the single-particle spectrum depend on V,,,,. With this
in mind, we have repeated the above QMC calculations
by reducing the hybridization matrix elements by 10%. In
this case, we found that, for U = 36 eV, the lowest en-
ergy impurity bound state occurs at ~—6.5 eV instead of
—b5.5 eV, and the energy gap is reduced to =2 eV. Hence,
we see that the impurity bound state is robust with respect
to small variations in V,,,. This is important because the
values of the V,,,’s depend on the Co-C bond length, and
we are using simple estimates for the geometrical param-
eters as described in the introduction of Section 2.

3.3 QMC results on the host electrons

Figure 8b shows the total number of the host electrons

)= 3 3 el cmo),

m=1 o

(19)

where N = 347, plotted as a function of the chemical
potential u. Comparing Figures 8a and 8b, we observe
that (ny) and (ng) exhibit jumps at the same values of p.
Hence, the host states also develop spectral weight inside
the gap at the same energies as the Co (3d,) states. We
note that the error bars in the data on (n;) are larger
than in (ng), since the QMC calculation of (ny) is com-
putationally more costly.

For the interval —10 eV e < —8 eV, the jump in (ng)
is ~2.5, while the jump in (n) is =0.5. On the other hand,
we note that, in the interval —=5.5 eV Se S —2 eV, the
jump in (ny) is about ~1.6, while that in (ng) is ~0.4.
Hence, actually there are more host states induced in the
gap for ~=5.5 eV Se S —2 eV than from the Co(3d,)
orbitals.

The total number of the electrons (nr) = (ng) + (np)
versus /4 is shown in Figure 8c. For Im-[Co'(corrin)]-
CNT, the total electron number is 238. From this figure
we identify p ~ —8.5 eV as the new value of the HOMO
level, and p ~ —5.5 eV as the new LUMO level. Here, we
also observe that the in-gap states located in the inter-
val =5.5 eV S ;i S —3.5 €V have sufficient spectral weight
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Fig. 9. HF+QMC results on the energy gap F4 between the
HOMO and LUMO states versus the intra-orbital Coulomb
repulsion U (left axis). Total electron number at the Co (3d)
orbitals, (nq) when the chemical potential is in the energy gap,
versus U (right axis). Here, upc which shifts the bare Co (3d,)
energy levels is varied along with U according to equation (12).

to accommodate a total of two electrons. In comparison,

the in-gap states in —10 eV < S —8 eV accommodate 3
electrons.

We also note that &g, for 322 — 2 and y states are
near —25 eV. Hence, for U = 36 eV, the doubly-occupied
states occur at u =~ €4, + U = 11 eV. Hence, the in-gap
states which form from the 322 —72 and 2y orbitals do not
originate from the upper Hubbard states. Instead, they are
similar in origin to the impurity bound states found in the
mean-field solution of the Haldane-Anderson model of a
transition-metal impurity in a semiconductor host [13].

Since for Im-[Co'!(corrin)]-CN* the total electron
number is 238, in Figure 8c we see that the effective energy
gap decreases as U is increased. For U = 36 eV, the effec-
tive energy gap becomes =3 eV. Hence, the energy gap can
be significantly reduced with respect to the Hartree-Fock
value of 8.5 eV.

The values of the effective energy gap are plotted in
Figure 9 as a function of U. We note that in this calcula-
tion, as U is varied, the shift upc is also varied according
to equation (12). Also plotted in Figure 9 is (ng) versus U.
For (ng), the experimental estimate [22] is 7.7+0.1. Hence,
for U =~ 36 eV, HF+QMC yields values for the energy gap
and (ng) which are comparable to the experimental val-
ues. For this reason, in the remainder of this paper we will
present QMC data for U = 36 eV.

We next explore the nature of the in-gap states orig-
inating from the host eigenstates. In particular, we are
interested in understanding which atomic orbitals con-
tribute to these host states induced in the energy interval
between ~—5.5 eV and ~—2.0 €V. In order to achieve this,
we study how the electron occupation of the host states
(nm) changes as p is varied from below this energy inter-
val to above it. In particular, we show how (n,,) changes
as p is varied from —7.0 eV to —2.2 eV. For this pur-
pose, we first show in Figure 10a the electron occupation
of the host eigenstates (n,,) as a function of the host en-
ergy €, at = —7.0 eV for U = 36 eV. We note that for
u = —T7.0 eV, the host states located between ~—5.5 eV
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Fig. 10. (a) Occupation number of the host eigenstates (n.,)
versus the host energy e, for chemical potential p = —7.0 eV.

Here, we see that the host eigenstates m = 111, 112, 114 and
116 are not doubly occupied even though the corresponding &,
are located deep below . (b) Difference in the occupation num-
ber of the mth host eigenstate as u is changed from —7.0 eV
to —2.2 eV, (Anm) = (nm)|u=—2.2 ev — (Mm)|u=—7.0 ev, plot-
ted as a function of &,,. These results are for U = 36 eV. In
addition, here, the vertical solid and dashed lines denote the
HOMO and the LUMO levels, respectively.

