SYNTHESIS OF VINYLALLENOLS VIA PALLADIUM-CATALYZED ARYLATION REACTIONS OF (Z)-2,4-ENYNE OXIRANES WITH ORGANOBORONS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in Chemistry
by
Fırat ZİYANAK

December 2016
İZMİR

We approve the thesis of Fırat ZİYANAK

Examining Committee Members:

Prof.Dr. Levent ARTOK
Department of Chemistry, İzmir Institute of Technology

Prof.Dr. Stephen T. Astley

Department of Chemistry, Ege University

Assoc.Prof.Dr. Mustafa EMRULLAHOĞLU

Department of Chemistry, İzmir Institute of Technology

Prof.Dr. Hayati TÜRKMEN

Department of Chemistry, Ege University

Assoc.Prof.Dr. Süleyman GÜLCEMAL
Department of Chemistry, Ege University
26.12.2016

Prof.Dr. Levent ARTOK
Supervisor, Department of Chemistry,
İzmir Institute of Technology

Prof. Dr. Ahmet Emin EROĞLU
Head of Department of Chemistry

Prof. Dr. R. Bilge KARAÇALI
Dean of the Graduate School of Engineering and Sciences

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor Prof. Levent ARTOK. This thesis could not have been written without him who not only served as my supervisor but also encouraged and challenged me throughout my academic program. I would like to thank him for his patience to me in these last two years. It was an honour to study with him. I thank him so much.

I have my special thanks to Prof. Dr. Stephen ASTLEY and Assoc. Prof. Dr. Mustafa EMRULLAHOĞLU for their valuable suggestions, support and participating as a committee member through my thesis progress seminars and PhD defense seminar. I would like to offer my gratitude to Prof. Dr. Hayati TÜRKMEN and Assoc. Prof. Dr. Süleyman GÜLCEMAL for participating as committee members and for reviewing my work.

I would like to thank to the Scientific and Technical Research Council of Turkey (TÜBİTAK-210T092) for financial support for this study. Also, I would like to thank Eray AKPINAR for HRMS analysis and Prof. Dr. Durmuş ÖZDEMİR for allowing me use FT-IR instrument in his research laboratory.

Additionally, I would like to acknowledge all my colleagues in IYTE, Chemistry
Department for their friendship over eight years period of my academic life and special thanks to my friends from Artok's research group Doğan TAÇ, Erman KIBRIS and İsmet Arınç AYTAÇ. I would like to thank to my family for their continuous support. They always supported me for my educational decisions. They have always been by my side whenever I needed them. Lastly I want to express my gratitude to my beloved wife Esen ZİYANAK for her endless love and patience. Without her help this study would not have been possible.

Abstract

\section*{SYNTHESIS OF VINYLALLENOLS VIA PALLADIUM-CATALYZED ARYLATION REACTIONS OF (Z)-2,4-ENYNE OXIRANES WITH ORGANOBORONS}

Allenes are important functional groups especially in synthetic organic chemistry. Due to their unique reactivity and high level of chirality transfer, allenes can be used as building blocks in the synthesis of complex molecules. In recent decades transition-metal catalyzed synthesis of allenes with organometallic reagents has become attractive method. For the synthesis of functionalized allenes, addition of different nucleophiles with the help of various transition metals to propargylic compounds bearing a leaving group has been mostly used. Transition metals are crucial for these reactions for shifting them from $\mathrm{S}_{\mathrm{N}} 2$ to $\mathrm{S}_{\mathrm{N}} 2$ ' for the formation of allenes.

Within the context of this research, a novel palladium-catalyzed arylation reactions of (Z)-2,4-enyne oxiranes with organoborons have been investigated. As a result of the 1,5 -substitution reaction, aryl-substituted vinylallenes bearing a hydroxyl group on the allylic position (7-aryl-3,5,6-trien-2-ol) were obtained in high yields and diastereoselectivities. We were able to also disclose that Diels-Alder adducts could be obtained with excellent endo and facial selectivities when the vinylallen types of this study were reacted with dienophiles.

