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ABSTRACT 
 

DYNAMIC ANALYSIS OF BOLTED JOINTS UNDER AXIAL AND 
TRANSVERSE LOADS 

 

Throughout their lifetime, fasteners are exposed to a large number of repeated 

vibrations which cause self-loosening. This situation causes security problem for bolted 

joints. In this study, novel self-loosening formulations are derived for bolted joints. By 

using the solution of the differential equation of a tensioned cantilever beam under the 

lateral tip load and bending moment, transverse displacement distribution along the bolt 

axis due to the transverse excitation is obtained. Therefore, radial slip amplitudes of the 

all engaged threads are found by using transverse displacement distribution along the 

bolt axis. Finally, loosening of bolted joint due to progressive circumferential 

displacement is discussed. 

 

 

 

Keywords: Bolted joint, self-loosening 
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ÖZET 
 

EKSENEL VE YANAL YÜKLER ALTINDAKİ CIVATALI 
BAĞLANTILARIN DİNAMİK ANALİZİ 

 

Bağlantı elemanları kullanım ömürleri boyunca çok sayıda tekrarlı titreşime 

maruza kalırlar. Bu durum bağlantı elemanlarında kendi kendine gevşeme durumuna 

sebep olur. Bu çalışmada, cıvatalı bağlantıların kendi kendine gevşeme problemi için 

özgün bağıntılar türetilmiştir. Ucunda yanal kuvvet ve eğilme momenti olan çeki 

altındaki ankastere kirişin diferansiyel denkleminin çözümü ile yanal yerdeğiştirmeden 

dolayı cıvata eksenindeki yanal yerdeğiştirme dağılımı elde edilmiştir. Böylece, cıvata 

eksenindeki yanal yerdeğiştirme dağılımı kullanılarak birbirine geçmiş tüm vida 

dişlerindeki radyal kaymalar bulunmuştur. Son olarak, kademeli çevresel 

yerdeğiştirmeden dolayı cıvatalı bağlantının gevşemesi tartışılmıştır. 

 

 

Anahtar Kelimeler: Cıvatalı bağlantı, kendi kendine gevşeme 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1. Self-Loosening Problem 

 
 Bolted joints are used in all kinds of constructions to fasten structural members 

to each other. If the structure is under dynamic loads, generally, bolted joints are 

subjected to axial, transverse or both types of repeated loadings. The characteristics of 

the bolted joints and the repeated loads play a critical role on self-loosening. This is 

known as self-loosening problem. 

 In order to avoid that undesired situation, the reasons of self-loosening of bolted 

joints are identified by considering all possible physical characteristics. 

 

1.2. Literature Survey 

 
Regarding the thesis subject, the most critical literatures are presented below: 

Goodier and Sweeney (1945) derived the equations of external torques required 

to loosen a nut in both increasing and decreasing bolt loads, therefore their study is 

related with self loosening of threaded fasteners under axial loads. Their test apparatus 

is shown in Figure 1.1. 

 

 

 

 

 

 

 

 

Figure 1.1 Goodier and Sweeney test machine 
(Source: Bickford and Nassar, 1998) 
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Later Sauer et al (1950) also made experiments on the rotational loosening 

conditions based on the amplitude ratio defined as axial static load to axial dynamics 

load. 

 Junker (1969) demonstrated that loosening is very important when the joint is 

subjected to dynamic loads perpendicular to the thread axis. His test machine is shown 

in Figure 1.2. 

 

 

 

 

 

 

 

 

 

Figure 1.2 The Junker vibration test machine 
(Source: Bickford, 2008) 

 

 After introducing the important studies above, it is better to present the other 

past studies by classifying them depending on the methods such as analytical or finite 

element methods. 

 Sakai (1978) analyzed theoretically self rotation, critical slippage between the 

clamped parts and loosening angle for the bolted joints under transverse load. He 

verified his theoretical studies by his experimental results. 

 Sakai (1979) found theoretically and experimentally that tightening of bolts over 

their yield points has an advantage over the tightening of bolts below their yield point 

for fatigue life. 

 Harnchoowong (1989) studied the effects of various parameters on nut loosening 

under axial loading conditions. He concluded that loosening resistance for bolted joints 

can be increased by decreasing the helix angle and/or increasing friction between the 

joint parts, bolt length, nut wall thickness, and nut height. 

 Ramey and Jenkins (1995) reported prediction of bolt loosening of bolted joints 

under dynamic tensile and shear forces. In their report, theory for bolt/nut interactions 



 3

and vibrational loads on bolted joints are included. They used Taguchi methods to find 

the empirical equation for prediction of bolt loosening. 

