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Spin-spin correlations of magnetic adatoms on graphene
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We study the interaction between two magnetic adatom impurities in graphene using the Anderson model. The
two-impurity Anderson Hamiltonian is solved numerically by using the quantum Monte Carlo technique. We
find that the interimpurity spin susceptibility is strongly enhanced at low temperatures, significantly diverging
from the well-known Ruderman-Kittel-Kasuya-Yoshida result which decays as R−3.
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I. INTRODUCTION

Graphene [1–4], a two-dimensional honeycomb lattice of
carbon atoms, shows promise as a material for nanoelectronics
due to high electronic and thermal conductivity. Moreover,
graphene structures engineered at the nanoscale are shown to
give rise to unique magnetic properties due to the formation
of finite magnetic moments at the edges [5–14], which
could be important for nanoelectronic and spintronic device
applications. Another way of probing magnetism in graphene
is through the exchange interaction between impurity atoms
mediated by the host electrons, known as the Ruderman-
Kittel-Kasuya-Yoshida (RKKY) interaction [15–20].
Understanding the effective interaction between impurity
atoms in graphene is also important from a fundamental
physics point of view since the excitations on a honeycomb
lattice are massless Dirac fermions, giving rise to a behavior
different from semiconductor or metal host structures
[15–20].

The RKKY interaction in graphene exhibits unique features
that are different from other two-dimensional systems. In
Ref. [21], it was predicted that RKKY interactions should
decay as R−3, in contrast with R−2 behavior found in a two-
dimensional electron gas [22], where R is the distance between
the two impurities. This was later confirmed in Ref. [17], where
other important features of RKKY interactions in graphene
were clarified as well. In particular, a general proof regarding
the sign of the RKKY interaction in a half-filled bipartite lattice
was given: The interaction between moments sitting on the
same (opposite) sublattice(s) is ferromagnetic (antiferromag-
netic). We note that the biparticity of the graphene lattice is also
at the heart of Lieb’s theorem on magnetism [23], which gives
rise to edge magnetism in graphene nanostructures [12–14].
In Ref. [17], it was also shown that the RKKY interaction is
subject to an oscillatory term of the type 1 + cos(2�k · R)
(2kF oscillations), where �k is the reciprocal lattice vector
connecting two Dirac points in the Brillouin zone. All these
features were confirmed by others [18–20] using different
approximation schemes. It should be noted that impurities
do not have to sit on top of a particular atom, but can bond
with several neighboring atoms. In fact, the mechanical and
electronic properties of various adatoms on graphene were
previously investigated using ab initio methods [24–31]. For
transition metal adatoms, most calculations predict that the
plaquette configuration (where the impurity atom bonds with
the six carbon atoms of a hexagon in the honeycomb lattice) is
the most stable. However, generalized gradient approximation

(GGA) calculations [28] including Hubbard on-site interaction
parameter U show that, the on-top configuration may become
more stable for U > 4 eV. On the other hand, according to
RKKY analysis [17], the interaction between plaquette-type
impurities (where the impurity atom bonds with the six
carbon atoms of a hexagon in the honeycomb lattice) is much
weaker and decays rapidly as R−4. This is also consistent
with our quantum Monte Carlo (QMC) results (not shown).
Therefore, in the following we will focus on the interaction
between impurities with an on-top configuration. This situation
is particularly relevant to transition metal adatoms with
large U .

In this work, we use the Hirsch-Fye QMC method [32]
to calculate the magnetic susceptibilities of the two-impurity
Anderson model. One should note that, as opposed to the
RKKY model where the spins are taken to be classical,
the Anderson model can capture important effects of spin
fluctuations. Moreover, the interactions are mediated by the
Coulomb on-site term U , which is absent in the RKKY
model. It is therefore interesting to compare the results of
the two models. We find that, while the biparticity theorem of
Ref. [17] and the 2kF oscillation behavior also emerge from
the Anderson model, the long-range behavior of the effective
RKKY interaction is strongly enhanced, becoming several
orders of magnitude larger at longer distances.

II. MODEL AND METHOD

The two-impurity Anderson model for a graphene host is
given by

H =
∑
kασ

εkc
†
kασ ckασ + Ed

∑
iσ

d
†
iσ diσ

+
∑
kαiσ

(Vkαic
†
kασ diσ + H.c.) + U

∑
i

nid↑nid↓, (1)

where c
†
kασ creates a host electron with wave vector k and

spin σ in the valence α = v or conduction α = c band, d
†
iσ

creates an electron at the impurity site i, and nidσ = d
†
iσ diσ .