ÖZET

(Z)-2,4-ENİN OKSİRANLARIN ORGANOBORONLAR İLE PALADYUM KATALİZLİ ARİLASYON TEPKİMELERİ ÜZERİNDEN VİNİLALLENOLLERİN SENTEZİ

Allenler özellikle sentetik organik kimyada önemli fonksiyonel gruplardır. Benzersiz reaktiviteleri ve yüksek seviyede kiralite transferinden dolayı allenler komplex moleküllerin sentezinde yapıtaşları olarak kullanılabilirler. Son yıllarda, orgonometalik bileşikler ile geçiş metal katalizli allen sentezleri ilgi çekici hale gelmiştir. Fonksiyonlandırılmış allenler, bir ayrılan grup içeren proparjilik bileşiklerine geçiş metallerin yardımıyla çeşitli nükleofillerin katılması ile sentezlenmektedir. Geçiş metalleri bu tür reaksiyonları $\mathrm{S}_{\mathrm{N}} 2$ den $\mathrm{S}_{\mathrm{N}} 2$ ' e kaydırarak allen oluşturması açısından çok büyük öneme sahiptir.

Bu çalışma kapsamında, (Z)-2,4-enin oksiran yapılarının organoboronlar ile paladyum katalizli arilasyon tepkimleri üzerine çalışılmıştır. 1,5-yerdeğiştirme reaksiyonu sonucunda aril bağlı ve allilik pozisyonunda hidroksil grubu taşıyan vinilallenler (7-aril-3,5,6-trien-2-ol) yüksek verim ve diastereoseçimli olarak elde edilebilmiştir. Ayrıca bu çalışmada elde edilen vinilallen tipinin dienofiller ile yüksek endo ve fasiyal seçimli olarak Diels-Alder katılma ürünü elde edilebilmiştir.

TABLE OF CONTENTS

LIST OF FIGURES viii
LIST OF TABLES x
ABBREVIATION xi
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. LITERATURE SURVEY 3
2.1. Synthesis of Allenes via $\operatorname{Pd}(0)$-Catalyzed Reactions of Propargyl Compounds 3
2.2. Palladium-Catalyzed Reactions of Allylic Compounds 7
2.3. Palladium(0)-Catalyzed Reactions of Conjugated Enynes 10
CHAPTER 3. EXPERIMENTAL STUDY 12
3.1. General Methods 12
3.2. Synthesis of Substrates 13
3.2.1. Synthesis of (Z)-1a 13
3.2.2. Synthesis of $(Z)-1 b$ and 1 c 15
3.2.3. Synthesis of hydroxyl tethered (Z)-2,4-enyne oxiranes 16
3.2.4. Synthesis of (Z)-1d, e, f, g, h, i, j, k, l 19
3.2.5. Synthesis of $(Z)-1 \mathrm{~m}$ and $(Z)-1 \mathrm{n}$ 19
3.2.6. Synthesis of $(Z)-10$ 20
3.2.7. Synthesis of $(Z)-1 p$ 21
3.2.8. Synthesis of $(Z)-1 r$. 22
3.2.9. Synthesis of $(Z)-1 \mathrm{~s}$ 23
3.2.10. Synthesis of $(Z)-1 \mathrm{t}$ 24
3.2.11. Synthesis of $(Z)-1 \mathrm{v}$ 25
3.2.12. Synthesis of $(E)-1 \mathrm{~b}$ 27
3.3. Characterization of Substrates 28
3.4. Synthesis of Organoborons 35
3.5. General Method for Palladium-Catalyzed Reactions of Enyne Oxiranes 36
3.6. Characterization of Products 37
CHAPTER 4. RESULTS AND DISCUSSION 59
CHAPTER 5. CONCLUSION 82
REFERENCES 83
APPENDICES
APPENDIX A. ${ }^{1} \mathrm{H}$ NMR AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF PRODUCTS 86
APPENDIX B. MASS SPECTRA OF PRODUCTS 165

