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ABSTRACT 
 

DYNAMIC ANALYSIS OF NON-CIRCULAR CURVED BEAM 
SUBJECTED TO MOVING LOADS 

 
In this thesis, analysis of the dynamic responses of non-circular curved beams 

subjected to moving loads is studied by using ANSYS which is Finite Element 

software. An APDL (ANSYS Parametric Design Language) code is developed for a 

parabolic curved beams having fixed-fixed boundary conditions. The moving load is 

acted on the curved beam as a single load with constant speed during the movement of 

the load. 

 First of all, the proper number of finite element used in the developed APDL 

code for curved beam is determined by convergence test. In order to verify the mass and 

stiffness matrices of the curved beam, natural frequencies are found and compared with 

the results available in the literature. Then, moving load algorithm used in the 

developed APDL code is validated by using a straight beam model which has exact 

solution. After validations, static deflections of curved beam under slowly moving load 

and dynamic deflections under moving load are presented. Finally, discussion of 

numerical results are given. 
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ÖZET 
 

HAREKETLİ YÜKLERE MARUZ DAİRESEL OLMAYAN EĞRİ 
ÇUBUĞUN DİNAMİK ANALİZİ 

 
Bu tezde, Sonlu Elemanlar programı olan ANSYS kullanılarak hareketli yüke 

maruz dairesel olmayan eğri çubukların dinamik cevapları incelenmiştir. Sabit sabit 

sınır koşullarına sahip parabolik eğri kirişler için bir APDL (ANSYS Parametrik 

Tasarım Dili) kodu geliştirilmiştir. Yük eğri kiriş üzerindeki hareketi sırasında, sabit bir 

hızda ve tek bir yük olarak etkitilmiştir. 

 Her şeyden önce, eğri kiriş için gelişmiş APDL kodunda kullanılan sonlu 

elemanın uygunluk sayısı, yakınsama testi ile belirlenmiştir. Eğri kirişin kütle ve 

direngenlik matrislerini doğrulamak için, doğal frekanslar bulunmuş ve literatürde 

bulunan sonuçlar ile karşılaştırılmıştır. Daha sonra, geliştirilen APDL kodunda 

kullanılan hareketli yük algoritması, tam çözüme sahip düz bir kiriş modeli kullanılarak 

doğrulanmıştır. Doğrulama işlemlerinden sonra, yavaş hareket eden yük altında eğri 

kirişin statik çökmeleri ve hareketli yük altında dinamik çökmeleri sunulmuştur.. Son 

olarak, sayısal sonuçların tartışılması verilmiştir. 
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 
Some structures in rest or in a motion are under moving loads due to their 

functions. In practice, transport engineering is in the first place for this type of 

applications. Dynamic stress in structure and vibrations due to moving loads are main 

interest in this topic. 

Curved beams in different shape and size can be seen in several structures. The 

common curved beams are planar form due to the simple production process. In a few 

practical applications, curved beams have spatial forms. Therefore, in this study, planar 

curved beam are considered. 

Planar curved beams (for simplicity, planar curved beam is hereafter called by 

curved beam) may have in-plane or out-of plane deformations due to the load action on 

them. If it is under in-plane load, it has in-plane bending and axial deformations. 

However, if it under out-of-plane load, namely, load is perpendicular the plane of 

curved beam; it has out-of-plane bending and torsion. In both types of loading, two 

deformations are not independent. Out-of plane loading is selected for this study. 

 A fixed-fixed non-circular curved beam under moving load is shown Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. A fixed-fixed curved beam under moving load 
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A numerous studies can be found for straight beams under moving loads. For 

this type of beam, different elastic foundations and different boundary conditions are 

also considered in the studies available in the literature. However, the studies on curved 

beam under moving load are comparatively less than studies on the straight beams 

under moving loads. In the following paragraphs, for the sake of completeness, the 

selected papers on straight beams under moving loads are presented first, and then 

curved beams subjected to moving loads are summarized. 

Kim (2004) investigated the vibration and stability of an infinite Bernoulli–Euler 

beam resting on a Winkler-type elastic foundation and subjected to a static axial force 

and a moving load. 

