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Introduction

The fragrant and unique aroma of olive oils with nutri-
tional and health beneficial properties are the main rea-
sons for the increased popularity of olive oil in the world 
[1]. The organoleptic quality and stability of olive oil are 
mainly attributed to the unsaponifiable fraction of olive 
oil. This fraction includes minor constituents consisting of 
volatile compounds that vary with vegetal species, climatic 
conditions, extraction and refining procedures, and storage 
conditions [2]. The volatile compounds identified in olive 
oils include aldehydes, alcohols, esters, hydrocarbons, 
ketones, furans and other compounds. The high qual-
ity olive oils are the most desired and expensive grades. 
The control of these olive oils is significant for producers 
and consumers [3, 4]. These controls are associated with 
authenticity and quality issues and certifications are done 
according to geographical origins by protected designation 
of origin (PDO), protected geographic indication (PGI) 
and typical geographic indication (IGT) [5]. Turkey makes 
a great contribution to the olive oil economy in the world 
with respect to the appropriate geographical conditions of 
the country [6]. Especially, the main cultivars Ayvalık and 
Memecik are harvested from the north and south Aegean 
of Turkey, respectively [7]. Color is a significant prop-
erty for food products associated with other chemical and 
physical properties and its great influence in consumers’ 
preferences. Olive oil color is also an important attribute 
for consumers related with quality [8].

Electronic nose technology is based on detection of the 
volatile compounds present in the headspace of a food sample 
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[9]. The instrument enables classification of the food product 
by obtaining its aroma fingerprint [10]. Its advantages include 
a relatively small amount of sample preparation and the speed 
of analysis [11]. There have been some successful applications 
of electronic nose technology for the differentiation of olive 
oils regarding their geographical origins [12–14]. Chemomet-
ric methods have been widely carried out for discrimination 
among cultivars and geographical origins of olive oil in recent 
years [15–17]. Nevertheless, according to our knowledge, 
there is no detailed study in the literature that has proposed to 
investigate the effect of geographical origin on the aroma pro-
files and color of Turkish commercial olive oils by using easy, 
fast and non-destructive methods such as zNose™ and MVS 
in combination with different chemometric methods.

The major aim of this study was to evaluate the effect of 
aroma fingerprints and color of Turkish commercial EVOO 
samples obtained with zNose™ and MVS analyzed with che-
mometric methods on the classification of olive oils according 
to the geographical origins and crop years of olive oils. For 
this purpose, some of the basic chemometric methods such as 
principal component analysis (PCA), partial least squares-dis-
criminant analysis (PLS-DA) and hierarchical cluster analysis 
(HCA) were applied to electronic nose and color data.

Materials and Methods

Olive Oil Samples

Commercial extra virgin olive oils from different locations 
of the north and south Aegean regions of Turkey (Fig.  1) 
were obtained from Tariş Olive and Olive Oil Agricultural 
Sales Cooperatives Union and analyzed over two consecu-
tive crop years (2005–2006 and 2006–2007). They were 
categorized into two groups that included 21 and 25 olive 
oil samples (2005/06 stated as the crop year 1 and 2006/07 
stated as crop year 2). These commercial EVOO were 
obtained using the same process. Approximately 500–
1000 ml was obtained for each oil sample and stored in dark 
brown bottles at 8 °C until they were analyzed. The names 
and codes of these oil samples are given in Table  1. The 
olive oil samples of crop year 1 were denoted by a sample 
code and the number 1, the olive oil samples of crop year 2 
were denoted by the sample code and the number 2.

Electronic Nose Analysis

Analysis was performed by using an electronic nose 
(zNose™ 7100 vapor analysis system, Electronic Sensor 
Technology, CA, USA) to obtain the aroma fingerprints 
of commercial EVOO samples. The zNose™ consists of 
a 1-m DB-5 column and a surface acoustic wave (SAW) 
detector. The aroma fingerprint of the olive oil sample is 

composed of volatile compounds that were not identified 
by the electronic nose system.