Hess and Sudhirkashyap (1996) examined the dynamics of threaded components 

under axial harmonic vibration. Their model is shown in Figures 1.3 and 1.4, 

respectively. It can be seen from Figure 1.3 that the real system with thread angle β is 

unwrapped. {k, c}, {k2, c2}, and {k3, c3} are associated with thread interface, the 

dominant elastic mode of the screw, and the dominant elastic mode of the base, 

respectively. Also, m and m2 are the masses of the screw and the effective mass of the 

base, respectively. The model predicts the intuitive twisting with load and the counter-

intuitive twisting against load. 

 

 

 

 

 

 

 

 

Figure 1.3 Cap screw in base with tapped hole apparatus 
(Source: Hess and Sudhirkashyap, 1996) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 Dynamic model for axial loading 
(Source: Hess and Sudhirkashyap, 1996) 
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Hess and Sudhirkashyap (1997) modified their previous analyses of threaded 

fasteners under vibration as the system shown in Figure 1.5. It can be seen from 

comparison of Figure 1.5 with Figure 1.3 that clamped mass and spring between 

clamped mass and base are added to the system. Elastic, damping and frictional 

characteristics in contact regions are shown in the model shown in Figure 1.6. They 

concluded that the system parameters can be adjusted in order to have no twist, 

loosening or tightening. 

 

 

 

 

 

 

Figure 1.5 Single-bolt assembly apparatus 
(Source: Hess and Sudhirkashyap, 1997) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Dynamic model of single-bolt assembly 
(Source: Hess and Sudhirkashyap, 1997) 

 

Rashquinha and Hess (1997) extended the study of Hess and Sudhirkashyap 

(1997) to include the correct friction forces at the bolt and thread interfaces. Thus, they 

considered four cases: 
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 1. both threads and head stick, 

2. only threads stick, 

3. only bolt head slicks, 

4. both threads and head slip. 

Due to the cases given above, the problem is highly nonlinear. They obtained that when 

the preload or the coefficient of friction increases, resistance of the joint to vibration 

induced loosening increases. Also, increasing the mass of the clamped component 

causes loosening and tightening at lower forcing levels. 

Basava and Hess (1998) examined the effect of vibration level and initial pre-

load on clamping force in a single-bolt assembly model under axial vibration by using 

the former studies of Hess and his co-authors. They found that changes in clamping 

force are generally transient and a steady value is reached over time. 

Fernando (2005) utilized a bolt loosening mechanism similar to a mechanism of 

a vibratory conveyor transporting a particle. He presented effects of vibration excitation, 

thread and bearing frictions, thread pitch and thread flank angle on loosening. 

Yokoyama (2009) theoretically formulated an analytical model for the 

mechanics of bolted joints subjected to transverse load. The following five factors are 

addressed: 

1. bolt bending due to transverse force acting on the thread surface, 

2. bolt bending due to thread surface reaction moment, 

3. inclination of bolt head, 

4. thread surface slip, 

5. bearing surface slip. 

He confirmed his formulations by Finite Element Method (FEM) results. 

 Due to the geometrical complexity of the thread part of the bolted joints, 

researchers mostly used finite element model to see the loosening conditions, thus, the 

following studies are mainly based on finite element models of bolted joints. 

 Pai and Hess (2002) studied on failure of threaded fasteners due to vibrational 

shear loads by using a three-dimensional finite element model shown in Figure 1.7. 

They made use of finite element model to find the slippage and prediction of different 

loosening mechanisms. They showed that loosening can occur at relatively low shear 

loads due to the process of localized slip. 
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Figure 1.7. Joint model with typical finite element mesh 
(Source: Pai and Hess, 2002) 

 
Pai and Hess (2003) extended their past studies in order to see the influence of 

fastener placement on vibration-induced loosening by using the system shown in Figure 

1.8. When the beam bends, the bolted joint is loaded by shear forces. They modeled the 

system by finite elements then estimated the slip according to distance h. 

 

 

 

 

 

 

 

 

Figure 1.8. Test system to investigate the effect of fastener placement 
(Source: Pai and Hess, 2002) 

 

Jiang et al. (2003) investigated the early stage of self-loosening of bolted joints 

under transverse cyclic loading experimentally and numerically. They glued the nuts to 

bolts to test the benefit of this action. Their numerical model in ABAQUS® includes the 

plastic deformation near the roots of the engaged threads. They verified their finite 

element model experimentally. 

 Izumi et al. (2005) studied tightening and loosening processes of bolted joints by 

using the finite element model shown in Figure 1.9. They validated their model by 
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doing some experiments. They found that loosening is initiated when complete thread 

slip occurrs prior to head slip. 

