SYNTHESIS OF VINYLALLENOLS VIA PALLADIUM-CATALYZED ARYLATION REACTIONS OF (Z)-2,4-ENYNE OXIRANES WITH ORGANOBORONS

A Thesis Submitted to the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Chemistry

by Fırat ZİYANAK

December 2016 İZMİR We approve the thesis of **Fırat ZİYANAK**

Examining Committee Members:

Prof.Dr. Levent ARTOK Department of Chemistry, İzmir Institute of Technology

Prof.Dr. Stephen T. Astley Department of Chemistry, Ege University

Assoc.Prof.Dr. Mustafa EMRULLAHOĞLU Department of Chemistry, İzmir Institute of Technology

Prof.Dr. Hayati TÜRKMEN

Department of Chemistry, Ege University

Assoc.Prof.Dr. Süleyman GÜLCEMAL Department of Chemistry, Ege University

26.12.2016

Prof.Dr. Levent ARTOK

Supervisor, Department of Chemistry, İzmir Institute of Technology

Prof. Dr. Ahmet Emin EROĞLU Head of Department of Chemistry **Prof. Dr. R. Bilge KARAÇALI** Dean of the Graduate School of Engineering and Sciences

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Prof. Levent ARTOK. This thesis could not have been written without him who not only served as my supervisor but also encouraged and challenged me throughout my academic program. I would like to thank him for his patience to me in these last two years. It was an honour to study with him. I thank him so much.

I have my special thanks to Prof. Dr. Stephen ASTLEY and Assoc. Prof. Dr. Mustafa EMRULLAHOĞLU for their valuable suggestions, support and participating as a committee member through my thesis progress seminars and PhD defense seminar. I would like to offer my gratitude to Prof. Dr. Hayati TÜRKMEN and Assoc. Prof. Dr. Süleyman GÜLCEMAL for participating as committee members and for reviewing my work.

I would like to thank to the Scientific and Technical Research Council of Turkey

(TÜBİTAK-210T092) for financial support for this study. Also, I would like to thank Eray AKPINAR for HRMS analysis and Prof. Dr. Durmuş ÖZDEMİR for allowing me use FT-IR instrument in his research laboratory.

Additionally, I would like to acknowledge all my colleagues in İYTE, Chemistry

Department for their friendship over eight years period of my academic life and special thanks to my friends from Artok's research group Doğan TAÇ, Erman KIBRIS and İsmet Arınç AYTAÇ. I would like to thank to my family for their continuous support. They always supported me for my educational decisions. They have always been by my side whenever I needed them. Lastly I want to express my gratitude to my beloved wife Esen ZİYANAK for her endless love and patience. Without her help this study would not have been possible.

ABSTRACT

SYNTHESIS OF VINYLALLENOLS VIA PALLADIUM-CATALYZED ARYLATION REACTIONS OF (Z)-2,4-ENYNE OXIRANES WITH ORGANOBORONS

Allenes are important functional groups especially in synthetic organic chemistry. Due to their unique reactivity and high level of chirality transfer, allenes can be used as building blocks in the synthesis of complex molecules. In recent decades transition-metal catalyzed synthesis of allenes with organometallic reagents has become attractive method. For the synthesis of functionalized allenes, addition of different nucleophiles with the help of various transition metals to propargylic compounds bearing a leaving group has been mostly used. Transition metals are crucial for these reactions for shifting them from S_N2 to S_N2 ' for the formation of allenes.

Within the context of this research, a novel palladium-catalyzed arylation reactions of (Z)-2,4-enyne oxiranes with organoborons have been investigated. As a result of the 1,5-substitution reaction, aryl-substituted vinylallenes bearing a hydroxyl group on the allylic position (7-aryl-3,5,6-trien-2-ol) were obtained in high yields and diastereoselectivities. We were able to also disclose that Diels-Alder adducts could be obtained with excellent endo and facial selectivities when the vinylallen types of this study were reacted with dienophiles.

ÖZET

(Z)-2,4-ENİN OKSİRANLARIN ORGANOBORONLAR İLE PALADYUM KATALİZLİ ARİLASYON TEPKİMELERİ ÜZERİNDEN VİNİLALLENOLLERİN SENTEZİ

Allenler özellikle sentetik organik kimyada önemli fonksiyonel gruplardır. Benzersiz reaktiviteleri ve yüksek seviyede kiralite transferinden dolayı allenler komplex moleküllerin sentezinde yapıtaşları olarak kullanılabilirler. Son yıllarda, orgonometalik bileşikler ile geçiş metal katalizli allen sentezleri ilgi çekici hale gelmiştir. Fonksiyonlandırılmış allenler, bir ayrılan grup içeren proparjilik bileşiklerine geçiş metallerin yardımıyla çeşitli nükleofillerin katılması ile sentezlenmektedir. Geçiş metalleri bu tür reaksiyonları S_N2 den S_N2' e kaydırarak allen oluşturması açısından çok büyük öneme sahiptir.

Bu çalışma kapsamında, (Z)-2,4-enin oksiran yapılarının organoboronlar ile paladyum katalizli arilasyon tepkimleri üzerine çalışılmıştır. 1,5-yerdeğiştirme reaksiyonu sonucunda aril bağlı ve allilik pozisyonunda hidroksil grubu taşıyan vinilallenler (7-aril-3,5,6-trien-2-ol) yüksek verim ve diastereoseçimli olarak elde edilebilmiştir. Ayrıca bu çalışmada elde edilen vinilallen tipinin dienofiller ile yüksek endo ve fasiyal seçimli olarak Diels-Alder katılma ürünü elde edilebilmiştir.

TABLE OF CONTENTS

LIST OF FIGURES	ii
LIST OF TABLES	X
ABBREVIATION	xi
CHAPTER 1. INTRODUCTION	1
CHAPTER 2. LITERATURE SURVEY	3
2.1. Synthesis of Allenes via Pd(0)-Catalyzed Reactions of	
Propargyl Compounds	3
2.2. Palladium-Catalyzed Reactions of Allylic Compounds	7
2.3. Palladium(0)-Catalyzed Reactions of Conjugated Enynes 1	.0
CHAPTER 3. EXPERIMENTAL STUDY 1	2
3.1. General Methods1	2
3.2. Synthesis of Substrates 1	3
3.2.1. Synthesis of (Z)-1a1	3
3.2.2. Synthesis of (<i>Z</i>)-1b and 1c1	5
3.2.3. Synthesis of hydroxyl tethered (Z)-2,4-enyne	
oxiranes1	6
3.2.4. Synthesis of (Z)-1d, e, f, g, h, i, j, k, l 1	9
3.2.5. Synthesis of (<i>Z</i>)-1m and (<i>Z</i>)-1n1	9
3.2.6. Synthesis of (<i>Z</i>)-10	20
3.2.7. Synthesis of (<i>Z</i>)-1p	21
3.2.8. Synthesis of (<i>Z</i>)-1r	22
3.2.9. Synthesis of (Z)-1s	23
3.2.10. Synthesis of (<i>Z</i>)-1t	24
3.2.11. Synthesis of (<i>Z</i>)-1v	25
3.2.12. Synthesis of (<i>E</i>)-1b2	27
3.3. Characterization of Substrates2	28
3.4. Synthesis of Organoborons	35

3.5. General Method for Palladium-Catalyzed Reactions of
Enyne Oxiranes
3.6. Characterization of Products
CHAPTER 4. RESULTS AND DISCUSSION
CHAPTER 5. CONCLUSION
REFERENCES
APPENDICES
APPENDIX A. ¹ H NMR AND ¹³ C NMR SPECTRA OF PRODUCTS
APPENDIX B. MASS SPECTRA OF PRODUCTS165

LIST OF FIGURES

Figure

Page

Figure 2.1. Synthesis of Allenes via Pd(0)-Catalyzed Reactions of	
Propargyl Compounds	3
Figure 2.2. Formation of Palladium Intermediates from Propargylic	
Reagents	3
Figure 2.3. Alkoxycarbonylation of Propargyl Carbonates	4
Figure 2.4. Pd-Catalyzed reactions of 2-alkynyl Carbonates with Olefins	4
Figure 2.5. Pd(0)-Catalyzed Alkynylation of Propargyl Compounds	4
Figure 2.6. Arylation of Propargyl Carbonates	5
Figure 2.7. Arylation of Propargyl Carbonates in High Chirality Transfer	5
Figure 2.8. Palladium-Catalyzed Coupling of Grignard Reagents with	
Propargyl Chlorides	5
Figure 2.9. Palladium-Catalyzed Addition of Organozinc Compounds to	
Propargyl Acetates	6
Figure 2.10. Pd(0)-Catalyzed Alkoxycarbonylation of Hydroxyl	
Functionalized Propargyl Oxiranes	6
Figure 2.11. Alkynylation of Propargyl Oxirane	7
Figure 2.12. Diastereoselective Arylation of Propragyl Oxiranes	7
Figure 2.13. Mechanism of Transmetallation of Main Group Metals with	
π -allylpalladium	8
Figure 2.14. Palladium-Catalazed Alkoxycarbonylation of Allyl	
Phosphates	8
Figure 2.15. S _N 2' Type Stereoselective Substitution of Allylic Acetates	
with Arylboronic Acid	8
Figure 2.16. Palladium-Catalyzed Synthesis of Polyene Derivatives with	
Grignard Reagents.	9
Figure 2.17. 1,4- and 1,2-Addition of Allylic Oxiranes	9
Figure 2.18. Alkoxycarbonylation of Allyl Epoxide	9
Figure 2.19. Arylation of Allyl Oxiranes	. 10

Figure 2.20. Arylation and Alkoxycarbonylation of (E) and (Z)-	
Configured 2,4-Enyne Carbonates	10
Figure 2.21. Alkoxycarbonylation of 2,4-Enyne Oxiranes	11
Figure 2.22. Pd(0)-Catalyzed Arylation of 2,4-Enyne Oxiranes	11
Figure 3.1. Synthesis of enyne aldehyde S5	13
Figure 3.2. Synthesis of (Z)-1a	14
Figure 3.3. Synthesis of (Z)-1b and 1c	15
Figure 3.4. Synthesis of S17	16
Figure 3.5. Synthesis of (Z)-1d, e, f, g, h, I, j, k, l	19
Figure 3.6. Synthesis of (Z)-1m and (Z)-1n	19
Figure 3.7. Synthesis of (Z)-10	
Figure 3.8. Synthesis of (Z)-1p	
Figure 3.9. Synthesis of (Z)-1r	
Figure 3.10. Synthesis of (Z)-1s	23
Figure 3.11. Synthesis of (Z)-1t	
Figure 3.12. Synthesis of (Z)-1v	
Figure 4.1. Boronic Acid Ester Formation of Enyne Oxirane	60
Figure 4.2. Pd(0)-Calayzed Arylation Reaction of (E)-1b	69
Figure 4.3. Allylic Arylated Product 4be	72
Figure 4.4. β-hydride Elemination Product	72
Figure 4.5. Pd-Catalyzed Reaction with Substrate (1s) Containing an	
Endocyclic Double Bond with 2a	77
Figure 4.6. Determination of Major Diastereomer	78
Figure 4.7. Diels-Alder Reaction of 3ba with Phenyl maleimide	78
Figure 4.8. NOESY study of 6ba	78
Figure 4.9. Mechanism of Arylation of Conjugated Enyne Oxiranes	80
Figure 4.10. Mechanism of Allylic Arylated Products	

LIST OF TABLES

<u>Table</u>

Page

Table 3.1. Synthesis of neopentyl glycol esters	35
Table 4.1. Effect of Reaction Parameters on the Pd(0)-Catalyzed	
Arylation of 1a	59
Table 4.2. Effect of Reaction Parameters on the Pd(0)-Catalyzed	
Arylation of 1b	61
Table 4.3. Pd(0) Precurser and Ligand Effect on Yield and	
Diastereoselectivity of 3ba	63
Table 4.4. Ligand Effect on Yield and Diastereoselectivity of 3ba	65
Table 4.5. Effect of Base on Yield and Diastereoselectivity of 3ba	67
Table 4.6. Solvent Effect on Formation of 3ba	68
Table 4.7. Effect of Base Amount, Water Ratio, Concentration and	
Temperature of 3ba	69
Table 4.8. Pd(0)-Catalyzed Reaction of the (Z)-Enyne Oxirane ((Z)-1a)	
with Different Organoboronates	70
Table 4.9. Arylation of Enyne Oxiranes	74

ABBREVIATION

Ac	Acetate
ACN	Acetonitrile
aq.	Aqueous
BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
BIPHEP	2,2'-Bis(diphenylphosphino)biphenyl
Bn	Benzyl
Bu	n-Butyl
<i>t</i> -Bu	tert-Butyl
Су	Cyclohexane
dba	Dibenzylideneacetone
DBU	1,8-Diazabicyclo(5.4.0)undec-7-ene
DCM	Dichloromethane
DIBAL-H	Diisobutylaluminium hydride
DMAP	4-Dimethylaminopyridine
DME	1,2-Dimethoxyethane
DMEDA	N,N'-Dimethylethylenediamine
DMF	N,N-Dimethylformamide
DPEPhos	Bis-[2-(diphenylphosphino)phenyl]ether
dppb	1,4-bis(diphenylphosphino)butane
dppe	1,2-bis(diphenylphosphino)ethane
dppf	1,1'-Bis(diphenylphosphino)ferrocene
dppm	Bis(diphenylphosphino)methane
dppp	1,3-bis(diphenylphosphino)propane
d.r.	Diastereomeric ratio
Et	Ethyl
eqv.	Equivalent
Et ₂ O	Diethyl ether
h	hour
<i>i</i> -Pr	Isopropyl
<i>m</i> -CPBA	meta-chloroperoxybenzoic acid
М	Molar

Me	Methyl
mg	Milligrams
min.	Minute
mL	Milliliter
mmol	Millimoles
N.D.	Not determined
neop	Neopentyl glycol ester
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Spectroscopy
O.N.	Overnight
Ph	Phenyl
Pr	Propyl
rt	Room Temperature
t	Time
t-Bu-Xanthphos	9,9-Dimethyl-4,5-bis(di-tert-butylphosphino)xanthene
TBDMS	tert-Butyldimethylsilyl
THF	Tetrahydrofurane
TMEDA	Tetramethylethylenediamine
Xanthphos	4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene
Xphos	2-Dicyclohexylphosphino-2',4',6' triisopropylbiphenyl

CHAPTER 1

INTRODUCTION

Allenes are important functional groups especially in synthetic organic chemistry. Due to their unique reactivity and high level of chirality transfer, allenes can be used as building blocks in the synthesis of complex molecules. This reactivity and natural chirality of allenes result in the usage of the synthesis of natural and pharmacological compounds (Scheme 1.).

Figure 1.1. Allenic natural products and pharmacologically active allenes.

In last decades transition-metal catalyzed synthesis of allenes with organometallic reagents has become an attractive method. For the synthesis of functionalized allenes, addition of different nucleophiles with the help of various transition metals to propargylic compounds bearing a leaving group has been mostly used. Transition metals are crucial to switch from S_N2 route to S_N2 ' route for the formation of allenes. Soft and hard nucleophiles are both applicable for S_N2 ' reactions. Hard nucleophiles like Grignard reagents or alkyl lithiums are used mostly with copper-, iron- and nickel-catalyzed reactions. Palladium, rhodium and iridium are mostly suitable for soft nucleophiles such as organoborons and carbonmonoxide.

Palladium-catalyzed coupling type reactions of propargylic compounds with a leaving group are prominent class of methods for the construction of alkenyl-, alkynyl-, and aryl- or carbonylated allenes. Epoxide rings could also behave as a leaving group in substitution reactions in the pathway of ring opening for allenol derivatives. SN2''reactions of conjugated enynes are another route for synthesis of alkenylated allenes or vinylallenes. The advantage of this SN2'' reaction is to enable the construction of functionalized vinylallenes. Vinyl-substituted allenes are valuable compounds because of unique reactivity toward miscellaneous cycloaddition and cyclization reactions.

In light of these informations we have developed a new method for the synthesis of aryl bearing vinylallenols which involves the reaction of enyne oxiranes with organoborons in the presence of a palladium catalyst.

CHAPTER 2

LITERATURE SURVEY

2.1. Synthesis of Allenes via Pd(0)-Catalyzed Reactions of Propargyl Compounds

Propargyl compounds bearing a leaving group are versatile reagents in the synthesis of allene derivatives. In the presence of Pd(0), and a nucleophile 1,3-substitution reaction(SN2') occures to deliver functionalized allenes (Figure 2.1)

Figure 2.1. Synthesis of Allenes via Pd (0)-Catalyzed Reactions of Propargyl Compounds

Pd (0)-catalyzed reactions of propargyl compounds proceed in two ways; one is the formation of σ -allenylpalladium (**A**) and the other is propargylpalladium (**B**) (Figure 2.2). Reaction pathway changes according to the nucleophile type (Elsevier et al., 1983). After the formation of palladium intermeadiates, the nucleophile inserts into the Pd-LG bond for the target molecule.

Figure 2.2. Formation of Palladium Intermediates from Propargylic Reagents

Alkenes, alkynes and carbonmonoxide are used widely as nucleophile in 1,3substitution reactions of propargylic compounds. Beside these nucleophiles forms by transmetallation via main group metals, metal hydrides and organoborons are used (Tsuji, 2004).

In 1986, Tsuji and co-workers revealed that the Pd-catalyzed alkoxycarbonylation reaction of propargyl carbonates resulted in alleneoates. (Tsuji et al., 1986) (Figure 2.3).

Figure 2.3. Alkoxycarbonylation of Propargyl Carbonates

One of the milestone studies of propargylic compounds is Heck type addition of olefins to form 1,2,4-trienes (vinylallenes). In 1991 Mandai and co-workers reported that Pd-catalyzed reaction of 2-alkynyl carbonates with electron deficient olefins produced vinylallenes in good yields. (Mandai et al., 1991) (Figure 2.4).

Figure 2.4. Pd-Catalyzed reactions of 2-alkynyl Carbonates with Olefins

In the literature, there are examples where terminal alkynes were used as nucleophiles in the reaction with propargylic compounds. These alkynylation reactions usually were realized in the presence of Cu(I) (Tsuji, 2004) (Figure 2.5).

Figure 2.5. Pd(0)-Catalyzed Alkynylation of Propargyl Compounds

Propargylic compounds also react with arylborons in the presence of Pd(0) for the formation of aryl bearing allenes. (Moriya et al., 1994) (Figure 2.6).

Figure 2.6. Arylation of Propargyl Carbonates

In 2016, Lou et al. have been developed an efficient palladium-catalyzed coupling of propargylic carbonates with organoboranic acids in high yield and chirality transfer. *o*-(Diphenylphosphino) benzaldehyde was choosen as ligand affording allenes under mild reaction conditions (Lou et al., 2016) (Figure 2.7).

Figure 2.7. Arylation of Propargyl Carbonates in High Chirality Transfer

Besides orgonaborons, alkynes and carbon monoxide, relatively hard nucleophiles like Grignard reagents and organozinc compounds can be used for Pdcatalyzed reactions of propargylic compounds. Luong's group reports the palladiumcatalyzed coupling of propargyl chloride with Grignard reagents in moderately good yields (Jeffery-Luong and Linstrumelle, 1980) (Figure 2.8).

Figure 2.8. Palladium-Catalyzed Coupling of Grignard Reagents with Propargyl Chlorides.

Vermeer et al. reported that R-(-)-1-trifluoroacetoxy-1-phenyl-2-propyne when reacted, in proper conditions, with PhZnCl formed allenes in excellent yields. The stereoand regio-selectivities of the reaction were also superior. The insertion of the palladium at first takes place, and then follows by transmetallation with PhZnCl to form allenyl(phenyl)chloride. The reductive elimination then produces aryl-substituted allenes (Elsevier et al., 1983) (Figure 2.9).

Figure 2.9. Palladium-Catalyzed Addition of Organozinc Compounds to Propargyl Acetates.

In 1997 Piotti and Alper reported that in the existence of CO, an alcohol and Pd(0), propargyl oxiranes generates α -allenol esters via alkoxycarbonylation reaction. The allenyl products having a β -hydroxyl group can further cyclize to geneate an oxygenated five-membered ring (Piotti and Alper, 1997).

Figure 2.10. Pd(0)-Catalyzed Alkoxycarbonylation of Hydroxyl Functionalized Propargyl Oxiranes

Propargyl oxiranes also give diaseteroselective alkynylation reaction with terminal alkynes in basic medium with the help of Pd(0)/Cu(I) system. An optically active anti-substituted allene could be synthesized (Yoshida et al., 2007) (Figure 2.11)

Figure 2.11. Alkynylation of Propargyl Oxirane

The Pd(0)-catalyzed reaction of propargyl oxiranes with arylboronic acids yield α -allenols with *anti*-diastereoselectivity exclusively (Yoshida et al., 2005) (Figure 2.12).

Figure 2.12. Diastereoselective Arylation of Propragyl Oxiranes

2.2. Palladium-Catalyzed Reactions of Allylic Compounds

Beside the propargyl compounds allylic compounds are also reactive towards S_N2 ' and S_N2 type reactions in the presence of palladium. Allylic compounds react with palladium to undergo cross-coupling with main group organometallic compounds. Substitution usually occurs mainly at less hindered position of allylic terminal (Figure 2.13) (Tsuji, 2000)

Figure 2.13. Mechanism of Transmetallation of Main Group Metals with π -Allylpalladium.

Murahashi and co-workers (Murahashi et al., 1993) demonstrated that allyl phosphates react with carbon monoxide in the presence of alcohols over a palladium catalyst providing β , γ -unsaturated esters in high yields with excellent stereoselectivities (Figure 2.14).

Figure 2.14. Palladium-Catalazed Alkoxycarbonylation of Allyl Phosphates

Enantiospecific 1,4-addition (S_N2 ') of arylboronic acid to allylic acetates via Pd(II) catalysis was reported by Ohmiya et. al. in 2008 (Figure 2.15).

Figure 2.15. S_N2' Type Stereoselective Substitution of Allylic Acetates with Arylboronic Acid

In 2002, a highly regio-selective palladium-catalyzed reaction of allylic bromides with benzyl Grignard reagents was reported by Rosales and co-workers (Figure 2.16). The polyene derivatives were obtained with superior yield and regioselectivity (Rosales et al., 2002).

Figure 2.16. Palladium-Catalyzed Synthesis of Polyene Derivatives with Grignard Reagents.

Alkenyloxiranes also afford nucleophilic 1,4- or 1,2-addition products when reacted in the presence of a Pd(0) catalyst. Mostly the 1,4-addition product forms regioselectively with the help of the electronic effect of epoxide oxygen atom (Figure 2.17).

Figure 2.17. 1,4- and 1,2-Addition of Allylic Oxiranes

Regioselective carbonylation of isoprene oxide in the alcohol medium with an added Pd- π -allyl complex under a high pressure of CO atmosphere afforded β , γ -unsaturated δ -hydroxyesters are obtained (Figure 2.18)

Figure 2.18. Alkoxycarbonylation of Allyl Epoxide

Palladium-catalyzed coupling reactions of allyl epoxides with organoboronic acids were performed by using a Pd-pincer catalyst. The reactions proceeded under mild conditions, affording arylated allyl alcohols regioselectively (Kjellgren et al., 2005) (Figure 2.19).

Figure 2.19. Arylation of Allyl Oxiranes

2.3. Palladium(0)-Catalyzed Reactions of Conjugated Enynes

The allylic electrophiles bearings a conjugated alkynyl moiety, shows exceptional performance in nucleophilic reactions.

In 2011 our research group reported that Pd(0)-catalyzed alkoxycarbonylation (Akpınar et al., 2011, Karagöz, et al., 2014) and arylation (Üçüncü et al., 2011) of (*Z*) and (E) configured 2,4-enyne carbonates with arylboronic acids yielded vinylallenes in high yields. Alkoxycarbonylation reaction afforded exclusively (*E*)-configured 2,3,5-trienoates with the intermediacy of the σ - vinylallenyl palladium complex (Figure 2.20).

Figure 2.20. Arylation and Alkoxycarbonylation of (E) and (Z)-Configured 2,4-Enyne Carbonates

Our research group also reported Pd(0)-catalyzed alkoxycarbonylation of 2,4enyne oxiranes.which yielded 7-hydroxy-2,3,5-trienoates in good yields with up to 97:3 diastereomeric ratio (Kuş et al., 2015) (Figure 2.21).

Figure 2.21. Alkoxycarbonylation of 2,4-Enyne Oxiranes

In the light of view of these literature work we decided to investigate Pd(0)catalyzed arylation of 2,4-enyne oxiranes to result the formation of aryl bearing vinylallenols (Figure 2.22).

Figure 2.22. Pd(0)-Catalyzed Arylation of 2,4-Enyne Oxiranes

CHAPTER 3

EXPERIMENTAL STUDY

3.1. General Methods

The synthesis of all compounds performed under argon gas. The prepared substrates and products were purified over silica gel by column or flash chromatography with hexane or hexane/ethyl acetate as eluent system. Silica gel material used for the purification of enyne oxirane substrates had a particle size range of 60-200 mesh and treated by NEt₃ before use. It must be noted that the column chromatography of the substrate 1 on an untreated silica gel always resulted in decomposition. All other column purifications were performed on silica gel 60 (35-70 µm). All substrates appeared either colorless or pale yellow oils. The Pd₂(dba)₃.CHCl₃ (Ukai, et al. 1974) and Pd(PPh₃)₄ (Inorganic Synthesis, Vol. 28, 2009, 107) complexes were synthesized in the laboratory. Yields of crude mixtures and purity of prepared substrates were determined by quantitative ¹H -NMR technique, using *p*-anisaldehyde as the internal standard (Hays and Thompson, 2009). The pure samples were analyzed via: GC-MS (Thermo/ISQ) equipped with Thermo TR-5MS (30 m, 0.25mm ID) column; nuclear magnetic resonance (NMR) spectra were acquired on Varian VnmrJ 400 spectrometer, CDCl3 and C6D6 were the solvents used as the NMR solvents and chemical shifts were reported in δ (ppm); a Perkin-Elmer Spectrum 100 was used to achieve infra-red spectra by ATR method with dry samples; high-resolution mass spectral analyses were performed at the Dortmund University of Technology Mass Spectrometry Laboratory on a Thermo Electron system.