Kargarnovin and Younesian (2004) studied on the response of a Timoshenko 

beam with infinite length and subjected to an arbitrary-distributed harmonic moving 

load. They used Pasternak-type viscoelastic foundation in their study. 

Kim (2005) discussed the stability and dynamic response of an infinite Rayleigh 

beam–column resting on an elastic foundation and subjected to moving loads. He 

modeled the elastic foundation by a Winkler-type and a two-parameter-type. 

Kim and Cho (2006) extended the study of Kim (2005) by considering the effect 

of shear in beams. 

Lou et al (2007) presented the dynamic analysis of Timoshenko beam with 

various boundary conditions and subjected to moving concentrated forces. 

Uzzal et al (2012) investigated the dynamic responses of an Euler-Bernoulli 

beam under constant moving load as well as moving mass. They considered the elastic 

supports based on the two-parameter Pasternak foundation. 

Zrnić et al (2013) discussed the most significant published papers on cranes 

structures development theoretically and practically. 

Chen (2014) presented a model reduction method for the dynamic response of a 

beam structure under a moving load or a moving body. 

Yildirim and Esim (2015) analyzed over head crane systems with one and 

double bridges and having one or more cars by using Finite Element Method. 

Now, the studies on curved beam structure under moving load are given below: 

Huang et al (2000) proposed an accurate solution by using the dynamic stiffness 

matrix and numerical Laplace transform technique for the responses of circular curved 

beams subjected to a moving load. 
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Yang and Wu (2001) derived the analytical solutions by using Galerkin’s 

method for a horizontal curved beam subjected to vertical and horizontal moving loads. 

Wu and Chiang (2003) tried to determine the out-of-plane responses of a circular 

curved Timoshenko beam under a moving load by using the curved beam finite 

elements. They derived element stiffness and mass matrices from the energy 

expressions. 

Wu and Chiang (2004) derived a new finite element to investigate the in-plane 

vibration responses of a circular arch under in-plane moving load. Their employed the 

simple implicit-form shape functions having the radial, tangential and rotational 

displacements. 

Li et al (2013) proposed a closed-form out-of-plane dynamic displacement 

response of a curved track subjected to moving loads by using transfer matrix. They 

modeled the curved track by a planar curved Timoshenko beam periodically supported 

by the double-layer spring-damping elements.  

Nikkhoo and Kananipour (2014) used the differential quadrature method (DQM) 

for deflections of curved beam structures under in-plane constant moving load. They 

considered the Euler-Bernoulli beam theory. 

It is useful to address the studies on vibrations non-circular curved beams. The 

selected important ones are mentioned as follows. 

Volterra and Morell (1961) used Rayleigh-Ritz method to find the vibrations of 

curved beams with non-circular axis such as a cycloid, a catenary and a parabola. 

Wang (1975) investigated out-of-plane vibration of a clamped elliptic by using 

the Rayleigh-Ritz method, too. 

Takahashi and Suzuki (1977) found the out-of-plane vibrations of elliptic arcs by 

using power series. 

Suzuki et al. (1978) studied on vibration of more types of non-circular arcs 

including ellipse, sine catenary, hyperbola, parabola and cycloid. Similar to former 

studies, they used the Rayleigh-Ritz method. 

Irie et al. (1980) obtained the out-of-plane motions of several non-circular 

Timoshenko beams by using the transfer matrix approach. 

Suzuki et al. (1983) studied on free vibrations of non-circular curved bars having 

varying cross-section by series solution. 

In this study, dynamic analysis of non-circular curved beam subjected to moving 

load is presented by using finite element method. As a practical application of this topic, 
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Figure 1.2 is given. For non-circular curved beam, the parabola is chosen as the shape 

of curved beam axis. 