In addition, U is the on-site Coulomb repulsion and Ed is
the impurity energy level. The electronic spectrum of the
graphene host εk and the hybridization matrix elements Vkαi

are calculated analytically in terms of graphene structure
factor f (k) in the nearest neighbor approximation with
hopping parameter t . The impurity-carbon atom hybridization
parameter is denoted by V . The calculations are performed
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within the symmetric Anderson model where Ed = −U/2, as
a function of inverse temperature β = 1/T and the distance
between the two impurities R. Strictly speaking, transition
metal adatoms have five d orbitals contributing to the spin. In
our simplified model, the degeneracy of the orbitals is assumed
to be lifted so that only one of the orbitals couples strongly to
the itinerant host electrons.

The numerical results presented here were obtained using
the Hirsch-Fye quantum Monte Carlo technique which allows
us to compute the Matsubara single-particle Green’s functions
for impurity sites i and j ,

Gσ
ij (τ ) = −〈Tτdiσ (τ )d†

jσ (0)〉, (2)

where Tτ is the Matsubara time-ordering operator and diσ (τ ) =
eHτ diσ e−Hτ . In addition, we calculate the zero-frequency
interimpurity magnetic susceptibility using

χ12(ω = 0) =
∫ β

0
dτ

〈
Mz

1(τ )Mz
2(0)

〉
, (3)

where Mz
i = nid↑ − nid↓. The local magnetic moments of

impurity adatoms on graphene were studied in Ref. [33].
Here we concentrate on the impurity-impurity magnetic
correlations.

III. RESULTS

In Fig. 1, we consider the case where the two impurities
are located along the zigzag direction of the honeycomb
lattice, sitting on different [zigzag AB, Fig. 1(a)] and the
same [zigzag AA, Fig. 1(b)] sublattices. The static magnetic
susceptibilities χ12 given in Eq. (3) are calculated as a function
of the distance between the impurities R (in units of the second
nearest neighbor distance b) at different inverse temperatures
β expressed in units of t−1. We take V = t and U = 0.8t (see
Fig. 2 for larger values of U ). Here, the results are also
compared to the analytical RKKY results [19], denoted by
the dashed lines. For the AB configuration, the RKKY model
yields to an antiferromagnetic coupling between the two
impurities, as seen from the sign of χij , and Fermi oscillations
with minima at every (2 + 3n)th B atom along the zigzag
AB direction. For the AA configuration, the coupling is
ferromagnetic and the oscillations have maxima at every
(3 + 3n)th A atom. For both cases, as already mentioned,
the oscillations decay as R−3. All these behaviors agree well
with the Anderson model (QMC) results, especially at higher
temperatures. However, the results are very sensitive to the
temperature. As the temperature is lowered, significant devia-
tions from the RKKY results occur. The overall magnitude of
the static susceptibility increases by several orders, especially
at larger R values, the decay of RKKY becomes much slower,
and the Fermi oscillations become less prominent. Strikingly,
at β = 128t−1, which corresponds to T = 272 K for t = 3 eV,
there is no decay in the range of R studied here.

In Fig. 2, we investigate the effect of U on the static
susceptibility. The susceptibilities are calculated at β = 32t−1

and β = 64t−1 for the zigzag AB case [similar to Fig. 1(a)
but on a linear scale instead of logarithmic]. Calculations
are repeated for U = 0.8t , 1.4t , and 2t , corresponding to
2.4, 4.2, and 6 eV, respectively. Although the exact value
for U is not known for 3d transition metal adatoms in

FIG. 1. (Color online) The static magnetic susceptibility between
two magnetic adatom impurities along the zigzag direction as a
function of distance for (a) the AB configuration (impurities on
opposite sublattices, shown in the inset) and (b) the AA configuration
(impurities on the same sublattice, shown in the inset), obtained
by QMC calculations at different inverse temperatures β. The
dashed lines are the RKKY results from Ref. [19]. The magnetic
coupling obtained by the QMC shows the same ferromagnetic and
antiferromagnetic behavior, and the 2kF oscillations as in the RKKY
results. However, at low temperatures, the effective magnetic coupling
becomes much stronger and the QMC results diverge from the
RKKY’s R−3 decay.

graphene, its effective value is estimated to be in the range of
2–4 eV [27–30]. As the statistical fluctuations increase for
larger values of U in QMC calculations, the analysis is
restricted to four different values of R corresponding to first,
third, sixth, and ninth atoms (along the zigzag direction)
belonging to the maxima of the RKKY oscillations. Clearly,
the main effect of increasing U is to increase the susceptibility
for R/b < 3, i.e., at very short ranges. For R/b > 3, we do
not observe a significant change in χij (R) within our statistical
accuracy. The overall behavior thus becomes slightly closer in
shape to the R−3 decay (dashed curve), but there are still
several orders of magnitude of difference between the RKKY
and Anderson model results. Thus, the main conclusions of
Fig. 1 remain unchanged for the values of U considered here.