DMF was dried by refluxing over CaH₂ overnight, distilled under reduced pressure (20 mmHg, 80 °C) and stored over molecular sieve 4Å. DCM was dried over activated molecular sieve 3Å for 48 hours. Toluene was dried over CaH₂ and stored on molecular sieve 3Å. Et₂O and THF were distilled from benzophenone-ketyl under argon prior to use (Armarego and Chai, 2003).

3.2. Synthesis of Substrates

3.2.1. Synthesis of (Z)-1a

Figure 3.1. Synthesis of enyne aldehyde S5

To the mixture of commercially available, (Z)-pent-2-en-4-yn-1-ol (**S1**) (1.92 g, 20 mmol) and 3,4-dihydropyran (2.2 mL, 24 mmol) was added *p*-toluenesulfonic acid (44 mg, 0.02 mmol) and then stirred for 45 min at room temperature (RT). Then, the mixture was diluted with 40 mL of dry THF under Ar and cooled to -78 °C. At that temperature, 24 mmol of BuLi (1.6 M in hexane, 15 mL) was added dropwise via a syringe. After stirring the reaction mixture for 1 h at 0 °C, butyl bromide (4.3 mL, 40 mmol) was added and the mixture was stirred for 5 days at reflux. The reaction was quenched by the addition of saturated NH₄Cl(*aq*) solution and the reaction solution was extracted with Et₂O. The organic phase was washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was used in the following step without any further purification (Betzer, *et al.* 1997).

To a solution of the preceding crude compound (S3) in methanol (60 mL) ptoluenesulfonic acid (1.2 g, 6 mmol) was added and the resulting solution was stirred at RT for 45-60 min. Then, triethylamine was added (1.8 mL), and the solution was concentrated under reduced pressure. The mixture was taken into DCM and washed with water. The combined extracts were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel gave the enynol S4 (hexane-EtOAc, yield: 2.43 g, 80%), (Ukai, *et al.* 1974). To the solution of **S4** (\approx 17 mmol) in 60 mL of dry diethyl ether, activated MnO₂ (30 g, 0.3 mol) was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (**S5**) was used in the next step (Betzer, *et al.* 1997).

Figure 3.2. Synthesis of (Z)-1a

A hexane solution of BuLi (4.8 mL, 12 mmol, 2.5 M) was added dropwise to a solution of isopropyl(triphenyl)phosphonium iodide (4.32 g, 10 mmol) in THF (30 mL) at 0 °C, and stirred for further 1 h. The enyne aldehyde **S5** (1.8 g, 12 mmol), was added dropwise to the resulting mixture and stirred for 1 h, at RT. The reaction was quenched by the addition of saturated NH₄Cl(*aq*) solution, and the organic layer was extracted with diethyl ether. The combined extracts were dried over MgSO₄, and chromatographed on a silica gel column to obtain pure **S6** (hexane/EtOAc, yield: 1.65 g, 78%), (Ming-Yuan, *et al.* 2004).

To a solution of **S6** (352 mg, 2 mmol) in DCM (30 mL) was added 12 mL solution of Na₂CO₃(*aq*) (25%) followed by 3.4 mmol (587 mg) *m*-chloroperbenzoic acid in portions at 0 0 C. The mixture was stirred at the same temperature and monitored with TLC until the reactant was consumed completely. At the end of the epoxidation process, the mixture was extracted with DCM, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was chromatographed on NEt₃pretreated short silica gel column which afforded the enyne oxirane (*Z*)-**1a** as a colorless oil (hexane-EtOAc, yield: 269 mg, 70%).

3.2.2. Synthesis of (Z)-1b and 1c

Figure 3.3. Synthesis of (**Z**)-1b and 1c

To a solution of NaH (525 mg, 22 mmol) in THF (50 mL) was added triethyl phosphonoacetate (4.8 mL, 24 mmol) at 0 °C, and the mixture stirred 1 h, at RT. Subsequently, to the reaction mixture was added **S5** (3 g, 20 mmol) dropwise at -78 °C and stirred for 1 h, at RT. The reaction was terminated by the addition of aqueous NH₄Cl(*aq*) solution and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure to give E/Z isomers with the isomeric ratio of 95:5. The crude mixture was purified on silica gel column to obtain **S7** in pure isomeric form (hexane-EtOAc, yield: 3.17 g, 72%), (Urabe, *et al.* 1997).

A DIBALH (44 mL, 44 mmol, 1.0 M in cyclohexane) solution was added dropwise to the solution of **S7** (3.85 g, 17.5 mmol) in DCM (120 mL) at -78 °C. After the reaction mixture was stirred for 4 h at the same temperature, 1 M HCl(*aq*) solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding **S8** compound (hexane-EtOAc, yield: 2.65 g, 85%), (Kajikawa, *et al.* 2009).

The epoxidation of **S8** (356 mg, 2 mmol) and the isolation of the product (Z)-1c was performed as specified for (Z)-1a (hexane-EtOAc, yield: 233 mg, 60%). As for the alkylation of the pendant hydroxyl group of (Z)-1c, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of (Z)-1c (1 mmol) in DMF (1 mL/mmol) at

-20 °C. The mixture was stirred for further 30 min before the addition of methyl iodide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of MeOH (5 mL) and brine (5 mL), and extracted with DCM. The combined extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over NEt₃-pretreated short silica gel column to afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (*Z*)-**1b** (hexane-EtOAc, yield: 87%), (Caldentey, *et al.* 2011).

3.2.3. Synthesis of hydroxyl tethered (*Z*)-2,4-enyne oxiranes

Figure 3.4. Synthesis of S17

To a solution of alkynoic ester **S10** (40 mmol) and acetic acid (240 mmol, 13.8 mL or 512 mmol, 20.8 mL when **S10** is ethyl 4, 4-dimethylpent-2-ynoate and ethyl 3-cyclohexylpropiolate) was added sodium iodide (9.6 g, 64 mmol or 19.2 g, 128 mmol when **S17** is ethyl 4,4-dimethylpent-2-ynoate and ethyl 3-cyclohexylpropiolate) and stirred for 3 h at 115 °C. After completion of the reaction, the brown mixture was transferred while hot to a separatory funnel containing water (10 mL/mmol of the ester substrate). The reaction flask was washed with a mixture of water (5 mL) and diethyl

ether (30 mL/mmol of the ester substrate). The washings were combined in a separatory funnel. The phases were separated and the aqueous phase was extracted with diethyl ether. The combined organic phases were treated sequentially with saturated aqueous NaHCO₃(aq), Na₂S₂O₃(aq) (1 M), and brine and then dried over MgSO₄, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (hexane-EtOAc, yields; R^2 = H, 7.6 g, 84%; R^2 = Me, 5.97 g, 93%; R²= t-Bu, 9.6 g, 85%; R²= Cy, 10.6 g, 86%, R²= Bu, 9.8 g, 88%;), (Piers, et al. 1994). A mixture of S11 (30 mmol), PdCl₂(PPh₃)₂ (210.6 mg, 0.3 mmol, 1% mol of Pd), and CuI (29 mg, 0.15 mmol, 0.5% mol of Cu) in 140 mL of Et₃N was stirred for 10 min at RT under Ar, and then, to this mixture was added a terminal alkyne (36 mmol). The mixture was stirred at RT for 3h. At the end of the reaction, water was added to the resulting mixture and then extracted with Et2O. The combined organic layers were dried over MgSO₄. The solvent was evaporated in vacuo and the product S12 was purified by column chromatography on silica gel (hexane-EtOAc, yields: R^1 = Bu, R^2 = H, 4.97 g, 92%; $R^1 = Ph$, $R^2 = Me$, 5.97 g, 93%; $R^1 = Cy$, $R^2 = Me$, 5.94 g, 90%; $R^1 = t$ -Bu, $R^2 = Me$, 4.95 g, 85%; R^1 = Bu, R^2 = t-Bu 6.23 g, 88%, R^1 = Bu, R^2 = Bu 6.30 g, 90%, R^1 = Bu, R^2 = Cy, 6.21 g, 79%, $R^1 = H$, $R^2 = Me \% 90$, $R^1 = TMS$, $R^2 = Me$, 4.90 g, 81%).

A DIBALH (~3 eq, 1.0 M in cyclohexane) solution was added dropwise to the solution of **S12** in DCM (~6 mL/mmol **S12**) at -78 °C. After the reaction mixture was stirred for 4 h at the same temperature, 1 M HCl(*aq*) solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding **S13** compound (hexane-EtOAc; yields of **S13**: R¹= Bu, R²= H, 3.14 g, 91%; R¹= Bu, R²= Cy, 4.89 g, 89%, R¹= Cy, R²= Me, 3.60 g, 81%; R¹= *t*-Bu, R²= Me, 3.57 g, 94%; R¹= Bu, R²= *t*-Bu, 4.2 g, 88%; R¹= Ph, R²= Me, 3.87 g, 90%, R¹= H, R²= Me %90, R¹= Bu, R²= Bu 5.70 g, 78%, R¹= TMS, R²= Me, 87%), (Kajikawa, *et al.* 2009).

To the solution of **S13** (\approx 20 mmol) in 70 mL of dry diethyl ether, activated MnO₂ (35.1 g, 0.35 mol) was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (**S20**) was used in the next step (Betzer, *et al.* 1997).

To a solution of NaH (1.1 eq) in THF (2.5 mL/mmol **S14**) was added triethyl phosphonoacetate (1.2 eq) at 0 °C and the mixture stirred for 1 h, at RT. Subsequently, to

the reaction mixture was added **S14** (6.5-10 mmol) dropwise at -78 °C, and stirred for 1 h, at RT. The reaction was terminated by the addition of saturated NH4Cl(*aq*) and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure to obtain **S15** with *E/Z* isomeric ratios varying in the range of 97:3 to 95:5 (Urabe, *et al.* 1997). The crude mixture was purified on silica gel column (hexane-EtOAc) to obtain **S15** in pure isomeric form (yields of **S15** R¹= Bu, R²= H, 1.48 g, 72%; R¹= Bu, R²= Cy, 1.4 g, 68%; R¹= Cy, R²= Me, 1.97 g, 80%; R¹= *t*-Bu, R²= Me, 1.80 g, 82%; R¹= Bu, R²= *t*-Bu, 2.12 g, 81%; R¹= Ph, R²= Me, 2.04 g, 85%, R¹= Bu, R²= Bu 5.50 g, 81%, R¹= H, R²= Me %70, R¹= TMS, R²= Me, 3.52 g, 90%).

A DIBALH (~3 eq, 1.0 M in cyclohexane) solution was added dropwise to the solution of **S15** in DCM (~6 mL/mmol **S15**) at -78 °C. After the reaction mixture was stirred for 4 h at the same temperature, 1 M HCl(*aq*) solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding **S16** compound (hexane-EtOAc; yields of **S16**: R¹= Bu, R²= H, 1.12 g, 95%; R¹= Bu, R²= Cy, 1.1 g, 94%; R¹= Cy, R²= Me, 1.55 g, 95%; R¹= t-Bu, R²= Me, 1.39 g, 95%; R¹= Bu, R²= t-Bu, 1.6 g, 90%; R¹= Bu, R²= Bu 3.23 g, 71%, R¹= Ph, R²= Me, 1.6 g, 92%, R¹= H, R²= Me %85, R¹= TMS, R²= Me, 2.82 g, 76%), (Kajikawa, *et al.* 2009).

The epoxidation of **S16** (2 mmol) and isolation of the corresponding **S17** products were performed as specified for (*Z*)-**1a** (yields of **S17**: R^1 = Bu, R^2 = H, 0.19 g, 55%; R^1 = Bu, R^2 = Cy, 0.26 g, 49%; R^1 = Cy, R^2 = Me, 0.25 g, 57%; R^1 = *t*-Bu, R^2 = Me, 0.25 g, 65%; R^1 = Bu, R^2 = *t*-Bu, 0.24 g, 50%; R^1 = Bu, R^2 = Bu 1.71 g, 49%, R^1 = Ph, R^2 = Me, 0.26 g, 60%, R^1 = H, R^2 = Me %60, R^1 = TMS, R^2 = Me, 1.52 g, 43%).

Figure 3.5. Synthesis of (Z)-1d, e, f, g, h, I, j, k, l

As for the alkylation of the pendant hydroxyl group of **S17**, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of **S17** (1 mmol) in DMF (1 mL/mmol **S17**) at -20 °C. The mixture was stirred for further 30 min before the addition of methyl iodide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of MeOH (5 mL) and brine (5 mL), and extracted with DCM. The combined extracts were dried over MgSO4, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over NEt₃-pretreated short silica gel column to afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (hexane-EtOAc, yields: (*Z*)-**1d**, 85%; (*Z*)-**1e**, 84%; (*Z*)-**1f**, 87%; (*Z*)-**1g**, 90%; (*Z*)-**1h**, 90%; (*Z*)-**1i**, 85%; (*Z*)-**1j**, 87%; (*Z*)-**1k**, 83%, (*Z*)-**1l**, 79%,) (Caldentey, *et al.* 2011).

3.2.5. Synthesis of (*Z*)-1m and (*Z*)-1n

Figure 3.6. Synthesis of (Z)-1m and (Z)-1n

A pendant hydroxyl group of (Z)-1c (0.9 - 0.12 mmol), *t*-butyldimethylsilyl chloride (0.2 g, 1.3 mmol), and 4-dimethylaminopyridine (DMAP) (15 mg, 0.12 mmol) in CH₂Cl₂ (12 mL) was stirred at RT for 24 h. Then, the reaction was terminated by water and the content of the reaction flask was extracted with DCM. The organic solution was dried with MgSO₄, filtered, and evaporated. The residue was chromatographed over NEt₃-pretreated short silica gel column to afford silylated enyne oxiranes as a colorless oil (hexane-EtOAc, yields; (Z)-1m 79%, (Z)-1n 72%) (Schmidt, *et al.* 2002).

3.2.6. Synthesis of (Z)-10

Figure 3.7. Synthesis of (Z)-10

As for the alkylation of the pendant hydroxyl group of (Z)-1c, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of (Z)-1c (1 mmol) in DMF (1 mL/mmol (Z)-1c) at -20 °C. The mixture was stirred for further 30 min before the addition of methyl iodide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of MeOH (5 mL) and brine (5 mL), and extracted with DCM. The combined extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over NEt₃-pretreated short silica gel column to afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (hexane-EtOAc, yields: (Z)-1o, 83%).

3.2.7. Synthesis of (*Z*)-1p

Figure 3.8. Synthesis of (*Z*)-1p

To the dry Et₂O (15 mL) solution of **S7** (1.1 g, 5 mmol) was added an ethereal (15 mL) solution of 2.1 eq. MeMgI (5.25 mL, 10.5 mmol, 2 M) dropwise at -50 °C, and then the mixture stirred for 6 h at the same temperature then mixture was allowed to warm to 0 °C and quenched by the addition of 30 mL of saturated NH₄Cl(*aq*) solution before extracting with Et₂O. The combined extracts were dried over MgSO₄, filtered, and evaporated. The resulting residue was purified on a silica gel column to afford **S19** (hexane-EtOAc, yield: 0.49 g, 80%).

The epoxidation of **S19** (412 mg, 2 mmol), -and isolation of the product **S20** was performed as specified for (**Z**)-1a (hexane-EtOAc, yield: 0.27 g, 60%).

The hydroxyl group of **S20** (222 mg, 1.0 mmol) was methylated as described above furnishing the enyne oxirane (*Z*)-**1p** in 90% yield (0.21 g).

3.2.8. Synthesis of (*Z*)-1r

Figure 3.9. Synthesis of (Z)-1r

To a stirred solution of diphenylethylphosphine oxide (4.6 g, 20 mmol) in dry THF (70 mL) was added BuLi (2.5 M in hexane, 8.8 mL, 22 mmol) dropwise at 0 °C and stirred for a further 30 min. The solution was cooled to -78 °C and then the dienyne ester **S18'** (3.88 g, 20 mmol) was added dropwise. The solution was allowed to warm to ambient temperature and subsequently stirred overnight. The saturated NH₄Cl(*aq*) solution was added and subsequently its THF content was removed under reduced pressure. The aqueous residue was diluted with brine (20 mL) and extracted with DCM. The combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure. The product **S26** was purified by column chromatography on silica gel (hexane-EtOAc, yield: 1.9 g, 25%), (Buss, *et al.* 1985).

To a stirred solution of **S26** (1.9 g, 5 mmol) in ethanol (50 mL) was added NaBH4 (189 mg, 5 mmol) in one portion and stirred for a further 8h at ambient temperature. The reaction afforded **S27** enriched in *threo* form. Saturated NH₄Cl(*aq*) (15 mL) was added and subsequently its ethanol content was removed under reduced pressure. The aqueous mixture was diluted with brine (20 mL), and- extracted with DCM. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The product **S27** was isolated in pure *threo* form by column chromatography on silica gel (hexane-EtOAc, yield: 1.31 g, 69%), (Buss, *et al.* 1985).

To a stirred solution of **S27** (1.31 g, 3.45 mmol) in DMF (50 ml) was added NaH (60% dispersion in oil; 138 mg, 3.45 mmol) in one portion at ambient temperature and

stirred for a further 3 h. The reaction was quenched by the addition 25 mL of water and 15 mL of brine and subsequently extracted with Et₂O. The combined extracts were washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The product **S28** was purified by column chromatography on silica gel (hexane, yield: 330 mg, 59%), (Buss, *et al.* 1985). The epoxidation of **S28** (162 mg, 1 mmol) and isolation of the product (*Z*)-**1r** was performed (Hexane-EtOAc, yield: 35.6 mg, 20%).

3.2.9. Synthesis of (*Z*)-1s

Figure 3.10. Synthesis of (Z)-1s

A mixture of 3 mmol (471 mg) trimethylsulfonium bromide, 12 mmol (1.65 g) of K₂CO₃ and 0.48 mmol (8.64 mg) H₂O in 5 ml of acetonitrile was stirred for 5 min at 60 °C. With vigorous stirring, a solution of 2 mmol (300 mg) **S5** in 3 ml of acetonitrile was added dropwise and stirred for further 2h at 60 °C. After cooling to room temperature the mixture was filtered and 50 ml of Et₂O was added to filtrate and filtered again. After washing of filtrate with pentane, solvent was removed in vacuo. The crude mixture was chromatographed on NEt₃-pretreated short silica gel column which afforded the enyne oxirane (*Z*)-**1s** as a colorless oil (hexane-EtOAc, yield: 82 mg, 25%) (Corey and Chaykovsky, 1965).

3.2.10. Synthesis of (*Z*)-1t

Figure 3.11. Synthesis of (Z)-1t

PBr₃ (1.4 mL, 13.8 mmol) was added dropwise to a mixture of DMF (1.2 mL, 15.3 mmol) and chloroform (10 mL) at 0 °C and then the resulting mixture was stirred for 1 h. Subsequently, 0.5 g of cyclohexanone (6 mmol) was added dropwise and stirred for 8 h, at RT. The reaction was terminated with water, neutralized with the addition of solid NaHCO₃, and extracted with DCM. The extract was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The purification on short silica gel column provided the compound **S21** (hexane-EtOAc, 0.92 g, 81%), (Lian, *et al.* 2006).

A mixture of **S21** (945 mg, 5 mmol), Pd(PPh₃)₄ (123 mg, 0.1 mmol, 2 mol % of Pd), and CuI (21 mg, 0.1 mmol, 2 mmol % of Cu) in 10 mL of Et₃N was stirred for 10 min at RT followed by the addition of 1-hexyne (0.5 g, 6 mmol). After being stirred for 3 h, at RT, water was added and extracted with Et₂O. The combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to obtain endocyclic enyne aldehyde **S22** (hexane-EtOAc, 0.84 g, 90%), (Lian, *et al.* 2006).
The conversion of S22 (840 mg, 4.42 mmol) to dienyne ester S23 was performed by HWE reaction as described above (hexane-EtOAc, 0.96 g, 84%). Further successive synthetic procedures; which involved the reduction of the ester S23 (960 mg, 3.7 mmol) to the enyne alcohol S24 (730 mg, 91% yield), the epoxidation of S24 (436 mg, 2 mmol) to S25 (260 mg, 55% yield), and finally methyl derivatization of hydroxyl group of S25 (260 mg, 1.1 mmol) to obtain (*Z*)-1t (0.22 g, 90%) were all conducted as described above.

3.2.11. Synthesis of (Z)-1v

Figure 3.12. Synthesis of (Z)-1v

To the solution of **S1** (50 mmol) in 60 mL of dry diethyl ether, activated MnO_2 (30 g, 0.3 mol) was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (**S29**) was used in the next step (Betzer, *et al.* 1997).

To a solution of NaH (1.1 eq) in THF (2.5 mL/mmol) was added triethyl phosphonoacetate (1.2 eq) at 0 °C and the mixture stirred for 1 h, at RT. Subsequently, to the reaction mixture was added **S29** (~50 mmol) dropwise at -78 °C, and stirred for 1 h, at RT. The reaction was terminated by the addition of saturated NH₄Cl(*aq*) and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure to obtain **S30** with E/Z isomeric ratio 95:5 (Urabe, *et al.* 1997). The crude mixture was purified on silica gel column (hexane-EtOAc) to obtain **S30** in pure isomeric form (%74 yield).

A DIBALH (~3 eq, 1.0 M in cyclohexane) solution was added dropwise to the solution of **S30** in DCM (~6 mL/mmol **S30**) at -78 °C. After the reaction mixture was stirred for 4 h at the same temperature, 1 M HCl(*aq*) solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding **S31** compound (hexane-EtOAc; yields of **S31** %70).

To the mixture **S31** (1.92 g, 20 mmol) and 3,4-dihydropyran (2.2 mL, 24 mmol) was added *p*-toluenesulfonic acid (44 mg, 0.02 mmol) and then stirred for 45 min at room temperature (RT). Then, the mixture was diluted with 40 mL of dry THF under Ar and cooled to -78 °C. At that temperature, 24 mmol of *n*-BuLi (1.6 M in hexane, 15 mL) was added dropwise via a syringe. After stirring the reaction mixture for 1 h at 0 °C, methyl chloroformate (40 mmol) was added and the mixture was stirred for overnight at room temperature. The reaction was quenched by the addition of saturated NH₄Cl(*aq*) solution and the reaction solution was extracted with Et₂O. The organic phase was washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was used in the following step without any further purification (Betzer, *et al.* 1997).

To a solution of the preceding crude compound (**S33**) in methanol (60 mL) *p*-toluenesulfonic acid (1.2 g, 6 mmol) was added and the resulting solution was stirred at RT for 45-60 min. Then, triethylamine was added (1.8 mL), and the solution was concentrated under reduced pressure. The mixture was taken into DCM and washed with water. The combined extracts were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel gave the enynol **S34** (hexane-EtOAc, yield: 2.43 g, 80%), (Ukai, *et al.* 1974).

Further successive synthetic procedures; which involved the epoxidation of **S34** (360 mg, 2 mmol) to **S35** (195 mg, 50% yield), and finally methyl derivatization of hydroxyl group of **S35** (195 mg, 1.0 mmol) to obtain (*Z*)-**1v** (190 mg, 90%) were all conducted as described above.

3.2.12. Synthesis of (*E*)-1b

Synthesis of (*E*)-**1b** was performed starting from (*E*)-configured **S1** following the same method employed for the synthesis of (*Z*)-**1b**. Yields: (R^1 = Bu, R^2 = Me): (*E*)-**S7**, 1.12 g, 79%; (*E*)-**S17**, 0.83 g, 91%; (produced from 4.6 mmol of (*E*)-**S8**), 0.43 g, 47%; (*E*)-**1b** (produced from 2.2 mmol of (*E*)-**S17**), 0.40 g, 88%.

3.3. Characterization of Substrates

(Z)-1a: ¹H NMR (400 MHz, CDCl₃) δ : 5.38 (dq, *J*= 8.9, 1.5 Hz, 1H), 3.65 (d, *J*= 8.9 Hz, 1H), 2.34 (t, *J*= 6.8 Hz, 2H), 1.87 (s, 3H), 1.56-1.36 (m, 4H), 1.35 (s, 3H), 1.27 (s, 3H), 0.9 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 130.7, 125.5, 95.9, 79.1, 62.6, 60.5, 30.9, 24.9, 24.2, 22.1, 19.6, 19.3, 13.7.

(Z)-1b: ¹H NMR (400 MHz, CDCl₃) δ : 5.23 (dd, *J*= 8.9, 1.2 Hz, 1H), 3.74 (dd, *J*= 8.9, 2.4 Hz, 1H), 3.71 (dd, *J*= 11.6, 3.2 Hz, 1H), 3.40 (dd, *J*= 11.6, 5.7 Hz, 1H), 3.40 (s, 3H), 3.08 (ddd, *J*= 5.7, 3.2, 2.4 Hz, 1H), 2.35 (t, *J*= 7.2 Hz, 2H), 1.87 (d, *J*= 1.2 Hz, 3H), 1.55-1.40 (m, 4H), 0.92 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 131.5, 125.7, 95.9, 78.7, 72.5, 59.2, 58.3, 54.2, 30.7, 23.8, 21.9, 19.1, 13.6.

(**Z**)-1c: ¹H NMR (400 MHz, CDCl3) δ : 5.25 (dd, J= 9.0, 1.4 Hz, 1H), 3.96 (dd, J= 12.6, 2.3 Hz, 1H), 3.87 (dd, J= 9.0, 2.3 Hz, 1H), 3.68 (dd, J= 12.6, 4.1 Hz, 1H), 3.11-3.09 (m, 1H), 2.36 (t, J= 7.0 Hz, 2H), 1.88 (d, J= 1.4 Hz, 3H), 1.56-1.39 (m, 4H), 0.92 (t, J= 7.2 Hz, 3H); ¹³C NMR (100 MHz, C6D6) δ : 132.5, 124.8, 95.7, 79.1, 61.1, 59.5, 53.7, 30.6, 23.5, 21.8, 19.0, 13.3.

(**Z**)-1d: ¹H NMR (400 MHz, CDCl3) δ: 5.23 (d, J=9.0 Hz, 1H), 3.74-3.73 (m, 1H), 3.71 (t, J=4.0 Hz, 1H), 3.41 (s, 3H), 3.40 (dd, J=12.0, 8.0 Hz, 1H), 3.08 (ddd, J=5.7, 3.1, 2.2 Hz, 1H), 2.0 (s, 3H), 1.87 (d, J=1.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl3) δ 131.6, 125.8, 91.3, 77.8, 72.6, 59.2, 58.4, 54.1, 23.8.