The computer code is developed in APDL (ANSYS Parametric Design 

Language) in ANSYS. The proper number of finite element used in model is 

determined by convergence test. The mass and stiffness matrices of the model are 

verified with the results available in the literature. Moving load algorithm used in the 

code is validated by using a straight beam model which has exact sulution. After 

validations, static and dynamic deflections under moving load are presented. The 

numerical results are discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Monorail crane with curved beam (Source: www.insem.si, 2017) 
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CHAPTER 2  

 

THEORETICAL STUDIES 

 
2.1. Introduction 

 
 The aim of this chapter to present the theoretical backgrounds regarding the 

topics related with the thesis subject. First of all, the parabola is introduced for its 

parameters as selected non-circular form. The equations of motion of the non-circular 

curved beam under moving load are given to see the parametric interactions, although it 

is not used in this thesis. In second step, modal analysis and time response of multi-

degree-of-freedom systems are summarized. Then, as third step which is main topic, 

response of a beam subjected to moving load is discussed. Finally, finite element model 

and analyses in ANSYS are detailed. 

 

2.2. Geometry of Curved Beam Axis 

 
 The parabola given in Figure 2.1 is considered. In order to refer the equation of 

motion from literature, the same co-ordinate system with the literature is used. The arc 

length of a parabola part s and curvature κ of a point on the curve are expressed as 

follows: 

 

 

 

 

 

 

 

 

 

Figure 2.1. The parabola and its parameters. 
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where s1, s2, z1, and z2 are the boundaries of the integrals, 
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2.3. Out-of-Plane Vibrations of Curved Beam 

 
Equations of motion for out of plane displacement of a non-circular curved beam 

under the transverse moving load shown in Figure 2.2 can be obtained from Love 

(1944) as 
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Figure 2.2. Internal reactions and external force of a curved beam 
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where )(sAm ρ= is mass per unit length and )(sJi ρ=  is mass polar moment inertia of 

unit length. Other notations can be seen from Figure 2.2. Equation (2.4) is substituted 

into Equation (2.3) to get two copuled equation of motions instead of three. Thus, 
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Equation (2.5) is copied for the sake of completeness. Bending moment Mx(s, t) and 

twisting moment Mz(s, t) are written as 
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where Ixx and J area moment of inertia about xx-axis and torsional constant of the cross-

section, respectively. Also, κ(s) and τ(s) are time and position dependent curvature and 

twisting functions. They are given by Love (1944) as 
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where v(s, t ) and β(s, t) are transverse and angular displacements. Also, ρ0(s) is radius 

of curvature of the non-circular curved beam at position s. 

 Substituting Equations (2.7) and (2.8) along with Equations (2.9) and (2.10) into 

Equations (2.5) and (2.6), the following equations of motions in terms of displacements 

are obtained: 
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Since the cross-sectional properties are constant along the curved beam axis, Equations 

(2.11) and (2.12) can be expanded to the following forms: 
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 In order to solve the equations of motions having two unknown functions v(s, t) 

and β(s, t) found in Equations (2.13) and (2.14) considering the boundary conditions, 

the proper restrictions given below are used: 

- Free end: shear force Vy=0, bending moment Mx=0, and twisting moment Mz=0. 

- Pinned end: displacement v=0, bending moment Mx=0, and twisting moment Mz=0. 

- Fixed end: displacement v=0, slope v'=0, and rotation β=0. 
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2.4. Vibration of Multi-Degree-of-Freedom Systems 

 

2.4.1. Modal Analysis 

 
 A multi-degree-of-freedom system has multi independent coordinates to specify 

the positions of the masses of the system (Seto, 1983). Equation of motion of multi-

degree-of-freedom system can be written in matrix form as 

 

)}({)}(]{[)}(]{[)}(]{[ tFtqKtqCtqM =++ &&&    (2.15) 

 

where [M], [K], and [C] are mass, stiffness, and damping matrices, respectively. Also, 

{q(t)} and {F(t)} are displacement and force vectors, respectively. Natural frequencies 

of the system having a few degrees-of-freedom can be found by using the characteristic 

equation described as 

 

0])[]det([ 2 =− MK ω       (2.16) 

 

However, when the matrix size is large, Equation (2.16) is not practical. Thus, the 

following generalized discrete eigenvalue problem is solved 

 

}0{}]){[]([ 2 =− ii xMK ω      (2.17) 

 

where ωi is ith natural frequency and {xi} is the mode shapes associated with ith natural 

frequency. 