 

 

 

 

 

 

 

 

 

Figure 1.9. Finite element model 
(Source: Izumi et al., 2005) 

 

Nishimura et al. (2007) investigated critical relative slippage for bolted joints 

and performed experiments for this purpose. The relative slippages of bolted joint parts 

are illustrated in Figure 1.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Sticking and slipping 
(Source: Nishimura et al., 2007) 

 

Zhang et al. (2007) simulated self-loosening of bolted joints by using a three-

dimensional finite element model. They used ABAQUS® to model the mechanical 

surface interactions. They presented preload vs transverse displacements in a table. 
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Also, they presented simulations and experimental results for clamping force vs. 

number of cycles. Moreover, nut rotation vs. number of cycles is plotted for various 

transverse displacements. In addition to these, they simplified the two mating surfaces 

of the engaged threads to two inclined blocks representing bolt and nut. 

 Izumi et al. (2009) modeled double nut and spring washer usage in bolted joints 

in ANSYS® 10.0 as shown in Figure 1.11. They found that double nut is an effective 

method to inhibit self-loosening but spring washer has no positive effect to stop 

loosening. 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. FEM model of double nut and spring washer 
(Source: Izumi et al., 2009) 

 

 Hou and Liao (2014) studied the effect of increment step length, initial clamping 

force, amplitude of the shear load, thread tolerance, friction coefficients on the 

loosening process by FEM. They concluded that if the magnitude of dynamic load 

increases, the loosening will increase in the same way. 

 

1.3. Scope of the Study 

 
Considering the literature survey presented in the former section, it is observed 

that self-loosening problems of bolted joints are generally related with fluctuating 

external load, pre-load on the bolt and friction conditions of bolted joints. Therefore, the 

available formulations existing in the literature are very complex to understand and 

have various assumptions for self-loosening mechanisms. Also, they are not practical to 

use and apply easily. 
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In this thesis, by using the simple self-loosening mechanism rules and 

fundamental equations from mechanics of materials, new self-loosening formulations 

are derived for bolted joints. 
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CHAPTER 2 

 

FUNDAMENTAL CONCEPTS 

 
2.1. Definitions on Bolted Joints 

 
Helical thread with single thread–right hand is illustrated in Figure 2.1 (left). 

Pitch p, lead L, and lead angle λ are shown in Figure 2.1. The relationship between lead 

and pitch is given by npL = , where n is the number of threads. It can be seen from 

Figure 2.1 that the left one is single thread–right hand, while the right one is double 

thread–left hand. 

 

 

 

 

 

 

 

Figure 2.1. Helical thread of pitch p, lead L, and lead angle λ 
(Source: Juvinall, 2011) 

 

Unified and ISO thread geometry is shown in Figure 2.2. The major, minor/root 

and pitch diameters are denoted by d, dr, and dp, respectively. Also, h is the depth of 

thread and b is the thread thickness at the root. Half-thread angle is 30º. 

 

 

 

 

 

 

 

Figure 2.2. Unified and ISO thread geometry 
(Source: Ugural, 2015) 
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Another example for thread form is square thread that is shown in Figure 2.3. 

Major diameter d, root diameter dr and pitch diameter dp are introduced in Figure 2.3. 

 

 

 

 

 

 

 

Figure 2.3. Square thread 
(Source: Juvinall, 2011) 

 

The important lengths of bolted joint are shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. A simple bolted joint 
 

It can be seen from Figure 2.4 that Lb, Ls, Lt, Lup, Llp and Lc represent the length 

of bolt, shank of bolt, free thread length of bolt, length of upper plate, length of lower 

plate and the clamp length, respectively. Also, m is used to show the working thread 

length between nut and bolt. 

 Stiffness properties of the components shown in Figure 2.4 play a critical role. 

The most critical one is bolt stiffness kb. It can be found by 

 

bt

t

bs

s

b EA
L

EA
L

k
+=

1      (2.1) 
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where As, At, and Eb are cross-sectional area of shank of bolt, cross-sectional area of 

threaded part of bolt, and Young modulus of bolt material. Another stiffness property of 

the bolted joint is due to clamped materials. Referring to Figure 2.5, the effective cross- 

sectional area of the clamped parts, Ap, can be found as (Ugural, 2015) 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ +

= 2
2

21

24 hp dddA π     (2.2) 

 

where dd 5.11 =  and °+= 30tan12 cLdd . Therefore, stiffness of the clamped parts can 

be found by using the following simple approach 

 

cppp LEAk /=      (2.3) 

 

where, Ep is the Young modulus of the clamped part materials. On the other hand, for 

standard hexagon-headed bolts, stiffness of the clamped parts kp is found by using the 

following expression (Ugural, 2015) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
dL
dLdEk

c

c
pp 5.258.0

5.058.05ln/29.0 π    (2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Conical effective clamped volume 
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2.2. Mechanics of Bolted Joints 

 
A square-threaded bolt-nut with single thread is loaded by the axial compressive 

force P as shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Axially loaded bolt-nut joint 
(Source: Budynas and Nisbett, 2011) 

 

 If one revolution of helix is unwrapped, the inclined plane shown in Figure 2.7 is 

obtained. Nut is represented by a block on inclined plane in the figures. The lead angle λ 

plays a critical role in the equilibrium condition for the nut under the axial load. Two 

possible cases: lifting and lowering the axial load are considered to draw the free-body 

diagrams shown in Figure 2.7. 