(Z)-1e: ¹H NMR (400 MHz, CDCl₃) δ : 7.46-7.44 (m, 2H), 7.34-7.32 (m, 3H), 5.38 (dq, *J*= 9.0, 1.5 Hz, 1H), 3.84 (dd, *J*= 9.0, 2.4 Hz, 1H), 3.74 (dd, *J*= 11.7, 3.2 Hz, 1H), 3.43 (dd, *J*= 11.7, 6.0 Hz, 1H), 3.42 (s, 3H) 3.14 (ddd, *J*= 6.0, 3.2, 2.4 Hz, 1H), 2.00 (d, *J*= 1.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 133.1, 131.5, 128.5, 128.3, 124.9,122.9, 94.5, 87.3, 72.5, 59.2, 58.5, 54.1, 23.4.

(**Z**)-1f: ¹H NMR (400 MHz, C₆D₆) δ : 5.12 (dd, *J*= 8.5, 1.3 Hz, 1H), 3.95 (dd, *J*= 8.5, 2.3 Hz, 1H), 3.34 (dd, *J*= 11.5, 3.1 Hz, 1H), 3.16 (dd, *J*= 11.5, 5.5 Hz, 1H), 3.09 (s, 3H), 2.90 (ddd, *J*= 5.5, 3.1, 2.3 Hz, 1H), 1.68 (d, *J*= 1.3 Hz, 3H), 1.12 (s, 9H); ¹³C NMR (100 MHz, C₆D₆) δ : 132.8, 124.5, 103.4, 77.7, 72.4, 58.5, 58.0, 53.7, 30.6, 27.9, 23.4.

(**Z**)-1g: ¹H NMR (400 MHz, C₆D₆) δ : 5.14 (dq, *J*= 9.0, 1.4 Hz, 1H), 4.01 (dd, *J*= 9.0, 2.0 Hz, 1H), 3.35 (dd, *J*= 11.3, 3.2 Hz, 1H), 3.16 (dd, *J*= 11.3, 5.5 Hz, 1H), 3.09 (s, 3H), 2.91 (ddd, *J*= 5.5, 3.2, 2.0 Hz, 1H), 2.34 (m, 1H), 1.71 (d, *J*= 1.4 Hz, 3H), 1.66-1.03 (m, 10H); ¹³C NMR (100 MHz, C₆D₆) δ : 132.7, 124.7, 99.5, 79.2, 72.4, 58.5, 58.1, 53.7, 32.5, 32.4, 29.6, 25.7, 24.6, 23.5.

(**Z**)-**1h:** ¹H NMR (400 MHz, CDCl₃) δ : 5.33 (dt, J=9.1, 2.0 Hz, 1H), 3.88 (dd, J=12.1, 3.1 Hz, 1H), 3.81 (dd, J=9.2, 2.2 Hz, 1H), 3.75 (dd, J= 11.7, 4.3 Hz, 1H), 3.40 (s, 3H), 3.03-3.01 (m, 1H), 1.92 (d, J= 0.8 Hz, 3H), 0.02 (s, 9H) ¹³C NMR: (100 MHz, CDCl₃) δ : 133.8, 129.6, 100.2, 95.5, 62.8, 61.4, 60.3, 54.1, 21.9, 0.1.

(**Z**)-1i: ¹H NMR (400 MHz, C₆D₆) δ : 5.10 (dq, *J*= 8.9, 1.0 Hz, 1H), 3.84 (dd, *J*= 8.9, 2.0 Hz, 1H), 3.25 (dd, *J*= 11.5, 3.0 Hz, 1H), 3.06-2.99 (m, 1H), 3.05 (s, 3H), 2.83 (ddd, *J*= 5.5, 3.0, 2.0 Hz, 1H), 2.74 (s, 1H), 1.57 (d, *J*= 1.0 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆) δ : 136.0, 122.9, 82.4, 81.5, 72.2, 58.4, 58.0, 53.2, 22.7.

(**Z**)-1j: ¹H NMR (400 MHz, CDCl₃) δ : 5.75 (dtd, *J*= 10.8, 2.4, 0.8 Hz, 1H), 5.44 (dd, *J*= 10.8, 8.8 Hz, 1H), 3.80 (dd, *J*= 8.8, 2.2 Hz, 1H), 3.74 (dd, *J*= 11.2, 2.8 Hz, 1H), 3.44-3.38 (m, 1H), 3.41 (s, 3H), 3.11 (dt, *J*= 5.4, 2.6 Hz, 1H), 2.36 (td, *J*= 6.8, 2.3 Hz, 2H), 1.58-1.41 (m, 4H), 0.92 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 137.2, 115.4, 97.1, 72.3, 59.2, 58.2, 53.3, 50.4, 30.6, 21.9, 19.2, 13.5.

(Z)-1k: ¹H NMR (400 MHz, CDCl₃) δ : 5.24 (d, *J*= 8.9 Hz, 1H), 3.81 (dd, *J*= 8.9, 2.4 Hz, 1H), 3.74 (dd, *J*= 11.2, 3.1 Hz, 1H), 3.42-3.38 (m, 1H), 3.41 (s, 3H), 3.10 (ddd, *J*= 5.6, 3.1, 2.4 Hz, 1H), 2.39 (t, *J*= 7.2 Hz, 2H), 1.59-1.41 (m, 4H), 1.11 (s, 9H), 0.93 (t, *J*= 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 140.2, 127.4, 97.4, 72.7, 59.2, 58.5, 54.7, 36.1, 30.8, 28.9, 21.9, 19.2, 13.6.

(**Z**)-**11:** ¹H NMR (400 MHz, CDCl₃) δ : 5.21 (d, *J*= 8.7 Hz, 1H), 3.77 (dd, *J*= 8.7, 2.4 Hz, 1H), 3.72 (dd, *J*= 11.5, 3.1 Hz, 1H), 3.38 (dd, *J*= 11.5, 5.7 Hz, 1H), 3.40 (s, 3H), 3.07 (dt, *J*= 5.7, 2.4 Hz, 1H), 2.37 (t, *J*= 7.2 Hz, 2H), 2.02-1.97 (m, 1H), 1.76-1.20 (m, 14H), 0.92 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.3, 129.1, 97.0, 76.7, 72.6, 59.2, 58.5, 54.3, 45.4, 31.7, 31.6, 30.8, 29.7, 26.2, 26.0, 22.0, 19.2, 13,6.

(Z)-1m: ¹H NMR (400 MHz, CDCl₃) δ : 5.22 (dd, *J*= 9.1, 1.5 Hz, 1H), 3.86 (dd, *J*= 12.1, 3.2 Hz, 1H), 3.76 (dd, *J*= 9.1, 2.4 Hz, 1H), 3.71 (dd, *J*= 12.1, 4.8 Hz, 1H), 3.00 (ddd, *J*= 4.8, 3.2, 2.4 Hz, 1H), 2.33 (t, *J*= 7.2 Hz, 2H), 1.86 (d, *J*= 1.5 Hz, 3H), 1.56-1.37 (m, 4H), 0.91 (t, *J*= 6.8 Hz, 3H), 0.89 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 131.9, 125.3, 95.7, 78.7, 63.0, 60.1, 54.3, 30.8, 25.8, 23.8, 22.0, 19.1, 18.3, 13.6, -5.3, -5.4.

(Z)-1n: ¹H NMR (400 MHz, CDCl₃) δ : 5.23 (d, J= 9.4 Hz, 1H), 3.89 (dd, J=12.1, 3.1 Hz, 1H), 3.80 (dd, J= 9.0, 2.3 Hz, 1H), 3.71 (dd, J=11.9, 4.5 Hz, 1H), 3.02 (dt, J=4.8, 2.5 Hz, 1H), 2.35 (t, J=7.0 Hz, 2H), 2.12 (t, J=7.4 Hz, 2H), 1.54-1.38 (m, 6H), 1.35-1.26 (m, 2H), 0.93 (t, J=7.6 Hz, 3H), 0.91 (s, 9H), 0.90 (t, J= 7.4 Hz, 3H), 0.09 (s, 6H). ¹³C NMR: (100 MHz, CDCl₃) δ : 131.2, 130.4, 96.2, 78.0, 63.1, 60.2, 54.3, 37.3, 30.8, 30.2, 25.8, 22.0, 19.2, 18.3, 13.9, 13.6, -5.3.

(Z)-10: ¹H NMR (400 MHz, C₆D₆) δ : 7.24–7.22 (m, 2H), 7.14– 7.10 (m, 2H), 7.05 (dt, J = 7.2, 1.6 Hz, 1H), 5.14 (dd, J = 8.9, 1.6 Hz, 1H), 4.35 (d, A of AB, J_{AB} = 12.1 Hz, 1H), 4.31 (d, B of AB, J_{AB} = 12.1 Hz, 1H), 4.01 (dd, J = 8.9, 2.2 Hz, 1H), 3.45 (dd, J = 11.4, 3.0 Hz, 1H), 3.25 (dd, J = 11.4, 5.5 Hz, 1H), 2.95 (ddd, J = 5.5, 3.0, 2.2 Hz, 1H), 2.06 (t, J = 6.8 Hz, 2H), 1.71 (d, J = 1.6 Hz, 3H), 1.29–1.16 (m, 4H), 0.7 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆) δ : 138.5, 132.8, 128.2, 127.4, 127.3, 124.8, 95.5, 79.1, 72.8, 70.0, 58.2, 53.8, 30.6, 23.5, 21.8, 18.9, 13.3.

(Z)-1p: ¹H NMR (400 MHz, CDCl₃) δ : 5.24 (dd, *J*= 8.9, 1.5 Hz, 1H), 3.69 (dd, *J*= 8.9, 2.3 Hz, 1H), 3.29 (s, 3H), 2.87 (d, *J*= 2.3 Hz, 1H), 2.36 (t, *J*= 6.7 Hz, 2H), 1.87 (d, *J*= 1.5 Hz, 3H), 1.56-1.39 (m, 4H), 1.18 (s, 3H), 1.15 (s, 3H), 0.92 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 132.2, 125.3, 95.8, 79.0, 74.0, 64.9, 53.4, 50.9, 30.9, 23.9, 22.4, 22.0, 21.1, 19.2, 13.7.

(**Z**)-1r: ¹H NMR (400 MHz, C₆D₆) δ : 5.16 (dd, *J*= 8.9, 1.4 Hz, 1H), 3.75 (dd, *J*= 8.9, 2.1 Hz, 1H), 2.64 (qd, *J*= 5.4, 2.1 Hz, 1H), 2.08 (t, *J*= 6.8 Hz, 2H), 1.73 (d, *J*= 1.4 Hz, 3H), 1.31-1.20 (m, 4H), 1.04 (d, *J*= 5.2 Hz, 3H), 0.72 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆) δ : 133.7, 123.9, 95.2, 79.3, 57.4, 55.2, 30.6, 23.4, 21.8, 19.0, 17.3, 13.2.

(**Z**)-1s: ¹H NMR (400 MHz, CDCl₃) δ: 5.18 (dd, J=9.0, 1.6 Hz, 1H), 3.84 (ddd, J=9.0, 4.3, 2.7 Hz, 1H), 3.00 (dd, J=5.1, 4.3 Hz, 1H), 2.67 (dd, J=5.1, 2.7 Hz, 1H), 2.36 (t, J=7.2 Hz, 2H), 1.88 (d, J=1.6 Hz, 3H), 1.58-1.50 (m, 2H), 1.48-1.39 (m, 2H), 0.92 (t, J=7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 132.5, 125.5, 95.7, 78.7, 50.7, 48.7, 30.8, 23.8, 22.0, 19.1, 13.6.

(**Z**)-1t: ¹H NMR (400 MHz, CDCl₃) δ: 4.00-3.97 (m, 1H), 3.73 (dt, *J*= 11.2, 2.8 Hz, 1H), 3.45-3.30 (m, 4H), 3.20 (sext, *J*= 2.8 Hz, 1H), 2.34 (t, *J*= 6.8 Hz, 2H), 2.21-2.10 (m, 2H), 2.02-1.91 (m, 2H), 1.79-1.32 (m, 6H), 0.98-0.79 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ: 137.3, 121.7, 94.2, 79.5, 73.1, 59.2, 56.2, 55.2, 30.9, 30.8, 22.4, 22.2, 21.9, 21.7, 19.2, 13.6.

(*Z*)-**1v:** ¹H NMR (400 MHz, CDCl₃) δ: 5.59 (dq, J= 9.0, 0.8 Hz, 1H), 3.81 (s, 3H), 3.75-3.70 (m, 2H), 3.42 (dd, J=11.6, 6.0 Hz, 1H), 3.41 (s, 3H), 3.14-3.11 (m, 1H), 1.96 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 154.1, 139.7, 121.7, 84.9, 83.9, 72.2, 59.2, 58.4, 53.5, 52.8, 22.3.

(*E*)-1b: ¹H NMR (400 MHz, CDCl₃) δ : 5.35 (dd, *J*= 9.0, 1.0 Hz, 1H), 3.67 (dd, *J*= 11.3, 3.0 Hz, 1H), 3.48 (dd, *J*= 9.0, 2.2 Hz, 1H), 3.44 (dd, *J*= 11.3, 5.1 Hz, 1H), 3.38 (s, 3H), 3.06 (ddd, *J*= 5.1, 3.0, 2.2 Hz, 1H), 2.28 (t, *J*= 6.8 Hz, 2H), 1.93 (d, *J*= 1.0 Hz, 3H), 1.54-1.37 (m, 4H), 0.90 (t, *J*= 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 131.3, 125.2, 90.3, 82.4, 80.0, 59.2, 58.6, 51.9, 30.7, 21.9, 18.9, 18.2, 13.6.

3.4. Synthesis of Organoborons

To the dry THF (15 mL) solution of organoboronic acid (10 mmol) was added MgSO₄ (14 mmol, 1.7 g). Then, 2,2 dimethyl propan-1,3-diol (11 mmol, 1.2 g) was added to the mixture and stirred overnight under Ar and at rt. The crude mixture was concentrated under a reduced pressure and boronic acid neopentyl glycol ester derivative was purified on silica gel column (hexane-EtOAc as an eluent) (Matthew et al. 2014). The yields are given in Table 3.1.

Table 3.1. Synthesis of neopentyl glycol esters

3.5. General Method for Palladium-Catalyzed Reactions of Enyne Oxiranes

The catalyst, the ligand, and the dry solvent (half of the volume necessary for the reaction) were added successively in to the schlenk flask which was dried in oven and cooled under Ar gas and mixture was stirred for 15 min. at 25 °C. Then, organoboron (3 equivalent), the solution of epoxide compound (0.1 mmol) in dry solvent (other half volume), base and prescribed amount of degassed water was added successively to the schlenk flask and the mixture was stirred in water or oil bath. The reaction was controlled with help of TLC. When the reaction was over, the mixture was concentrated under reduced pressure. The residue was purified using silica gel on column chromatography. In part of the optimization studies the crude product was filtered through a short silica gel column washed with Et₂O and evaporated under reduced atmosphere. The residue was analyzed by ¹H NMR using *p*-anisaldehyde as the internal standard.

3.6. Characterization of Products

3aa: ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.15 (m, 5H), 6.21 (dd, J= 16.0, 2.4 Hz, 1H), 5.74 (dd, J= 15.6, 2.4 Hz, 1H), 2.43 (t, J= 7.6, 2H), 1.89 (s, 3H), 1.51-1.36 (m, 10H), 0.9 (t, J= 8.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 207.9, 137.2, 136.1, 129.6, 128.3, 126.5, 126.2, 125.4, 120.7, 115.3, 105.1, 102.4, 71.1, 30.0, 29.9, 29.8, 22.4, 15.5, 13.9.; MS (EI, *m*/*z*): 270 (<5, M⁺), 252(6), 195(10), 165(12), 153(15), 141(40), 128(23), 115(35), 91(62), 77(50), 59(100); HRMS (ESI, C₁₉H₂₆O ((M-H₂O)H)⁺): 253.19508 (calculated); 253.19524 (found). FTIR (v_{max}/cm⁻¹): 3356, 2923, 1609, 1362, 1142, 974, 763, 692.

3ba: ¹H NMR (400 MHz , C₆D₆): δ 7.43 (dd, J=8.8, 1.6 Hz, 2H), 7.18 (t, J=7.2 Hz, 2H), 7.06 (t, J=8.0 Hz, 1H), 6.55 (dd, J=15.6, 1.6 Hz, 1H), 5.63 (dd, J=16.0, 5.9 Hz, 1H), 4.35-4.31 (m, 1H), 3.14 (dd, A of ABX, JAB = 9.6 Hz, JAX = 3.8 Hz, 1H), 3.11 (dd, B of ABX, JAB = 9.6 Hz, JBX = 8.3 Hz, 1H), 3.01 (s, 3H), 2.40 (t, J=7.2 Hz, 2H), 1.86 (s, 3H), 1.55-1.48 (m, 2H), 1.37-1.28 (m, 2H), 0.86 (t, J=7.6 Hz, 3H, minor), 0.85 (t, J=7.6 Hz, 3H, major). ¹³C NMR (100 MHz, C₆D₆): δ 208.8, 138.0, 130.4, 129.1, 128.5, 127.3, 127.1, 106.3, 103.4, 77.5, 71.7, 59.0, 30.8, 30.7, 23.1, 15.9, 14.5. MS (EI, *m/z*): 286 (8, M⁺), 236(8), 198(15), 169(40), 129(45), 115(52), 91(100), 77(88), 56(84) HRMS (EI) C₁₉H₂₆O₂ [(M+H]⁺, 287.20056 (calculated); 287.20079 (found). FTIR (v_{max}/cm⁻¹): 3426, 2938, 1923, 1455, 1198, 1126, 968, 770, 697. m.p. 46.4-47.8 °C.

4ba: ¹H NMR (400 MHz , CDCl₃): δ 7.36-7.21 (M, 5H), 5.74 (d, J= 10.2 Hz, 1H), 4.08 (t, J= 8.4 Hz, 1H), 3.95 (t, J= 9.6 Hz, 1H), 3.54 (dd, J=9.8, 2.7 Hz, 1H), 3.39-3.30 (m, 4H), 2.38 (t, J= 7.2 Hz, 2H), 1.82 (d, J= 1.2 Hz, 3H), 1.55-1.44 (m, 4H), 0.95 (t, J= 7.2 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃): δ 141.0, 134.7, 128.7, 128.3, 126.7, 120.2, 94.9, 79.5, 75.2, 73.0, 59.1, 50.5, 30.9, 23.7, 22.0, 19.2, 13.6.

3ba': ¹H NMR (400 MHz, C₆D₆): δ 7.46 - 7.40 (m, 2 H), 7.22 - 7.16 (m, 2 H), 7.10 - 7.03 (m, 1 H), 6.55 (dd, *J*=15.8, 1.4 Hz, 1 H), 5.63 (dd, *J*=15.8, 5.9 Hz, 1 H), 4.35 - 4.28 (m, 1 H), 3.15 (dd, A of ABX, JAB = 9.4 Hz, JAX = 4.3 Hz, 1H), 3.08 (dd, B of ABX, JAB = 9.4 Hz, JBX = 7.8 Hz, 1H), 3.00 (d, *J*=0.8 Hz, 3 H, Major), 3.01 (d, *J*=0.8 Hz, 3 H, Minor), 2.39 (t, *J*=7.1 Hz, 2 H, Major), 2.40 (t, *J*=7.1 Hz, 2 H, Minor), 2.19 (br. s, 1 H), 1.86 (s, 3 H), 1.58 - 1.46 (m, 2 H), 1.33 (m, 2 H), 0.86 (t, *J*=7.1 Hz, 3 H, Major), 0.85 (t, *J*=7.1 Hz, 3 H, Minor); ¹³C NMR (101 MHz, C₆D₆): δ 208.1, 137.2, 129.7, 128.3, 128.2, 126.6, 126.33, 105.6, 102.66, 76.69, 70.91, 58.19, 30.07, 29.99, 22.40, 15.16, 13.8. MS (EI, *m*/*z*): 286 (<5, M⁺), 241(20), 223(25), 199(30), 181(45), 169(100), 91(70), 77(20), 45(50). HRMS (EI) C₁₉H₂₆O₂ [(M+H]⁺, 287.20056 (calculated); 287.20079 (found). FTIR (v_{max}/cm⁻¹): 3428, 2931, 2163, 1925, 1438, 1115, 973, 761, 692.

3bb: ¹H NMR (400 MHz, C₆D₆): δ 7.41 (d, J=8.2 Hz, 2H), 7.05 (d, J=7.8 Hz, 2H), 6.56 (dd, J=15.8, 1.0 Hz, 1H), 5.63 (dd, J=15.8, 6.1 Hz, 1H), 4.34-4.28 (m, 1H), 3.14 (dd, A of ABX, JAB = 9.4 Hz, JAX = 8.2 Hz, 1H), 3.10 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.5 Hz, 1H), 3.00 (s, 3H, major), 2.98 (s, 3H, minor), 2.43 (t, J=8 Hz, 2H), 2.14 (s, 3H), 1.87 (s, 3H), 1.54 (q, J=8 Hz, 2H), 1.37-1.30 (m, 2H), 0.87 (t, J=7.6 Hz, 3H, minor), 0.86 (t, J=7.6 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 208.6, 136.8, 135.1, 130.7, 129.8, 127.1, 106.2, 103.3, 77.5, 71.7, 58.9, 30.9, 30.6, 23.2, 21.4, 16.0, 14.5. MS (EI, *m*/*z*): 300 (15, M⁺), 282(5), 225(30), 193(30), 155(50), 141(30), 105(20), 91(15), 44(100). HRMS (EI) C₂₀H₂₈O₂ [(M+Na]⁺, 323.19815 (calculated); 323.19834 (found). FTIR (v_{max}/cm⁻¹): 3444, 2923, 1523, 1441, 1197, 1123, 961, 831, 603.

3bc: ¹H NMR (400 MHz, C₆D₆): δ 7.36 (s, 1H), 7.31 (d, J=7.8 Hz, 1J), 7.17-7.13 (m, 1H), 6.92 (dt, J=7.4, 0.8 Hz, 1H), 6.58 (dd, J=15.8, 1.4 Hz, 1H), 5.63 (dd, J=16.0, 5.6 Hz, 1H), 4.34-4.30 (m, 1H), 3.13 (dd, A of ABX, JAB = 9.4 Hz, JAX = 7.8 Hz, 1H), 3.10 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.6 Hz, 1H), 3.00 (s, 3H), 2.45 (t, J= 6.4 Hz, 2H, minor), 2.44 (t, J= 6.4 Hz, 2H, major), 2.27 (bs, 1H), 2.14 (s, 3H, major), 2.13 (s, 3H, minor), 1.88 (s, 3H), 1.59-1.51 (m, 2H), 1.40-1.30 (m, 2H), 0.87 (t, J=7.2 Hz, 3H, minor), 0.86 (t, J=7.2 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 208.8, 138.4, 138.0, 130.6, 129.1, 128.5, 128.2, 127.8, 124.3, 106.4, 103.2, 77.5, 71.7, 58.9, 30.9, 30.8, 23.2, 21.9, 16.0, 14.5. MS (EI, *m*/*z*): 300 (5, M⁺), 237(15), 195(40), 183(85), 143(45), 105(100), 91(40), 77(25), 45(40). HRMS (EI) C₂₀H₂₈O₂ [(M+H]⁺, 301.21621 (calculated); 301.21639 (found). FTIR (v_{max}/cm⁻¹): 3435, 2922, 1606, 1470, 1258, 1107, 956, 797, 699.

3bd: ¹H NMR (400 MHz, C₆D₆): δ 7.26 (d, J=6.7 Hz, 1H), 7.11-7.04 (m, 3H), 6.58 (dd, J=15.6, 1.6 Hz, 1H), 5.54 (dd, J=15.7, 5.9 Hz, 1H), 4.34-4.29 (m, 1H), 3.13 (dd, A of ABX, JAB = 9.4 Hz, JAX = 7.7 Hz, 1H), 3.09 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.7 Hz, 1H), 3.00 (s, 3H, major), 3.00 (s, 3H, minor), 2.35 (s, 3H), 2.33 (td, J=7.2, 2.8 Hz, 2H), 1.8 (s, 3H), 1.50-1.42 (m, 2H), 1.36-1.26 (m, 2H), 0.85 (t, J=7.2 Hz, 3H, minor), 0.84 (t, J=7.2 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 206.9, 138.6, 136.3, 131.2, 130.9, 128.8, 127.9, 127.5, 126.6, 104.9, 100.5, 77.5, 71.6, 58.9, 34.7, 30.7, 23.1, 21.2, 16.0, 14.5. MS (EI, *m/z*): 300 (20, M⁺), 282(5), 225(30), 193(30), 155(50), 141(30), 105(20), 91(15), 44(100). HRMS (EI) C₂₀H₂₈O₂ [(M+Na]⁺, 323.19815 (calculated); 323.19835 (found). FTIR (v_{max}/cm⁻¹): 3413, 2922, 1449, 1190, 1142, 959, 756, 728.

3be: ¹H NMR (400 MHz, C₆D₆): δ 7.06-6.96 (m, 3H), 6.65 (d, J=15.6 Hz, 1H, major), 6.63 (d, J=15.6 Hz, 1H, minor), 5.52 (ddd, 15.9, 5.9, 1.8 Hz, 1H), 4.35-4.31 (m, 1H), 3.13 (dd, A of ABX, JAB = 9.2 Hz, JAX = 7.8 Hz, 1H), 3.08 (dd, B of ABX, JAB = 9.2 Hz, JBX = 3.5 Hz, 1H), 3.00 (s, 3H), 2.34 (s, 6H), 2.13-2.07 (m, 2H), 1.77 (s, 3H), 1.55-1.48 (m, 2H), 1.37-1.26 (m, 2H), 0.85 (t, J=7.2 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 204.8, 138.9, 136.0, 130.7, 128.3, 127.7, 127.5, 104.1, 100.8, 77.5, 71.6, 58.9, 34.1, 30.8 (minor), 30.5 (major), 23.3, 20.8, 15.7, 14.6. MS (EI, *m*/*z*): 314 (50, M⁺), 269(60), 197(45), 157(30), 119(55), 45(100). HRMS (EI) C₂₁H₃₀O₂ [(M+H]⁺, 315.23186 (calculated); 315.23200 (found). FTIR (v_{max}/cm⁻¹): 3421, 2944, 1470, 1386, 1190, 1129, 956, 760.