and ~—2.0 eV are not occupied by electrons yet. Even
though here we use u = —7.0 eV, any value of y in the
energy gap between ~—8.0 eV and ~—5.5 eV gives simi-
lar results. In Figure 10a, we observe that, for this value
of i, there are valence-band host eigenstates which are not
doubly occupied even though they are located deep below
the chemical potential. In particular, the host eigenstates
with labels m = 114, 111, 112 and 116 exhibit the most re-
duced values of (n,,). We note that these host eigenstates
have the strongest hybridization matrix elements with the
322 —r? and zy orbitals, as it was seen in Figure 5a.
Next, we change p from —7.0 eV to —2.2 eV, and
plot the increase in (n.,), (Anm,) = (Mm)|p=—22 ev —
(Nm)|y=—7.0 ev, as a function of the host energy e, in
Figure 10b. We already know from Figure 8b that, for
U = 36 eV, the in-gap states become fully occupied when
u =~ —2.0 eV. Hence, the change (An,,) as u goes from
—7.0 eV to —2.2 eV represents how much the occupation
of the host states changes as the impurity bound states
located in the interval between ~—5.5 eV and ~—2.0 eV
become occupied. In other words, (An,,) represents how
much individual host eigenstates contribute to the impu-
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Fig. 11. (a) Top view of Im-[Co™ (corrin)]-CNT. We note that
the = and y axes are located at 45 degrees to the Co-N bonds
in the corrin plane, and the z axis is perpendicular to the cor-
rin plane. (b) Side view of Im-[Co™ (corrin)]-CN™, where the
imidazole and CN ligands attached to Co below and above
the corrin ring, respectively, are seen. Here, the carbon and
nitrogen atoms have been labelled for convenience, while the
hydrogen atoms are not shown.

rity bound state. Here, we see that the largest increase in
(nm,) takes place for m = 114, 111, 116 and 112. The rest
of the host eigenstates exhibit negligible change as pu is
increased from —7.0 eV to —2.2 eV. Hence, the impurity
bound states derive mainly from the m = 114, 111, 116
and 112 host eigenstates. In turn, within the rigid-band
picture, it is possible to state that the host eigenstates
m = 114, 111, 116 and 112 have significant amount of
single-particle spectral weight between energies —7.0 eV
and —2.2 eV, which have been generated by the Coulomb
repulsion and the hybridization.

In order to gain insight into the real-space structure of
the in-gap host eigenstates located in the interval between
~—>b5.5 eV and ~—2.0 eV, we study the NAO composition
of these host eigenstates. However, before doing so, it is
useful to discuss briefly the geometrical structure of Im-
[Co™(corrin)]-CN*, which is sketched in Figure 11. Fig-
ure 11a shows a top view of the corrin ring around the Co
atom in Im-[Co!(corrin)]-CN*. Here, we have only shown
the C and N atoms around Co, and have not included the
H atoms. According to our coordinate system, which is the
same as that of the Gaussian program, the corrin ring lies
in the zy plane, and the x and y axes make 45 degrees with
the Co-N bond directions. Figure 11b shows the side view
of Im-[Co'™(corrin)]-CN*. Here, we see the imidazole ring
attached to Co below the corrin plane and the CN axial
ligand attached to Co above the corrin plane. Here, the C
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Fig. 12. NAO weight of the mth host eigenstate |umi|> =
[{¢s|um)|* versus the label i of the host NAO for (a) m = 111,
(b) 112, (c) 114, and (d) 116. The maximum value for index ¢
is 342, which is the total number of the host NAO’s.

and N atoms in the axial ligand are labelled as 30C and
31N as in the notation of the Gaussian program.

Figure 12a shows the NAO composition of the m =
111th host eigenstate. In particular, here we plot the NAO
weight of the m = 111th host eigenstate defined as

(i) |?

versus the label 7 of the host NAO state. In this figure, we
have labeled only the NAO states which have the domi-
nant contribution; the NAO states with smaller weights

(20)

|Umi|2 =
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Fig. 13. Real-space structure around the Co site of the m =
111, 112, 114, and 116th host states in terms of the atomic
orbitals. Color coding of the atomic sites is the same as in
Figure 1b.

are not labeled here. Figures 12b-12d show similar re-
sults for the m = 112, 114 and 116th host states. In these
figures, we see that the m = 111 and 112th states have
large weight from the 2pm NAQ’s of the CN axial ligand.
Similarly, the m = 114 host state mainly consists of the
2po NAQO’s of the CN axial ligand. On the other hand, the
m = 116 host state consists of the 2pc NAQO’s on the 10th,
15th and 20th C sites as well as N sites located around Co
in the corrin plane as sketched in Figure 11a.

In order to have further physical insight into these host
states, it is useful to have a visual description. For this
purpose, we have obtained the composition of these host
states in terms of the atomic orbitals. Figure 13 shows an
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Fig. 14. (a) Occupation of the mth host eigenstate (n.,) versus
. (b) Square of the magnetic moment of the mth host eigen-
state ((MZ)?) versus u. Here, the vertical solid and dashed
lines denote the HOMO and the LUMO levels, respectively. In
addition, these results are for U = 36 eV.

illustration of the m = 111, 112, 114 and 116th host states
in terms of the atomic orbitals. We note that since the
impurity bound states mainly include contributions from
these host states, the impurity bound states also exhibit
this type of real-space structure around the Co site.

In Figure 14, we show results on the occupation num-
ber and the magnetic moment for the same host eigen-
states m = 111, 112, 114 and 116. Figure 14a shows the
occupation number (n,,) versus u for these host eigen-
states. We observe that a sharp increase in (n,,) occurs at
I & €y, in the valance band. We see that the single-particle
spectral weight of the m = 111th host state is broadened
in the valence band. In addition, a step-like increase ex-
ists inside the energy gap at ~—5.5 eV, above which this
host state reaches double occupancy. Similar i dependen-
cies are observed for the others. The host state m = 112
also exhibits a jump at ~—5.5 eV, while for m = 114 and
116 the jump occurs at ~—4 eV. The jumps in (n,,) are
largest for m = 114 and 111.