 By using the equilibrium conditions, several equations available in machine 

elements textbook (Norton, 2006) can be derived by using Figure 2.7. 

 

 

 

 

 

 

 

Figure 2.7. Force diagrams for lifting and lowering the load. 
(Source: Norton, 2006) 
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 The inclination angle of the plane, λ, in Figure 2.7 can be found as 

 

pdL πλ /tan =      (2.5) 

 

 For the load lifting case shown in left side of the Figure 2.7, the following 

equations can be found from the equilibrium equations, 

 

)sin(cos λµλ −
=

PN      (2.6) 

 

)sin(cos
)sincos(

λµλ
λλµ

−
+

= PF     (2.7) 

 

where µ is the friction coefficient on the contact surface. The screw torque required to 

lift the axial load P is expressed as 

 

)2/( pu dFT =       (2.8) 

 

or by using Equation (2.7) in Equation (2.8) 

 

)sin(cos
)sincos(

2 λµλ
λλµ

−
+

= p
u

Pd
T     (2.9) 

 

For the case of lowering the load shown in the right side of Figure 2.7, the screw 

torque required to lower the axial load P is found as 

 

)sin(cos
)sincos(

2 λµλ
λλµ

+
−

= p
d

Pd
T     (2.10) 

 

Self-locking condition can be found by considering the lower limit of the 

lowering torque which is 0≥dT . Therefore, it the following relation can be written: 

 

λµ tan≥       (2.11) 
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Motosh (1976) proposed an equation called torque T-tension P formula given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= nn

tt rrpPT µ
β

µ
π cos2

    (2.12) 

 

where p, µt, µb, rt and rn are pitch, friction coefficient between nut and bolt threads, 

friction coefficient under head of the bolt, effective thread contact radius between nut 

and bolt, and bearing radius of bolt, respectively. β is the half-thread angle. In Equation 

(2.12), the first, second and third terms are due to bolt stretch component, frictional 

restraint between nut and bolt threads, and frictional restraint between the face of the 

nut and the washer or joint, respectively. 

When applying input torque to the bolted joint, there are three reaction 

mechanisms. Approximately, torque input is consumed by nut friction torque or under 

head of the bolt friction torque, thread friction torque and part stretching torque as %50, 

%40, and %10, respectively (Bickford, 2015). 

In order to find the internal forces of bolt and clamped material under the 

external tensional force along the bolt axis, the bolted joint shown in Figure 2.8 is 

considered. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. A bolted connection under axial force P 
 

 If Fb and Fp are used to represent the bolt and plate forces along the bolt axis due 

to external load P, respectively, force equilibrium along the bolt axis gives 
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pb FFP +=       (2.13) 

 

Displacements of bolt and plate are written by using their stiffness properties as follows 

 

bbb kF /=δ       (2.14) 

 

ppp kF /=δ       (2.15) 

 

 On the other hand, compatibility condition requires the same displacement, i.e. 

 

pb δδ =       (2.16) 

 

By using Equations (2.13) and (2.16) along with Equations (2.14) and (2.15), the bolt 

and plate forces along the bolt axis due to external load P can be found in the following 

forms: 

 

CPFb =       (2.17) 

 

where C is known as joint stiffness factor and expressed as 

 

pb

b

kk
kC
+

=       (2.18) 

 

and 

 

PCFp )1( −=       (2.19) 

 

If the bolt in Figure 2.8 has a pre-tension force Fi, Equation (2.17) and (2.19) become 

 

ib FCPF +=       (2.20) 
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ip FPCF −−= )1(      (2.21) 

 

Graphical representation of Equations (2.20) and (2.21) are shown in Figure 2.9. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. A bolted connection under axial force P 
(Source: Ugural, 2015) 

 

 On the other hand, elastic deformations of bolt and clamped material due to the 

external force applied to bolted joint as shown in Figure 2.8 are needed. Assuming kp > 

kb and using Equations (2.14) and (2.15), the graph shown in Figure 2.10 can be plotted. 

 

 

 

 

 

 

 

 

 

Figure 2.10. Displacements of bolt and clamped material due to pre-load Fi 
(Source: Ugural, 2015) 

 

 Force distribution in threads of bolt-nut joints are critical concepts for 

determination of proper dimensions of the components. To illustrate this issue, Figure 

2.8 is modified to show the bolt-nut threads in the region of nut, thus Figure 2.11 is 

obtained. 