4be: ¹H NMR (400 MHz, C₆D₆): δ 7.00-6.96 (m, 3H), 6.35 (d, J=8.2 Hz, 1H), 4.69 (t, J=8.6 Hz, 1H), 4.27-4.22 (m, 1H), 3.18 (dd, J=9.4, 2.8 Hz, 1H), 3.14-3.07 (m, 1H), 2.92 (s, 3H, major), 2.91 (s, 3H, minor), 2.50-2.35 (m, 6H), 2.11 (t, J=6.8 Hz, 2H), 1.87 (d, J=0.8 Hz, 3H), 1.34-1.18 (m, 4H), 0.78 (t, J=7.2 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 139.5, 137.1, 128.3, 126.9, 120.8, 95.2, 81.4, 75.3, 73.1, 58.9, 46.7, 31.4, 24.5, 22.6, 20.0, 14.1. MS (EI, *m*/*z*): 314 (<5, M⁺), 269(15), 239(100), 198(55), 183(85), 169(95), 119(40), 55(40). HRMS (EI) C₂₁H₃₀O₂ [(M+H]⁺, 315.23186 (calculated); 315.23202 (found). FTIR (v_{max}/cm⁻¹): 3451, 2912, 1460, 1391, 1122, 767.

3bf: ¹H NMR (400 MHz, C₆D₆): δ 7.84 (s, 1H), 7.72 (dd, J=8.4, 1.6 Hz, 1H), 7.68-7.60 (m, 3H), 7.26 (quind, J=7.1, 1.6 Hz, 2H), 6.62 (dd, J=15.8, 1.4 Hz, 1H), 5.67 (dd, J=15.7, 5.9 Hz, 1H), 4.37-4.33 (m, 1H), 3.15 (dd, A of ABX, JAB = 9.4 Hz, JAX = 7.8 Hz, 1H), 3.12 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.5 Hz, 1H), 3.01 (s, 3H), 2.52 (t, J=7.6 Hz, 2H), 2.35 (bs, 1H), 1.91 (s, 3H), 1.63-1.56 (m, 2H), 1.38 (sext, J=7.6 Hz, 2H), 0.89 (t, J=7.2 Hz, 3H, minor), 0.89 (t, J=7.2 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 209.6, 135.4, 134.7, 133.5, 130.3, 128.8, 128.7, 126.7, 126.5, 126.3, 124.6, 106.6, 103.8, 77.5, 71.7, 59.0, 30.8, 30.7, 23.2, 16.0, 14.6. MS (EI, *m*/*z*): 336 (15, M⁺), 291(30), 261(30), 219(80), 207(55), 165(45), 141(100), 73(50), 45(60). HRMS (EI) C₂₃H₂₈O₂ [(M+Na]⁺, 359.19815 (calculated); 359.19828 (found). FTIR (v_{max}/cm⁻¹): 3451, 2950, 1449, 1363, 1122, 959, 863, 825, 747.

3bg: ¹H NMR (400 MHz, C₆D₆): δ 8.39 (d, J=8.6 Hz, 1H), 7.66 (dd, J=8.2, 0.8 Hz, 1H), 7.57 (d, J=8.2 Hz, 1H), 7.41-7.37 (m, 2H), 7.29-7.24 (m, 2H), 6.67 (dd, J=15.8, 1.4 Hz, 1H, major), 6.66 (dd, J=15.8, 1.4 Hz, 1H, minor), 5.54 (dd, J=15.8, 5.7 Hz, 1H), 4.35-4.30 (m, 1H), 3.13 (dd, A of ABX, JAB = 9.4 Hz, JAX = 8.1 Hz, 1H), 3.08 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.7 Hz, 1H), 3.00 (s, 3H, major), 2.99 (s, 3H, minor), 2.47 (td, J=7.5, 1.8 Hz, 2H), 1.84 (s, 3H), 1.52 (quint, J=7.2 Hz, 2H, major), 1.52 (quint, J=7.2 Hz, 2H, minor), 1.33 (sext, J=7.6 Hz, 2H), 0.84 (t, J=7.6 Hz, 3H, minor), 0.83 (t, J=7.6 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 207.3, 135.0, 132.4, 130.8, 129.2, 128.1, 126.6, 126.3, 126.3, 126.3, 126.1, 104.5, 100.7, 77.5, 71.6, 58.9, 35.5, 31.0, 23.1, 16.1, 14.5. MS (EI, *m*/*z*): 336 (20, M⁺), 273(30), 261(55), 229(100), 217(65), 202(80), 165(60), 141(35), 44(95). HRMS (EI) C₂₃H₂₈O₂ [(M+Na]⁺, 359.19815 (calculated); 359.19825 (found). FTIR (v_{max}/cm⁻¹): 3435, 2922, 1946, 1470, 1206, 1129, 986, 804, 782.

3bh: ¹H NMR (400 MHz, C₆D₆): δ 7.38 (d, J=9.2 Hz, 2H), 6.82 (d, J=8.4 Hz, 2H), 6.58 (dd, J= 15.8, 1.4 Hz, 1H), 5.64 (dd, J=15.7, 5.9 Hz, 1H), 4.37-4.32 (m, 1H), 3.33 (s, 3H, major), 3.32 (s, 3H, minor), 3.16 (dd, A of ABX, JAB = 9.4 Hz, JAX = 4.3 Hz, 1H), 3.12 (dd, B of ABX, JAB = 9.4 Hz, JBX = 7.6 Hz, 1H), 3.02 (s, 3H, minor), 3.02 (s, 3H, major), 2.42 (t, J=6.8 Hz, 2H), 1.89 (s, 3H), 1.60-1.51 (m, 2H), 1.40-1.31 (m, 2H), 0.88 (t, J=7.2 Hz, 3H, minor), 0.87 (t, J=7.2 Hz, 3H, major), ¹³C NMR (101 MHz, C₆D₆): δ 208.4, 130.9, 130.1, 128.2, 128.2, 114.7, 105.9, 103.3, 77.5, 71.7, 59.0, 55.2, 31.0, 30.9, 23.2, 16.1, 14.5. MS (EI, *m*/*z*): 316 (10, M⁺), 259(80), 209(100), 171(95), 121(75), 44(90). HRMS (EI) C₂₀H₂₈O₃ [(M+H]⁺, 317.21112 (calculated); 317.21117 (found). FTIR

(v_{max}/cm⁻¹): 3444, 2931, 2867, 1925, 1613, 1512, 1454, 1247, 1174, 1120, 1041, 967, 835, 597.

3bi: ¹H NMR (400 MHz, C₆D₆): δ 7.53 (t, J=2.0 Hz, 1H), 7.17 (dd, J=1.6, 0.8 Hz, 1H), 7.04 (ddd, J=7.9, 2.1. 1.0 Hz, 1H), 6.87 (t, J=8.0 Hz, 1H, major), 6.86 (t, J=8.0 Hz, 1H, minor), 6.49 (dd, J=15.7, 1.6 Hz, 1H), 5.60 (dd, J=15.7, 5.9 Hz, 1H), 4.32-4.28 (m, 1H), 3.12 (dd, A of ABX, JAB = 9.4 Hz, JAX = 7.7 Hz, 1H), 3.08 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.7 Hz, 1H), 3.00 (s, 3H, minor), 3.00 (s, 3H, major), 2.30 (bs, 1H), 2.22 (t, J=7.6 Hz, 2H), 1.78 (s, 3H), 1.47-1.38 (m, 2H), 1.27 (sext, J= 7.6 Hz, 2H), 0.83 (t, J= 7.2 Hz, 3H, minor), 0.82 (t, J= 7.2 Hz, 3H, minor). ¹³C NMR (101 MHz, C₆D₆): δ 208.8, 140.2, 135.3, 130.3, 129.7, 129.1, 127.3, 126.9, 125.2 (major), 125.2 (minor), 105.4, 104.0, 77.4, 71.5, 59.0, 30.8 (minor), 30.6 (major), 30.4, 23.0, 15.7, 14.5. MS (EI, *m*/z): 320 (5, M⁺), 257(15), 203(45), 165(35), 125(40), 44(100). HRMS (EI) C₁₉H₂₅FO₂ [(M+Na]⁺, 343.14408 (calculated); 343.14387 (found). FTIR (v_{max}/cm⁻¹): 3406, 2930, 1617, 1480, 1109, 972, 783, 686.

3bj: ¹H NMR (400 MHz, C₆D₆): δ 7.25-7.21 (m, 1H), 6.85-6.80 (m, 3H), 6.59 (dd, J=15.8, 1.4 Hz, 1H), 5.59 (dd, J=16, 5.9 Hz, 1H), 4.33-4.29 (m, 1H), 3.13 (dd, A of ABX, JAB = 9.4 Hz, JAX = 8.2 Hz, 1H), 3.09 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.6 Hz, 1H), 3.00 (s, 3H), 2.47 (t, J=7.4 Hz, 2H), 2.30 (bs, 1H), 1.85 (s, 3H), 1.52-1.44 (m, 2H), 1.32 (sext, J=8.0 Hz, 2H), 0.84 (t, J=7.2 Hz, 3H, minor), 0.83 (t, J=7.2 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 209.2, 161.1 (d, J=242 Hz), 130.4 (major), 130.4 (minor), 129.0, 128.9, 128.5, 126.6, 124.6, 116.7 (minor), 116.5 (major), 101.6 (major), 101.4 (minor), 77.4, 71.6, 58.9, 32.8 (major), 32.8 (minor), 30.8, 23.0, 16.0, 14.4. MS (EI, *m*/*z*): 304 (5, M⁺), 259(15), 199(25), 187(60), 133(25), 109(100), 45(35). HRMS (EI) C₁₉H₂₅FO₂ [(M+H]⁺, 305.19113 (calculated); 305.19129 (found). FTIR (v_{max}/cm⁻¹): 3425, 2923, 1487, 1440, 1196, 1110, 971, 752.

3bk: ¹H NMR (400 MHz, C₆D₆): δ 7.37 (d, J=8.2 Hz, 2H), 7.22 (d, J=7.8 Hz, 2H), 6.54 (dd, J=15.7, 1.6 Hz, 1H, major), 6.53 (dd, J=15.7, 1.6 Hz, 1H, minor), 5.64 (dd, J=15.7, 5.5 Hz, 1H, minor), 5.64 (dd, J=15.7, 5.5 Hz, 1H, major), 4.32 (dt, J=3.8, 1.8 Hz, 1H), 3.15 (dd, A of ABX, JAB = 11.8 Hz, JAX = 9.6 Hz, 1H), 3.09 (dd, B of ABX, JAB = 11.8 Hz, JBX = 2.1 Hz, 1H), 3.00 (s, 3H), 2.24 (t, J=7.2 Hz, 2H), 1.82 (s, 3H), 1.48-1.40 (m, 2H), 1.36-1.27 (m, 2H), 0.87 (t, J=7.2 Hz, 3H, minor), 0.88 (t, J=7.2 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 209.3, 141.8, 129.5, 129.2, 129.0, 127.1, 125.9 (q, J=3.8 Hz), 105.5, 104.1, 77.4, 71.5, 59.0, 30.8 (minor), 30.6 (major), 30.4, 23.1, 15.7, 14.5. MS (EI, *m*/*z*): 354 (<1, M⁺), 309(35), 291(30), 267(45), 249(60), 237(90), 159(85), 109(45), 55(40), 45(100). HRMS (EI) C₂₀H₂₅F₃O₂ [(M+H]⁺, 355.1784 (calculated); 355.18810 (found). FTIR (v_{max}/cm⁻¹): 3435, 2941, 2862, 1609, 1326, 1160, 1133, 1071, 833, 612.

3bl: ¹H NMR (400 MHz, C₆D₆): δ 7.27-7.23 (m, 2H), 7.12 (t, J=7.8 Hz, 2H), 7.05-7.02 (m, 1H), 6.83 (d, J=16.4 Hz, 1H, major), 6.81 (d, J=16.4 Hz, 1H, minor), 6.58 (d, J=16.4 Hz, 1H), 6.57 (dd, J=15.8, 0.4 Hz, 1H, major), 6.56 (dd, J=15.8, 0.4 Hz, 1H, minor), 5.64 (ddd, J=16, 5.6, 0.8 Hz, 1H, minor), 5.64 (ddd, J=16, 5.6, 0.8 Hz, 1H, minor), 5.64 (ddd, J=16, 5.6, 0.8 Hz, 1H, minor), 5.64 (ddd, J=16, 5.6, 0.8 Hz, 1H, minor), 5.64 (ddd, J=16, 5.6, 0.8 Hz, 1H, major), 4.36-4.31 (m, 1H), 3.14 (dd, A of ABX, JAB = 9.4 Hz, JAX = 7.7 Hz, 1H), 3.10 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.6 Hz, 1H), 3.00 (s, 3H, minor), 3.00 (s, 3H, major), 2.26 (t, J=7.2 Hz, 2H), 1.86 (s, 3H), 1.57-1.50 (m, 2H), 1.39-1.30 (m, 2H), 0.89 (t, J=7.6 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 212.4, 138.4, 130.4, 129.2, 127.8, 127.8, 127.0, 106.0, 101.6, 77.4, 71.6, 59.0, 30.6, 29.4, 23.2, 16.1, 14.6. MS (EI, *m*/*z*): 312(40), 267(35), 223(15), 195(80), 165(60), 115(50), 91(100), 32(60). FTIR (v_{max}/cm⁻¹): 3435, 2923, 1460, 1142, 957, 753, 693.

3bm: 1H NMR (400 MHz, C6D6): δ 6.53 (dd, J=15.1, 1.0 Hz, 1H, major), 6.52 (dd, J=15.1, 1.0 Hz, 1H, minor), 6.09 (d, J=16.0 Hz, 1H, major), 6.09 (d, J=16.0 Hz, 1H, minor), 5.65 (dt, J=15.7, 7.0 Hz, 1H), 5.58 (dd, J=15.6, 5.6 Hz, 1H, minor), 5.58 (dd, J=15.6, 5.6 Hz, 1H, major), 4.33-4.29 (m, 1H),), 3.13 (dd, A of ABX, JAB = 9.5 Hz, JAX = 7.8 Hz, 1H), 3.09 (dd, B of ABX, JAB = 9.5 Hz, JBX = 4.0 Hz, 1H), 3.00 (s, 3H, minor), 3.00 (s, 3H, major), 2.20 (t, J=7.2 Hz, 2H), 2.02 (q, J=6.5 Hz, 2H), 1.84 (s, 3H), 1.56-1.48 (m, 2H), 1.39-1.29 (m, 4H), 0.89 (t, J=7.6 Hz, 3H, minor), 0.87 (t, J=7.6 Hz, 3H, major), 0.85 (t, J=7.6 Hz, 3H, minor). 13C NMR (101 MHz, C6D6): δ 210.5, 131.0, 129.6, 128.7, 127.8, 105.3, 101.2, 77.5, 71.6, 58.9, 35.8, 30.7, 29.6, 23.4, 23.3, 16.2, 14.6, 14.3. MS (EI, m/z): 278(10), 233(25), 161(30), 119(45),

105(100), 93(60), 55(55). HRMS (EI) C19H32O2 [(M+Na]⁺, 315.23186 (calculated); 315.23202 (found). FTIR (v_{max}/cm^{-1}): 3442, 2927, 1480, 1261, 1113, 958, 796.

3ca: ¹H NMR (400 MHz, C₆D₆): δ 7.45 - 7.42 (m, 2 H), 7.21 - 7.16 (m, 2 H), 7.08-7.04 (m, 1 H), 6.42 (dd, J=15.6, 1.6 Hz, 1H), 5.51 (dd, J= 15.6, 6.4 Hz, 1H, minor), 5.50 (dd, J= 15.6, 6.4 Hz, 1H, major), 4.05-4.02 (m, 1H), 3.40-3.37 (m, 1H), 3.30-3.24 (m, 1H), 2.40 (t, J=7.4 Hz, 2H), 1.82 (d, J= 0.8 Hz, 3H), 1.55-1.48 (m, 2H), 1.38-1.28 (m, 2H), 0.87 (t, J= 7.6 Hz, 3H, minor), 0.86 (t, J= 7.6 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 208.9, 137.9, 130.9, 129.1, 127.4, 127.1, 106.4, 103.3, 73.8, 67.2, 30.8 (minor), 30.8 (major), 30.7, 23.2, 15.9, 14.5. MS (EI, *m/z*): 256(25), 239(27), 112(95), 83(40), 70(75), 57(100), 43(65). HRMS (EI) C₁₈H₂₄O₂ [(M+H]⁺, 273.18491 (calculated); 273.18506 (found). FTIR (v_{max}/cm⁻¹): 3365, 2951, 2920, 2862, 1925, 1597, 1454, 1079, 1031, 967, 750, 698.

3da: ¹H NMR (400 MHz, C₆D₆): δ 7.39 (d, J=8.4 Hz, 2H), 7.16 (t, J=7.6 Hz, 2H), 7.05 (t, J=7.6 Hz, 1H), 6.52 (d, J=15.6 Hz, 1H, minor), 6.51 (d, J=15.6 Hz, 1H, major), 5.63 (ddd, J=15.8, 5.9, 0.8 Hz, 1H), 4.33-4.29 (m, 1H), 3.13 (dd, A of ABX, JAB = 8.7 Hz, JAX = 6.8 Hz, 1H), 3.11 (dd, B of ABX, JAB = 8.7 Hz, JBX = 3.4 Hz, 1H), 3.01 (s, 3H), 2.36 (bs, 1H), 1.98 (s, 3H, minor), 1.97 (s, 3H, major), 1.83 (d, J=0.8 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 208.9, 138.1, 130.4, 129.0, 128.7, 127.3, 126.7, 102.2, 101.0, 77.4, 71.7, 59.0, 17.5, 15.8. MS (EI, *m*/*z*): 244 (10, M⁺), 199(100), 181(35), 166(45), 128(35), 105(20), 91(30), 77(20), 45(25). FTIR (v_{max}/cm⁻¹): 3432, 2922, 1498, 1449, 1135, 1027, 978, 767, 689, 593.

3eh: ¹H NMR (400 MHz, C₆D₆): δ 7.52-7.46 (m, 2H), 7.40-7.36 (m, 1H), 7.38 (d, J=8.8 Hz, 1H), 7.18-7.14 (m, 2H), 7.10-7.06 (m, 1H), 6.79-6.75 (m, 1H), 6.77 (d, J=8.4 Hz, 1H), 6.58 (dd, J=15.8, 1.4 Hz, 1H), 5.63 (dd, J=15.7, 5.9 Hz, 1H), 4.30 (q, J=5.6 Hz, 1H), 3.29 (s, 3H, major), 3.29 (s, 3H, minor), 3.11 (dd, A of ABX, JAB = 8.6 Hz, JAX = 5.8 Hz, 1H), 3.08 (dd, B of ABX, JAB = 8.6 Hz, JBX = 2.4 Hz, 1H), 3.00 (s, 3H), 2.31 (bs, 1H), 1.85 (s, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 210.5, 160.0, 138.2, 130.6 (minor), 130.6 (major), 130.0, 129.9, 129.4 (major), 129.4 (minor), 129.2, 129.1, 127.9, 114.7, 110.3, 103.2, 77.4, 71.6, 59.0, 55.2, 16.0. MS (EI, *m*/*z*): 336 (30, M⁺), 291(100), 262(65), 247(40), 183(30), 155(25), 30(25), 45(45). HRMS (EI) C₂₂H₂₄O₃ [(M+H]⁺, 337.17982 (calculated); 337.17992 (found). FTIR (v_{max}/cm⁻¹): 3432, 2931, 1507, 1267, 1180, 1122, 1036, 978, 834, 767, 700.

3fa: ¹H NMR (400 MHz, C₆D₆): δ 7.30-7.27 (m, 2H), 7.14-7.12 (m, 2H), 7.09-7.05 (m, 1H), 6.59 (dd, J=15.7, 1.2 Hz, 1H, major), 6.57 (dd, J=15.7, 1.2 Hz, 1H, minor), 5.51 (dd, J=16.0, 4.3 Hz, 1H), 4.35-4.31 (m, 1H, major), 4.29-4.25 (m, 1H, minor), 3.13 (dd, A of ABX, JAB = 9.3 Hz, JAX = 8.1 Hz, 1H), 3.08 (dd, B of ABX, JAB = 9.3 Hz, JBX = 3.7 Hz, 1H), 3.00 (s, 3H, major), 2.97 (s, 3H, minor), 2.24 (bs, 1H), 1.77 (s, 3H), 1.16 (s, 9H). ¹³C NMR (101 MHz, C₆D₆): δ 206.1, 138.5, 131.2, 130.2, 128.9, 128.5, 127.7, 127.3, 127.1, 100.9, 77.5, 71.6, 58.9, 35.7, 31.8, 30.5, 16.4. MS (EI, *m/z*): 286 (10, M⁺), 241(75), 197(100), 165(35), 141(40), 105(85), 57(95). FTIR (v_{max}/cm⁻¹): 3422, 2960, 1460, 1199, 1132, 969, 709.

4fa: ¹H NMR (400 MHz, C₆D₆): δ 7.40 (d, 7.8 Hz, 2H), 7.20 (d, J=7.6 Hz, 2H), 7.07 (t, J=7.6 Hz, 1H), 6.12 (dd, J=9.6, 1.4 Hz, 1H), 4.26 (dd, J=9.8, 6.0 Hz, 1H), 4.10-4.06 (m, 1H), 3.30 (dd, A of ABX, JAB = 9.4 Hz, JAX = 7.1 Hz, 1H), 3.23 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.4 Hz, 1H), 3.00 (s, 3H), 2.22 (s, 1H), 1.80 (s, 3H), 1.23 (s, 9H). ¹³C NMR (101 MHz, C₆D₆): δ 143.4, 136.4, 129.1, 128.5, 128.3, 127.0, 121.1, 102.8, 79.7, 75.8, 74.6,59.0, 50.4, 31.6, 28.6, 24.0. MS (EI, *m*/*z*): 268(5), 212(100), 197(65), 169(65), 155(95), 141(35), 91(55), 41(40). FTIR (v_{max}/cm⁻¹): 3446, 2910, 1459, 1364, 1117, 1079, 688.

3ga: ¹H NMR (400 MHz, C₆D₆): δ 7.43 (d, J=8.2 Hz, 2H), 7.19 (d, J=7.2 Hz, 2H), 7.08-7.04 (m, 1H), 6.57 (d, J=15.7 Hz, 1H, major), 6.56 (d, J=15.7 Hz, 1H, minor), 5.63 (ddd, J=15.7, 5.9, 0.8 Hz, 1H), 4.36-4.32 (m, 1H), 3.15 (dd, A of ABX, JAB = 9.2 Hz, JAX = 7.7 Hz, 1H), 3.11 (dd, B of ABX, JAB = 9.2 Hz, JBX = 3.6 Hz, 1H), 3.01 (s, 3H, major), 2.98 (s, 3H, minor), 1.48-1.41 (m, 1H), 2.34 (bs, 1H), 1.96-1.93 (m, 2H), 1.86 (d, J=0.8 Hz, 3H), 1.72-1.58 (m, 3H), 1.30-1.08 (m, 5H). ¹³C NMR (101 MHz, C₆D₆): δ 208.6, 137.7, 130.7, 129.1, 128.3, 127.6, 127.3, 112.7, 104.2, 77.5, 71.7, 59.0, 39.3, 33.8, 33.8, 27.3, 27.3, 27.0, 16.1. MS (EI, *m*/*z*): 312 (10, M⁺), 267(70), 181(100), 141(50), 91(80), 45(60). FTIR (v_{max}/cm⁻¹): 3444, 2923, 2858, 1506, 1458, 1123, 953, 774, 701.

3ha: ¹H NMR (400 MHz, C₆D₆): δ 7.41 (d, J=6.8 Hz, 2H, major), 7.41 (d, J=6.8 Hz, 2H, minor), 7.18-7.15 (m, 2H), 7.05 (t, J=6.8 Hz, 1H), 6.56 (dd, J=15.6, 1.6 Hz, 1H, major), 6.54 (dd, J=15.6, 1.6 Hz, 1H, minor), 5.55 (dd, J=15.6, 5.6 Hz, 1H, minor), 5.54 (dd, J=15.6, 5.6 Hz, 1H, major), 4.35-4.31 (m, 1H, major), 4.26-4.21 (m, 1H, minor), 3.13 (dd, A of ABX, JAB = 9.4 Hz, JAX = 8.2 Hz, 1H), 3.09 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.6 Hz, 1H), 3.00 (s, 3H, minor), 3.00 (s, 3H, major), 2.23 (bs, 1H), 1.80 (s, 3H), 0.24 (s, 9H, minor), 0.23 (s, 9H, major). ¹³C NMR (101 MHz, C₆D₆): δ 212.9, 138.1, 130.1, 129.2, 128.7,127.3 (minor), 127.3 (major), 127.0, 101.3, 97.3, 77.5, 71.7, 58.9, 15.3, 0.6 (minor), 0.2 (major). MS (EI, *m/z*): 302 (M⁺), 257(5), 196(10), 140(5), 105(25), 73(100), 45(55). FTIR (v_{max}/cm⁻¹): 3435, 2934, 1911, 1254, 1134, 845, 698.

3ia: ¹H NMR (400 MHz, C₆D₆): δ 7.23 (d, J=6.8 Hz, 2H), 7.11 (t, J= 7.6 Hz, 2H), 7.01 (t, J=7.2 Hz, 1H), 6.49 (d, J=16.0 Hz, 1H), 6.20 (s, 1H), 5.62 (ddt, J=15.6, 5.6, 1.2 Hz, 1H), 4.28 (bs, 1H. major), 4.16 (bs, 1H, minor), 3.11-3.08 (m, 1H), 3.00 (s, 3H), 3.02-2.90 (m, 1H), 2.16 (bs, 1H), 1.80 (s, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 210.0, 135.4, 129.3, 128.5, 128.3, 127.7, 127.6 (major), 127.6 (minor), 110.7, 104.1, 77.3, 71.6, 59.0, 15.7. MS (EI, *m*/*z*): 230(15, M⁺), 185(100), 165(30), 152(45), 129(60), 115(50), 91(40), 77(30), 45(30). FTIR (v_{max}/cm⁻¹): 3412, 2929, 1506, 1471, 1118, 966, 753, 683.