The zNose™ used the Microsense software to interpret the 
results of the analysis. The frequency was read directly from the 
SAW detector that was shifted by the effect of the mass of each 
volatile compound. The frequency versus time plot was trans-
formed to the first derivative of frequency versus time graph by 
the software. In the derivative plot, each peak corresponded to 
a specific volatile compound having a retention time. The area 
under the peak correlated with the concentration of the vola-
tile compound and it was expressed in counts. Therefore, the 
zNose™ plot was constructed with the counts versus retention 
time. The counts of each peak were used in data analysis.

Ten milliliters of oil sample was transferred into a 40-ml 
septa-sealed vial and left overnight at room temperature prior to 
analysis. The vials were then placed into a water bath at 30 °C 
for 15 min. During this time, the oil samples were allowed to 
equilibrate with the headspace in the vial and then the sample’s 
vapor was pumped into the zNose™ with a side-ported sam-
pling needle through the septa. Before the sample analysis, the 
system was calibrated with n-alkane solution (C6–C14). After 
calibration, the samples were measured one at a time with the 
zNose™. For each oil sample, the average of six vials with four 
readings that corresponded to an average of 24 independent 
measurements was calculated to use in the data analysis.

Fig. 1   Commercial EVOO samples obtained from north and south 
Aegean regions
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Machine Vision System Analysis

Twenty five milliliters of oil samples was transferred 
into glass Petri dishes (60 ×  15  mm) and placed in the 
machine vision system (MVS) having two D65 fluores-
cent lamps at the top of the light box (ECS Inc., Gaines-
ville, FL, USA) and a CCD digital camera (Sony DFK 
21BF04, The Imaging Source Europe GmbH, Bremen, 
Germany). Two images of each oil sample were taken 
and five color features, lightness (L*), redness–green-
ness (a*), yellowness–blueness (b*), chroma, and hue, 
were extracted with the ColorExpert software (ECS 
Inc., Gainesville, FL, USA). L* values vary from 0 
(black) to 100 (white). Hue angle and chroma are derived 
from a* and b* values: the saturation index or chroma 
[C*  =  (a*2  +  b*2)0.5] is associated with brightness or 
vividness of a color, and the hue angle describes the 
sense of color [h° = tan−1 (b*/a*)].

Multivariate Statistical Analysis

Discrimination of olive oil samples based on their aroma 
profiles was performed by using chemometric methods 
such as PCA class model, PLS-DA and HCA. PCA class 
model and PLS-DA were applied to classify oil samples 
according to their geographical origin by using Soft Inde-
pendent Modeling of Class Analogy (SIMCA-P v.11.5) 
software (Umetrics, Umea, Sweden). Coomans’ plot is 
used to show the orthogonal distances of the samples to 
two selected class models [18]. PLS-DA was carried out to 
make an estimation of the classification model for all olive 
oil samples by analyzing the zNose data and color data in 
two crop years [19]. In PCA class and PLS-DA models, 
the data matrix X consisted of 46 observations (olive oil 
samples) and 21 variables [zNose data (16 Peaks), color 
data (five color coordinates)]. The data matrix was used 
according to the variable that was taken into account. 

Table 1   Locations, 
geographical regions, and 
sample codes of commercial 
EVOO samples

N north Aegean region, S south Aegean region, CY1 2005/2006 crop year, CY2 2006/2007 crop year

Location Geographical region Samples codes of CY1 Sample codes of CY2

Ezine N E1 E2

Ezine Gülpınar Organik N EZ1

Küçükkuyu N KK1 KK2

Altınoluk N AOL1 AOL2

Altınoluk-Sulubaskı N AS1

Edremit N ED1 ED2

Havran N H1 H2

Burhaniye N B1 B2

Gömeç N G1 G2

Ayvalık N A1 A2

Altınova N AO1 AO2

Zeytindağ N Z1 Z2

Akhisar S AK1

Menemen S M1

Tepeköy S T1 T2

Bayındır S BA1 BA2

Selçuk S S1 S2

Aydın S AY1 AY2

Ortaklar S O1 O2

Koçarlı S K1 K2

Milas S ML1 ML2

Ödemiş S OD2

Tire S T2

Kuşadası S KA2

Germencik S GE2

Köşk S KS2

Dalaman S DA2

Erbeyli S ER2

Çine S C2
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The pretreatment was not applied on data. The leave-one-
out cross validation was used for validation of models by 
SIMCA software.