LIST OF FIGURES

Figure Page
Figure 2.1. Synthesis of Allenes via $\operatorname{Pd}(0)$-Catalyzed Reactions of Propargyl Compounds 3
Figure 2.2. Formation of Palladium Intermediates from Propargylic Reagents 3
Figure 2.3. Alkoxycarbonylation of Propargyl Carbonates 4
Figure 2.4. Pd-Catalyzed reactions of 2-alkynyl Carbonates with Olefins 4
Figure 2.5. Pd(0)-Catalyzed Alkynylation of Propargyl Compounds 4
Figure 2.6. Arylation of Propargyl Carbonates 5
Figure 2.7. Arylation of Propargyl Carbonates in High Chirality Transfer 5
Figure 2.8. Palladium-Catalyzed Coupling of Grignard Reagents with Propargyl Chlorides. 5
Figure 2.9. Palladium-Catalyzed Addition of Organozinc Compounds to Propargyl Acetates. 6
Figure 2.10. Pd(0)-Catalyzed Alkoxycarbonylation of Hydroxyl Functionalized Propargyl Oxiranes 6
Figure 2.11. Alkynylation of Propargyl Oxirane 7
Figure 2.12. Diastereoselective Arylation of Propragyl Oxiranes 7
Figure 2.13. Mechanism of Transmetallation of Main Group Metals with π-allylpalladium. 8
Figure 2.14. Palladium-Catalazed Alkoxycarbonylation of Allyl Phosphates. 8
Figure 2.15. S ${ }_{\mathrm{N} 2}$ ' Type Stereoselective Substitution of Allylic Acetates with Arylboronic Acid 8
Figure 2.16. Palladium-Catalyzed Synthesis of Polyene Derivatives with Grignard Reagents. 9
Figure 2.17. 1,4- and 1,2-Addition of Allylic Oxiranes 9
Figure 2.18. Alkoxycarbonylation of Allyl Epoxide 9
Figure 2.19. Arylation of Allyl Oxiranes 10
Figure 2.20. Arylation and Alkoxycarbonylation of (E) and (Z)- Configured 2,4-Enyne Carbonates 10
Figure 2.21. Alkoxycarbonylation of 2,4-Enyne Oxiranes 11
Figure 2.22. $\mathrm{Pd}(0)$-Catalyzed Arylation of 2,4-Enyne Oxiranes 11
Figure 3.1. Synthesis of enyne aldehyde S5 13
Figure 3.2. Synthesis of (Z)-1a 14
Figure 3.3. Synthesis of (Z)-1b and 1c 15
Figure 3.4. Synthesis of S17 16
Figure 3.5. Synthesis of (Z)-1d, e, f, g, h, I, j, k, l 19
Figure 3.6. Synthesis of (Z)-1m and (Z)-1n. 19
Figure 3.7. Synthesis of (Z)-1o 20
Figure 3.8. Synthesis of (Z)-1p 21
Figure 3.9. Synthesis of (Z)-1r. 22
Figure 3.10. Synthesis of (Z)-1s 23
Figure 3.11. Synthesis of (Z)-1t 24
Figure 3.12. Synthesis of (Z)-1v 25
Figure 4.1. Boronic Acid Ester Formation of Enyne Oxirane 60
Figure 4.2. $\operatorname{Pd}(0)$-Calayzed Arylation Reaction of (E)-1b 69
Figure 4.3. Allylic Arylated Product 4be 72
Figure 4.4. β-hydride Elemination Product 72
Figure 4.5. Pd-Catalyzed Reaction with Substrate (1s) Containing an Endocyclic Double Bond with 2a 77
Figure 4.6. Determination of Major Diastereomer 78
Figure 4.7. Diels-Alder Reaction of 3ba with Phenyl maleimide 78
Figure 4.8. NOESY study of 6ba 78
Figure 4.9. Mechanism of Arylation of Conjugated Enyne Oxiranes 80
Figure 4.10. Mechanism of Allylic Arylated Products 81