 

2.4.2. Time Response 

 
Finding {q(t)} in Equation (2.15) is known as transient analysis and {q(t)} is 

called and time response. Direct integration methods or step-by-step methods (Cook 

1989) can be used to find time response. 

 To find the time response {q(t)} accurately, the time interval (0, T) can be 

divided into N equal time intervals ∆t = T / N, where T represents the final time. 
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Determination of the value of ∆t is very important for numerical stability and accuracy. 

For good accuracy, it is selected as twenty times of natural period (Petyt 2010). Then, 

the time response is found at times ∆t, 2∆t, 3∆t, . . . , T. The following solution 

procedure using central difference method is given by Petyt (2010) 

1. Solve the following equation for the acceleration }{ 0q&& , 

 

}{}]{[}]{[}]{[ 0000 FqKqCqM =++ &&&     (2.18) 

 

 2. Calculate }{ 1q  by using the next equation, 

 

}{)2/)((}{}{}{ 0
2

001 qtqtqq &&& ∆+∆+=     (2.19) 

 

3. Calculate the }{ 1+jq  starting with j=1, from the following equation 

 

}]{[}]{[}{}]{[ 11 −+ −+= jjjj qDqBFqA    (2.20) 

 

where 

 

])[2/(1][)/(1][ 2 CtMtA ∆+∆=     (2.21) 

 

][][)/(2][ 2 KMtB −∆=      (2.22) 

 

])[2/(1][)/(1][ 2 CtMtD ∆−∆=     (2.23) 

 

until target time T. Equation (2.20) is arranged for }{ 1+jq in order to see clearly the 

calculations required in this steps as follows: 

 

}]{[][}]{[][}{][}{ 1
111

1 −
−−−

+ −+= jjjj qDAqBAFAq   (2.24) 
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2.5. Response of a Beam Subjected to Moving Load 

 
 A simply supported straight beam of m mass/length under moving load shown in 

Figure 2.3 is considered (Source: Biggs, 1964). 

 

 

 

 

 

 

Figure 2.3. A simply supported straight beam under moving load 
(Source: Biggs, 1964) 

 

 Modal equation of motion of the beam shown Figure 2.3 is written as 

 

∫
=+ L

o n

Fn
nnn

dxxm

cF
YY

2

2

)]([

)(

φ

φ
ω&&      (2.25) 

 

where nω  is the nth natural frequency and )(xnφ is the nth modal-shape function. Since 

the beam is simply supported, nω  is given as 

 

4

4
2 )(

mL
EIn

n
πω =       (2.26) 

 

where EI is bending rigidity of the beam, and L is the length of the beam. Also, nth 

modal-shape function is written as 

 

L
xnxn

πφ sin)( =       (2.27) 

 

cF in Equation (2.25) is the distance from the left end of the span to the force and 

written as 
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tvcF =        (2.28) 

where t is measured from the instant at which the force entered the span. Substituting 

Equations (2.27) and (2.28) into Equation (2.25), modal equation of motion becomes 

 

L
tvn

mL
FYY nnn

πω sin22 =+&&      (2.29) 

 

It can be seen from the right side of Equation (2.29), the time function can be written as 

 

t
L

vtntf nn Ω== sinsin)( π      (2.30) 

 

It is apparent that the modal solution is the same as that for a one-degree system 

subjected to a sinusoidal force. Thus, the Dynamic Load Factor (DLF) is expressed as 

 

)sin(sin
)/(1

1)( 2 ttDLF n
n

n
n

nn
n ω

ωω
Ω

−Ω
Ω−

=   (2.31) 

Therefore, the modal solution is found as 

 

n
n

n DLF
mL

FY )(2
2ω

=       (2.32) 

 

The coefficient of (DLF)n in Equation (2.32) is corresponds to static displacement in nth 

mode, )/(2 2
nnst mLFY ω= . Combination of the N modes is expresses as follows: 

 

∑
=

=
N

n
nn xYy

1
)(φ       (2.33) 

 