Figure 14b shows the square of the magnetic moment
((MZ)?) for the same host eigenstates. We observe that
significant size moments develop for these host states until
the in-gap states become occupied. As the in-gap host
states are filled and they approach double-occupancy, the
magnetic moments decrease rapidly.
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Finally, we note that the states induced in the inter-
val =10 eV Se S —8 eV originate mainly from the Co
ta4-like states. In Figures 8a-8c, we observe that in this
interval there is sufficient spectral weight to accommodate
3 electroms, of which about 2.5 electrons have the Co ta4-
like character. The remaining 0.5 electrons originate from
the m = 115 host state, which mainly consists of the 2pm
orbitals of the C and N atoms in the corrin ring. We do
not show the composition of the m = 115th host state in
order not to increase the length of the manuscript.

3.4 QMC results on the Co (3d,)-host magnetic
correlations

In Figure 15, we discuss the magnetic correlations be-
tween the Co(3d,) electrons and the host eigenstates
m = 111, 112, 114 and 116. In particular, these figures
show the magnetic correlation function (M7 M7 ) between
the Co (3d,) state and the mth host eigenstate plotted as
a function of .

In Figures 15a and 15b we observe that the Co (3d.y)
NAO develops antiferromagnetic correlations with the
m = 111 and 112th host states. These antiferromagnetic
correlations diminish rapidly as the in-gap state located
at ~—5.5 eV becomes occupied. The m = 111 and 112th
states do not exhibit magnetic correlations with the other
Co (3dy) orbitals. In Figures 15¢ and 15d we observe that
the Co (3ds3,2_,2) NAO develops antiferromagnetic corre-
lations with the m = 114 and 116th host states. In Fig-
ures 12a—12c, we have seen that the m = 111, 112 and
114th states contain large weight of the NAQO’s localized
at the CN axial ligand. Thus we deduce that the electrons
at the CN axial ligand develop antiferromagnetic correla-
tions with the Co e4 orbitals. These antiferromagnetic cor-
relations diminish rapidly when the impurity bound states
become filled with electrons. Hence, as Im-[Co™!(corrin)]-
CNT goes from the N, = 238 state to No = 239 and
240 states, the antiferromagnetic correlations between the
CN ligand and the Co e, electrons disappear rapidly. We
note that the m = 116 host state contains spectral weight
from the 2poc NAQO’s at the C and N sites in the corrin
ring as seen in Figure 12d. Figure 15d shows that these
NAOQO’s also develop antiferromagnetic correlations with
the Co (3ds3,2_,2) orbital.

It is important to note that we identify the in-gap in-
duced states at ~—5.5 eV and ~—4 eV as impurity bound
states because of the p dependencies discussed in Fig-
ures 7, 8, 14 and 15. Similar behaviour is obtained in
studying the impurity bound states found in the DMS
materials [10-12].

We have also studied the magnetic correlations be-
tween the magnetic moments forming at the Co 3ds,2_,=2
and 3d,, orbitals. We find that these orbitals exhibit only
weak magnetic correlations. This is different than the case
for the DMS materials, where an indirect ferromagnetic
coupling is generated between two impurity moments due
to their antiferromagnetic coupling to the same contin-
uum of host electrons [10-12]. Here, the Co 3d3,2_,» and
3dyy orbitals do not have strong hybridization with the
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Fig. 15. Magnetic correlation function (M M}, ) between the
mth host eigenstate and the various the Co (3d,) NAO’s. Here,
results are shown for host eigenstates (a) m = 111, (b) 112, (c)
114, and (d) 116. In addition, the vertical solid and dashed
lines denote the HOMO and the LUMO levels, respectively.
These results are for U = 36 eV.

same host eigenstates as seen in Subsection 2.5. In mod-
elling the DMS materials, a continuum of host states with
constant hybridization is used, while for CNCbl the host
eigenstates have discrete energy levels with varying hy-
bridization matrix elements. Hence, an indirect ferromag-
netic coupling is not generated. However, the inclusion of
the Hund’s coupling can generate a ferromagnetic cou-
pling between the magnetic moments at the Co 3ds,2_,.
and 3d,, NAO’s.

It would be interesting to probe experimentally the
antiferromagnetic correlations found in the HF+QMC
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calculations. It is known that Cbl exhibits weak diamag-
netism [50,51], which has been intepreted as Co in Cbl
having a low spin state. This is also partly responsible for
the notion that the interaction effects are not important
in Cbl. In the HF+QMC results, we see that magnetic
moments can develop in the Co e, orbitals and in the
host eigenstates coupled to these orbitals. It is possible
to calculate the magnetic susceptibility within HF+QMC
in order to extract the effective moment size for Co and
the whole molecule. But such a calculation would be more
meaningful after including the Hund’s coupling.