Fb = P F 

Load P 

Fb = Fi + CP

Fp = Fi - (1 - C)P 

Fi 
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Figure 2.11. A bolted joint with local section under axial force P 
 

 Numerous studies are available for load distribution on bolt-nut threads. Kenny 

and Patterson (1989) presented a review on load and stress distribution in the threads of 

fasteners. They reported that the shape of the thread load distribution is generally 

accepted to be parabolic. They also, presented several studies based on analytical, 

experimental (for example by photoelastic material), and finite element methods. 

However, the most practical study is given by Trebuna et al. (2013). Their plot on this 

topic is presented in Figure 2.12. It can be seen from Figure 2.12 that load distribution 

on bolt-nut threads is in parabolic form. Moreover, first and second effective threads are 

loaded about 55% of the total load. 

 

 

 

 

 

 

 

 

Figure 2.12. Force distribution in thread of nut 
(Source: Trebuna et al., 2013) 
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 Neglecting the nonlinear variation of load distribution on bolt-nut threads 

presented above, the reaction moment Mn acting on the thread in the bolted joint shown 

in Figure 2.13 is approximately derived by Yamamoto and Kasei (1977) as 

 

β
µ

2cos4
is

n
FmM =      (2.22) 

 

where m is the nut height and µs is the friction coefficient of the thread surface. 

 

 

 

 

 

 

 

 

Figure 2.13. A nut under bending moment Mn 
 

2.3. Loosening Mechanisms 

 
 Goodier and Sweeney (1945) investigated the loosening mechanism of a bolted 

joint under axial load. In this type of loading, the bolt is in tension and the nut is in 

compression. When a vibratory load is applied, the tension of bolt increases and 

decreases successively. During dynamic loading, the bolt tends to contract radially and 

on the other hand, nut tends to expand radially due to the Poisson effect. Therefore, the 

repeated actions cause the reduction of friction forces between bolt and nut contact 

areas. 

Self loosening mechanism under transverse vibration effects is tested and 

discussed by Junker (1969, 1972). His theory is based on the effects of friction on two 

contacting solid bodies. He stated that “as soon as the friction force between two solid 

bodies is overcome by an external force working in one direction, an additional 

movement in any other direction can be caused by the action of forces that can be 

essentially smaller than the friction force.” He proved his theory by a test involving a 

solid body on an inclined surface as shown in Figure 2.14. When the force is applied in 
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s direction to the block resting on inclined plane, it moves not only in the direction of 

force but also downward direction although there is no external force in downward 

direction. 

 

 

 

 

 

 

 

 

Figure 2.14. Junker’s self-loosening test 
(Source: Junker, 1969, 1972) 

 

 Zadoks and Yu (1997) discussed this subject considering the block with a mass 

m, shown in Figure 2.15, having a motion in direction 1 due to the force infinitesimally 

larger than the value of the frictional force. Next, a force in direction 2 is applied to the 

block, so the block moves with a2 = F2/m in direction 2 addition to the direction 1, 

namely, it moves in direction 3. It should be stated that the force of friction is zero in 

the perpendicular direction to the direction of motion. Now, direction 4 is free from 

frictional force. This means that, if a force in direction 4 is applied, the block 

additionally accelerates in direction 4 with a4 = F4/m. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. A sliding block on a plane 
(Source: Zadoks and Yu, 1997) 
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Junker (1969) proposed the most well-known theory on self-loosening. The 

theory is confirmed by experimental studies by using “Junker Test Machine”. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: Self-Loosening process 
(Source: Junker, 1969)  

 
According to the theory, self-loosening in bolted joints occurs in four stages as 

shown in Figure 2.16: 

A: Dynamic loads cause movement of threads and beginning of the separation 

between threads, 

B: If the dynamic loads continue, the bolt will bend in reverse direction, 

C: If loads still persist to proceed, nut moves in the reverse direction but 

loosening does not occur yet, 

D: Last stage of preload loss and separation of threads, the process repeats over 

and over again until bolted joint is loosened. 

Junker (1969) explains reasons to cause self-loosening assuming that there is no 

locking material and prevailing torque presence: 

• Preload in the bolt causes to attempt nut’s rotation and this situation causes 

self-loosening. 

• If dynamic loads are severe for bolted joints, thread mechanisms between the 

nut and the bolt and under head of the bolt begins to slip. 

• If critical slip value is reached in the bolted joint, nut commence to rotate in 

the reverse direction of tightening. 
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• There is no self-loosening until friction mechanisms ceased between the nut 

and the bolt. 

• The energy missing during each cycle also depends on the magnitude of the 

net ‘‘off-torque’’ on the nut during critical slip. 

• The loosening will increase in each cycle before slip ends. 