Substituting Equation (2.32) along with (2.31) and (2.27) into Equation (2.33), the final 

expression is obtained as 

 

)sin()sin(sin12
1

22 L
xntt

mL
Fy n

n

n
N

n
n

nn

πω
ωω
Ω

−Ω
Ω−

= ∑
=

 (2.34) 
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2.6. Finite Element Method 

 
 If Rayleigh-Ritz Method is generalized, Finite Element Method is obtained 

(Reddy 1993, Petyt 2010). It has been developed after 1960s (Cook 1989). The method 

is based on the division of the geometrically complex shape into small geometrical 

shapes of which stiffness and mass properties can be obtained easily. As an examples 

for small geometrical shapes; bar, beam, plate, shell, tetrahedral solid, hexahedral solid 

can be said. These small shapes are called as finite element. The most critical concept in 

finite element modeling is continuity condition of finite elements. Finite elements are 

connected its neighbors by its nodes which are the points having freedoms such as 

translations and rotations in solid mechanics. Division process of the complex 

geometrical shape into finite elements is called as meshing. All finite elements are 

combined by using governing equations and this is known as assembling process. 

Mathematically, assembled finite element system representing the complex geometrical 

shape is described by systems of algebraic equations which can be written in matrix 

form. Determination and application of the boundary conditions are the most critical 

step. On the other hand, usage of symmetry and other reduction techniques can be used 

to reduce the computation time. In dynamics of elastic structure, the equation of motion 

given by Equation (2.15) is developed by using proper finite elements (Yardimoglu, 

2015), and then solved by using numerical methods depending on the problem types. 

 Meshing of a curved beam with six finite elements is shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Meshing of a curved beam with six finite elements (e≡element). 
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2.7. Modeling and Analysis in ANSYS 

 

2.7.1. Introduction 

 
Modelling of non-circular curved beam can be accomplished by using straight 

beam finite element. In ANSYS, BEAM4 (ANSYS, 2007) is selected. BEAM4 is used 

for tension, compression, torsion, and bending due to the nodal freedoms which are 

three translations and three rotations. In addition to elastic stiffness, geometric stiffness 

is also included. Nodes of BEAM4 are shown in Figure 2.5. The shape functions of 

BEAM4 are given as follows (Kohnke 2004) 

 

 

 

 

 

 

 

 

Figure 2.5. Nodes of BEAM4 
(Source: Kohnke 2004) 

 

)]1()1([5.0 susuu JI ++−=      (2.35) 

 

)]1)(1()1)(1([125.0

))]3(5.01())3(5.01([5.0
22

22

ssssL

ssvssvv

zJzI

JI

+−−−−+

−++−−=

θθ
  (2.36) 

 

)]1)(1()1)(1([125.0

))]3(5.01())3(5.01([5.0
22

22

ssssL

sswssww

yJyI

JI

+−−−−−

−++−−=
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 (2.37) 

 

)]1()1([5.0 ss JxIxx ++−= θθθ     (2.38) 
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The geometry of the BEAM4 is taken from original source and shown in Figure 

2.6. BEAM4 may have two or three nodes depending on the selection. Third node of 

this element is needed for orientation of the element. Real constants (ANSYS, 2005) are 

AREA, IZZ, IYY, TKZ, TKY, THETA 

ISTRN, IXX, SHEARZ, SHEARY, SPIN, ADDMAS 

where AREA   : Cross-sectional area 

IZZ and IYY  : Area moment of inertia about z and y axis, respectively 

TKZ, TKY  : Thickness in z and y directions 

THETA  : Orientation angle about x axis 

ISTRN   : Initial strain 

IXX   : Torsional moment of inertia 

SHEARZ, SHEARY : Shear deflection constant 

SPIN   : Rotational frequency 

ADDMAS  : Added mass/unit length 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Geometry of BEAM4 
(Source: ANSYS 2007) 
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2.7.2. Static Analysis 

 
A static analysis is based on the calculations under the effects of statical loads 

acting on a structure. By using this option, static displacements, stresses, strains, and 

forces in structures are found. The following types of loading can be applied: 