4 Discussion

In this section, we discuss the meaning and implications
of the HF+QMC data shown in Section 3. For this pur-
pose, in Subsection 4.1, we compare the HF+QMC data
with the DFT calculations on the same truncated molecule
Im-[Co™(corrin)]-CN*. We find that there are important
differences between the results of these two approaches.
In particular, while the HF+QMC calculations for the
Haldane-Anderson model find that the LUMO state cor-
responds to an impurity bound state, this is not the case
for the DFT results. In Subsection 4.2, we compare the
HF+QMC data with the photoabsorption experiments on
CNCDbl. Here, we discuss the nature of the lowest excited
states in the photoabsorption spectrum. The HF+QMC
data suggest that the lowest-energy excitations are domi-
nated by electron transfer from the Co t24-like orbitals to
the impurity bound states which contain spectral weight
mainly from the CN axial ligand and the corrin ring. In
Subsection 4.3, we note that the DEFT+QMC method may
also be applied to the same problem. In Subsection 4.4,
we emphasize the importance of including the inter-orbital
Coulomb repulsion and the Hund’s coupling.

4.1 Comparison of the HF+QMC data with the DFT
results

Various DFT based calculations have been performed for
Cbl [16-26]. In this subsection, we compare the HF+QMC
data obtained for Im-[Co!!(corrin)]-CNT by using the
Haldane-Anderson model with the results obtained from
the density functional theory (DFT) calculations on the
same truncated molecule. We note that these DF'T results
are similar to the results of the time-dependent DFT cal-
culations on the same system [24].

Figure 16 shows the total density of states D(e) ver-
sus e for Im-[Co!(corrin)]-CN* obtained by using the
Gaussian program [31] with the 6-31G basis set and
the BP86 exchange correlation potentials [37,38]. Here,
the solid and dashed vertical red lines denote the HOMO
and LUMO levels obtained by DFT. According to the
DFT results the energy gap is ~2.2 eV, which is in agree-
ment with the experimental results. The vertical black
lines, on the other hand, denote the HOMO and LUMO
levels obtained by the HF calculations shown in Figure 3a.
Comparing the HF results on D(e) shown in Figure 3a
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Fig. 16. DFT results on the total density of states D(e) of Im-
[Co™ (corrin)]-CN™T obtained by using the Gaussian program
with the BP86 exchange correlation potentials and the 6-31G
basis set. The solid and dashed vertical red lines denote the
HOMO and LUMO levels obtained by the DFT calculation.
Similarly, the solid and dashed vertical black lines denote the
HOMO and LUMO levels obtained by the Hartree-Fock cal-
culation described in Section 2. Here, we see that in the DFT
calculations additional spectral weight is induced in the inter-
vals —10.5 eV < e < —7.8 ¢V and —5.7eV < e < —1.8 eV
when compared with the HF results.

with the DFT results of Figure 16, we observe that the
HF HOMO and LUMO levels located at —10.5 eV and
—1.7 eV move to —7.8 eV and —5.6 eV, respectively.
Hence, in comparison to the HF results, the DFT calcula-
tion yields additional spectral weight in the energy inter-

vals —10.5eVSe S —7.8eVand —5.6eV Se S —1.7eV.

Next, we compare the DFT results on D(e), Fig-
ure 16, with the single-particle spectral weight deduced
from the HF+QMC data on the total electron number
(nr) versus g shown in Figure 8c for U = 36 eV. We
observe that the locations of the HOMO and LUMO lev-
els obtained by DFT and HF+QMC are comparable. In
addition, the DFT result for the total number of the elec-
trons in the Co (3d,) NAO states is 7.4, which is sim-
ilar to the HF+QMC result seen in Figure 9. So, the
DFT and the HF+QMC results for the energy gap and
(ng) are comparable to each other as well as to the the
experimental results. However, we will see in the follow-
ing that there are important differences between the DFT
and HF+QMC results when the overall distribution of the
single-particle spectral weight near the semiconductor gap
edges is considered.

In the HF+QMC data presented in Section 3 for U =
36 eV, we have seen that new states are induced in the en-
ergy interval —10 eV S e < —8 eV which originate mainly
from the doubly-occupied Co 3d;, 3d,2_,2 and 3d,. or-
bitals. This is because &g, + U for the Co ty4-like orbitals
corresponds to this energy interval. In the same interval,
there also exist smaller amount of host states due to hy-
bridization with the Co t24-like states. On the other hand,

the states induced in the interval —5.5 eV Se S —2 eV
in the HF+QMC data originate from the Co 3ds,2_,2
and 3d,, states. These states are similar in nature to the
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impurity bound states found in the mean-field and QMC
studies of the Haldane-Anderson model for the DMS mate-
rials [10-12]. We have also seen that host states, which are
mainly originating from the CN axial ligand, are induced

in the energy interval —5.5 eV Se S —2 eV. In fact, here,
the amount of the single-particle spectral weight originat-
ing from the host states is larger than that from the eg-like
states. From Figures 8a and 8b, we observe that in the in-
terval —5.5 eV Se S —2 eV the host states accommodate
about 1.6 electrons while the eg4-like states accommodate
about 0.4 electrons.

Now, we discuss the nature and origin of the states

forming in the energy intervals —10 eV Se S —8 eV and

—5eVSeS —2 eV in the DFT calculations. For this
purpose, we present DFT results in Table 1 on the NAO
spectral weights of the molecular orbitals located in these
intervals. Using the DF'T data, we expand the one-electron
molecular orbitals |,,) in terms of the NAO’s of the whole
molecule including both the host and the Co (3d) states,

N
[¥n) = Cildi). (21)

3
Here, the sum over the NAO index 4 goes upto N = 347.
Table 1 shows DFT results on |C,,;|? for the molecular or-
bitals which are located right below and above the DFT
semiconductor gap. In particular, here results are shown
for the molecular orbitals with index 109 < n < 130, which
includes the states located in the intervals —10.22 eV <
e < =7.77 ¢V and —5.64 eV < ¢ < —1.78 eV. We are
interested in how much Co (3d) NAO weight these molec-
ular orbitals contain. We are also interested in how much
NAO weight of the CN axial ligand is included in these en-
ergy intervals. We will compare them with the HF+QMC
data. It is for these purposes that the data in Table 1 are
presented.