LIST OF TABLES

Table Page
Table 3.1. Synthesis of neopentyl glycol esters 35
Table 4.1. Effect of Reaction Parameters on the $\operatorname{Pd}(0)$-Catalyzed Arylation of 1a 59
Table 4.2. Effect of Reaction Parameters on the $\operatorname{Pd}(0)$-Catalyzed Arylation of 1 b 61
Table 4.3. $\operatorname{Pd}(0)$ Precurser and Ligand Effect on Yield and Diastereoselectivity of 3ba 63
Table 4.4. Ligand Effect on Yield and Diastereoselectivity of 3ba 65
Table 4.5. Effect of Base on Yield and Diastereoselectivity of 3ba 67
Table 4.6. Solvent Effect on Formation of 3ba 68
Table 4.7. Effect of Base Amount, Water Ratio, Concentration and Temperature of 3ba 69
Table 4.8. $\mathrm{Pd}(0)$-Catalyzed Reaction of the (Z)-Enyne Oxirane ((Z)-1a) with Different Organoboronates 70
Table 4.9. Arylation of Enyne Oxiranes 74

ABBREVIATION

Ac	Acetate
ACN	Acetonitrile
aq.	Aqueous
BINAP	2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl
BIPHEP	2,2'-Bis(diphenylphosphino)biphenyl
Bn	Benzyl
Bu	n-Butyl
t-Bu	tert-Butyl
Cy	Cyclohexane
dba	Dibenzylideneacetone
DBU	1,8-Diazabicyclo(5.4.0)undec-7-ene
DCM	Dichloromethane
DIBAL-H	Diisobutylaluminium hydride
DMAP	4-Dimethylaminopyridine
DME	1,2-Dimethoxyethane
DMEDA	N, N^{\prime}-Dimethylethylenediamine
DMF	N, N-Dimethylformamide
DPEPhos	Bis-[2-(diphenylphosphino)phenyl]ether
dppb	1,4-bis(diphenylphosphino)butane
dppe	1,2-bis(diphenylphosphino)ethane
dppf	1,1'-Bis(diphenylphosphino)ferrocene
dppm	Bis(diphenylphosphino)methane
dppp	1,3-bis(diphenylphosphino)propane
d.r.	Diastereomeric ratio
Et	Ethyl
eqv.	Equivalent
Et 2 O	Diethyl ether
h	hour
i-Pr	Isopropyl
m-CPBA	meta-chloroperoxybenzoic acid
M	Molar

Me	Methyl
mg	Milligrams
min.	Minute
mL	Milliliter
mmol	Millimoles
$\mathrm{N} . \mathrm{D}$.	Not determined
neop	Neopentyl glycol ester
NMR	Nuclear Magnetic Resonance
NOESY	Nuclear Overhauser Spectroscopy
O.N.	Overnight
Ph	Phenyl
Pr	Propyl
rt	Room Temperature
t	Time
t-Bu-Xanthphos	$9,9-$ Dimethyl-4,5-bis(di-tert-butylphosphino)xanthene
TBDMS	tert-Butyldimethylsilyl
THF	Tetrahydrofurane
TMEDA	Tetramethylethylenediamine
Xanthphos	4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene
Xphos	2-Dicyclohexylphosphino-2',4', \mathbf{c}^{\prime} triisopropylbiphenyl

CHAPTER 1

INTRODUCTION

Allenes are important functional groups especially in synthetic organic chemistry. Due to their unique reactivity and high level of chirality transfer, allenes can be used as building blocks in the synthesis of complex molecules. This reactivity and natural chirality of allenes result in the usage of the synthesis of natural and pharmacological compounds (Scheme 1.).