HCA was used as an unsupervised pattern recognition 
technique to find the natural tendency of the olive oil sam-
ples to classify them according to different geographical 
origins using Statistica software (StatSoft Inc., Tulsa, OK, 
USA). The similarity matrix is calculated by using the dis-
tance between the two oils with the Manhattan distance 
[20]. The complete linkage method is used to cluster the 
olive oil samples and figured by a vertical hierarchical tree 
plot.

Results and Discussion

This study presents the potential of zNose™ and MVS for 
the classification of olive oil samples with respect to the 
crop year and geographical origin. The commercial olive 
oil samples used in this study are economically important 
olive oil samples extracted with the same system. There-
fore, the effect of crop year and geographical region on 
the aroma profiles and color of olive oils was investigated 
in a comparable way. The aroma fingerprints of olive oil 
samples and the color measurements were utilized to build 
classification models. All data were analyzed using PCA 

class model, PLS-DA and HCA methods and illustrated 
graphically.

In the PCA class model, the discrimination of olive oil 
samples was performed by analyzing the electronic nose 
data set with respect to crop years. The Coomans’ plot 
showing the clustering of CY1 olive oils against CY2 olive 
oils is shown in Fig. 2. This plot was constructed by plot-
ting the Mahalanobis distance between olive oils of dif-
ferent crop years. The olive oils of CY2 were grouped 
correctly in their own region showing variable aroma fin-
gerprints among the samples. However, some olive oil sam-
ples that belong to CY1 class model fell in the common 
plot area closer to the CY2 olive oils. This can be related 
to the similar aroma profiles of these olive oil samples ana-
lyzed with the electronic nose. The impact of crop years on 
the discrimination of different varieties of olive oil samples 
was shown by using mid-IR spectra and fatty acid profiles 
of olive oil samples and PCA method, previously [21].

The aroma profiles of olive oil samples belonging to two 
crop years were analyzed with PLS-DA to demonstrate 
the effect of the different geographical origins on the elec-
tronic nose analysis. Figure  3 demonstrates that the olive 
oil samples that belong to the north and south regions were 
classified correctly. However, AS1, H1, and  H2 olive oil 
samples that were obtained from the north region could not 
be differentiated from the olive oils obtained from south 

Fig. 2   Coomans’ plot for the classification of olive oils according to crop years using electronic nose data
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region which could depend on the similar aroma profiles of 
these olive oil samples. In a previous study, the effect of 
geographical origin, ripening degree and irrigation regime 
on the volatile profiles of olive oils obtained from Tuni-
sian and Sicilian cultivars was investigated [22]. Similarly 
to our findings, the results demonstrated that the volatile 
compounds obtained by using SPME-GC/MS and GC/
FID methods were significantly affected by agronomic 
conditions.

The effect of color on the discrimination of olive oil 
samples of different regions was analyzed by construct-
ing the score plot for the first two dimensions of the PLS-
DA model with CY2 olive oils. The plot shows that north 
and south classes of olive oils display a broad spread and 
could not be separated clearly based on their color values 
as illustrated in Fig. 4. Therefore, the electronic nose and 
color data were combined to visualize the effect of these 
two quality parameters on differentiation of olive oils. It 

Fig. 3   PLS-DA score plot for the classification of olive oils according to geographical origin using electronic nose data

Fig. 4   PLS-DA score plot for the classification of olive oils using color data
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was observed that color is not a strong discriminative fac-
tor on the classification of commercial olive oils based on 
their geographical origins. Otherwise, it can be used as an 
additional factor with the electronic nose data because the 
olive oil samples could be classified successfully by apply-
ing PLS-DA to both electronic nose and color data as given 
in Fig. 5 according to their geographical regions. In previ-
ous studies, the relationship between the volatile composi-
tion of olive oils and different factors such as fruit geno-
type, ripening, processing equipment, climate, soil type and 
geographical origin was reported [23, 24]. In one of these 
studies, the effect of cultivar, processing methods, anthrac-
nose attack and stone removal on the volatile profiles of the 
olive oil samples of different regions in Italy was demon-
strated by using the SPME-GC/MS method with PCA anal-
yses [25]. In another study, the influence of fruit variety 
and ripeness stage of the olive oil samples on the volatile 
composition of the oils were studied by using GC–MS and 
sensory analyses [26]. 