The first and the second columns of Table 1 denote
the location of a given molecular orbital with respect to
the semiconductor gap and the molecular orbital index
n. The third column shows the corresponding molecular
energy E,,. The following five columns show |C,,;|? for the
Co (3d) NAO states. The last two columns show the NAO
weights summed over the three 2p orbitals, 3, |Ci]?, for
the C and N atoms of the CN axial ligand. We note that
the C and N atoms of the CN axial ligand are labelled
as 30C and 31N following the notation of the Gaussian
program [31].

Here, we observe that the molecular orbitals with the
index n = 115 through 118 contain significant amount
of spectral weight from the Co 3d,., 3d;2_,2 and 3d,.
NAO’s. In comparison, the HOMO state (n = 119) and
the LUMO state (n = 120) contain smaller amount of
Co 3d,. NAO weight. On the other hand, the molecular
orbitals n = 121 and 122 contain significant amount of Co
3dyy and 3ds,2_,» NAO weights, respectively.

Next, we compare these DFT results with the
HF4+QMC data from Section 3. In the DFT results, we

see that in the interval —10 eV Se S —8 eV there is spec-

tral weight originating from the Co 3d,2_,2, 3d;, and 3d,,.
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Table 1. DFT results on the NAO spectral weights \C~'m|2 of the molecular orbitals near the semiconductor gap edges for
Im-[Co™ (corrin)]-CN". Here, n is the index for the molecular orbital, and i is for the NAO. The first two columns denote the
molecular orbital and the corresponding index. The following five columns denote how much Co (3d) NAO spectral weight exists
in the nth molecular orbital. Similarly, the last two columns denote the amount of the total 2p spectral weight at the C and N

atoms in the CN axial ligand. For convenience, when |Ch; |*
Molecular orbital n E, (eV) 2 o Co (3d.)
3z° —r Ty Tz
HOMO-10 109 —10.22 0.0 0.0 0.0
HOMO-9 110 —-9.70 0.0 0.0 0.10
HOMO-8 111 —9.69 0.0 0.0 0.01
HOMO-7 112 —9.27 0.04 0.0 0.0
HOMO-6 113 —-9.19 0.01 0.0 0.0
HOMO-5 114 —9.15 0.0 0.0 0.0
HOMO-4 115 —8.74 0.0 0.0 0.0
HOMO-3 116 —8.43 0.0 0.02 0.0
HOMO-2 117  —8.07 0.0 0.01 0.66
HOMO-1 118 —7.80 0.02 0.0 0.0
HOMO 119 —7.77 0.01 0.0 0.01
LUMO 120 —5.64 0.0 0.0 0.0
LUMO+1 121 —5.08 0.03 0.49 0.02
LUMO+2 122 —4.87 0.38 0.07 0.01
LUMO+3 123 —4.74 0.09 0.01 0.04
LUMO+4 124 —4.07 0.0 0.01 0.0
LUMO+5 125 —3.83 0.0 0.0 0.0
LUMO+6 126 —2.93 0.0 0.0 0.0
LUMO+7 127 —2.20 0.0 0.0 0.0
LUMO+8 128 —2.03 0.0 0.0 0.0
LUMO+9 129 —1.93 0.0 0.0 0.0
LUMO+10 130 —1.78 0.0 0.0 0.0

NAO states. This agrees with the HF+QMC data. How-
ever, the amounts of the single-particle spectral weight
contained in this interval are different. According to the
DFT results, in this interval the Co 3d,., 3d,2_,> and
3d,. NAO’s accommodate 1.56, 1.84 and 1.88 electrons,
respectively, including spin. On the other hand, as seen in
Figure 7a, the HF+QMC approach finds that each of these
orbitals contains in this interval about 0.9 electrons includ-
ing spin. In this case, the interval —10 eV Se S —8 eV
is approximately equal to the value of &4, + U. Hence,
the states in this interval correspond mainly to the up-
per Hubbard states of the to4-like NAO’s. This compar-
ison shows that the DFT calculations do not yield the
splitting of the t,4-like states into the lower and upper
Hubbard states found by HF+QMC.

Next, we discuss the DFT results for the interval
—5eVSeS —2 eV, which contains spectral weight from
the Co 3dyy and 3dz.2_,2 NAO states. The HF+QMC
data also finds spectral weight from the Co 3d,, and
3ds3,2_,2 NAQO’s in this interval. However, the amounts of
the spectral weight contained in this interval are different.
According to the DFT results, the Co 3d,, and 3ds,2_,2
NAO'’s contain 1.16 and 1.0 electrons in this interval. The
HF+QMC yields 0.2 electrons for each of these orbitals in

the same interval.

In the last two columns of Table 1 on the DFT results,
we observe that in the interval —5.5 eV Se S —2 €V,
there is little amount of NAO spectral weight originating

from the CN axial ligand. In the HF+QMC data, however,

> 0.05, the numbers are printed in bold face.