Ramey and Jenkins (1995) reported the following primary parameters for self-

loosening mechanism: 

1. Bolt size (diameter) 

2. Lubrication on bolt 

3. Hole tolerance 

4. Initial preload 

5. Locking device 

6. Grip length 

7. Thread pitch 

8. Lubrication between mating materials 

9. Class of fit 

10. Joint configuration 

11. Mass of configuration 

Moreover, they pointed out that i) vibration direction and ii) magnitude of vibration also 

effect loosening. 

 Loosening sequences has two steps: Initially, a fastener subjected to excitation 

cycles loses the preload slowly. After reduction of sufficient preload, the nut loses 

rapidly as shown in Figure 2.17. 

 

 

 

 

 

 

 

 

Figure 2.17: Loosening sequences 
(Source: Junker, 1969)  
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2.4. Axially Loaded Bolted Joints 
 
 Let us consider a turnbuckle shown in Figure 2.18. The bolted joints in this 

system are loaded dynamically only in axial direction due to the usage of it. 

 

 

 

 

Figure 2.18. A turnbuckle 
 

2.5. Transversely Loaded Bolted Joints 

 
 Dynamic loading of bolted joints in transverse direction is possible in two 

different fashions. The bolted joint shown in Figure 2.19 illustrates the direct shear 

loading. On the other hand, Figure 2.20 illustrates the direct shear loading. 

 

 

 

 

 

 

 

 

Figure 2.19. Direct shear loading 
(Source: Pai and Hess, 2002) 

 

 

 

 

 

Figure 2.20. Bending induced shear loading 
(Source: Pai and Hess, 2002) 
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2.6. Axially and Transversely Loaded Bolted Joints 
 
 There are numerous examples for dynamic loading of bolted joints under 

dynamic loading in both axial and transverse directions. The first example is bolted 

pressure vessel flange shown in Figure 2.21. In this example, bolts are under axial load 

under direct effect of inner pressure. Additionally, flange deflects in outward direction 

due to the inner pressure and then contracts in radial direction. Therefore, bolts undergo 

shear loadings. If the pressure is fluctuating, bolted joints are loaded dynamically. 

 

 

 

 

 

 

 

 

Figure 2.21. Bolted pressure vessel flange 
 

 Second example is beam to beam bolted connection shown in Figure 2.22. In 

this example, bolts on wide beam are subjected to shear and axial loadings due to the 

load acting on the narrow beam vertically. 

 

 

 

 

 

 

 

 

 

Figure 2.22. Beam to beam bolted connection 
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 Last example is bolted connections in suspension system shown in Figure 2.23. 

Here, bolts are subjected to dynamic shear and axial loadings due to motion of the 

vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.23. Bolt joints in suspension system 

(Source: Genta and Morello, 2009) 
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CHAPTER 3 

 

A NEW MODEL FOR SELF-LOOSENING 

 
3.1. Introduction 
 

 Definitions and mechanics of bolted joints are presented in Chapter 2. In the 

context of mechanics of bolted joints, torque-axial load relationships, torque-tension 

equation, stiffness of bolted joint, load distribution on bolted joint, deformations of 

bolted joints, load distribution on bolt-nut threads, and finally moment acting on bolt-

nut threads are given. Using the Junker theory, loosening mechanisms and sequences 

are explained by illustrations. Then, practical applications of axially, transversely, and 

axially-transversely loaded bolted joints are given. 

In this chapter, the study on self-loosening mechanism by using finite element 

method and experiments presented by Zhang et al. (2007) are considered. The aim in 

this chapter is to reproduce their results with an analytical model, which is much 

simpler compared to the finite element model.  Based on the geometrical model and the 

transverse excitation of the upper plate detailed by Zhang et al. (2007), the following 

analyses are studied analytically: 

1. transverse displacement distribution along the bolt, 

2. radial slip of thread regions of bolt, 

3. nut rotation, 

4. reduction of preload. 

 

3.2. Geometrical Model of Bolted Joint and its Properties 

 
In order to analyze and discuss the bolt-nut interaction, geometrical model used 

by Zhang et al. (2007) is redrawn and shown in Figure 3.1. All the geometrical and 

numerical data presented in this section are taken from Zhang et al. (2007). Top plate 

and upper cast iron plate are fixed to each other. Also, fixed plate is glued to lower cast 

iron plate. Therefore, just cast iron plate contact surfaces can move with respect to each 

other during the transverse excitation of the joint of bolt-nut. 
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Critical dimensions in this type of analysis are due to the bolt geometry, length 

of all clamped materials, length of the load cell, and the hole diameter of the plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Bolted joint 
(Source: Zhang et al., 2007) 

 

As a case study, the ISO standard for M12x1.75 metric screw thread and nut 

with tolerance 6H/6g are used for the bolted joint. Hole diameter of the plates and load 

cell is 12.7 mm. The length of the load cell is 15 mm. The length of fixed plate with cast 

iron plate is 13 mm. Also, top plate with cast iron plate is 13 mm. Therefore effective 

clamp length is 41 mm. The elastic modulus for steels and cast iron are 206.8 GPa and 