3ja: ¹H NMR (400 MHz, C₆D₆): δ 7.44 (d, J=7.0 Hz, 2H), 7.18 (t, J=7.2 Hz, 2H), 7.06 (t, J=7.2 Hz, 1H), 6.37 (ddd, 15.3, 10.6, 1.2 Hz, 1H), 6.16 (dt, 10.6, 2.9 Hz, 1H), 5.61 (dd, 15.5, 5.7 Hz, 1H), 4.27-4.23 (m, 1H), 3.09 (dd, A of ABX, JAB = 9.4 Hz, JAX = 8.1 Hz, 1H), 3.05 (dd, B of ABX, JAB = 9.4 Hz, JBX = 3.6 Hz, 1H), 2.98 (s, 3H), 2.39-2.34 (m, 2H), 2.24 (bs, 1H), 1.52 (quin, J=7.2 Hz, 2H), 1.32 (sext, J=7.6 Hz, 2H), 0.86 (t, J=7.6 Hz, 3H, minor), 0.85 (t, J=7.6 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 209.0, 137.3, 131.6, 129.1, 128.5, 127.5, 127.1, 108.2, 97.6, 77.2, 71.3, 58.9, 30.8, 30.5, 23.2, 14.5. MS (EI, *m*/*z*): 272 (<5, M⁺), 254(5), 227(20), 209(20), 185(65), 167(55), 155(75), 141(70), 129(65), 115(70), 91(100), 77(30), 45(50). FTIR (v_{max}/cm⁻¹): 3426, 2932, 1450, 1133, 974, 772, 701.

3ka: ¹H NMR (400 MHz, C₆D₆): δ 7.52 (d, J=7.6 Hz, 2H), 7.21 (t, J=7.6 Hz, 2H), 7.06 (t, J=8.0 Hz, 1H), 6.42 (dd, J=15.5, 1.4 Hz, 1H), 6.03 (dd, J=15.6, 5.2 Hz, 1H, minor), 6.02 (dd, J=15.6, 5.2 Hz, 1H, major), 4.31 (bs, 1H), 3.04 (dd, A of ABX, JAB = 7.7 Hz, JAX = 7.3 Hz, 1H), 3.01 (dd, B of ABX, JAB = 7.7 Hz, JBX = 1.3 Hz, 1H), 2.94 (s, 3H, minor), 2.93 (s, 3H, major), 2.47-2.42 (m, 2H), 2.24 (bs, 1H), 1.61 (quin, J=7.6 Hz, 2H), 1.56 (s, 3H, minor), 1.55 (s, 3H, major), 1.39-1.33 (m, 2H), 1.19 (s, 9H, minor), 1.19 (s, 9H, major), 0.90 (t, J=7.6 Hz, 3H, minor), 0.89 (t, J=7.6 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 203.0, 138.2, 130.8, 129.2, 128.3, 127.2, 126.4, 125.7, 117.3, 109.3, 77.4, 71.5, 58.8, 34.9, 31.0, 30.8, 30.4 (minor), 30.1 (major), 23.4, 14.6. MS (EI, *m*/*z*): 309(<5), 253(20), 212(20), 197(65), 155(95), 140(60), 105(40), 91(100), 69(40), 57(95). FTIR (v_{max}/cm⁻¹): 3421, 2867, 1453, 1379, 1242, 1155, 806, 701.

4ka: ¹H NMR (400 MHz, C₆D₆): δ 7.44 (d, 7.8 Hz, 2H), 7.20 (d, J=8.0 Hz, 2H), 7.06 (td, J=8.0, 1.2 Hz, 1H), 6.37 (d, J=9.8 Hz, 1H, minor), 6.33 (d, J=9.8 Hz, 1H, major), 4.37 (dd, J=9.6, 5.7 Hz, 1H), 4.17-4.12 (m, 1H), 3.34 (dd, A of ABX, JAB = 9.3 Hz, JAX = 7.3 Hz, 1H), 3.28 (dd, B of ABX, JAB = 9.3 Hz, JBX = 3.6 Hz, 1H), 3.02 (s, 3H), 2.28 (s, 1H), 2.21 (t, J=6.5 Hz, 2H), 1.44-1.31 (m, 4H), 1.22 (s, 9H), 0.82 (t, J=7.6 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 143.6, 136.1, 131.7, 129.1, 129.0, 127.0, 96.5, 79.5, 75.9, 74.6, 59.0, 50.2, 36.5, 32.1 (minor), 31.7 (major), 29.9, 22.6, 19.8, 14.1. MS (EI, *m*/*z*): 328(<1, M⁺), 310(5), 253(25), 197(65), 155(100), 91(40), 57(25). FTIR (v_{max}/cm⁻¹): 3452, 2958, 2923, 1468, 1354, 1115, 763, 710.

3la: ¹H NMR (400 MHz, C₆D₆): δ 7.51 (d, J=7.4 Hz, 2H), 7.20 (t, J=7.6 Hz, 2H), 7.07 (t, J=7.2 Hz, 1H), 6.39 (dd, J=16.0, 1.2 Hz, 1H), 5.86 (dd, J=16.0, 5.9 Hz, 1H), 4.35-4.31 (m, 1H), 3.14 (dd, A of ABX, JAB = 9.5 Hz, JAX = 8.9 Hz, 1H), 3.10 (dd, B of ABX, JAB = 9.5 Hz, JBX = 4.0 Hz, 1H), 2.99 (s, 3H), 2.46-2.42 (m, 2H), 2.29 (bs, 1H), 2.26-2.22 (m, 1H), 2.07-2.04 (m, 2H), 1.71-1.56 (m, 4H), 1.39-1.06 (m, 7H), 0.89 (t, J=7.2 Hz, 3H, minor), 0.88 (t, J=7.2 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 207.1, 138.0, 129.1, 128.9, 128.3, 127.3, 126.7, 114.4, 109.0, 77.5, 71.8, 58.9, 39.3, 33.8, 33.7, 31.1, 30.8, 27.3, 27.0, 23.4, 14.5. MS (EI, *m*/*z*): 336(10), 309(35), 279(45), 207(40), 155(50), 91(100), 55(55), 32(55). FTIR (v_{max}/cm⁻¹): 3446, 2918, 2846, 1424, 1142, 1000, 777, 683.

4la: ¹H NMR (400 MHz, C₆D₆): δ 7.45 (d, J=7.8 Hz, 2H), 7.20 (t, J=7.8 Hz, 2H), 7.08 (t, J=7.2 Hz, 1H), 6.22 (d, J=9.8 Hz, 1H), 4.34 (dd, J=9.8, 5.5 Hz, 1H), 4.14 (bs, 1H), 3.39-3.25 (m, 2H), 3.04 (s, 3H), 2.21 (t, J=6.4 Hz, 2H), 2.08 (t, J=12.0 Hz, 1H), 1.84 (dd, J=26.4, 12.4 Hz, 2H), 1.71-1.65 (m, 2H), 1.58-1.29 (m, 7H), 1.22-1.08 (m, 3H), 0.82 (t, J=6.8 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 143.6, 132.2, 129.1, 129.0, 128.3, 127.0, 95.9, 79.6, 75.9, 74.6, 59.1, 49.9, 46.4, 33.1, 32.9, 31.7, 27.1, 27.0, 26.8, 22.6, 19.9, 14.1. MS (EI, *m*/*z*): 336(<5), 279(65), 223(55), 197(60), 155(100), 115(40), 91(85), 55(35). FTIR (v_{max}/cm⁻¹): 3469, 2940, 1459, 1269, 1089, 876, 697.

3ma: ¹H NMR (400 MHz, C₆D₆): δ 7.44 (d, J=7.6 Hz, 2H), 7.19 (t, J=8.0 Hz, 2H), 7.07 (t, J=7.4 Hz, 1H), 6.59 (dd, J=16.0, 1.2 Hz, 1H, minor), 6.58 (dd, J=16.0, 1.2 Hz, 1H, major), 5.65 (dd, J=15.8, 6.1 Hz, 1H), 4.25 (bs, 1H), 3.53 (dd, A of ABX, JAB = 9.9 Hz, JAX = 7.3 Hz, 1H), 3.43 (dd, B of ABX, JAB = 9.9 Hz, JBX = 3.7 Hz, 1H), 2.39 (t, J=7.6 Hz, 2H), 2.32 (d, J=3.1 Hz, 1H), 1.89 (s, 3H), 1.52 (quin, J=7.6 Hz, 2H), 1.38-1.29 (m, 2H), 0.91 (s, 9H), 0.86 (t, J=7.2 Hz, 3H), 0.01 (s, 6H). ¹³C NMR (101 MHz, C₆D₆): δ 208.8, 137.9, 134.9, 131.5, 130.6, 129.1, 127.4, 127. 1, 106.3, 103.4, 73.5 (major), 72.4 (minor), 68.2, 30.8, 30.7, 26.4, 23.2, 21.9, 18.8, 16.0, 14.5, -4.9. MS (EI, *m*/*z*): 386 (<1, M⁺), 311(5), 237(30), 195(35), 181(55), 169(30), 105(35), 91(55), 75(100). HRMS (EI) C₂₄H₃₈O₂Si [(M+H]⁺, 387.27138 (calculated); 387.27155 (found). FTIR (v_{max}/cm⁻¹): 3426, 2915, 1468, 1318, 1256, 1115, 851, 772, 683.

3na: ¹H NMR (400 MHz, C₆D₆): δ 7.48 (d, J=8.8 Hz, 2H), 7.20 (t, J=7.6 Hz, 2H), 7.07 (t, J=6.8 Hz, 1H), 6.54 (d, J=15.7 Hz, 1H), 5.80 (ddd, J=15.6, 6.0, 0.4 Hz, 1H), 4.27 (bs, 1H), 3.55 (dd, A of ABX, JAB = 9.8 Hz, JAX = 7.6 Hz, 1H), 3.45 (dd, B of ABX, JAB = 9.8 Hz, JBX = 3.4 Hz, 1H), 2.44 (t, J=7.2 Hz, 2H), 2.29 (t, J=8.0 Hz, 2H), 1.64-1.54 (m, 4H), 1.40-1.29 (m, 4H), 0.91 (s, 9H, major), 0.90 (s, 9H, minor), 0.87 (t, J=7.6 Hz, 3H), 0.85 (t, J=7.6 Hz, 3H), 0.01 (s, 6H). ¹³C NMR (101 MHz, C₆D₆): δ 208.2, 137.9, 130.2, 129.1, 128.3, 127.4, 126.9, 108.6, 108.0, 73.6, 68.2, 31.0, 30.9, 30.8, 29.8, 26.4, 23.5, 23.3, 18.8, 14.5, 14.5, -4.9. MS (EI, *m*/z): 371(10), 336(5), 315(20), 296(25), 279(25), 212(20), 168(45), 116(60), 91(55), 75(100), 56(95). FTIR (v_{max}/cm⁻¹): 3437, 2917, 1451, 1272, 1093, 849, 776, 685.

30a: ¹H NMR (400 MHz, C₆D₆): δ 7.44 (d, J=7.8 Hz, 2H), 7.20-7.14 (m, 6H), 7.11-7.05 (m, 2H), 6.57 (d, J= 16.0 hz, 1H), 5.60 (dd, J=15.7, 5.9 Hz, 1H), 4.37-4.34 (m, 1H), 4.24 (s, 2H), 3.28 (dd, A of ABX, J_{AB} = 9.3 Hz, J_{AX} = 7.9 Hz, 1H), 3.21 (dd, B of ABX, J_{AB} = 9.3 Hz, J_{BX} = 3.8 Hz, 1H), 2.39 (t, J=7.2 Hz, 2H), 2.25 (bs, 1H), 1.85 (s, 3H), 1.51 (quin, J=7.4 Hz, 2H), 1.32 (sext, J=7.6 Hz, 2H), 0.86 (t, J=7.2 Hz, 3H, minor), 0.85 (t, J=7.2 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 208.8, 139.0, 137.9, 130.5, 129.1, 129.0, 128.3, 128.2, 127.4, 127.1, 106.3, 103.4, 75.1, 73.6, 71.8, 30.8, 30.7, 23.2, 15.9, 14.5. MS (EI, *m*/*z*): 362 (<5, M⁺), 320(5), 253(10), 197(20), 181(25), 169(45), 129(20), 91(100), 69(35), 41(40). HRMS (EI) C₂₅H₃₀O₂ [(M+Na]⁺, 385.21380 (calculated); 385.21384 (found). FTIR (v_{max}/cm⁻¹): 3435, 2915, 1503, 1450, 1142, 983, 763, 674.

3pa: ¹H NMR (400 MHz, C₆D₆): δ 7.44 (d, J=7.2 Hz, 2H, major), 7.43 (d, J=7.2 Hz, 2H, minor), 7.18 (t, J=7.6 Hz, 2H), 7.06 (t, J=7.2 Hz, 1H), 6.59 (d, J=15.6 Hz, 1H, minor), 6.54 (d, J=15.6 Hz, 1H, major), 5.77 (ddd, J=15.7, 6.6, 0.8 Hz, 1H), 4.06 (d, J=6.4 Hz, 1H), 2.92 (s, 3H), 2.55 (bs, 1H), 2.39 (t, J=7.2 Hz, 2H), 1.88 (s, 3H, minor), 1.88 (s, 3H, major), 1.51 (quin, J=7.6 Hz, 2H), 1.32 (sext, J=7.6 Hz, 2H), 1.03 (s, 3H), 0.97 (s, 3H, major), 0.96(s, 3H, minor), 0.86 (t, J=7.6 Hz, 3H, minor), 0.85 (t, J=7.6 Hz, 3H, major). 13C NMR (101 MHz, C₆D₆): δ 208.7, 138.0, 134.9, 131.4, 131.3, 129.1, 127.3, 127.1, 106.2, 103.5, 78.7, 78.0, 72.4, 49.4, 30.8 (major), 30.7 (minor), 23.1, 21.9, 21.1, 19.9, 16.0, 14.5. MS (EI, m/z): 314 (<1, M+), 242(5), 91(5), 115(5), 73(100). FTIR (vmax/cm-1): 3438, 2920, 1480, 1384, 1067, 962, 761, 708.

3ra: ¹H NMR (400 MHz, C₆D₆): δ 7.46 (d, J=8.0 Hz, 2H, major), 7.45 (d, J=8.0 Hz, 2H, minor), 7.19 (t, J=7.6 Hz, 2H), 7.07 (t, J=7.2 Hz, 1H), 6.30 (d, J= 15.7 Hz, 1H), 5.59 (ddd, J=15.6, 6.4, 0.8 Hz, 1H), 4.14-4.08 (m, 1H), 2.42 (t, J=7.2 Hz, 2H), 1.85 (d, 0.8 Hz, 3H), 1.54 (quin, J=7.2 Hz, 2H), 1.39-1.30 (m, 2H), 1.13 (d, J=6.4 Hz, 3H, minor), 1.12 (d, J=6.4 Hz, 3H, major), 0.87 (t, J=7.2 Hz, 3H, minor), 0.86 (t, J=7.2 Hz, 3H, major). ¹³C NMR (101 MHz, C₆D₆): δ 208.7, 138.0, 134.1, 129.1, 128.3, 127.4, 127.0, 106.2, 103.3, 69.0, 30.9 (minor), 30.8 (major), 30.7, 24.1, 23.2 (minor), 23.2 (major), 16.0, 14.5. MS (EI, *m*/*z*): 256 (<5, M⁺), 238(5), 196(10), 181(15), 169(100), 155(25), 141(25), 129(20), 115(20), 91(25), 77(10), 43(25). FTIR (v_{max}/cm⁻¹): 3332, 2972, 2920, 1501, 1427, 1089, 982, 782, 708.

3sa: ¹H NMR (400 MHz, C₆D₆): δ 7.45 (d, J=8.0 Hz, 2H), 7.19 (t, J=7.8 Hz, 2H), 7.07 (td, J=7.6, 0.8 Hz, 1H), 6.29 (d, J=15.6 Hz, 1H), 5.59 (dtd, J=15.6, 6.0, 0.8 Hz, 1H), 3.90 (d, J=5.5 Hz, 2H), 2.41 (t, 7.4 Hz, 2H), 1.83 (s, 3H), 1.54 (quin, J=7.4 Hz, 2H), 1.39-1.30 (m, 2H), 0.87 (t, J=7.6 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 208.6, 138.0, 129.7, 129.1, 127.4, 127.0, 106.3, 103.4, 63.8, 30.8, 30.7, 23.2, 15.9, 14.5. MS (EI, *m/z*): 242 (<5, M⁺), 224(5), 200(15), 169(100), 154(20), 141(25), 128(20), 115(20), 91(30), 41(5). FTIR (v_{max}/cm⁻¹): 3345, 2912, 1488, 1449, 1305, 978, 689.

(E)-5ta: ¹H NMR (400 MHz, C₆D₆): δ 7.35 (d, J=7.6 Hz, 2H), 7.20-7.16 (m, 2H), 7.11 (d, J=8.0 Hz, 1H), 6.14 (s, 1H), 3.61(d, J=0.8 Hz, 2H), 3.15 (s, 2H), 3.02 (s, 3H), 2.51 (t, J=7.2 Hz, 2H), 2.08 (d, J=9.2 Hz, 4H), 1.58 (bs, 4H), 1.35-1.21 (m, 4H), 0.80 (t, J=6.4 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 206.0, 142.9, 142.5, 133.5, 129.0, 128.7, 128.3, 128.1, 127.2, 78.0, 59.2, 45.3, 39.4, 31.1, 30.7, 30.4, 23.6, 23.4, 22.8, 14.4. MS (EI, *m*/*z*): 326(10, M⁺), 281(25), 238(95), 181(55), 129(30), 91(100), 45(35). FTIR (v_{max}/cm⁻¹): 2922, 1738, 1440, 1209, 1094, 767, 700.

(**Z**)-**5ta**: ¹H NMR (400 MHz, C₆D₆): δ 7.31 (d, J=8.0 Hz, 2H), 7.20-7.16 (m, 2H), 7.08-7.03 (m, 1H), 6.12 (s, 1H), 3.67 (d, J=0.8 Hz, 2H), 3.12 (s, 2H), 3.08 (s, 3H), 2.40 (t, J= 7.2 Hz, 2H), 1.96 (bs, 2H), 1.87 (bs, 2H), 1.48-1.36 (m, 4H), 1.38 (s, 4H), 0.82 (t, J= 6.4 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 205.8, 143.1, 142.0, 133.5, 129.5, 128.5, 128.0, 127.7, 78.0, 59.2, 45.2, 39.4, 31.3, 31.0, 30.4, 23.7, 23.4, 22.8, 14.4. MS (EI, *m/z*): 326(20, M⁺), 281(25), 238(95), 181(60), 141(35), 91(100), 45(35). FTIR (v_{max}/cm⁻¹): 2922, 1738, 1440, 1209, 1094, 767, 700.

3va: ¹H NMR (400 MHz, C₆D₆): δ 7.75 (d, J=6.4 Hz, 2H), 7.18 (t, J=7.0 Hz, 2H), 7.07 (t, J= 7.8 Hz, 6.46 (dd, J=15.8, 1.2 Hz, 1H, minor), 6.43 (dd, J=15.8, 1.2 Hz, 1H, major), 5.59 (dd, J=16.0, 6.4 Hz, 1H), 4.22 (bs, 1H), 3.41 (s, 3H, minor), 3.40 (s, 3H, major), 3.05-3.00 (m, 2H), 2.99 (s, 3H), 2.25 (bs, 1H), 1.72 (d, J=0.8 Hz, 3H). ¹³C NMR (101 MHz, C₆D₆): δ 216.7, 166.5, 139.9, 131.1, 129.4, 129.0, 128.3, 127.0, 105.2, 103.4, 77.1, 71.4, 59.0, 52.2, 15.0; MS (EI, m/z): 288 (2, M+), 256 (3), 211 (5), 183(5), 155 (17), 115 (8), 89 (4), 77 (9), 51 (5), 45 (100); HRMS (ESI): C₁₇H₂₁O₄ (MH)⁺: 289.1434 (calculated), 289.1439 (found). FTIR (vmax/cm⁻¹): 3419, 2922, 2851, 1926, 1716, 1492, 1434, 1369, 1321, 1273, 1195, 1171, 1123, 1062, 1039, 964, 918, 898, 781, 694

6ba: ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.42 (m, 3H), 7.37 (t, J=7.6 Hz, 3H), 7.32-7.29 (m, 2H), 7.15 (d, J=7.6 Hz, 2H), 6.00 (d, J=2.4 Hz, 1H), 4.30 (q, J=5.5 Hz, 1H), 3.93 (d, J=8.6 Hz, 1H), 3.64-3.56 (m, 2H), 3.43 (s, 3H, minor), 3.41 (s, 3H, major), 3.14 (dd, J=8.6, 5.9 Hz, 1H), 2.56-2.48 (m, 1H), 2.40-2.33 (m, 2H), 2.06 (t, J=1.6 Hz, 3H), 1.34-1.24 (m, 4H), 0.83 (t, J=7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 178.8, 177.0, 143.6, 140.8, 138.4, 131.8, 129.1, 128.8, 128.2, 128.2, 127.3, 126.5, 126.0, 74.8, 69.7, 59.1, 47.1, 44.9, 40.0, 36.0, 30.5, 22.9, 22.2, 13.9. MS (EI, *m/z*): 441(90), 385(50), 328(40), 237(20), 207(30), 181(100), 145(90), 91(90), 45(35). FTIR (v_{max}/cm⁻¹): 2954, 2849, 1724, 1512, 1367, 1209, 1128, 719.

CHAPTER 4

RESULTS AND DISCUSSION

The Pd(0)-catalyzed reaction of enyne oxirane (**1a**) with phenyl boronic acid was initiated by performing the reaction over the catalyst Pd(PPh₃)₄ in THF/water mixture at 50 °C of reaction temperature to obtain vinylallenols with a phenyl group.

Table 4.1. Effect of Reaction Parameters on the Pd(0)-Catalyzed Arylation of 1a

2/1

2/2

2/0

4/2

1/0.5

1.5

1.5

24

1.5

1.5

73

72

0

71

58

^a NMR yield Reactions were performed with 0.1 mmol of **1a**

3

3

3

3

3

3

4

5

6

7

Initially, the palladium % loading was investigated for **1a** conversion and the highest yield was obtained with 3% Pd loading (Table 4.1., Entry 3). Then the water content was varied and it was determined that presence of water is needed for the formation of product (Entry 5). The variation of THF/H₂O ratio seems to have no dramatic effect on the product (**3aa**) (Entry 3,4).). The method is applicable at more diluted

medium (Entry 6), whereas a comperetively lower yield was obtained at more concentrated solution. (Entry 7).

After these results, the method was studied with the monosubstituted enyne epoxide **1b** having a disubstituted oxirane ring. When the reaction was performed with phenyl boronic acid, boronic acid ester was formed with the enyne oxirane **1b** (Figure 4.1) as the result of lack of steric hindrence of **1b** compared to **1a**. Beside phenyl boronic acid, formation of boronic acid ester was also observed with potassium phenyl trifluoroborate and phenyl boroxine.

Figure 4.1. Boronic Acid Ester Formation of Enyne Oxirane
Bu	Me	+ Arylboron — OMe ³ eq.	Pd(0) THF/H ₂ O	Me Bu	OMe OH	Me Bu	OH OMe
	1b			31	ba	4ba	
Entry	Arylboron	Catalyst	THF/H ₂ O(ml)	°C	Time (h)	Yield ^a 3ba (Yield ^a 4ba)	dr
1	NaBPh ₄	3% Pd, Pd(PPh ₃) ₄	2/1	50	2	67	79:21
2	NaBPh ₄	3% Pd, Pd(PPh ₃) ₄	2/0.5	50	1.5	75	83:17
3	NaBPh ₄	3% Pd, Pd(PPh ₃) ₄	2/0.25	50	2.5	40	-
4	NaBPh ₄	3% Pd, Pd(PPh ₃) ₄	2/1	RT	4	23 (49) ^b	-
5	NaBPh ₄	3% Pd, Pd(PPh ₃) ₄	2/0.5	RT	4	31 (33)	-
6	NaBPh ₄	2% Pd, Pd(PPh ₃) ₄	2/0.5	50	2	70	82:18
7	NaBPh ₄	1% Pd, Pd(PPh ₃) ₄	2/0.5	50	2.5	65	82:18
8	PhBneo ^c	3% Pd, Pd(PPh ₃) ₄	2/0.5	50	1.5	78	79:21
9	NaBPh ₄	3% Pd, Pd(PPh ₃) ₄	1/0.25	50	1.25	34	79:21
10	NaBPh ₄	3% Pd, Pd(PPh ₃) ₄	4/1	50	1.5	68	77:23
11	NaBPh ₄	3% Pd, Pd ₂ (dba) ₃ CHC /PPh ₃ (12%)	Cl ₃ 2/0.5	50	1.5	72	78:22

Table 4.2. Effect of Reaction Parameters on the Pd(0)-Catalyzed Arylation of $\mathbf{1b}$

Reactions were performed with 0.1 mmol **1b**, ^a NMR yield, ^b Isolated yield, ^c Phenylboronic acid neopenthyl glycol ester.

When the arylboron source was changed to the sodium salt of tetraphenyl borate and phenylboronic acid neopentyl glycol ester, the target product could be obtained in good yields and with moderate diastereoselectivities (Table 4.2.) The decrease of the THF:water ratio from 2/1 to 2/0.5 caused to improve the desired product 3ba yield some extent (Entries 1 and 2). However a further decrease to 2/0.25 led to decrease the yield dramatically (Entry 3). Interestingly when reaction was performed at room temperature not only 3ba but also an allylic substitution product 4ba was formed in moderate yield (Entry 5). The formation of 4ba seems directly proportional with the water amount added into the reaction medium (Entry 4). Decreasing the Pd loading showed no positive effect on the yield and the diastereoselectivity (Entry 6 and 7). The application of different concentration (lower or higher) was detrimental for the product formation (Entry 9 and 10). When phenylboronic acid neopentyl glycol ester was used instead the yield of 3ba increased but decrease in diastereomeric ratio (Entry 8). As the Pd(0) source changed to chloroform adduct dibenzylideneacetone (dba) complex of palladium and triphenylphosphine as ligand, both reaction yield and dr ratio decreased relatively (Entry 11). Due to the being air and temperature sensitive of tetrakis(triphenylphosphine) palladium(0) complex and ease of usage of air stable palladium-dba complex especially when ligand change was desired for diasteroselectivity palladium-dba complex was chosen as palladium precursor.