The electronic nose analysis of olive oils in two crop 
years were evaluated together by HCA and is shown in 
Fig. 6. The dendrogram based on HCA results could be sep-
arated into two groups as Erbeyli and all other oil samples, 
based on their aroma profiles. The second group consists 
of one block corresponding to the north region and three 
blocks corresponding to the south region of the Aegean 
area. North region olive oil samples, Altınoluk-sulubaskı 
and Havran, were found to be categorized with the south 
region olive oil samples. The dendrogram confirmed the 
results found with PLS-DA. PCA and HCA analyses were 
performed previously to classify olive oils based on some 
quality parameters such as acidity and peroxide values. 

Fig. 5   Score plot of PLS-DA for the classification of olive oils using color and electronic nose data

Fig. 6   Dendrogram showing the clustering of olive oil samples of 
crop years 1 and 2 based on electronic nose data

Fig. 7   Dendrogram showing the clustering of olive oil samples of 
crop year 2 based on color data
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Acidity is also the only difference between the edible and 
lampante olive oils. The discrimination between these olive 
oils was established successfully by measuring total lumi-
nescence and synchronous fluorescence spectra of olive 
oils combined with PCA and HCA methods obtained previ-
ously [27]. In our study, the dendrograms constructed with 
different olive oils exhibited good classification with olive 
oils of different origins.

The dendrogram given in Fig.  7 shows the clusters 
formed in consequence of HCA of color data of the olive 
oil samples obtained in crop year 2. Cluster analysis using 
Manhattan distance produced two main groups with one 
block of Kosk, Dal, Ode, Koç and another block of Erb, 
Çine, Kus that separate from other olive oil samples. Clear 
classification could not be obtained by this method as dem-
onstrated in PLS-DA analysis for using only color data. 
The responses obtained by electronic nose and the com-
bination of electronic nose and color data processing were 
quite similar, this being the reason why only the case of 
dendrogram of electronic nose data was not presented. The 
dendrogram based on HCA of electronic nose and color 
data obtained for crop year 2 are shown in Fig. 8. This fig-
ure indicates that EVOO samples could be separated into 
two groups based on their aroma and color profiles. Olive 
oils in the first group consist of the samples obtained from 
olives cultivated from south region of Western Turkey. 
However, the second group mostly includes the olive oils 
from the north region olive oils except Erb, Çine and Bay; 
those essentially belong to the south Aegean region. 

The differentiation of olive oils according to taste and 
aroma is significant for the consumer preferences as well as 
conserving genetic diversity. There have been a lot of suc-
cessful applications of electronic nose technology for the 
differentiation of olive oils on the basis of geographical ori-
gin. An electronic nose based on MOS sensors and an elec-
tronic tongue were used for the discrimination of olive oils 

from different geographical regions in Morocco in a study 
[28]. It was stated that PCA, cluster analysis (CA) and sup-
port vector machine (SVM) data analysis methods were 
applied to discriminate the olive oil samples. The results 
showed that a low level of abstraction data fusion devel-
oped in combination with PCA, CA and SVM enhanced 
the discrimination capability of olive oils of different geo-
graphical origins. An electronic nose with chemometric 
analysis has also been used to verify the geographical ori-
gin of EVOO by Casale et al. [29] and successful results 
were obtained in the classification of 46 oil samples from 
three different areas of Liguria by the application of lin-
ear discriminant analysis (LDA). Similar to our study, all 
these previous studies demonstrated the usefulness of an 
electronic noses based on different sensors combined with 
chemometric methods for the classification of olive oils of 
different origins.

Conclusion

The potential of zNose™ and MVS for the classification 
of olive oils from different geographical regions and crop 
years was evaluated in this study. The results demonstrated 
that Turkish commercial EVOO samples could be discrimi-
nated well based on the aroma profiles and color measure-
ments. The statistical analysis of the effect of geographical 
region on color revealed that the olive oils were not clearly 
differentiated based on their color individually. PCA class 
model, PLS-DA and HCA methods yielded successful clas-
sification patterns taking into consideration the differences 
in aroma and color profiles of olive oil samples. However, a 
more detailed study is needed to build classification models 
with a great number of data sets that would increase repro-
ducibility and repeatability.
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