103.4 GPa, respectively. Poisson’s ratio for both of them is taken as 0.28. 

The coefficient of friction between the threads of the bolt and the nut is 0.09 and 

the nut-bearing friction coefficient is 0.12. The pre-load of the bolted joint is taken as 25 

kN. The amplitude of transverse displacement is chosen as 0.45 mm. 
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3.3. Analytical Model 

 
Figure 3.1 is modified to show the deformed configuration under transverse 

displacement δ. For this purpose, top plate with upper cast iron plate, the bolt and the 

nut is moved in transverse direction while the others are fixed as shown in Figure 3.2. 

 The following assumptions are made: 

1. The slope of the deformed axis of the bolt head is not zero. 

2. The nut does not have a relative displacement with respect to the upper plate. 

3. The slope of the deformed axis of the bolt at bolt-nut region is limited due to 

the thread tolerances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Bolted joint under transverse displacement of top plate 
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Transverse displacement distribution along the bolt axis v(x) due to the 

excitation of the top plate (δ) can be found by using the differential equation given by 

Oden and Ripperger (1981) as 

 

)(
)(

)(
)(

)(
2

2

xEI
xM

xv
xEI

N
x

xv l=−
∂

∂     (3.1) 

 

where EI(x) is bending stiffness of the bolt, N is axial tension force and Ml(x) is bending 

moment except the effect of axial force N at the distance x from the bolt head. For the 

cantilever beam of length L and loaded at the free end by transverse load P, tension load 

N, and bending moment Mn, internal bending moment is Ml(x) = Mn + P (x – L). For this 

beam under tension, particular solution of Equation (3.1) can be found as 

 

N
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P −−= )()(      (3.2) 

 

On the other hand, complementary solution can also be found as 

 

)sinh()cosh()( kxBkxAxvc +=     (3.3) 

 

where k is defined by 

 

)(xEI
Nk =        (3.4) 

 

Thus, the general solution v(x) is 

 

)()()( xvxvxv pc +=       (3.5) 

 

or 
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where A and B are constants depending on boundary conditions: v(0) = 0 and v’(Lc) = 

θc. They are found as follows: 

 

N
PLMA n −=        (3.7) 
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θ     (3.8) 

 

After subtituting A and B into Equation (3.6), it yields 

 

N
MxL

N
P

kx
kN
Pkx

N
PLMxv

n

n

−−+

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −

=

)(

)sinh()cosh()(
  (3.9) 

 

 Radial slip of thread regions of the bolt can be obtained by using Equation (3.9) 

and the slope limitation of the deformed axis of the bolt at bolt-nut region due to the 

thread tolerances. 

 Analytical model of the microslip mechanism provided by Zhang et al. (2007) is 

shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Analytical model for microslip mechanism 
(Source: Zhang et al., 2007) 
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Microslip mechanism is explained as follows: Axial force F in bolt is resolved 

into two components as F·sinλ which is parallel to inclined surface and F·cosλ that is 

perpendicular to the inclined surface. λ is the inclination angle of the bolt-nut contact 

surface. Therefore, the friction force due to friction coefficient µ against to the action 

perpendicular to the inclined surface is µ·F·cosλ. Under the forces shown in bolt-nut 

contact surface, bolt moves in the resulting force shown by the dotted line. The angle θ 

is calculated as follows: 

 

µ
λ

λµ
λθ tan

cos
sintan ==

F
F      (3.10) 

 

In similar fashion, when the displacement s is applied in the direction 

perpendicular to the ramp, the downward displacement q should be 

 

tantan= ⋅ =q s s λθ
µ

      (3.11) 

 

 In order to imagine the radial and circumferential displacements in bolt-nut joint, 

Figure 3.4 can be considered. Comparing Figure 3.4 with Figure 3.3, it is seen that s is 

radial slip and q is helical displacement (Figure 3.5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Bolt-nut interaction 
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 Unwrapped bolt-nut contact surface for one pitch (p) is shown in Figure 3.5 

 

 

 

 

 

 

 

Figure 3.5. Unwrapped bolt-nut contact surface 
 

If helical displacement q due to radial slip s is found, corresponding angle of 

rotation of bolt ∆θ and relaxation ∆l are calculated by using Figure 3.5 as 

 

22 )(

2

dp

q

π

πθ
+

=∆       (3.12) 

 

and 

 

22 )( dp

qpl
π+

=∆       (3.13) 

 

Equation (3.12) can be reduced to approximate form by neglecting p, comparing with 

the πd, as 

 

d
q2

≅∆θ        (3.14) 

 

 Equation (3.13) gives the amount of axial loosening which reduces the clamping 

force due to the following equation 

 

L
lAEF ∆

=∆        (3.15) 

 

where L is the clamped length of the bolt. 
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CHAPTER 4 

 

NUMERICAL STUDIES ON THE NEW MODEL 

 
4.1. Numerical Results and Comparisons 

 
Transverse displacement distribution along the bolt axis v(x) due to the 

excitation of top plate δ = 0.45 mm is found by using analytical formulation given in 

Chapter 3 and the finite element model developed in ANSYS by using APDL (ANSYS 

Parametric Design Language). The results are shown in Figure 4.1. 