When the reaction was performed with phenylboronic acid neopentyl glycol ester (**2a**) and with the presence of the dba complex of Pd and PPh₃ combination at 50 °C, a good yield was obtained with moderate dr level (Table 4.3., Entry 1). While a slight increase of P/Pd ratio from 4/1 to 4.5/1 ratio the dr level somewhat, a decreased of the yield was observed (Entry 2). However, a significantly lower dr level could be provided with the further increase of the ligand to Pd ratio (5/1) (Entry 3). It appears that a better dr level could be provided when the reaction was performed at rt with a P to Pd ratio 4.5/1 (Entry 4). It apparent that Pd(PPh₃)₄ catalyst cannot surrogate Pd₂(dba)₃CHCl₃/PPh₃ combination as the comparable experiment with the former catalyst afforded the corresponding vinylallene rather in a lower yield and with a lower dr level (Entry 5).

	Bu O OMe				Me Bu	OMe DH	
	1b	2a			3ba		
Entry	Catalyst	Ligand	THF/H ₂ O(ml)	°C	Time (h)	Yield ^a	dr
1	3% Pd, Pd ₂ (dba) ₃ CHCl ₃	12% PPh ₃	2/0.5	50	1	81	70:30
2	3% Pd, Pd ₂ (dba) ₃ CHCl ₃	13.5% PPh ₃	2/0.5	50	1	73	77:23
3	3% Pd, Pd ₂ (dba) ₃ CHCl ₃	15% PPh ₃	2/0.5	50	1	70	58:42
4	3% Pd, Pd ₂ (dba) ₃ CHCl ₃	13.5% PPh ₃	2/0.5	RT	4	81	76:24
5	3% Pd, Pd(PPh ₃) ₄	-	2/0.5	RT	4	77	73:27

Table 4.3. Pd(0) Precurser and Ligand Effect on Yield and Diastereoselectivity of 3ba

Reactions were performed with 0.1 mmol 1b and 3 eq. of 2a, aNMR yield

After the determination optimum conditions related to P to Pd ratio, temperature, THF:water ratio a variety of mono-and bidentate ligands were tested for their efficiency on the catalytic activity of the palladium (Table 4.4). When strongly electron withdrawing -trifluoromethyl- substituted phenyl phosphine ligand was examined, although no stereoselectivity was detected, the percent yield of **3ba** was nearly quantitative with this ligand (Entry 5). With the aim of increasing the diastereomeric selectivity, the lower reaction temperatures 10 °C and 0 °C tested. Under these conditions the selectivity was improved up to dr level of 84/16 though required longer reaction times for a complete conversion (Entry 6 and 7). Except with tris(2-furyl) phosphine and methyl diphenylphosphine (Entry 8 and10) with other monodentate ligands poor results were attained on the bases of dr level. Air stable tetrafluoroborate salt of trialkylphosphine ligands (tris(tert-butyl) phosphine and tricyclohexyl phosphine) was also examined. In order to liberate the bare forms of trialkylphosphines a basic medium is required (Netherton and Fu, 2001).

Therefore, with these ligands NaHCO₃ was present as the base within the reaction medium, with the presence of tricyclohexyl phosphine no product formation was observed (Entry 12). When the base was changed to KF, **3ba** formation was in 78% yield but proceeded with low diastereoselectivity (Entry 13). When the reaction was carried out with bidentate ligands, despite the best selectivity was observed with dppe ligand, reaction time was unaffordable long with this ligand (Entry 22). Then the reaction temperature was raised to 50 °C to accelerate the reaction but diastereoselectivity diminished at this temperature (Entry 23). Apparently, no benefit was gained with the presence of the base NaHCO₃ with the ligand dppp. (Entry 24). Nevertheless, it was pleasure to find that the beneficial effect of NaHCO₃ was noticeable over the activity of Pd/DPEphos catalyst system, providing a complete conversion of the substrate to the desired product being recovered in an excellent yield (96%) with a synthetically meaningful dr level (87:13) within an acceptable period of time (Entry 26). No better result could be obtained when performing the reaction at a sub-room temperature.

Bu	Me , , , , , , , , , ,	3% Pd, Pd₂(dba) ₃ CHCl ₃ Ligand (P/Pd: 4.5/1) ► THF/H₂O (2ml / 0.5 ml) 25 °C	Bu	Me OMe OH
	1b 2a			3ba
Entry	Ligand	Time (h)	Yield ^a	dr
1	$P(4-OMeC_6H_4)_3$	19	72	75:25
2	$P(2-OMeC_6H_4)_3$	19	55	61:39
3	$P(2,6-OMeC_6H_3)_3$	40	52	58:42
4	P(2,4,6-MeC ₆ H ₂) ₃	3	64	75:25
5	$P(4-CF_3C_6H_4)_3$	2.5	99	50:50
6 ^b	$P(4-CF_{3}C_{6}H_{4})_{3}$	4	78	80:20
7 ^c	$P(4-CF_3C_6H_4)_3$	11	86	84:16
8	Tris (2-furyl) phosphine	15	65	85:15
9	PPh ₂ Bn	21	42	77:23
10	PPh ₂ Me	23	70	85:15
11 ^d	[HP(t-Bu) ₃]BF ₄	3.5	46	80:20
12 ^d	[HPCy ₃]BF ₄	72	-	-
13 ^e	[HPCy ₃]BF ₄	5	78	72:28
14	AsPh ₃	20	66	82:18
15	XANTPHOS	5	43	64:36
16	t-Bu-XANTPHOS	72	-	-
17 ^f	(±)-BINAP	48	38	66:34
18	BIPHEP	20	65	70:30
19	dppf	20	61	73:27
20	dppe	30	81	84:16
21	dppb	40	48	83:17
22	dppp	72	70	88:12
23 ^g	dppp	14	85	86:14
24 ^d	dppp	16	91	83:17
25	DPEPhos	1.5	92	80:20
26 ^d	DPEPhos	3.5	96	87:13
27 ^{b,d}	DPEPhos	24	78	85:15

Table 4.4. Ligand Effect on Yield and Diastereoselectivity of 3ba

Reactions were performed with 0.1 mmol **1b** and 3 eq. of **2a**, ^aNMR yield, ^b10 °C, ^c0 °C, ^d3 eq. of NaHCO₃ was used, ^e3 eq. of KF was used, ^f41% starting material was recovered, ^g50 °C

With DPEPhos as the choice of the ligand in hand, the optimization studies were continued to survey the most suitable base of the method. Among the bases tested, generally the amine bases revealed better results than inorganic bases especially in terms of diastereoselectivity (Table 4.5). The highest yield and diastereoselectivity were obtained with the presence of N,N-diisopropylethyl amine (Entry 10). A heteroaryl 2,2-bipyridyl- was entirely incompetent for the method (Entry 18). Pd(PPh₃)₄ was tested once again under the modified conditions. However, no better result was possible with this pre-ligated Pd catalyst (Entry 19). Even CO was evaluated as for its potency as ligand, but failed to show any promotive effect with its presence as the combination of Ar/CO (9/1) under a balloon pressure. In this condition however the yield was moderate, diastereoselectivity was not high (Entry 20). When reaction was performed in air atmosphere the yield was convincing but diastereoselectivity was not (Entry 21).

Me Bu +	Me B	3% Pd, Pd ₂ (dba) ₃ CHCl ₃ DPEPhos (P/Pd: 4.5/1)	Me OMe
		Base (3 eq.)	Bu OH
Ome		25 °C	
1b	2a	20 0	3ba

Table 4.5. Effect of Base on Yield and Diastereoselectivity of 3ba

Entry	Base	Time(h)	Yield ^{a,b}	dr
1	KF	1.5	81	87:13
2	K_2CO_3	2.5	88	77:23
3	Cs_2CO_3	7	93	83:17
4	CsF	4.5	88	87:13
5	NaOAc	22	56	77:23
6	КОН	22	35	78:22
7	Et ₃ N	5	90	89:11
8	<i>n</i> -Bu ₃ N	16	70	85:15
9	<i>n</i> -Pr ₃ N	16	72	86:14
10	(<i>i</i> -Pr) ₂ EtN	2	90	90:10
11	(<i>i</i> -Pr) ₂ NH	22	77	85:15
12	Cy ₂ MeN	6	85	87:13
13	N,N-dimethyl aniline	1	82	78:22
14	DBU	20	52	69:31
15	TMEDA	48	36(49)	-
16	DMEDA	48	(60)	-
17	2,2-Bipyridyl	96	26(57)	-
18 ^c	(<i>i</i> -Pr) ₂ EtN	96	-	-
19 ^d	(<i>i</i> -Pr) ₂ EtN	5	61	80:20
20 ^e	(<i>i</i> -Pr) ₂ EtN	1.5	84	86:14
21 ^f	(<i>i</i> -Pr) ₂ EtN	2	88	84:16

Reactions were performed with 0.1 mmol **1b** and 3 eq. of **2a**, ^a NMR yield, ^b values in paranthesis are the yield of starting material that recovered, ^c2,2-Bipyridyl used as ligand, ^dPd(PPh₃)₄ was used as Pd source, ^e reaction was performed under Ar/CO (9/1) atmosphere in balloon pressure, ^f Air atmosphere.

The solvent effect was also evaluated. Besides THF, different ethereal solvents and also polar protic and aprotic solvents were tried (Table 4.6.). Ethereal solvents commonly showed higher yield and selectivity.

Bu	ivie +	Me Me B	3% Pd, Pd ₂ (dba) ₃ ·CHCl ₃ DPEPhos (P/Pd: 4.5/1)	Me	OMe
	OMe 1b	2a	(<i>i</i> -Pr)₂EtN (3 eq.) Solvent/H₂O (2 ml/0.5 ml) 25 ºC	Bu 3ba	ОН
En	try	Solvent	Time(h)	Yield ^a	dr
1	1	Dioxane	2	95	89:11

2

20

20

2

91

67

74

74

86:14

65:35

74:26

81:19

Table 4.6. Solvent Effect on Formation of 3ba

Reactions were performed with 0.1 mmol 1b and 3 eq. of 2a, a NMR yield

DME

ACN

DMF

i-PrOH

140

2

3

4

5

As the choice of the solvent THF in hand variation of the amounts of components of the reaction, such as base, water and as well as the temperature of reaction medium was assessed (Table 4.7.). The product **3ba** was obtained with a higher dr level as the base amount increases and 4 eq. was decided to be sufficient on in terms of the economy and a satisfactory dr level could be afforded under these conditions (Entry 1-2-3). No improvement could be achieved with variation of water content and concentration of the solution and it must be noted that lessening the water content lowered the reaction rate significantly (Entry 6 and 7). A slight improvement at dr level is possible by reducing the reaction temperature to 10 or 0°C (Entry 8 and 9). Finally, the organoboron content of the reaction mixture could be gratefully lessened to 2 equivalent from 3 equivalent without compromising the product yield the reaction rate (Entry 10).

Bu O OMe	Me Bo	3% Pd, Pd₂(dba) ₃ [.] CHCl ₃ DPEPhos (P/Pd: 4.5/1) (<i>i</i> -Pr)₂EtN, THF/H₂O 25 °C	Me OMe Bu OH
1b	2a		3ba

Table 4.7. Effect of Base Amount, Water Ratio, Concentration and Temperature of 3ba

Entry	Eq. Of Base	THF/H ₂ O (ml)	٥C	Time(h)	Yield ^a	dr
1	2	2/0.5	25	3	90	90:10
2	4	2/0.5	25	2	92	91:9
3	6	2/0.5	25	2	89	92:8
4	4	2/1	25	4	71	89:11
5	4	2/0.25	25	16	78	88:12
6	4	1/0.25	25	1.5	72	88:12
7	4	4/1	25	3	95	91:9
8	4	2/0.5	10	4	91	92:8
9	4	2/0.5	0	9	85	92:8
10 ^b	4	2/0.5	25	2.5	87	91:9

Reactions were performed with 0.1 mmol 1b and 3 eq. of 2a, a NMR yield, b 2 eq. 2a was used

After the optimized reaction parameters were determined, the reaction established was verified on the (*E*) configured enyne oxirane ((*E*)-1b). It was interesting to find that the method afforded the desired vinylallene product in high yield, but with a quite low dr level (24:76) with a major stereoisomeric form (**3ba'**) that is the diastereomer of **3ba** which is the product of its (*Z*)-configured counterpart (Figure 4.2).

Figure 4.2. Pd(0)-Calayzed Arylation Reaction of (E)-1b

Having determined that the method is more stereoselective with (Z)-configured enyne oxiranes, next the scope of the method was surveyed for both a number of organoborons and enyne oxirane structures as well.

The scope of the method seems to be astonishingly wide for the location and diversity of functional groups on organoboron structures (Table 4.8).

Table 4.8. Pd(0)-Catalyzed Reaction of the (*Z*)-Enyne Oxirane ((*Z*)-1a) with Different Organoboronates

Bu	Me + R ^{-B} C OMe 2 (Z)-1b 3 e	Me Me DPEPho (<i>i</i> -Pr) THF/H ₂ eq.	d₂(dba)₃ ·CHCl₃ os (P/Pd: 4.5/1) > 2EtN (4 eq.) O (2 ml/0.5 ml) 25 °C	R, Bu O	OMe J
Entry	R	Time (h)	Product	Yield % ^a	dr
1	Me 2	b 1.5	3bb	93	92:8
2	Me 2	c 2	3bc	72	90:10
3	کر Me 2d	1.5	3bd	87	92:8
4 ^b	Me Me Me	20	3be	28	85:15
5	21	2	3bf	88	91:9
6	20	1 .5	3bg	93	91:9
7	MeO Z	2 h 1.5	3bh	95	91:9

(cont. on next page)

Table 4.8 (cont.)

8	Cl 2i	9	3bi	78	90:10
9	F 2j	6	3bj	83	92:8
10	F ₃ C 2k	12	3bk	81	92:8
11	2ا		361	73	64:36
12	Pr 2m	4	3bm	63	85:15
13 ^c	S 2n	3	3bn	-	-

Reactions were performed with 0.1 mmol **1b** and 3 eq. of **2**, ^aIsolated yields, ^b43% allylic arylated by product was formed. ^c β -hydride elemination byproduct was observed as inseperable mixture of the target product.

Electron-rich arylboronates provided the corresponding arylated vinylallenol products with good to high yields except with the highly sterically hindered 2,6-dimethylphenylboronate (Table 4.8. Entry 4). When 2,6-substituted phenylboronate was used allylic arylated by product (**4be**) (Figure 4.3.) was recovered with 43% isolated yield. It was noticed that the reactions with electron-deficient arylboronates needed longer reaction times for completion, affording the corresponding products in moderate yields but good dr levels. This reactivity difference might be resulted from the less reactivity of the electron poor organoborons toward transmetallation step with the intermediate of π -allyl palladium complex. When alkenylboronate was used both the reaction yield and selectivity decreased (Table 4.8. Entry 11 and 12).

Figure 4.3. Allylic Arylated Product 4be

Performing the reaction with 3-thienylboronate lead to the formation of a byproduct (Figure 4.4.) formed as a result of β -hydride elemination afterwards formation of a π -allyl-Pd complex with the help of the base in the medium with the ratio 1/4 corresponding to the target vinyallenol. It is considered that the sulfide coordination of palladium probably switched its activity toward elimination rather than transmetallation route.

Figure 4.4. β -hydride Elemination Product

Next we explored the scope of the method on different substrate type beginning with the envne oxirane with different substituents (\mathbf{R}^1) on the alkynyl carbon. The yields and dr levels of the corresponding products were comparable to that obtained with 1b when methyl (3de) or phenyl (3eh) substituted enyne oxiranes were reacted with esters of phenylboronic acid and *p*-methoxyphenylboronic acid, respectively. (Table 4.9., Entry 1 and 2). However, when \mathbf{R}^1 was substituted with a comparatively bulky cyclohexyl (3ga), t-butyl (3fa) and trimethylsilyl (3ha) group, the corresponding desired vinyallene products were obtained in lower yields and their formation was accompanied by the formation of allylic substitution products 4fa, 4ga and 4ha respectively (Entry 3, 4 and 5). To minimize difficulty of migration of π -allyl coordinated palladium to α -allenylpalladium intermediate, the reactions with bulky substituents on alkynyl moiety were also performed with less bulky PPh₃ ligand instead of DPEPhos. No allylic addition product formation was observed with the reaction of 1g and 1h. Nevertheless with t-butyl group 5% yield of **4fa** was obtained. The envne oxiranes with terminal alkyne moiety (\mathbb{R}^1 = H, **3ia**) and disubstituted alkenyl moiety ($R^2 = H$, **3ia**) both afforded the corresponding vinylallene products in moderate yields. The product selectivity is evidently influenced by the size of the alkenyl substituent \mathbf{R}^2 . The presence of cyclohexyl group in \mathbf{R}^2 led the formation of the allylic substituted product **4la** in 16% along with the moderate formation of the vinylallene **3la** (Entry 9). When ligand was changed to PPh₃, formation of **4la** was inhibited. The presence of a highly-encumbered group, such as tert-butyl, at \mathbf{R}^2 caused to cease the formation of an vinyallene product and hence was the allylic arylation product (**4ka**) only to form which was recovered with 62% percent yield at the end of the reaction. As presence of bulky groups in alkynyl moiety, the reaction was performed with PPh₃ ligand instead of DPEPhos when alkenyl moiety was bulky either. Even if reaction was performed in the presence of PPh₃ when \mathbf{R}^2 was t-butyl- **4ka** was still major product, but 16% vinylallenol (**3ka**) product was obtained.

It seems that the method can tolerate various substituent types and organization of substituents (\mathbb{R}^3) on the epoxide ring moiety. When the pendant oxygen functionality is free hydroxyl group there was some reduction in the corresponding product formation (Entry 10). The presence of this group as benzyloxymethyl group (**3oa**) (Entry 12) or in a silyl protected form (**3ma**) (Entry 11) had no noticible effect on the effectiveness of the method.

While the presence of dimethyl (1a) or dimethylmethoxy methyl (1p) groups on the oxirane terminus was well tolerated with the proposed methodology and thus the corresponding products were isolated in high yields and dr levels (Entry 13 and 14). The presence of only one methyl substituent (1r) on the oxirane terminus, interestingly led the lengthening the reaction period for the complete conversion of the substrate (Entry 15). When there was no substituent on oxirane ring, the desired product **3sa** could also be obtained in a good yield (Entry 16)

Table 4.9. Arylation of Enyne Oxiranes

	R^{1} R^{2} $+$ Ph^{-B} Me Me Me R^{3} $+$ Ph^{-B} Me Me Me Me Me Me Me Me	3% Pd, Pd ₂ (dba) ₃ ·CHCl ₃ DPEPhos (P/Pd: 4.5/1) (<i>i</i> -Pr) ₂ EtN (4 eq.) THF/H ₂ O (2 ml/0.5 ml) 25 °C	Ph,, F R ¹	R ² OH	
Entry	Product		Time (h)	Yield % ^a	dr
1	Ph,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1	93	92:8
2	4-MeO-C ₆ H ₄ , Ph OMe OH	3eh	3	93	91:9
	Ph	DPEPhos	16	68	92:8
	t-Bu OH	PPh ₃	10	71	88:12
3	Me	DPEPhos	16	11	N.D. ^b
	^{<i>t</i>-Bu⁺} Ph OH 4fa OMe	PPh ₃	10	5	N.D. ^b
	Me Ph	DPEPhos	8	71	92:8
	Cy OH 3ga	PPh ₃	5	73	85:15
4	Me	DPEPhos	8	9	N.D. ^b
	Cy Ph OH 4ga OMe	PPh ₃	5	-	-

(cont. on next page)

Table 4.9 (cont.)

(cont. on next page)

Table 4.9 (cont.)

Reactions were performed with 0.1 mmol 1 and 3 eq. of 2a, ^a Isolated yield, ^b Not Determined

An unexpected result has been faced with the substrate having an endocyclic double bond. The reaction resulted in formation of an arylated dienone structure (**5ta**) with 55% percent yield together with an allylic arylation product (**4ta**) was obtained with 10% yield (Figure 4.6.). The expected vinylallene **3ta** should be the precursor the structure **5ta**. As it is formed, successive isomerization and tautomerization of **3ta** should be responsible for the formation of **5ta**.

Figure 4.5. Pd-Catalyzed Reaction of the Enyne Substrate (1s) Containing an Endocyclic Double Bond with 2a

To determine which diastereomer is the major one, a reaction with methyl ester group on alkynyl moiety (**1v**) was performed (Figure 4.6). Ester group was chosen because forming arylated vinylallenol is identical with the product of alkoxycarbonylation reaction of enyne epoxide that bears phenyl group on alkynyl moiety which was published in 2015 by Kuş et al. As comparing the 1H NMR spectra of these two products, we can conclude that different diasteromers of the same compound was formed in arylation and alkoxycarbonylation reaction. Kuş et al. also determined the exact structure of compound by X-Ray crystallography.

Figure 4.6. Determination of Major Diastereomer

As an application study of vinyl allenol products a Diels-Alder cyclization reaction was conducted between **3ba** with phenyl maleimide which yielded the expected [4+2] cyclization product in 62% percent yield with complete endo and facial selectivities (Figure 4.7). This reaction revealed the importance of vinyl allenols for producing a potential valuable building block for the synthesis of complex molecules.

Figure 4.7. Diels-Alder Reaction of 3ba with Phenyl maleimide

Figure 4.8. NOESY study of 6ba

The relative configuration of the adduct **6ba** was determined through NOESY NMR analysis. The NOESY spectrum showed a relationship between H^1 and H^3 , H^1 and H^6 , and H^4 and H^5 indicating a structure in consistent with those of previous (Whipple and Kelly, 1988 and Luo et al., 2016).

The mechanisms illustrated in Figure 4.8. is proposed to account for the stereoselective formation of **3**. The reaction cycle should begin with ring-opening by the attack of a palladium complex to **1** in anti-mode leading to formation of π -allylpalladium complexes **A** and **B** respectively. After transmetallation with arylboron intermediates **A'** and **B'** forms. These intermediates additionally undergo a palladium shift to the far alkynyl carbon proceeding mainly with retention to form vinylallenyl palladium complex **C**, respectively. When a bulky group is positioned at **R**¹ and **R**² it retards the effective migration of the π -allyl coordinated palladium and as a result allylic arylated products form. (Figure 4.9.)This σ -allenylpalladium complex (**C**) undergo reductive elemination to yield **3** stereoselectively.

Figure 4.9. Mechanism of Arylation of Conjugated Enyne Oxiranes

Figure 4.10. Mechanism of Allylic Arylated Products

CHAPTER 5

CONCLUSION

To conclude, a novel palladium-catalyzed diastereoselective arylation reaction of 2,4-enyne oxiranes with organoborons was performed. This palladium catalyzed reactions resulted in the introduction of possibly functionalized group in 1,5-relation with respect to the oxirane group, affording aryl bearing vinylallenol structures. These products are versatile building blocks for valuable target molecules that is proofed by performing Diels-Alder cyclization reaction of synthesized vinylallenol.

REFERENCES

- Akpınar, G. E., Kuş, M., Üçüncü, M., Karakuş, E., Artok, L., Org. Lett., 2011, 13, 748-751.
- Armarego, W.L.F. and Chai C.L.L *Purification of Laboratory Chemicals*, Elsevier Science, **2003.**
- Betzer, J.-F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 62 (22), 7768–7780.
- Buss, A. D.; Warren, S. J. Chem. Soc. Perkin Trans. I 1985, 2307-2325.
- Caldentey, X. C.; Cambeiro, X. C.; Pericàs, M. Tetrahedron 2011, 67, 4161-4168.
- Corey, E. J.; Chaykovsky, M., J. Am. Chem. Soc. 1965, 87, 1353-1364
- Elsevier, C. J.; Stehouwer, P. M.; Westmijze, H.; Vermeer, P. J. Org. Chem. **1983**, 48 (7), 1103–1105.
- Jeffery-Luong, T.; Linstrumelle, G. Tetrahedron Lett. 1980, 21 (52), 5019–5020.
- Hays, P. A.; Thompson, R. A. Magn Reson Chem, 2009, 47 (10), 819-824.
- Kajikawa, T.; Aoki, K.; Singh, R. S.; Iwashita, T.; Kusumoto, T.; Frank, H.A.; Hashimoto, H.; Katsumura, S. *Org. Biomol. Chem.* **2009**, *7*, 3723-3733.
- Karagöz, E. Ş.; Kuş, M.; Akpınar, G. E.; Artok, L. J. Org. Chem. 2014, 79 (19), 9222– 9230.
- Kjellgren, J.; Aydin, J.; Wallner, O. A.; Saltanova, I. V.; Szab, K. J. *Chem. Eur. J.* **2005**, 11, 5260-5268
- Kuş M.; Artok L.; Aygün M. J. Org. Chem. 2015, 80, 5494–5506.
- Lian, J. J.; Chiang, P. C.; Lin, Y. P.; Ting, H. C.; Liu, R. S. J. Am. Chem. Soc. 2006, 128, 11372-11373

Luo, H., Yu, Y., Ma, S., Org. Chem. Front., 2016, 3, 1705-1710.

- Mandai T.; Ogawa M.; Yamaoki H.; Nakata T.; Murayama H.; Kawada M.; Tsuji J. *Tetrahedron Lett.*, **1991**, 32(28), 3397-3398.
- Matthew, S C, B W Glasspoole, P Eisenberger, and C M Crudden., J. Am. Chem. Soc. 2014, 136 (16): 5828–5831.
- Ming-Yuan, L.; Madhushaw, R. J.; Liu, R. S. J. Org. Chem. 2004, 69, 7700-7704.
- Moriya, T.; Miyaura, N., Suzuki, A. Synlett, 1994, 149
- Murahashi, S.; Imada, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. 1993, 58 (6), 1538–1545.
- Netherton, M. R. and Fu, G. C., Org. Lett., 2001, 3, 4295-4298.
- Ohmiya, H.; Makida, Y.; Tanaka, T; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 17276.
- Piers, E.; Wong, T.; Coish, P.; Rogers, C. Can. J. Chem. 1994, 72, 1816-1819.
- Piotti, M. E.; Alper, H. J. Org. Chem. 1997, 62, 8484-8489.
- Rosales, V.; Zambrano, J. L.; Demuth, M. J. Org. Chem. 2002, 67 (4), 1167–1170.
- Schmidt, B.; Pohler, M.; Costisella, B. Tetrahedron 2002, 58, 7951-7958.
- Shimizu, I.; Maruyama, T.; Makuta, T.; Yamamoto, A. *Tetrahedron Lett.*, **1993**, 34, 2135-2138
- Tsuji, J. *Palladium Reagents and Catalysts*; John Wiley & Sons: Chichester, **2004**, pp 543-563.
- Tsuji, J. Transition Metal Reagents and Catalysts Transition Metal Reagents and Catalysts; **2000**; Vol. 0
- Tsuji, J., Sugiura, T., Minami, I. Tetrahedron Lett., 1986, 27, 731-734.

Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253-266.

Urabe, H.; Suzuki, K.; Sato, F. J. Am. Chem. Soc. 1997, 119, 10014-10027.

Üçüncü, M., Karakuş, E., Kuş, M., Akpınar, G. E., Aksın-Artok, Ö., Krause, N., Karaca, S., Elmacı, N., Artok, L., *J. Org. Chem.*, **2011**, 76, 5959-5971.

Whipple, W. L. and Kelly, M. J., J. Am. Chem. Soc., 1988, 110, 6432-6435.

Yoshida M.; Hayashi M.; Shishido K. Org. Lett., 2007, 9, 1643-1646.

Yoshida M.; Ueda H.; Ihara M., Tetrahedron Lett., 2005, 39, 6705-6708

APPENDIX A

¹H and ¹³C NMR SPECTRA of PRODUCTS

					1		E
Date Stamp Nov 8 2016	20161108 01/CARBON 01.FID/FID	Original Points Count 32768	Solvent BENZENE-d8	Temperature (degree C) 25.000		8.0	S'#1
Nov 8 2016 L	GRAMS/NMR/FZ-FW208	256 (30.00	25000.00			511- 511-
Date	SPECTRA&CHROMATO	Number of Transients	Receiver Gain	Sweep Width (Hz)	7 1581	L'62L-/	-106.3
FZ-FW208	iqLER/EPOXIDE/EPOX (130	s2pul	STANDARD	9.851-]		0.861
Comment	DOGLE DRIVENSLER G	Nucleus	Pulse Sequence	Spectrum Type	caleFactor = 1	Bu Me HO OMe	
1.3107	C:\USERS\FIRAT\G(100.57	32768	11142.4971	VerticalS	3ba	
Acquisition Time (sec)	File Name	Frequency (MHz)	Points Count	Spectrum Offset (Hz)	208-c.esp		0.10 0.05 0.05 0

	11.FID/FID					
Jul 19 2013	13C 20130719 01/CARBON 0	nts Count 32768	CHLOROFORM-d	e (degree C) 25.000		
Date Stamp	FW042-9-12	Original Poi	Solvent	Temperatur		9'09
	IR1/FIRAT/FZ				2.97	0.57
Jul 19 2013	MS/NMR/VNM	20000	30.00	25000.00	<u>е</u> Щ7	2 52~
Date	RA&CHROMATOGRAM	Number of Transients	Receiver Gain	Sweep Width (Hz)		6' 1 6——
12-13C	OX SPECT	_	_			
FZ-FW042-9-1	LERIEPOXIDEIEP	13C	s2pul	STANDARD		0,141
Comment	ale drivenaler güçi	Nucleus	Pulse Sequence	Spectrum Type	eFactor = 1	Me Bu OH
1.3107	C:/USERS/FIRAT/GOOG	100.57	32768	11062.3894	VerticalScale	OMe 4ba
ion Time (sec)	e	cy (MHz)	ount	m Offset (Hz)	4ba-c.esp	

	VFID		ş		16.21
7 2015	01.FID	98		2	
3	ARBON	nt 327			13005
	7_01/C/	ts Cour	Idaara		F4
conce.	015070	al Poin	1		8
ated.	SAF 2	Origin	Solver		
	FW186				69' LZ
915	MRVFZ-		5	3	20 22 22
	NISWA	512	30.00		8
	ATOGE	ients			07 50
	CHROM	of Trans	Gain ideb ru-		16.301
4	CTRA8(umber o	eceiver	01071-	C 12 C 12 C 12 C 12 C 12 C 12 C 12 C 12
Ś	X SPE	N	ar o	62.8517	2 ~130.45 ~139.06
CAF	DELEPO		6	2	76.761-
EW10	EPOXI	0			2 ²
	SüçLER	13	30		
	IşLER G		ance		110
nont	DRIVE	SUS	Seque	Bu'	180
^w o	OGLE	Nucle	Pulse	caleFa	8
	RATIGO			HO OMe	
	ERSIFI	4	5 2028		
1 210	C:\US	100.5	3276	3ba'	5
o lear	בופבה	(2	-11-1	ds	
ion Tim	e e	cy (MH	ount	188 ÷ e	1 E
Acquicit	File Nam	Frequen	Points C	0.12 0.20 0.20 0.20 0.20 0.20 0.20 0.20	ni bezilemovi 2. c. c. c. c. c. c. c. c. c. c. c. c. c.

Interference Interference<	Oct 6 2015	DTON 01.FID/FID	163.84	BENZENE-d8) 25.000			96.0—	86.1— 	0~ 95'1-29'1- 132 139 139 139 139 139 139 139 139	1.98 2.03 3.03
Rition Time (sec) 23500 Comment FZ_FW199.54F Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Oct 6 2015 Date Date Oct 6 2015 Date Oct 6 2015 Date Date Oct 6 2015 Date <thdate< th=""> <thdate< th=""> Date</thdate<></thdate<>	Date Stamp	9-SAF 20151006 01/PRC	Original Points Count	Solvent	Temperature (degree C	88.1-	2.14			2,47 5,44 -2,47 -2,44 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,45 -2,44 -2,45 -2,45 -2,44 -2,45 -2,13 -2	1.90 0.94 2.83 2.85
estion Time (see) 2500	Oct 6 2015	OGRAMSINMRIFZ-FW19(8	54.00	6410.26	00.6-					2.042.85
Bin Time feet 2 2550 Time feet 2 2500 Time fee	Date	(SPECTRA&CHROMAT(Number of Transient	Receiver Gain	Sweep Width (Hz)					₹ 4°31 4°35	103
eition Time (sec) 2.550 ame <u>Countration Strict And Social DRIVEISIERA Nonceus</u> <u>enery (MHz)</u> 309.92 <u>countration 16394</u> <u>Duke Sequence</u> <u>rum Offset (Hz)</u> 2416.3853 <u>Spectrum Type</u> <u>connent</u> <u>199-h esp</u> <u>connent</u> <u>199-h esp</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u> <u>connent</u>	FZ-FW199-SAF	Güdl ERVEPOXIDE/EPOX	HI	s2pul	STANDARD		Me Bu Me			29:60 2.64 2.62 2.60	1.06
Isition Time (sec) 2.5560 Iame c:.UUSERSIFIRATIG	Comment	OOGLE DRIVEVISLER	Nucleus	Pulse Seguence	Spectrum Type	<pre>scaleFactor = 1</pre>	HO 3bc	_OMe		99`9 29`9- 09:9-16`9-	1.00
Intervention Time (see)	2.5559	C:/USERS/FIRATIG	300.07	16384	2416.3853	VerticalS			9L.Y—-	96.7~ 51.7~ 51.7~ 52.3~ 52	0.82 1.03 1.09
	sition Time (sec)	ame	PUCV (MHz)	Count	rum Offset (Hz)	199-h.esp	միսկամիստեսմիստիսոմիստիսոն	նահումնակումնագրումը։	որույնուրո	ոնակումակունակունակու	

$\frac{\operatorname{Int} \operatorname{rect} (12) \operatorname{rect} (12) \operatorname{rec} (12) rec$		Τ	Τ			3	
$\frac{1}{100} \frac{1}{1000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$							0
$\frac{1}{100} = \frac{1}$							
Image Constraint	2015	טואטוא.	ENE-d8			232	20
Increase Custom Construction	Oct 6	VIDIN U	BENZ	c) 25.00(6.05	30
Increase Constraint Constra	10100		is count	(degree			40
$\frac{1200}{120} - 12$	Stamp	JUDICIUZ	ent	perature		6.99	09 09
$\frac{1307}{1005} - \frac{1207}{1005} - \frac{1207}{1005} - \frac{12015}{1005} - 12015$	Date	IN-SAL	Solv	Tem			0
Image: Section of the sectio	15	WH-7-IV				S.TT	08
Interest 13107 Comment Interest interest	Oct 6 20	MINISMA	30.00	25000.00			8
Interlies 13/07 Comment EZ-ENVIGE-SAF Date Image: Section of the section o	DOOT N	AAI UGK	SIEILIS	(z)			<u>6</u>
Interfeet 13107 Comment 72-FW199.SAF Date Reserved 200631 Date 270031 Date 270031 Date Reserved Mucless Autolesson Spectrum Type Spe		SCHRUN SCHRUN	er Gain	Width (H			110
Ime Comment Comment Ime Comment	Date	Mumbo	Receiv	Sweep	₩821-)		12
Interface 1.3107 Comment F2-FW192.5 H2) COUSERSFIERATIOOOGLE DRIVEIISLER GigLERIEPOXIDE EVICE EVICE H2) 2006 Pulse Prise 1307 Point Spectrum Type 230 Pulse 130 Point Point Point 130 Pulse Point Point Point 130 Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point 130 Point Point Point Point 140 Point Point Point Point<	SAF	CEPOX :			9.821-7		1
Interfeeci 1.3107 Comment H2) 100.57 Nucleus H2) 100.57 Nucleus H2) 00.57 Nucleus Me Me 13336 Pulse Sequence 13 esp VerticalS caleFactor = 1	-FW189-S			ANDARD			150
Ime (sec) 1.3107 Comment H2) 100.57 Mucleus H2) 00.67 Pulse Sequence Pulse Sequence Spectrum Type esp VerticalScaleFactor = 1	FZ ICT	CIQUER	2 0	ST		Me	180
Ime (sec) 13107 Comment H2) 00.57 Mucleus H2) 00.57 Mucleus Sec 11136.3836 Spectrum esp verticalScaleFactor VerticalScaleFactor		EVISILER	uence	Type			170
Ime face 1.3107 O Hzi 100.57 A A OHO OH OH A	Comment	יווסוסייר קיווסוסייר	ulse Sec	pectrum	eFactor	Bu Me	180
HO Old Hi 100.57 Hi 1100.57 Hi	00000	AINGOOD		S	icalScal		0 190
C://1310 C://1310 Hz) 100.5 esc (Hz) esc 1113	7	EKSIFIK		3.3836	Vert	HO Olive	210 20
ime (sei set (Hz) esp	c) 1.310		32766	11136		3DC	220
	Time (se		t	ffset (Hz)	c.esp		230
Mame Name Name Name One	uisition	Name	Its Coun	ctrum Ol	199-		

Acquisition Time	(sec) 2.5559		Comment	FZ-T2FW198-FR1	Date	Dec 14 2015	Date Stamp Dec 14 201	
File Name	C:\USER	RSVFIRATIG00	GLE DRIVENIŞLER Güçli	ERIEPOXIDEIEPOX SPI	ECTRA&CHROMATOGRA	MS/NMR/FIRAT-08.01.20	16/FZ-T2FW198-FR1_20151214_02/F	ROTON 08.FID/FID
Frequency (MHz)	399.92		Nucleus	Ħ	Number of Transients	8	Original Points Count 16384	
Points Count	16384		Pulse Sequence	s2pul	Receiver Gain	60.00	Solvent BENZENE-	8
Spectrum Offset	(Hz) 2417.950	22	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree C) 25.000	
t2fw188-d	k-h.esp	VerticalScal	leFactor = 1			292		
1.00								
0:06								
0.00	9							
0.85	vz—-			В				
0.80				J—				
0.75								
0.70			vie	N				
0.05		-		/le				
× 0.60			le				78.1 78.1	
lianel C			_0 `0				<u>[</u>	
ed In			H Me					
ziler 4 7								8,
Nom 040								2'0—
								<u>11</u>
20.0								0~
							11.2	62.0
		20				L.	ہ ء 	92.0
N7.0		96'9-				- <u>579</u> 1 1 8	01.3 35 35 35	32
0.15	66	1	6.34	59'Þ-	9	61 15 15 15 15 15 15 15 15 15 15 15 15 15	38 5-2-3 5-2-3 5-2-3 4-2 4-2	12
0.10	9-90		7-	<u>, 1</u>	-45 -45		تري الم	'n
0.05-		J			Y Y Y	- Tenton	(man and and	
2	് ന് 🕹	<u>8</u> 1	ē]	, ₅ 1	ļ.	1.12.1.27 3.14	6.27 2.04 2.95 4.2	50
	2 97	9'9 0'1	8.0	200	4.5 4.0	3.5 3.0	2.5 2.0 1.5	1.0 0.5
					Chemical Shift (nom)			

									1
									1
015	0		E-d8				8.41		°
Nov 4 2	02.FIDV	32768	BENZEN	25.000			8.06-	2'08-2	-
	ARBON	ount		gree C)					4
dm	03_01\C	Points (iture (de					8
Date Sta	201511	Original	Solvent	Tempera				0.68	•
	2-FW202	-					2°12- 9°22		^{\$}
4 2015	VNMRVF2			00.0					
Nov	OGRAMS	1000	30.00	2500(
	ROMATC	ansients	-	(Hz)			8.601-	9.901-	1
	RA&CH	ber of Tr	iver Gai	p Width				9'154'9	120
Date	(SPECT	Num	Rece	Swee	+128.4 128.4		7.821- <u>-</u> 7.821		₹.
	DEVEPOX			_			5 881 2'981-	4,35r-L	1 1 1
-FW202	VEPOXIC	0	bul	ANDARI		\sim			150
FZ	GüçLER	13	52	S					160
	'EVIșLER		uence	Type	<u>,</u>				170
mment	ILE DRIV	Icleus	ilse Seg	pectrum	eFactor	Bu	le		180
ŭ	TIGOOG	W	đ	S	alScale				190
	RSIFIRA			300	Vertio	HO	OMe	0'607	20
				20		3bf		3 000	3
1.310	C:\USE	100.5	3276	Ë					
te (sec) 1.310	C:USE	(z) 100.5	3276	et (Hz) 1113	d,				30 220
ition Time (sec) 1.310	me C:\USE	ncy (MHz) 100.5	Count 3276	um Offiset (Hz) 1113	202-c.esp				230 220

															1		-
								68.0			\$8.0-X	18.0 <u>~</u>	30	98'0-7	, Jawker J	»]]	1.0 0.5 0
Aug 3 2015	VPROTON_02.FID/FID	unt 16384	BENZENE-d8	ree C) 25.000	48.r—						81	s.r—	6-1.35 -1.34 54	199.1-7 29.1-7			2.0 1.5
Date Stamp	6-SAF 20150803 01	Original Points Co	Solvent	Temperature (deg	-3.00							21	5'42_5'41 5'42/5'41 '46 '46	21		8-1 0/7	3.0 2.5
Aug 3 2015	RAMS/NMR/FZ-FW19	128	54.00	6410.26								IS	5 5	06.4		2	0 3.5
ate	ECTRA&CHROMATOGF	lumber of Transients	eceiver Gain	weep Width (Hz)										4.34		5	5.0 4.5 4 Chemical Shift (pom)
FZ-FW198-SAF D	üçLER\EPOXIDE\EPOX SPE	1H	s2pul R	STANDARD			Bu) • Me					233 - 252 - 2529 - 2529 - 2729 - 2729	<u>jl</u>		3]	6.0 5.5
Comment	SOOGLE DRIVENSLER C	Nucleus	Pulse Sequence	Spectrum Type	ScaleFactor = 1			HO 3bg	_OMe			9Ľ.4—	85.7-28 6.69 8.70 8.70	J			7.0 6.5
2.5559	C:\USERS\FiRAT\(399.92	16384	2416.3853	Vertical								6872 6872 997 89 997 29 29				8.0 7.5
Acquisition Time (sec)	File Name	Frequency (MHz)	Points Count	Spectrum Offset (Hz)	196-h.esp	0.45	0.40		viisnein S	1 bezilermot 23 24	20-10-1	0.151	0.0 10.0 40				8.5

						ŧ
					S.P.L.	9
					7.82	8
					6'00	
2015	FID/FI		ENE-d8		0.157	
Jul 7	BON D1	32768	BENZ	25.000		
	01/CAR	Count		egree C		5
du	50707	Points		iture (d	0.62	8
ate Sta	AF_201	Iriqinal	olvent	empera	<i>[112</i> —	2
	W180-S	0	s	-	9°22—	
15	RIFZ-FI					
ul 7 20	MISINN	512	30.00	5000.00		
 	VTOGR/	ents			-103'3	1001
	HROMA	Transi	Sain	tth (Hz)	//*	110 110
g	TRA&C	mber of	ceiver 6	eep Wic		120 Chemic
Da	X SPEC	Nu	Re	Sw	-1281	30
SAF	EVEPO)			_	6021-2	
FW180	EPOXIC		Inc	ANDAR	ОМе	1
Ë	üçLER\	13(\$2	ST		150
	șLER G		nce	ě		160
nent	DRIVEN	us	Seque	rum Ty	Bu	170
Comn	OGLE	Nucle	Pulse	Spect	caleFa	
	RATIGO				HOMe	0
2	ERSIF	7		3.3836	3bh	E C
1.310	C:\US	100.5	3276	11130		200
ne (sec)		(Z)		et (Hz)		210
tion Tin	ne	ncy (Mh	Count	im Offse	190-0-0	220
Acquisi	File Nan	-requer	Points (Spectru	0.30 0.30 0.30 0.30 0.40 0.30 0.30 0.30	

Acquis	ition Time (sec	2.5558	Comment	FZ-FW194-SAF	Date	Jul 27 2015	Date Stamp	Jul 27 2015	
File Na	me	C:\USERS\FiRAT\GO	DOGLE DRIVENISLER C	BüçLER/EPOXIDE/EPOX	SPECTRA&CHROMATOC	SRAMS/NMR/FZ-FW19	-SAF 20150727 01V	PROTON 01.FID/FID	
Freque	ncy (MHz)	388.92	Nucleus	Ħ	Number of Transients	104	Original Points Cou	unt 16384	
Points	Count	16384	Pulse Sequence	s2pul	Receiver Gain	56.00	Solvent	BENZENE-d8	
Spectn	um Offset (Hz)	2416.3853	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degre	ee C) 25.000	
	194-h.esp	VerticalSo	caleFactor = 1			00.8			
1.00									
0.85								58.1	
0.00	hudu			F					
0.85			Bu						
0.80			•						
0.75			`•\ H						
0.70	ղուղո	3	0						
0.65		bj							
-090 - 41			_0						
isnein S	Turnun		Me						
i pezij	Innhunt								88.
ermo 1.45	•								0
Z 0.40									
0.35									
0.30	ուսիսով	5							58.0
		91.7— 6.83				1	1		18.0-
0.15		181 1	99	0		11.6 11.6	9 5 4	84 5 5 1.33	
	1	9:01 9.1 9.9 9:9 9:9 9:9 9:9 9:9 9:9 9:9 9:9 9:9	9.9	9.9-7 99.9	22	14 /	-5'4	1.29 1.136 1.136 1.136 1.136	
	2.7-2 25.7-7	8.9 8.9 9.8-9		Į.	458 43 43 43 43 43 43 43	1.67		SS N	98'0-
	 					. Munit	2		
		0.98 2.76 1.00	-	8]]	<u>;</u>]	1.02 1.02 1.02	1.860.94	2.84 2.052.23	2.8
	2.5	9 0.7 6	8.5 6.0	5.5 5.0	4.5 4.0 Chemical Shift (ppm	3.5 3.0	2.5 2.1	1.5 1.5	0.5

																							_	ļ		0.5
	VFID		16														9	8.0— -		88.0 M	<u>8:0~.</u>	-1.29 30	88'0- 88'0-	320]	1.0
Jul 92015	ROTON 02.FID	16384	BENZENE-6	c) 25.000																	88.	-1'31 '33 1'44		2 182 13		1.5
	00_01/PF	ts Count		(degree					<u>58.1</u>														88.8-			2.0
Date Stamp	SAF 2015070	Driginal Point	Solvent	emperature																	55 5 4 90	27	-5.32	12120		2.5
	FZ-FW191-				00.5																		57.96 57.98 57.98	<u>پر</u>]	3.0
ul 9 2015	AMS/NMR/		6.00	410.26																	tri	12-9 9	1.E-) 1.E-)]	5
7	MATOGR	isients 8	5	łz) 6																						3. Jift (ppm)
	TRA&CHRC	ber of Trai	eiver Gain	ep Width (I																			4'30	e a		4.0 Chemical SI
Date	OX SPECT	Num	Rece	Swe					ſi		- ₃												4.33			45
W191-SAF	POXIDE/EF			VDARD					Į	×																5.0
FZ-F	GüçLER/E	Ħ	s2pu	STAN					Bu		•		vle									59.5 5.62 1.61	s	8		5.5
ut	RIVENIŞLER		equence	m Type	or = 1						F	10		_0	ОМе							99.3	4			0.0
Comme	OGLE DF	Nucleus	Pulse St	Spectru	aleFact							3bk	ĩ										1 0'0-			
	NFIRATIGO				/erticalSc																	99'9 99'9 29'9 29'9				9
2.5559	C:\USERS	388.92	16384	2416.7764															91.7-		53	2.5	96°2- ₁₄			7.0
Time (sec)		(ZHN	ţ	ffset (Hz)	h.esp																00	86. Y-1				7.5
Cquisition	ile Name	requency (h	oints Coun	pectrum Of	191-	1.00 1.00	0.85	0.00	0.85	0.00	0.75	0.70	0.65	инин 0.00	0.55	0.50	0.45	0.35	о. 0.30 иницини	0.25	20		0.05 1	-		_
4	-	-	a.	S										Ň	fianetn	l bezik	smioN									

													1 :
	0									/'61	9	*	1
9 2015	01.FID/FI	8	ZENE-d8	8						2.37	r.es		20
InL	ARBON	nt 327(BEN	e C) 25.0				9		105√		8.05-	
_	709 01/0	ints Cou		re (degre									
ate Stamp	F 20150	riginal Po	olvent	mperatu					0.65				
ä	W181-SA	õ	Sc	μ							9.17——		P
2015	IMRVFZ-F			00						¥ 11-			
Jul 9	GRAMSIN	512	30.00	25000									100
	ROMATO	ransients	'n	(Hz)							1.401-	9.801~	10
	TRA&CHF	nber of T	eiver Gai	ep Width							6'9Z ka		120
Date	SPECT	Nun	Rec	Swe	128.4 128.4			1.721-2			-129.2	T	÷.
-SAF	DEVEPOX			0							-159.6	8.141	146
Z-FW191	RIEPOXI	8	2pul	TANDAR		CF	3						150
ш	R GüçLEF	-	S	0			J						160
nt.	INEVIŞLE		equence	m Type	or = 1	Bu	• _{>>} Me						170
Comme	OGLE DR	Nucleus	Pulse Si	Spectru	aleFact								181
	RATIGO				rticalSc		но	OMe					200
107	JSERS/F	.57	68	37.1563	Ve		3bk						210
sec) 1.3	Cill	100	327	(z) 111									220
in Time (a		v (MHz)	unt	Offset (h	01-c.esp								1
Acquisitio	File Name	Frequenc	Points Co	Spectrum	<u> </u>	 0:30	0.25-	v jiisnetini b	ezilermoli C. 75		1	0.05	ŧ 0

Acquisition Time (sec)	2.5559	Comment	FZ-FW213-SAF	Date	Feb 1 2016	Date Stamp	Feb 1 2016	Т
File Name	C:/USERS/FIRAT/GOC	OGLE DRIVENŞLER G	JOLER/EPOXIDE/EPOX SP	ECIRA&CHROMATOG	KAMS/NMR/FR1-08.01-0	4.05/FZ-FW213-SAF_201	160201 01/PROTON 05/FID/FID	Т
Frequency (MHz)	399.92	Nucleus	Ħ	Number of Transients	8	Original Points Count	r 16384	Т
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	56.00	Solvent	BENZENE-d6	
Spectrum Offset (Hz)	2416.3853	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree (c) 25.000	
213-h.esp	VerticalSc	aleFactor = 1			00.6			
1.00							98.1-	
0.95			F					
08.0			'n∖ B					
0.85								
0.00		F	//•./					
0.75		10 ~ 3bl	×'					
	91.7-	Ì	Иe					
		_0						
viten 8		Me						
eini t								
ezije							88	
0.45							3.0	
- 0.40 					I			
0.35					-3.0			
0:30	7				,	,	06	
0.25	<u>1</u> -					9Z 'Z	<u>98.</u>	
0.20	18.8	9			41	54 58	_0 34 39	
	58.5 58.5 58.5	6919 6919 6919			8-1	72	9 9 9 9	
	62 2 2	69.8- 19.8-	69.8- 09.8- 69.8-	1 133 134 9	91 21.6- 01	5,28	9.17 05.1 05.1	
100	'9 <u>~</u> 0'2~		9.2-	6.4) 4-7-9 8.4-1 8.4-1		,		
	MAR	Jr.	J.	J.	JAC		July Mult	1
	1.841.890.890.97	1.84	0.83	683 1	1.892.57	2.14 2	2.91 2.07 1.95 2.97	
								F
0.0	(10) (17)	0.0	0.0	4.0 4.0 Chemical Shift (nom)	0.0	N7 07	1.0 U.1 U.1	