• Externally applied forces and pressures 

• Steady-state inertial forces (such as gravity or rotational velocity) 

• Imposed (nonzero) displacements 

• Temperatures (for thermal strain) 

 

2.7.3. Modal Analysis 

 
Modal analysis is used to find the natural frequencies and associated mode 

shapes of a structure. As stated before, correct the time increment is necessary in 

transient analysis and it is determined after modal analysis. In the ANSYS modal 

analysis is a linear. The following mode-extraction methods can be chosen: 

• Block Lanczos (default): 

• Subspace: 

• Power Dynamics: 

• Reduced: 

• Unsymmetric: 

• Damped: 

• QR damped: This allows for unsymmetrical damping and stiffness matrices. 

 

2.7.4. Transient Analysis 

 
Transient analysis is determination of the dynamic response of a structure under 

the general time-dependent effects. In dynamics of solid mechanics, the time-varying 

displacements under several types of time dependent loads are found, and then strains 

and stresses can be calculated. 

 Basically, transient dynamic analysis is interested in the solution of Equation 

(2.15). 
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 The Newmark time integration method or an improved method called HHT is 

used in ANSYS to solve the mentioned equation. ANSYS can perform transient 

dynamic analysis by using the following three methods: 

1. Full method: The full system matrices are used to calculate the transient 

response. All types of nonlinearities in the problem can be included. 

2. Mode superposition method: Mode shapes obtained from a modal analysis 

are used to calculate the structure's response. 

3. Reduced method: Master degrees of freedoms defined by users and reduced 

matrices are used. After finding the displacements at the master DOF, 

ANSYS expands the solution to the original full DOF set. 
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CHAPTER 3 

 
NUMERICAL STUDIES 

 
3.1. Convergence Test 

 
The aim of this section is to determine the adequate number of element for 

dynamic analysis. Therefore, the best testing method is to find the natural frequencies of 

the finite element model which are based on the mass and stiffness matrices. 

To do this, a computer code is developed by using APDL (ANSYS Parametric 

Design Language) in ANSYS for a fixed-fixed curved beam shown in Figure 3.1. In this 

program, parabolic curved beam is modelled parametrically and meshed by BEAM4. 

The geometrical details of axis of the parabolic curved beam are given in Figure 

3.1. For the convergence studies natural frequencies are found by using different 

number of finite elements. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Axis of the present non-circular curved beam 

 

Hollow box beam 60x60x6 mm is selected. Material of the beam is given below: 

Modulus of elasticity E=200000 MPa, 

Shear modulus G=80000 MPa, 

Density ρ=7.85.10-9 ton/mm3. 
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The calculated natural frequencies are given in Table 3.1 and Figure 3.2. It is 

seen from the presented results that the reasonable number of element N=40. 

 

Table 3.1. Convergence of first natural frequency 
 

N First natural frequency f1 (Hz) 

8 89.641 

12 89.527 

16 89.486 

20 89.467 

24 89.457 

28 89.451 

32 89.447 

36 89.444 

40 89.442 

44 89.440 

48 89.439 

52 89.438 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Convergence of first natural frequency 
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3.2. Validation of Mass and Stiffness Matrices 

 
 Validation of the mass and stiffness matrices in the developed code can be done 

by finding natural frequencies of a circular curved beam having fixed-fixed boundary 

conditions, since it has solution in the existing literature (Blevins, 1979 and Culver, 

1967). By using the cross-sectional and material data given in former section, a quarter-

circular curved beam with radius 1325 mm which corresponds to the same arch length 

of parabola tested formerly verified for the convergence is modeled in ANSYS by using 

again 40 BEAM4 elements. The first mode shape is illustrated in Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. First mode shape of a quarter-circular fixed-fixed curved beam 

 

 The results of present ANSYS model and Rayleigh-Ritz Method given by 

Culver (1967) are given in Table 3.2. It is seen from Table 3.2 that the present model in 

ANSYS gives very close natural frequency value to another value. 