Insect Pheromone

Isolaurallene

"Grasshopper Ketone"

Acalycixeniolide E
Anti-angiogenic

Isodihydrohistrionicotixin
Nicotine acetylcholine receptor active

Figure 1.1. Allenic natural products and pharmacologically active allenes.
In last decades transition-metal catalyzed synthesis of allenes with organometallic reagents has become an attractive method. For the synthesis of functionalized allenes, addition of different nucleophiles with the help of various transition metals to propargylic compounds bearing a leaving group has been mostly used. Transition metals are crucial to switch from $\mathrm{S}_{\mathrm{N} 2}$ route to $\mathrm{S}_{\mathrm{N} 2}$, route for the formation of allenes. Soft and hard nucleophiles are both applicable for $\mathrm{S}_{\mathrm{N}} 2$ ' reactions. Hard nucleophiles like Grignard reagents or alkyl lithiums are used mostly with copper-, iron- and nickel-catalyzed reactions. Palladium, rhodium and iridium are mostly suitable for soft nucleophiles such as organoborons and carbonmonoxide.

Palladium-catalyzed coupling type reactions of propargylic compounds with a leaving group are prominent class of methods for the construction of alkenyl-, alkynyl-, and aryl- or carbonylated allenes. Epoxide rings could also behave as a leaving group in substitution reactions in the pathway of ring opening for allenol derivatives. $\mathrm{S}_{\mathrm{N} 2}$ '’reactions of conjugated enynes are another route for synthesis of alkenylated allenes or vinylallenes. The advantage of this $\mathrm{S}_{\mathrm{N}} 2$ " reaction is to enable the construction of functionalized vinylallenes. Vinyl-substituted allenes are valuable compounds because of unique reactivity toward miscellaneous cycloaddition and cyclization reactions.

In light of these informations we have developed a new method for the synthesis of aryl bearing vinylallenols which involves the reaction of enyne oxiranes with organoborons in the presence of a palladium catalyst.

CHAPTER 2

LITERATURE SURVEY

2.1. Synthesis of Allenes via Pd(0)-Catalyzed Reactions of Propargyl Compounds

Propargyl compounds bearing a leaving group are versatile reagents in the synthesis of allene derivatives. In the presence of $\operatorname{Pd}(0)$, and a nucleophile 1,3substitution reaction(SN2') occures to deliver functionalized allenes (Figure 2.1)

Figure 2.1. Synthesis of Allenes via Pd (0)-Catalyzed Reactions of Propargyl Compounds
$\mathrm{Pd}(0)$-catalyzed reactions of propargyl compounds proceed in two ways; one is the formation of σ-allenylpalladium (A) and the other is propargylpalladium (B) (Figure 2.2). Reaction pathway changes according to the nucleophile type (Elsevier et al., 1983). After the formation of palladium intermeadiates, the nucleophile inserts into the Pd-LG bond for the target molecule.

Figure 2.2. Formation of Palladium Intermediates from Propargylic Reagents

Alkenes, alkynes and carbonmonoxide are used widely as nucleophile in 1,3substitution reactions of propargylic compounds. Beside these nucleophiles forms by transmetallation via main group metals, metal hydrides and organoborons are used (Tsuji, 2004).

In 1986, Tsuji and co-workers revealed that the Pd-catalyzed alkoxycarbonylation reaction of propargyl carbonates resulted in alleneoates. (Tsuji et al., 1986) (Figure 2.3).

Figure 2.3. Alkoxycarbonylation of Propargyl Carbonates

One of the milestone studies of propargylic compounds is Heck type addition of olefins to form 1,2,4-trienes (vinylallenes). In 1991 Mandai and co-workers reported that Pd-catalyzed reaction of 2-alkynyl carbonates with electron deficient olefins produced vinylallenes in good yields. (Mandai et al., 1991) (Figure 2.4).

Figure 2.4. Pd-Catalyzed reactions of 2-alkynyl Carbonates with Olefins

In the literature, there are examples where terminal alkynes were used as nucleophiles in the reaction with propargylic compounds. These alkynylation reactions usually were realized in the presence of $\mathrm{Cu}(\mathrm{I})$ (Tsuji, 2004) (Figure 2.5).