VIFID	97 - 11	NE-do			48'0 68 '0~68	78.0 28.0 78.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0 2	78.0 <u>28.0</u> 18.0 <u>58.0</u> 18.0 <u>58.0</u> 18.0 <u>58.0</u> 18.0 <u>58.0</u> 18.0 <u>58.0</u> 18.0 <u>58.0</u> 18.0 <u>58.0</u>
04 20151104 02/PROTON 01.FID/FI	Original Points Count 10384	Temperature Means CL2E 000	nemperature (degree L) 20.000	₽8° I.— •		22.27 20.2 20.2 20.2 20.1 20.1 20.1 20.1 20.1	2827 2012 2012 2012 2012 2012 2012 2012 20
	ents 250 C	28.00 T 8440.78	003			S1.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	21.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5
EPOX SPECTRA&CHROM	Number of Iransie	Receiver Gain	Sweep width (nz)	n-Pr		433 433 433	
EVIŞLER GüÇLER'EPOXIDE	H	ence szpul	уре зтаниаки = 1	Bu	Me OMe	Me 95'5- 65'5- 09'5- 09'5- 09'5- 29'5- 29'5- 69'5- 29'5- 69'5- 69'5- 29'5- 69'5- 29'5- 69'5- 29'5- 29'5- 29'5- 29'5- 29'5- 20	Me 955 955 095 095 095 095 095 095
REFIRATIGOOGLE DRIVE	Nucleus	Pulse Segur	VerticalScaleFactor	3br	n	n 55.9	n 60.9 00.9 51.9 51.9 51.9 51.9 51.9 51.9 51.9 51
C:/USER	ZB'BBS (ZH	10384 Feat/U-1 2448 778	set (nz) - 24 10.777 1.esp		91'2	91.7	91.7
	C.USERS/FIRAT/GOOGLE DRIVEVISLER GAGLER/LEPOXIDE/LEPOX SFECTRA&CHROMATOGRAMS/UMR/IEZ-FW204_20151104_0Z/PROTON_01: FID/FID	C:USERS/FIRATVGOOGLE DRIVEVSLER GøgLER/LEPOXIDE/LEPOX SFECTRA&CHROMATOGRAMSNMR/FZ-FW204_20151104_0Z/PROTON_01:FID/FID 20.92 Nucleus 1H Nucleus 1H Number of Transients 256 Original Points Count 16384	2) C:USERS/FIRATI/GOOGLE DRIVEUŞLER GuçLERUEPOX SFECTRA&CHROMATOGRAMSNMRIPZ-FW204_20151104_0Z/PROTON_01.FID/FID 2) 309.92 Nucleus 1H Nucleus 1H <u>Number of Transients 256 Original Points Count</u> 16384 16384 Pulse Sequence 52pul <u>Receiver Gain 58.00 Solvent</u> BENZENE-d8 2000 Solvent 0.000 Solvent 0.000 Nucleus	C:USERSFIRATIGOOGLE DRIVEVSLEE GuçLER GuçLER LEPOXIDELEPOX SPECI RAXCHROMATOGRAMSINMRIE Z-F W204_20151104_02/PROTON_01.FID/FID bz) 399.92 Nucleus 1H Number of Transients 256 Original Points Count 16394 16334 Puks Sequence s2pul Receiver Gain 58.00 Solvent BENZENE-d6 et (Hz) 2416.7764 Spectrum Type STANDARD Sweep Width (Hz) 6410.26 Temperature (degree C) 25.000	B	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	

Acquisition Time File Name	e (sec)	2.5559 C:\USERS\F\RAT\GO 200.02	Comment OGLE DRIVEVIŞLER Gü Mindour	FZ-FW221 ¢LER\EPOXIDE\EPOX SP 4U	Date ECTRA&CHROMATOGR/ Mumber of Transioner	Jun 7 2016 AMSINMRIUSER1-06.05	Date Stamp Jun 7 2016 2016-14.10.2016/FZ-FW221 20160607 01/PROTON 02.FID/FIC Original Proton Country 14204
Frequency (MHz		399.92	Nucleus	H	Number of Iransients	8	Original Points Count 16384
Points Count		16384	Pulse Sequence	s2pul	Receiver Gain	56.00	Solvent BENZENE-d8
Spectrum Offset	t (Hz)	2415.2114	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degree C) 25.000
221-h.es	d	VerticalSo	aleFactor = 1			10.8-	8
1.00							8.1-
0.95							 26°1-
0.00				N			
0.85				∥ ∕le ™			
0.80							
0.75			НС 3	•			
0.70			da	M			
0.65			\checkmark	е			
090 4			.01				
isnetn 133			le				
l bezik							
6000 145							
- 0.40 - 240		91.7-					
22.0						31.8	
0.25	01	96.7 -					
0.20		ц <u>Г</u>	6			13	86
0.15		8012- 9112-	68.9 8.8 8	0 7		2 <u>3.1</u>	
0.10		<u>28</u>	<u>9.</u> 8	-2.6(-5.61 -5.62	9 1134 23 1135 34 34 34 34 35 35 35 35 35 35 35 35 35 35 35 35 35	14	9
0.05		72~ 72~	_		43	-3'16 	
			M.		The second second second second second second second second second second second second second second second se	- Myrr	1 have the and the state of the second s
•		1.87 1.05	<u></u>]	ŧ]	<u>[10</u>	1.83 2.82	0.95 2.972.92
8.0	1	2 10	6.5 6.0	5.5 5.0	4.5 4.0 Chemical Shift (nom)	3.5 3.0	2.6 2.0 1.5 1.0 0.5

_			_	_				
							1	0 ! -
	01.FID/FID							0
015	RBON		VE-d6				0.91	
Dec 25 2	01/CA	32768	BENZEN	25.000			1	2
	151225	ount		ree C) 2				30
•	211_20	oints Co		rre (deg				4
te Stam	SIFZ-FW	ginal Po	vent	nperatu				1
Dat	01.2016	Ori	Sol	Ten			0.62	8
	RAT-08.						912	2
25 2015	UMRUFIE		0	00.00				8
Dec	RAMSV	448	30.0	2500			1	8
	MATOG	insients		Width (Hz)				100
	CHRO	er of Tra	ver Gain				5.011	110 110
Date	ECTRA8	Numbe	Receiv	Sweep	1.821-7		61/21-	2
	OX SPI				9.821	9.051	9.061-1	130
11	(IDE/EP			ARD			1382	1
FZ-FW2	R\EPO)	13C	s2pul	STAND			1	150
	GüqLE					OMe	0.001	160
	ElişLER		uence	Type	Ţ			170
mment	E DRIVI	cleus	Ise Seq	ectrum	actor			180
రి	3000	N	Pu	Sp	Scale		1	190
	FIRATI(~	ertical	OMe	1	200
107	JSERS/	.57	68	34.8680	>	HO* ~~		210
c) 1.3	C:N	100	327	111		3eh		220
ime (se		(TH2)		fset (Hz	dsa:			230
sition T	ame	ency (M	Count	num Off	211-6	<u></u>	untuntinutuntuntuntuntuntuntuntuntuntuntuntuntu	
Acqui	File N	Frequ	Points	Spect		0 20 20 20 20 20 20 20 20 20 20 20 20 20	0.20 0.16 0.05	

Jun 21 2016 Date Stamp Jun 21 2016	0160621 01/CARBON 01.FID/FID	ransients 512 Original Points Count 32768	in 30.00 Solvent BENZENE-d8	h (Hz) 25000.00 Temperature (degree C) 25.000		3.05	e.001
OX	0.2016/FZ-FW224-SAF 2016	Number of Iran	Receiver Gain	Sweep Width (h	9.82r ↓.85r 2.82r	2.061	5.121-2 2.121-
ISLER GücLER/EPOXIDE/EP	MR/USER1-06.05-2016-14.10	13C	uence s2pul	Type STANDARD	Ţ		8.861
RS/FIRAT/GOOGLE DRIVEN	RA&CHROMATOGRAMSIN	Nucleus	Pulse Seg	3936 Spectrum	VerticalScaleFactor =	t-Bu [♥] HO [●] OMe 3fa	r.aos.1
Acquisition Time (sec) 1.3107 File Name C:\USE	SPECT	Frequency (MHz) 100.57	Points Count 32768	Spectrum Offset (Hz) 11136.3	224-c.esp		0.10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0

ſ																				
	Jun 21 2016		32768	BENZENE-d0	25.000													0.42		
	Date Stamp J		Original Points Count 3	Solvent	Temperature (degree C) 2										9.1 <i>E</i> -			+'09		50 40 30
	Jun 21 2016	01/CARBON 01.FID/FID	5000	30.00	25000.00												1	9.62- 9.47- 7	64——	10 10 10 10 10 10 10 10 10 10 10 10 10 1
	Date	Z-FW224-DK 20160621 (Number of Transients	Receiver Gain	Sweep Width (Hz)	1.821-2											0.721~	1.121	9.201-	Maile versus (A. Soul Articul) 120 110 100 100 Chemical Shift (correct)
	FZ-FW224-DK	LER\EPOXIDE\EPOX 1-06.05-2016-14.10.2016\F;	13C	s2pul	STANDARD	128.6 128.6							t.	129				136.4 136.4		60 150 140 130
	Comment	00GLE DRIVE\IşLER Güç ATOGRAMS\NMR\USER1	Nucleus	Pulse Sequence	Spectrum Type	caleFactor = 1			<i>t</i> -Bu-		Me		.OH							стать и и польтика и польтика. Получите получите получите получите получите получите получите получите получит 1 10 11 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
	sec) 1.3107	C:/USERS/FIRAT/G/ SPECTRA&CHROM	100.57	32768	(z) 11135.6309	esp VerticalS					4fa	L	ОМе							1, 220 210 200
	Acquisition Time (s	File Name	Frequency (MHz)	Points Count	Spectrum Offset (H	224-dk-c.e	0.085	0.060	0.055	0.050	0.045	viisnetr	il bezilerr 0.0 0.0 0.0 0.0 0.0	Z 0.030	0.025	0.020	0.015	0.010	0.005	

				_																						
	J-IUV-ID																						-			
y 2.2016	CUNFROION UT	84	NZENE-d8	000																54	-1 53 58 1	1.11 20 1.11 20 20 1.11		5.12		
Mar	42 ZU16U5U2	Count 183	B	egree C) 25.			ş)8. I													L L	27.1 7.1- 7.1- 7.1- 7.1- 7.1- 7.1- 7.1- 7		1 / 1]	
te Stamp	H-/12M-1-7	qinal Points	vent	nperature (d				86 I													9	∿-1:96 34 5	225	A.00]	
Dat	08.01-04.05N	Ori	Sol	Ter																		.42 46 3	112	11=	25	
ay 2 2016	SUNMHAFKI-		4.00	410.26	10.8-	_														13	-3.14 -3.13 -8.	60 91 21	5	1.812.7	30	
A	MALOGRAM	ansients 8	n 5	(Hz) 8																					3.5	
Date	PECIKA&CHKO	Number of Tr	Receiver Gai	Sweep Width																		5 133 9 8	8.4 4 5.4 5.4	8	4.5 4.0	
-FW217-FR2	CHOXIDE/EPOX S		pul	ANDARD						(20 20	
FZ	EK Guçlek	÷	е 52	SI							~	•	ľ	1e							1	99'9- 9'9'9- 9'9'9-	-	< 8]	
mment	<u>E UKIVENŞLE</u>	Icleus	Ise Sequenc	ectrum Type	actor = 1							н		\sim	ОМ	le									6.0	
S	AI/GOOGL	Nu	Pu	S	ticalScaleF							3g	a								69' 99'9	9 ./	15 '9	/ 5]	
2.5559	CIUSERSIFIE	399.92	16384	2415.8939	Ver											91.7-			81	.7.	00 3 50	10 2-10 2-2-0 2-7-0	2-1	1.871.03	97	
Time (sec)		(MHz)	nt	ffset (Hz)	-h.esp														42	₹ <u>₩</u>	<i>r</i>	_		4	7.5	
Acquisition	File Name	Frequency (Points Cour	Spectrum 0	217	00.1	0.95	0.00	0.85	0.0	0.75	0.70	0.05	Alisne	ent b	ezilen 2. 2. 4	10N	0.35	0:30	0.25		0.0	- 10 - 10 - 10	- -	Ŀ	

	Τ				
					!
					•
				۲۳	!
2016 \FID	NEAR				1
03.FID	32/08	25.000		8.05	;
ARBON	Juno	gree C)		4	!
0 01/0	OINTS	ure (de			}
te Stan 016111	Numr	mperat		6'89	;
N230_2	5 8	S ∎		6°12	ł
116 RVFZ-FI				2' <i>LL</i>	;
W 11 20 MSNM	3 8	00.000			3
TOGRA	115	5		9'26	(mdd
ROMA	ransiel in	h (Hz)			I Shift ()
RA&CH	ber of 1	ep Widt			Chemica
SPECT SPECT		Swee	-1521		;
ELEPOX				£.761	2
W230 POXID		NDARD			3
PER E	200	STA			3
LER Gü	2				2
RIVEUS	S	um Typ	Bu Bu		3
Comme	Pulce 0	Spectru	aleFac		2
ATIGO(T		OMe		ł
RSFIR		3309		0.902	i 2
1.3107 C:\USE	100.001	11135.0	3ja		4 4
(sec)		(Hz)	a.		2
on Time	V (MHZ	Offset	30 -		
oquisiti e Name	inte Co	ectrum	0.26		
A II I		S	ytisnetni bezilarmol	N	

																			1	<u></u>
																				.
	20		ş														9.41			8
	0 11 20 FID/FI	768	NZENE	000											1.05	,	-53.4			8
1	NOB	mt 32	8	e C) 25													6.14	£——		- -
	01/CAR	nts Cou		e (degre																8
	Stamp 81109	inal Poi	ent	peratun													8,8	<u>9</u>		-8
	33 201	Orig	Solv	Tem													0.1	,		2
	-Z-FW2																₩.71	L		8
	11 2016 SVNMRV	9		00.00																8
:	Nov OGRAM	3000	30.0	2500																-8 E
	OMATC	ansient		(Hz)													£.e0	ı——		Shift (p
	A&CHR	er of Tra	er Gain	Width													Ę	:zu	-	20 1 nemical
	PECTR	Numb	Receiv	Sweep	1.821 -)											\$192 Z1671	L	-158	₹	- 5 8
	EPOX S				9821-											0.001	808	2.851-	_	4
	V233 OXIDE/			DARD																1
	LERIEP	130	s2pul	STAN																8
	ER Güc						Í													2
	nt RIVEVIsL		equence	m Type	or = 1		Ľ													8
	GLE DF	Nucleus	Pulse S	Spectru	lleFact		Bu	~ .	t-	Bu										8
F	VIIGOO				calSca															8
	RSFIRM			308	Verti			I	HO	\sim	ОМе						503.0		1	10
	1.310/ C:\USE	100.57	32768	11135.6					3ka											20 2
	(Sec)			(Hz)	с.															30 2
	on Time	v (MHz)	unt	Offset	233-c.e														ł	5
	File Name	Frequenc	Points Co	Spectrum		0.065	0.080	0.055-	0.050-	0.045	vitienetin 2.	i beziler 0.035 0.035	2 0.030	0.025	0.020	0.015	0.010	0.005		

Date Feb 22 2016		Original Points Count 32768	Solvent BENZENE-d8	Temperature (degree C) 25.000	9'9 56'4	-4'8 -14'2 -14'2 -19'8 -19'8 -30'8	50 40 30 20 10 0 -10
-0006	LON-C6D6 20160222 01/CARBON 01.FID/FID	Number of Transients 1000	Receiver Gain 30.00	Sweep Width (Hz) 25000.00		-73.6 -73.6 -73.6	120 110 100 90 80 70 60 Chemical Shift (ppm)
FZ-FW216-2-KOLON-	ER GüçLER\EPOXIDE\EPOX FRT-08.01-04.05\FZ-FW216-2-KOI	13C	nce s2pul	De STANDARD 28.4 28.4	21 21 21 21 21 21 21 21 21 21 21 21 21 2	6.761	0 160 150 140 130
310/ Comment bb 22 2016	USERSIFIRATIGOOGLE DRIVENISLE PECTRA&CHROMATOGRAMSINMRN	0.57 Nucleus	788 Pulse Sequer	135.6309 Spectrum Ty VerticalScaleFactor = 1	Bu HO HO 3na		210 200 190 180 170
Acquisition Lime (sec) 1.	File Name C:	Frequency (MHz) 10	Points Count 32	Spectrum Offset (Hz) 11 3na-c.esp	Vizio esti constructivo 2000 -	0.05 0.04 0.03 0.01 0.01	230 220

ſ																					ŧ	-10
																					I	•
	2016			VE-d6																		9
	Jun 152		32768	BENZEI	25.000										1.65	- 19 E	i.——	0.8	16			8
			ount		gree C)										8.0	ю——					Į.	8
	du		oints C		ure (de																	4
	ate Star		riginal F	olvent	emperat												t	7 6 1 -			ł	8
	á	9	0	Ś	Т																ł	8
		01.FID/F																	1 7	ZL		2
	15 201	RBON		8	00.00										C	97 - -	7.8	92-7			ł	8
1	Jur	5 01/CA	ts 512	30.	250																l	8
		016061	ransien	i.	h (Hz)													9° E0	h-			100 (mqq)
		3-SAF 2	ber of T	eiver Ga	ep Widt												28	901-			Γ	110 cal Shift
	Date	Z-FW22	Num	Rece	Swe																ł	Chemi
		0X 2018/F				128.4	_					1.921-		¥ 26¥	~			ę	-131°		Í	130
	1223-SA	(1015/15/10			DARD												0.861-					140
	N-1-2-1	6.05-201	130	s2pul	STAN																l	150
		K GugLE SER1-0																			l	100
	ut I	/evişter	5	equenc	um Type				×												ł	170
	Comme	LE URIN GRAMS	Nucleu	Pulse S	Spectru	Factor		В	u * `	`•\\	Me	9										180
		OMATO				alScale						Me									ł	190
		SULINA			36	Vertic				HC		↓ ^{Me} OMe										200
	3107	RECTR	00.57	2768	1136.39					3	ра								7.805-		ł	210
	(sec)	5 00	-	60	(Hz) 1																	220
	n Time		v (MHz)	unt	Offset (23-c.esp															ł	230
	Acquisitio	File Name	Frequenci	Points Co.	Spectrum	8	0.70	0.65	09:0	0.55	0.50	Viisne 2. 45.	atul bea	tilermol/ S S	0.25	0,00	0.15		0.10 11	0.0 1001	ղի 0	F

	0102 0 XMM	32768	BENZENE-d6	c) 25.000	-14.5 	20 10 0 -10 -10
	Date Stamp	Original Points Count	Solvent	Temperature (degree (8.06-7.06/	50 40 30
00000	MAY 0 2010	5000	30.00	25000.00	0.69	0 02 08 06
	Late FW218-TK 20160508 0	Number of Transients	Receiver Gain	Sweep Width (Hz)	-106.2 	120 110 100 Chemical Shift (ppm)
	FZ-FWZ18-TK LERVEPOXIDEVEPOX -06.05-2016-14.10.2016/FZ-	13C	s2pul	STANDARD	0.851 1.851 1.851 1.851	60 150 140 130
	1 COMMENT DOGLE DRIVENSLER Güg ATOGRAMSINMRIJISER	Nucleus	Pulse Seguence	Spectrum Type	But Me	190 180 170 1
	C:NUSERS/FIRATIGC C:NUSERS/FIRATIGC SPECTRA&CHROMA	100.57	32768	11135.6309	но [.] ме Зra 208'.	220 210 200
	File Name	Frequency (MHz)	Points Count	Spectrum Offset (Hz)	Vitenafini basilamo 0.11 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.0	230

																										ŧ
																									ŧ	9
																									ł	0
																									ł	- -
16	₽		E-d6																	₽'₽L-					1	
118 20	3.FID/F	768	ENZEN	000															9	-53	7	-53.		_	ł	2
n,	BON D	nt 32	8	e C) 25														L.R				3	18-/		ł	30
	1\CAR	ts Cour		(degre																	8.3	'⊄ 542	-48° 7		1	4
tamp	0718_0	I Point	t	rature																					ł	8
Date Si	2016	Origina	Solven	Tempe																		S.93			ł	8
	-R1-TK	-	- 1																						ł	2
9	W222-F																					0.8	87 <u>7</u>		ł	8
18 20'	S\FZ-F	000	8	000.000																					ł	8
Ju N	GRAM	ts 10	30	25																					1	La ê
	DMATC	ansien		(Hz)																					ł	
	&CHR(er of Tr	er Gaii	Width																					ł	mical S
Date	ECTRA	Numbe	Receiv	Sweep	1.021														2.72	h_	_			_	J	Che 12
¥.	OX SP				9.821-								(0.621							g	-133	-145.0	,	7	130
22-FR1	IDE/EP			ß																	6	5'9 -145' 43'1	1	1	-	140
Z-FW2:	(IEPOX	ő	2pul	TANDA				/	\sim		\searrow	\sim	<u>́</u> M	~									-		1	150
"	BüçLEF	+	N	S							 0			C											ł	160
	şLER (nce	be					D,		\checkmark														ł	2
nent	JRIVE	as	Seque	rum T	ctor =				Ы	J	Į														Ī	1
Comr	OGLE	Nucle	Pulse	Spect	aleFa						5ta														ŧ	100
	ATIGO				icalSc																				Ī	00
	RSFIR			836	Verti																0.90	S8.	S02		ŧ	0
.3107	:NUSE	00.57	2768	1136.3																					Į	2
sec) 1	5	-	e	1z) 1	¢.																				ł	22
Time ((ZHW)	nt	ffset (F	2-1-c.e																				I	23
isition	lame	Jency (s Coun	trum O	3	- 100 100 100 100 100 100 100 100 100 10	8		8	15	 2	99 10 10 10			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Final States	1	8		55	риции 2	чң.		1 8		F
Acqu	File N	Frequ	Point	Spect		0.0	0.0	0.0	0.0	0.0	0.0	0.0			Pezije		8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	

											_	ŧ
ate Stamp Nov 24 2018	20161124_01/CARBON_01.FID/FID	riginal Points Count 32768	olvent BENZENE-d8	emperature (degree C) 25.000				0.65			یا. با این مادهان می دواند از این ماده این از مادهای می این باز ماده ماده مردم این می از این می از این مردم م مردم این مادهای می دواند این ماده می این ماده مردم و ماده ماده ماده مردم و می و می و ماده می از این مردم و ماده م	60 50 40 30 20 10 0 -10
Ď	W238	ō	S	Ĕ					**LZ		ł	2
Nov 24 2016	OGRAMSINMRIFZ-FV	s 440	30.00	25000.00				V24——			an a la fara da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera d Esta da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da sera da	08 00 80
	OMATO	nsient		(ZH					105.2	+103.4	1	1 1 1
	A&CHR	r of Tra	er Gain	Width (11 International
Date	PECTR	Numbe	Receive	Sweep	1.28.1				0.721~		ł	12 42
_	POX SI				9.821-7	129.4			1.151		1	13
FZ-FW236	GüçLER\EPOXIDE\E	130	s2pul	STANDARD							dala menangan seria kana dari seria seria dari seria dari seria dari seria dari seria dari seria dari seria da	160 150 140
omment	.E DRIVEVIŞLER	cleus	se Sequence	oectrum Type	eFactor = 1	MeO ₂ C	≫• → Me			7 99t		180 170
_	ğ	Nuc	Pu	Š	Cal.		\square				£	19
1.3107	C:\USERS\FIRAT\GOOGI	100.57 Muc	32768 Pul	11134.8682 St	VerticalScal		HO ^{OMe}			7.912	and and the second second second second second second second second second second second second second second s	0 210 200 190
tion Time (sec) 1.3107	ne C:\USERS\FiRAT\GOOGI	Tey (MHz) 100.57 Nuc	Count 32768 Pu	im Offset (Hz) 11134.8682 St	238-c.esp VerticalScal		HO 3va			7.912—	and a second second state of the state of th	230 220 210 200 190

Acquisition Time (st	ec) 2.5559	Comment	FZ-FQ002	Date		Apr 13 2016	Date Stamp	Apr 13.2	2016	
File Name	C:\USERS\FiRAT\GO	OGLE DRIVENŞLER Güç	LERIEPOXIDE/EPOX SF	ECTRA&CHRO	MATOGR	AMS/NMR/FRT-0	8.01-04.05/FZ-FQ002	20160413 01/PR(OTON 01.FIDV	0.
Frequency (MHz)	309.92	Nucleus	Ħ	Number of Tra	ansients	8	Original Points	s Count 16384		
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain		54.00	Solvent	CHLOR	OFORM-d	
Spectrum Offset (H2	2399.5020	Spectrum Type	STANDARD	Sweep Width	(Hz)	6410.26	Temperature (degree C) 25.000		
fq002-h.esp	VerticalSc	:aleFactor = 1				14.8				
1.00										
0.95										
0.00										
0.85		Me								
0.80		Bu	НО							
0.75	6									
0.70	ba		ON J							
0.65			Ие							
		N —								
itismet 55.		Ph								
1 DE 0.50								s		
zilem 55								-5.0		
Ž 0.40										
0.35								ę		
0:30	٤٤							-2.05 -2.05		£8.0-
0.25	1e 					09.6		\	1	
0.20	2-2-9 5 2-7-				-3°5				-1:26 0 30	
0.15	1.77 E.7-	60		6	<u></u>	5 9 -3'29 -3'29	S		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28
61*2 0	- 12	96.9 <mark>.</mark> 96.9		3 <u>7</u> 43	1 91	118 118 118 118 118 118 118 118 118 118	-5'34 -5'34 -5'36 -5'36 5'32 5'36 5'20 5'20	15.34	5'L	0~
0.05	M						R			
- <u>;</u> ,_	2 2 87150 1 86 2 2 87150 1 86	ĝ]		195	월그	1.85 2.00 1.13	-111	3.10	. ⁶ 1	287
	11111111111111111111111111111111111111	85 8.0	22 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	45	40	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 2.5	2.0	101	90 91
			}	Chemical Sh	nift (ppm)			1	!	;

APPENDIX B

MASS SPECTRA of PRODUCTS

Abundance

Abundance

Abundance

VITA

PERSONAL INFORMATION

Surname, Name: ZİYANAK FIRAT Nationality: Turkish (T.C.) Date and Place of Birth: 11.01.1984, İzmir/TURKEY Marital Status: Married Phone: (+90) 5308843398 E-mail: <u>firatziyanak@gmail.com</u>

EDUCATION

Degree Institution Year of Graduation

PhD İzmir Institute of Technology 2016 MSc İzmir Institute of Technology 2011 BSc İzmir Institute of Technology 2008

WORK EXPERIENCE

Year Place Enrollment

2016 – R&D Responsible, TOYO Printing Inks
2008 – 2016 İzmir Institute of Technology, Teaching and Research Assistant
2007 – DYO Inks Chemical Company, Trainee
2006 – Türk Henkel A.Ş. Chemical Company, Trainee

FOREIGN LANGUAGE

English (Advanced)

PUBLISHED ARTICLES

- 1) Rhodium Catalyzed Alkoxycarbonylative Cyclization Reactions of 1,6 Enynes, ADVANCED SYNTHESIS & CATALYSIS, 353, 897-902, **2011**)
- 2) Synthesis of α,β -Unsaturated Ketones by Rhodium-Catalyzed Carbonylative Arylation of Internal Alkynes with Arylboronic Acids, SYNLETT, Issue 17, 2587-2592, **2008**)