 

Table 3.2. Comparison of first natural frequencies (Hz) 
 

Present result from ANSYS Result by Rayleigh-Ritz Method (Culver, 1967) 

84.317 84.69 
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3.3. Validation of Moving Load Algorithm 

 
 In order to perform this step, a simply supported straight beam is considered. A 

steel hollow box beam 60x60x6 mm with length L=2080 mm is taken. It should be 

pointed out that the length of the beam is the same with the arch length of the parabolic 

curved beam considered in Section 3.1. Also, the material and cross-sectional properties 

are the same with the parabolic curved beam considered before in Section 3.1. 

 Theoretical time response of a simply supported straight beam under a moving 

load with constant velocity v as shown in Figure 2.3 is obtained by using the theory 

outlined in Section 2.5. 

 The first and second terms in the parentheses in Equation (2.31) which is the 

Dynamic Load Factor (DLF) are tnΩsin and tnnn ωω sin)/(Ω− , respectively. It is 

noted that the first and second terms given above are related with the forced and free 

vibrations, respectively. 

 For the moving load with velocity v=6240 m/s acting on the simply supported 

straight beam, the time response plot obtained by using the Equation (2.34) is illustrated 

in Figure 3.4. 

 Validation of the moving load algorithm in developed APDL code is 

accomplished by using the considerations given above. The same plot shown in Figure 

3.4 is obtained. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Mid-span displacements of simply supported straight beam 
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3.4. Static Deflections under Slowly Moving Load 
 

 The parabolic curved beam introduced in Section 3.1 is considered here to find 

the statical deflections under 10000 N applied different nodes. The node numbers of the 

finite element model of the parabolic curved beam are shown in Figure 3.5. The results 

are given in Figures 3.6- 3.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Node numbers of parabolic curved beam 

 

 

 

 

 

 

 

 

 

Figure 3.6. Static displacements of parabolic curved beam under several loadings 
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Figure 3.7. Statical displacement of parabolic curved beam due to force at node 8 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Statical displacement of parabolic curved beam due to force at node 12 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Statical displacement of parabolic curved beam due to force at node 16 
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Figure 3.10. Statical displacement of parabolic curved beam due to force at node 20 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Statical displacement of parabolic curved beam due to force at node 24 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Statical displacement of parabolic curved beam due to force at node 28 
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Figure 3.13. Statical displacement of parabolic curved beam due to force at node 32 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Statical displacement of parabolic curved beam due to force at node 36 

 

3.5. Dynamic Deflections under Moving Load 

 
 As first application, the parabolic curved beam introduced in Section 3.4 is 

considered to find the dynamical deflections under moving load F=10000 N. Different 

moving load velocities are chosen to see its effect on time response. 

 Time responses for moving load velocities v={2080, 4160, 6240, 8320} mm/s of 

parabolic curved beam at nodes {8, 12, 16, 20, 24, 28, 32, 36} are obtained and the plots 

are shown in Figures 3.15-3.18. 

 



 26

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Displacements of different nodes for v=2080 mm/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. Displacements of different nodes for v=4160 mm/s 
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Figure 3.17. Displacements of different nodes for v=6240 mm/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Displacements of different nodes for v=8320 mm/s 
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 Secondly, boundary conditions of the parabolic curved beam in first application 

are changed to simply supported type. The same moving load is selected for the moving 

load velocities v={520, 1040, 2080, 4160, 6240, 8320} mm/s. Similarly, time response 

plots at nodes {8, 12, 16, 20, 24, 28, 32, 36} are shown in Figures 3.19-3.25. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Displacements of different nodes for v=520 mm/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Left sides of the plots given in Figure 3.19 
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Figure 3.21. Displacements of different nodes for v=1040 mm/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. Displacements of different nodes for v=2080 mm/s 
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Figure 3.23. Displacements of different nodes for v=4160 mm/s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. Displacements of different nodes for v=6240 mm/s 
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Figure 3.25. Displacements of different nodes for v=8320 mm/s 

 

 In order to determine the effect of the velocity of the moving load on dynamic 

displacements, a non-dimensional parameter ∆, which is defines as, 

 

L/2at  disp. static
L/2at  disp. dynamic maximum

=∆     (3.1) 

 

can be used. It can be pointed out that the nominator of the Equation (3.1) can be 

obtained by taking the maximum displacement value at mid point of the length of the 

curved beam at any time. 