Figure 2.5. Pd(0)-Catalyzed Alkynylation of Propargyl Compounds

Propargylic compounds also react with arylborons in the presence of $\operatorname{Pd}(0)$ for the formation of aryl bearing allenes. (Moriya et al., 1994) (Figure 2.6).

Figure 2.6. Arylation of Propargyl Carbonates

In 2016, Lou et al. have been developed an efficient palladium-catalyzed coupling of propargylic carbonates with organoboranic acids in high yield and chirality transfer. o (Diphenylphosphino) benzaldehyde was choosen as ligand affording allenes under mild reaction conditions (Lou et al., 2016) (Figure 2.7).

Figure 2.7. Arylation of Propargyl Carbonates in High Chirality Transfer

Besides orgonaborons, alkynes and carbon monoxide, relatively hard nucleophiles like Grignard reagents and organozinc compounds can be used for Pdcatalyzed reactions of propargylic compounds. Luong's group reports the palladiumcatalyzed coupling of propargyl chloride with Grignard reagents in moderately good yields (Jeffery-Luong and Linstrumelle, 1980) (Figure 2.8).

Figure 2.8. Palladium-Catalyzed Coupling of Grignard Reagents with Propargyl Chlorides.

Vermeer et al. reported that R-(-)-1-trifluoroacetoxy-1-phenyl-2-propyne when reacted, in proper conditions, with PhZnCl formed allenes in excellent yields. The stereoand regio-selectivities of the reaction were also superior. The insertion of the palladium at first takes place, and then follows by transmetallation with PhZnCl to form allenyl(phenyl)chloride. The reductive elimination then produces aryl-substituted allenes (Elsevier et al., 1983) (Figure 2.9).

Figure 2.9. Palladium-Catalyzed Addition of Organozinc Compounds to Propargyl Acetates.

In 1997 Piotti and Alper reported that in the existence of CO , an alcohol and $\mathrm{Pd}(0)$, propargyl oxiranes generates α-allenol esters via alkoxycarbonylation reaction. The allenyl products having a β-hydroxyl group can further cyclize to geneate an oxygenated five-membered ring (Piotti and Alper, 1997).

Figure 2.10. $\mathrm{Pd}(0)$-Catalyzed Alkoxycarbonylation of Hydroxyl Functionalized Propargyl Oxiranes

Propargyl oxiranes also give diaseteroselective alkynylation reaction with terminal alkynes in basic medium with the help of $\operatorname{Pd}(0) / \mathrm{Cu}(\mathrm{I})$ system. An optically active anti-substituted allene could be synthesized (Yoshida et al., 2007) (Figure 2.11)

Figure 2.11. Alkynylation of Propargyl Oxirane

The $\operatorname{Pd}(0)$-catalyzed reaction of propargyl oxiranes with arylboronic acids yield α-allenols with anti-diastereoselectivity exclusively (Yoshida et al., 2005) (Figure 2.12).

Figure 2.12. Diastereoselective Arylation of Propragyl Oxiranes

2.2. Palladium-Catalyzed Reactions of Allylic Compounds

Beside the propargyl compounds allylic compounds are also reactive towards $\mathrm{S}_{\mathrm{N}} 2$ ' and $\mathrm{S}_{\mathrm{N}} 2$ type reactions in the presence of palladium. Allylic compounds react with palladium to undergo cross-coupling with main group organometallic compounds. Substitution usually occurs mainly at less hindered position of allylic terminal (Figure 2.13) (Tsuji, 2000)

Figure 2.13. Mechanism of Transmetallation of Main Group Metals with π Allylpalladium.

Murahashi and co-workers (Murahashi et al., 1993) demonstrated that allyl phosphates react with carbon monoxide in the presence of alcohols over a palladium catalyst providing β, γ-unsaturated esters in high yields with excellent stereoselectivities (Figure 2.14).