30C 31N
22 —9® yz  (summed over 2p’s) (summed over 2p’s)

0.0 0.02 0.01 0.01
0.0 0.01 0.14 0.14
0.0 0.16 0.25 0.24
0.0 0.0 0.09 0.49
0.0 0.0 0.14 0.28
0.0 0.0 0.0 0.01
0.08 0.15 0.09 0.21
0.83 0.02 0.01 0.03
0.0 0.0 0.02 0.12
0.0 0.38 0.01 0.03
0.01 0.10 0.01 0.02
0.0 0.05 0.0 0.0
0.01 0.0 0.0 0.0
0.0 0.01 0.06 0.02
0.0 0.0 0.01 0.01
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.01 0.01
0.0 0.0 0.01 0.01
0.0 0.01 0.01 0.01
0.0 0.0 0.0 0.0

there is significant amount of spectral weight from the
CN axial ligand in this energy interval. This is because
the CN axial ligand hybridizes strongly with the Co 3d,,
and 3d,2_,» NAO’s. Hence, in the DFT calculations the

states in the interval —5.5 eV Se S —2 eV do not arise
from an impurity bound state as found in the HF+QMC
calculations.

When we compare the DFT and the HF+QMC re-
sults, we find good agreement for the magnitude of the
HOMO-LUMO gap and the total occupation number (ng)
of the Co (3d) orbitals. However, there exist important dif-
ferences in the overall distribution of the single-particle
spectral weight near the semiconductor gap edges. In par-
ticular, we see that the DFT calculation yields much less
spectral weight in the interval —5.6 eV SeS —1.8 eV
originating from the CN axial ligand. In addition, accord-
ing to DFT, the Co (3d,) spectral weight in the interval
—10 eV < e < —8 eV does not arise from the split upper-
Hubbard states of the Co ta4-like orbitals.

Furthermore, in Table 1 we see that, in the interval
—10.22 eV < ¢ < —1.78 eV, there are 22 molecular or-
bitals, which can accommodate a total of 44 electrons. On
the other hand, in the HF+QMC data shown in Figure 8c,
we observe that there is spectral weight to contain only
5 electrons in the interval —10 eV Se S —2 eV. Hence,
the single-particle spectrum in this interval is much denser
according to the DFT results.

In addition to these, we have also performed DFT
calculations by using the B3LYP exchange-correlation
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functional [52,53] instead of the BP86. We do not present
these results here because of the length of the manuscript.
In this case, the energy gap is ~3.2 eV. However, the
distribution of the spectral weight near the HOMO and
LUMO levels is similar to that shown in Table 1 for BP86.

Furthermore, we have also performed calculations by
using the local spin density approximation [54] (LSDA) for
Im-[Co™(corrin)]-CN* with the Gaussian program [31].
In that case, the energy gap is ~2.1 eV, and the overall
distribution of the single-particle spectral weight is simi-
lar to the DFT results shown in Table 1. As in the DFT
calculations, the LSDA approach does not capture the
Hubbard splitting of the t94-like orbitals, and the states
at the LUMO level do not arise from an impurity bound
state.

In addition to metalloproteins and metalloenzymes,
the DFT technique is widely applied for study-
ing transition-metal-containing organometallic molecules,
which are used in fields ranging from solar-cell applica-
tions to hydrogen storage. The differences discussed here
between the DFT and the HF+QMC approaches might
simply be due to the fact that the present HF+QMC ap-
proach is too simple to describe the electronic state of
CNCDL. If that is not the case, then these comparisons sug-
gest that caution is necessary in interpreting the results of
the DFT technique when used for studying organometallic
molecules containing transition metal atoms.

In addition to these, the DFT and HF+QMC results
differ on the nature of the electronic correlations. The
HF+QMC technique finds that antiferromagnetic correla-
tions exist between the Co e, magnetic moments and the
electronic spins localized at the CN axial ligand depend-
ing on the filling of the impurity bound states. However,
the magnetic correlations are not contained in the DFT
results, as it is well-known.

4.2 Comparison of the HF+QMC data
with the photoabsorption spectrum of CNCbl

The photoabsorption spectrum of CNCDbl is characterized
by several distinctive peaks [6]. The lowest-energy peak
in the spectrum occurs at ~2.25 eV and it is associated
with the so-called S; electronically excited state of CNCbl.
The largest peak, on the other hand, is located at ~3.4 eV.
There have been various DFT based studies [17,23-26] to
identify the origin of the peaks in the spectra of the Cbl
cofactors.

For a long time, the lowest-energy part of the pho-
toabsorption spectrum of Cbl had been associated with a
transition which is dominated by the 7 — 7* excitations
of the corrin ring [1], which represent electronic transitions
among the 2pr orbitals in the corrin ring. The reason for
this assignment is that the metal-free corrinoids also ex-
hibit a similar peak in the spectrum. The time-dependent
DFT calculations with the BP86 functionals on the trun-
cated molecule Im-[Co™(corrin)]-CN* have supported the
view that the S; state corresponds mainly to 7 — 7*
transitions in the corrin ring [24]. On the other hand, the
ultrafast transient absorption spectroscopy measurements
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on CNCbl [55,56] have suggested a picture for the S; tran-
sition in which charge transfer from the 7 orbitals of the
corrin ring to the Co atom takes place. In spite of these de-
velopments, today it is considered that much still remains
to be understood about the nature of the excited states
of Cbl cofactors. In particular, there is much interest to
clarify the origin of the lowest excited S; state.