For the presented two previous applications, ∆ versus velocity plots can be 

plotted. Static displacements at mid point of the fixed-fixed and simply supported 

parabolic curved beams are found as 3.89375 mm and 19.8065 mm, respectively. 

 ∆-v plot for fixed-fixed parabolic curved beam is obtained by using a do loop 

from 20 m/s to 800 m/s with step 20 m/s considering critical velocity vcr=2Lf1. 

 ∆-v plot for simply supported parabolic curved beam is obtained by using a do 

loop from 10 m/s to 300 m/s with step 10 m/s considering critical velocity. 

 ∆-v plots for fixed-fixed and simply supported parabolic curved beams are given 

in Figures 3.26 and 3.27, respectively. 
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Figure 3.26. ∆-v plot for fixed-fixed parabolic curved beam 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27. ∆-v plot for simply supported parabolic curved beam 

 

3.6. Discussion of Numerical Results 

 
 The reasonable number of finite element N=40 is found for a parabolic curved 

beam with hollow box form 60x60x6 mm and arch length 2080 mm. By using the 

number of finite element N=40, stiffness and mass matrices of the curved beam 

modeled by BEAM4 in finite element code developed by APDL in ANSYS is validated 

by the theoretical results. 
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 Moving load algorithm in the finite element code is verified by using a simply 

supported straight beam under moving load since it has exact solution. 

 Statical displacements of parabolic curved beam under slowly moving load are 

found for different nodes. Figure 3.6 shows non-symmetrical displacement distributions 

due to the variable curvature of the curved beam. 

 Dynamical displacements are effected by the velocity of the moving load and 

natural frequency of the beam as expressed by DLF in Equation (2.31). Two harmonic 

terms in Equation (2.31) can be written separately by omitting n as 

 

tDLF Ω
Ω−

=Ω sin
)/(1

1)( 2ω
    (3.2) 

 

ttDLF ω
ω
ωω

ωωω sin)sin(
)/(1

1)( 222 −Ω
Ω

=
Ω

−
Ω−

=  (3.3) 

 

 Now, the following two conclusions based Equations (3.2) and (3.3) on can be 

drawn for Ω << ω. 

1. The amplitude of harmonic term with forcing frequency Ω is approximately 

unity. 

2. The amplitude of harmonic term with natural frequency ω is about Ω/ω 

which is small value. 

 It should be pointed out that the second conclusion drawn above is effected by 

the boundary conditions of the system. 

 When the Figures 3.15-3.18 regarding first application having fixed-fixed 

boundary conditions are examined, it can be seen that (DLF)ω is very small. 

 On the other hand, when the Figures 3.19-3.25 related with the second 

application having simply supported boundary conditions are analyzed, it can be seen 

that (DLF)ω is not very small as before. 

 Therefore, boundary conditions of the beam are very effective on time response 

of the beam under moving load. 

 Finally, it can be said by analyzing Figure 3.26 and 3.27 that, the dynamical 

displacements are very close to statical displacements for practical velocities (0.5 m/s or 

2 m/s) for the selected examples with L=2.08 m due to the high natural frequencies. 
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CHAPTER 4 

 
CONCLUSIONS 

 
 Dynamic responses of fixed-fixed parabolic curved beams subjected to moving 

loads are presented. An APDL (ANSYS Parametric Design Language) code is 

developed for the parabolic curved beams. The moving load having constant speed is 

acted upon the curved beam during the movement of the load. Static and dynamic 

responses for different cases are determined and presented. Fixed-fixed and simply 

supported boundary conditions are applied to parabolic curved beams to see their effects 

on the time responses. It is determined that boundary conditions of the beam are very 

effective on time response of the beam under moving load. 

 Finally, it can be said that critical moving load velocity which is based on the 

natural frequency of the structure plays very critical role. In practice, if small structure 

such as monorail crane shown in Figure 1.2 has high natural frequencies, practical 

velocities about 2 m/s can not cause large deflections. 
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