 Transverse displacements of the bolt part within the nut, namely engaged 

threads, are given in Table 4.1. Also, assuming the transverse displacement of the 

coordinate of the bolt axis at the upper surface of the nut is 0.45 mm, which is the 

transverse excitation δ, the possible radial slips are calculated and given in Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Transverse displacement of bolt axis 
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Table 4.1. Displacements of the bolt threads within the nut 

 

Displacement (mm) Radial slip (mm) Thread number 
from the bearing 
surface Analytical ANSYS Analytical ANSYS 

First thread  0.41243 0.41426 0.03757 0.03574 

Second thread 0.42120 0.42302 0.02880 0.02698 

Third thread 0.43009 0.43188 0.01991 0.01812 

Fourth thread 0.43919 0.44090 0.01081 0.00910 

 

 Radial slip amplitudes of the all engaged threads given by Zhang et al. (2007) 

are illustrated in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Radial slips of all engaged threads 
(Source: Zhang et al., 2007) 

 

 Comparison of radial slip in Table 4.1 with the results of Zhang et al. (2007) 

given in Figure 4.2 gives the following conclusions: 

• Radial slips in first and second threads are in excellent agreements, 

• Radial slips in third thread are close to each others, 

• Radial slips in fourth thread are not close to each others. 



 35

 It is known that for the bolted joint configuration considered here, self loosening 

is mainly based on the radial slips in first and second threads. Therefore, the presented 

results and conclusion can be accepted positive. 

 As presented in Chapter 3; nut rotation, reduction of the clamping force, and 

progressive nut rotation etc due to transverse excitation are based on the radial slip in 

the first engaged thread. Therefore, the following results taken from Zhang et al. (2007) 

are obtained by using the formulation given in Chapter 3. 

 Considering friction coefficient in threads µ = 0.09, lead angle λ = 2.66º and 

radial slip s = 0.03757 mm in Equation in (3.11), circumferential displacement per step 

is 

 

01939.0
09.0

66.2tan03757.0tan
===

o

µ
λsq  mm   (4.1) 

 

Since a loading cycle has four steps, 4q = 4·0.01939 = 0.07756 mm is the 

circumferential displacement per cycle. Figure 4.3 shows gradual circumferential 

displacement due to the periodic transverse displacements with amplitude δ = 0.45 mm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Progressive circumferential displacement due to transverse displacements 

 

 Nut rotation by using circumferential displacement is calculated approximately 

by Equation (3.14). For example, nut rotations per step and per cycle are calculated 

below, respectively. 
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12
01939.022 ×

=≅∆
d
qθ      (4.2.a) 

0032.0≅∆θ rad/step = 0.1833 deg/step   (4.2.b) 

 

and 

 

12
01939.02424 ×

=≅∆
d
qθ      (4.3.a) 

0128.0≅∆θ rad/cycle = 0.7334 deg/cycle   (4.3.b) 

 

 Figure 4.4 shows gradual reduction of clamping force due to the progressive nut 

rotation. It can be seen from Figure 4.4 that the present results in Equation (4.3.b) are 

close the results in Figure 4.4. Also, by using Equation (3.15), percentage reduction of 

the clamping force P/Po % can be found by considering Po = 25 kN. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Reduction of clamping force due to the nut rotation 
(Source: Zhang et al., 2007) 
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CHAPTER 5 

 

CONCLUSIONS 

 
In the available formulations existing in the literature for solutions of self-

loosening problems of bolted joints are very complex to understand and have various 

assumptions. Also, they are not practical to use and apply easily. 

Solutions of self-loosening problems of bolted joints are simply based on 

understanding the self-loosening mechanism rules. By using these rules and 

fundamental equations of solid mechanics, new, clear, and practical self-loosening 

formulations for bolted joints are derived. 

 Derivation is based on the solution of the differential equation of a tensioned 

cantilever beam under the lateral tip load and bending moment. The solution is 

transverse displacement distribution along the bolt axis due to the transverse excitation. 

By using this transverse displacement distribution along the bolt axis radial slip 

amplitudes of the all engaged threads are found. Then, loosening of bolted joint due to 

progressive circumferential displacement is discussed. 
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