In order to compare the photoabsorption spectrum
of CNCbl with the HF+QMC data on the electronic
structure of Im-[Co'!(corrin)]-CN*, we assume that the
rigid band approximation can be used for describing the
single-particle spectral weight distribution of the Haldane-
Anderson model. According to the HF+QMC results
shown in Figure 8 for U = 36 eV, when the chemi-
cal potential 4 ~ —8.5 eV, the truncated system Im-
[Co'(corrin)]-CN*T has 238 electrons. In this case, the
highest occupied states consist of the Co ty4-like states
which are the 3d,., 3d,2_,» and 3d,. NAO’s in our co-
ordinate system. Smaller amount of weight from the 2pm
orbitals of the corrin ring is also included. In the dom-
inant lowest-energy photoabsorption process, an electron
initially occupying a Co ta4-like state would be transferred
to the lowest excited state located at ~—5.5 eV. We have
seen in Section 3.3 that this state at ~—5.5 eV corresponds
to an impurity bound state and consists mainly of the 2prm
NAO’s at the CN axial ligand. The impurity bound state
contains lesser amounts of spectral weight from the 2prw
NAO’s of the corrin ring as well as from the Co (3dy,)
NAO. Hence, according to HF+QMC, the lowest excited
state in the absorption spectrum corresponds mainly to a
transition involving the transfer of an electron from the
Co tag4-like states to the impurity bound state, which con-
sists of states at the CN axial ligand, the corrin ring and
a Co e; NAO.

If the electron is excited to the second lowest energy
of Im-[Co™ (corrin)]-CN*, then the in-gap states located
at ~—4 eV would become occupied. This impurity bound
state consists mainly of the 2po and 2s NAQ’s of the CN
axial ligand. Smaller amounts of spectral weight from the
2po orbitals of the corrin ring and of the Co (3ds,2_,2)
NAO are also included. Hence, this electronic transition
would be dominated by the transfer of an electron from the
Co to4-like states to the second impurity bound state. The
transitions to the ~—5.5 eV and ~—4 eV impurity bound
states would be the main features of the photoabsorption
spectrum expected for Im-[Co'(corrin)]-CN* according
to the HF+QMC data for the Haldane-Anderson model.

In summary, according to the HF+QMC calculations
the lowest-energy excitations are dominated by electron
transfer from the Co ta4-like states to the CN axial lig-
and. Now, the HF+QMC approach might be too simple to
correctly deduce the excitation spectrum of vitamin Bis.
Nevertheless, the HF+QMC results presented here suggest
that it would be useful to look for signatures of a possible
3d — CN ligand electron transfer process in the excitation
spectrum of CNCbl. According to the HF+QMC calcula-
tions, such 3d — CN ligand transitions would be accompa-
nied by the vanishing of the antiferromagnetic correlations
between the Co e, and the CN ligand NAO’s along with
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the collapse of the magnetic moments at the CN ligand.
In addition, when an electron is removed from ¢y4-like or-
bitals, a magnetic moment would develop due to the lift-
ing of the double occupancy in these orbitals. Hence, the
3d —CN ligand electron transfer would be accompanied
by the magnetic moment transfer in the reverse direction
from the CN ligand to the Co t, orbitals. It would be
useful to probe experimentally these magnetic correlations
predicted by HF+QMC. In particular, it would be inter-
esting to see how the many-body effects discussed here
would influence the magnetic circular dichroism spectrum
of CNCbl [57].

4.3 DFT4+QMC approach

An alternative method for studying the electronic struc-
ture and correlations of organometallic molecules such
as Cbl is the DFT+QMC approach. There are various
differences between the HF+QMC and DFT+QMC ap-
proaches. For example, in HF+QMC the correlations of
the s and p orbitals in the molecules are treated at the
HF level rather than the more accurate DFT. In addi-
tion, in HF+QMC a bare unscreened Coulomb interaction
is used in the QMC part. The bare Coulomb repulsion
has a value of order 36 eV when evaluated in the ba-
sis of the atomic orbitals with the 6-31G Gaussian func-
tions. In the DFT4+QMC, the QMC part of the calcu-
lations are performed by using a renormalized Coulomb
interaction, which is usually of order 4 eV. This renor-
malization is due to screening by the s and p electrons
in the system, and the renormalized Coulomb interaction
can be obtained by the constrained local-density approx-
imation [34,58,59]. It is important to note that in both
approaches the choices used for the Coulomb interaction
and the double-counting ppc represent different levels of
approximations [41]. Hence, it would be useful to compare
them.

A transition-metal atom placed in an organic molecule,
as in Cbl, is one of the simplest strongly-interacting sys-
tems. With the availability of spectroscopic data, this is a
case where the combined electronic-structure and many-
body approaches can be tested. In this respect, a thorough
comparison of the HF+QMC and DFT4+QMC approaches
would be useful. Because of manuscript length considera-
tions, this will be presented elsewhere [60].

4.4 Inter-orbital Coulomb interaction and the Hund’s
coupling

In this paper, we have presented HF+QMC results, where
we used a constant U for the intra-orbital Coulomb inter-
action in the QMC part. It is well-known that the inter-
orbital Coulomb interaction is important in the cobal-
tates [28]. Here, the inter-orbital Coulomb interactions are
taken into account only at the Hartree-Fock level. A more
accurate approach would be to include the inter-orbital
Coulomb interaction in the QMC calculations. This can
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be done by replacing the last term in equation (1) by

; Z Z Uuu’nuanu/,fo"f' ; Z Z(Um/ _Jm/)nuanu’cn

vy o v#v' o
(22)

where U, and J,,» are the Coulomb matrix elements for
the direct and the Hund’s exchange couplings. For con-
sistency, it is necessary to evaluate the Coulomb matrix
elements in the NAO basis, since the one-electron param-
eters of the Anderson Hamiltonian are obtained by using
the NAO’s.