We now turn to the armchair configuration. In Fig. 3, the
results are presented for U = 0.8t at different values of β, for
the AB and AA configurations. Again, the antiferromagnetic
and ferromagnetic phases for the AB and AA configurations
are consistent with the RKKY model. Note that along the
armchair direction, the RKKY model does not exhibit Fermi
oscillations. This is also consistent with the QMC results at
higher temperatures (lower β) which show no clear structure
within our statistical accuracy. As the temperature is lowered,
similar to the zigzag case, the static susceptibility increases
by more than two orders of magnitude at larger distances
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FIG. 2. (Color online) The static magnetic susceptibility between
two magnetic adatom impurities along the zigzag direction as a
function of distance for the AB configuration obtained using the
QMC method, at different inverse temperatures β and different U .
The dashed lines show the R−3 decay predicted by the RKKY model.
Even at the highest U value, the QMC calculations yield a much
longer-ranged effective magnetic coupling between the adatoms.

FIG. 3. (Color online) The static magnetic susceptibility between
two magnetic adatom impurities along the armchair direction as a
function of distance for (a) the AB configuration (shown in the inset)
and (b) the AA configuration (shown in the inset), obtained by QMC
calculations at different inverse temperatures β. The dashed lines are
RKKY results from Ref. [19]. The magnetic coupling from QMC
shows the same ferromagnetic and antiferromagnetic behavior. At
low temperatures, the effective magnetic coupling becomes much
stronger and the QMC results diverge from the RKKY’s R−3 decay.
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FIG. 4. (Color online) The static magnetic susceptibility between
two magnetic adatom impurities along the zigzag for the AB

configuration obtained using the QMC method, at a different time
step �τ , (a) for β = 32t−1 and R/b ∼ 2.5 (b) as a function of R for
β = 64t−1. These results show that the finite time-step error is under
control.

of the order R/b ∼ 10, significantly deviating from the R−3

behavior.
We note that the long-range behavior of the impurity-

impurity correlations observed in our numerical results for
the Anderson model is consistent with the predictions of
Lieb’s theorem for the Hubbard model in bipartite systems.
According to Lieb’s theorem [23], if there is an imbalance
between the number of A and B sublattice atoms, a finite
magnetic moment (NA − NB)/2 arises at zero temperature.
In our case, each impurity breaks the symmetry between the
two sublattices locally. Thus, if the impurities are far from
each other, locally a finite magnetic moment must appear at
each impurity location. If the two impurities are on the same
sublattices, the magnetic moments must add, or otherwise
cancel each other out, giving rise to a strong ferromagnetic
or antiferromagnetic interimpurity correlation.

We now discuss the finite time-step error involved in
numerical calculations. In the QMC method, the partition
function is discretized using Z = Tr

∏L exp(−�τH ), where
�τ is the size of the time step, L is the number of Monte Carlo
time slices, and β = L�τ . Z defined above approaches the
exact partition function of the system in the limit of infinite L,
i.e., small �τ . In order to check the effect of using a finite time
step, Fig. 4(a) shows χij (R) for the third nearest AB neighbors
along the zigzag direction calculated for β = 64t−1 using
�τ = 2, 1, 0.5, and 0.25 in units of t−1. Actual calculations
were done for �τ = 1 in previous figures. The estimated
time-step error is within a few error bars. We also plotted
in Fig. 1(b) the results obtained for β = 64t−1 using �τ = 2
and 1, showing the finite time-step error is under control in our
calculations
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IV. CONCLUSION

In conclusion, we studied the interaction between two
magnetic adatom impurities in graphene within the Anderson
model by using the quantum Monte Carlo technique. Our
results yield to the same magnetic phases predicted by RKKY:
ferromagnetic for the AA (same sublattice) configuration and
antiferromagnetic for the AB (opposite sublattice) configu-
ration. Moreover, 2kF oscillations similar to those of RKKY
exist. However, the magnetic coupling between the impurities
becomes more than two orders of magnitude stronger than
what is predicted by the RKKY model, especially at lower
temperatures. In addition, the results significantly diverge from

the R−3 decay predicted by RKKY and the effective interaction
between the impurities become long ranged.
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