The interaction, equation (22), includes only density-
density terms, hence it can be implemented in the Hirsch-
Fye QMC algorithm. This improvement would still neglect
the pair-hopping and the spin-flip terms of the Hund’s
coupling, which have been shown to be important in
transition-metal oxides [61,62]. The double-counting cor-
rection pupc would also need to be re-evaluated after in-
cluding the inter-orbital Coulomb interactions [45-47].

We think that it is necessary to include the inter-
orbital Coulomb interaction before performing quantita-
tive comparisons with the experimental data on the Cbl
cofactors. The Hund’s coupling may influence the mag-
netic correlations and cause additional splitting of the en-
ergy levels. After these improvements, the spin state of Co
can be determined. In addition, the uniform magnetic sus-
ceptibility for electronic spins can be calculated to extract
the effective magnetic moment for the molecule.

5 Summary and conclusions

In summary, we have studied the electronic structure
and correlations of CNCDbl from the perspective of the
many-body physics. For this purpose, we have used the
framework of the multi-orbital single-impurity Haldane-
Anderson model of a transition-metal impurity placed
in a semiconductor host. First, we have constructed
an effective Haldane-Anderson model by using the HF
approximation. In particular, we determined the one-
electron parameters of the Anderson Hamiltonian from
the Fock matrix written in the basis of the natural atomic
orbitals by using HF. The double-counting of the Coulomb
interaction within HF+QMC was taken into account by a
chemical shift upc of the Co (3d,) levels. We used an or-
bital independent intra-orbital Coulomb interaction U in
the QMC calculations neglecting the inter-orbital terms.
We presented QMC results for various values U. However,
we concentrated on the case U = 36 eV, since this yields
values for the HOMO-LUMO gap and the total Co (3d)
electron number which are comparable to the experimen-
tal data.

The QMC data on this effective model showed how the
energy gap found in the HF approximation is reduced by
the generation of new in-gap states. The correlated na-
ture of the induced states is clearly seen. In particular,
states arising from the double-occupancy of the Co ta4 or-
bitals are induced near the gap edge above the HOMO
level from HF, where as impurity bound states are in-
duced below the LUMO level. The impurity bound states
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arise from the strong hybridization of the Co e, orbitals
with the host eigenstates and contain significant amount
of weight from the CN axial ligand and the corrin ring.
We have also seen that magnetic moments can develop
at the CN axial ligand and in the corrin ring, which are
antiferromagnetically correlated with the Co e, moments.
These disappear rapidly with electron filling of the impu-
rity bound states.

We have also presented a comparison of the HF+QMC
data with the DFT calculations on Im-[Co'(corrin)]-
CN*. While these two approaches yield similar values
for the HOMO-LUMO gap and the total Co (3d) occu-
pation number, the results on the distribution of the
single-particle spectral weights can be very different. In
particular, the Hubbard-type splitting of the Co (3d,)
states, the impurity bound states and the magnetic corre-
lations are not contained in the DFT results. We have also
presented the predictions of HF+QMC for the photoab-
sorption spectrum according to which the lowest-energy
photoabsorption excitations are dominated by electron
transfer from the Co ty4 orbitals to the impurity bound
states.

It will be interesting to perform similar calculations
for AdoCbl and MeCbl and compare their results with
the results presented here on CNCbl. In particular, it
would be useful to see whether it is possible to understand
the catalytic functioning of these Cbl cofactors by using
the HF+QMC calculations. It would also be useful to use
the same framework to study hemoglobin containing Fe.

It is worth noting that the Co-C bond in Cbl is the
first case of a metal-carbon bond to be found in biology.
All of the known reactions of the Cbl-dependent enzymes
involve the making and breaking of the Co-C bond [2].
In this respect, it is interesting that the impurity bound
state contains significant amount of spectral weight from
the CN axial ligand attached to Co. It would also be in-
teresting to see whether the impurity bound state plays
a role in the important Co-C bonding. If the making and
breaking of the Co-C bond somehow involves the mag-
netic correlations around the Co atom, then this could
be a way such that the occupancy of the impurity bound
state becomes important.

The present HF+QMC approach contains various ap-
proximations. For instance, the inter-orbital Coulomb in-
teraction is not treated by QMC, instead it is included
at the Hartree-Fock level. In addition, the bare Coulomb
repulsion U and the double-counting pupc are used more
as variables than as true ab initio parameters. The geo-
metrical parameters for the molecular structure are sim-
ple estimates since the actual atomic coordinates for
CNCbl are not known. In spite of these, the HF+QMC
yields reasonable values for the HOMO-LUMO gap and
the total Co (3d) occupation number, and interesting re-
sults for the photoabsorption spectrum. In particular, the
HF+QMC results emphasize the many-body effects such
as the Hubbard splitting of the Co (3d,) states and the
possible existence of impurity bound states and magnetic
correlations.

In conclusion, according to the HF+QMC results pre-
sented here, there is a possibility that an impurity bound
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state exists in the electronic spectrum of CNCbl. We think
that it is necessary to seek further experimental evidence
for this prediction of the HF+QMC calculations.
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