Figure 2.14. Palladium-Catalazed Alkoxycarbonylation of Allyl Phosphates

Enantiospecific 1,4-addition ($\mathrm{S}_{\mathrm{N} 2}{ }^{\prime}$) of arylboronic acid to allylic acetates via $\operatorname{Pd}(\mathrm{II})$ catalysis was reported by Ohmiya et. al. in 2008 (Figure 2.15).

Figure 2.15. $\mathrm{S}_{\mathrm{N}}{ }^{\prime}$ ' Type Stereoselective Substitution of Allylic Acetates with Arylboronic Acid

In 2002, a highly regio-selective palladium-catalyzed reaction of allylic bromides with benzyl Grignard reagents was reported by Rosales and co-workers (Figure 2.16). The polyene derivatives were obtained with superior yield and regioselectivity (Rosales et al., 2002).

Figure 2.16. Palladium-Catalyzed Synthesis of Polyene Derivatives with Grignard Reagents.

Alkenyloxiranes also afford nucleophilic 1,4- or 1,2-addition products when reacted in the presence of a $\operatorname{Pd}(0)$ catalyst. Mostly the 1,4 -addition product forms regioselectively with the help of the electronic effect of epoxide oxygen atom (Figure 2.17).

Figure 2.17. 1,4- and 1,2-Addition of Allylic Oxiranes
Regioselective carbonylation of isoprene oxide in the alcohol medium with an added Pd - π-allyl complex under a high pressure of CO atmosphere afforded β, γ unsaturated δ-hydroxyesters are obtained (Figure 2.18)

Figure 2.18. Alkoxycarbonylation of Allyl Epoxide

Palladium-catalyzed coupling reactions of allyl epoxides with organoboronic acids were performed by using a Pd-pincer catalyst. The reactions proceeded under mild conditions, affording arylated allyl alcohols regioselectively (Kjellgren et al., 2005) (Figure 2.19).

Figure 2.19. Arylation of Allyl Oxiranes

2.3. Palladium(0)-Catalyzed Reactions of Conjugated Enynes

The allylic electrophiles bearings a conjugated alkynyl moiety, shows exceptional performance in nucleophilic reactions.

In 2011 our research group reported that $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation (Akpınar et al., 2011, Karagöz, et al., 2014) and arylation (Üçüncü et al., 2011) of (Z) and (E) configured 2,4-enyne carbonates with arylboronic acids yielded vinylallenes in high yields. Alkoxycarbonylation reaction afforded exclusively (E)-configured 2,3,5trienoates with the intermediacy of the σ - vinylallenyl palladium complex (Figure 2.20).

Figure 2.20. Arylation and Alkoxycarbonylation of (E) and (Z)-Configured 2,4-Enyne Carbonates

Our research group also reported $\operatorname{Pd}(0)$-catalyzed alkoxycarbonylation of 2,4enyne oxiranes.which yielded 7-hydroxy-2,3,5-trienoates in good yields with up to 97:3 diastereomeric ratio (Kuş et al., 2015) (Figure 2.21).

Figure 2.21. Alkoxycarbonylation of 2,4-Enyne Oxiranes

In the light of view of these literature work we decided to investigate $\operatorname{Pd}(0)-$ catalyzed arylation of 2,4-enyne oxiranes to result the formation of aryl bearing vinylallenols (Figure 2.22).

Figure 2.22. $\operatorname{Pd}(0)$-Catalyzed Arylation of 2,4-Enyne Oxiranes

CHAPTER 3

EXPERIMENTAL STUDY

3.1. General Methods

The synthesis of all compounds performed under argon gas. The prepared substrates and products were purified over silica gel by column or flash chromatography with hexane or hexane/ethyl acetate as eluent system. Silica gel material used for the purification of enyne oxirane substrates had a particle size range of 60-200 mesh and treated by NEt_{3} before use. It must be noted that the column chromatography of the substrate $\mathbf{1}$ on an untreated silica gel always resulted in decomposition. All other column purifications were performed on silica gel $60(35-70 \mu \mathrm{~m})$. All substrates appeared either colorless or pale yellow oils. The $\mathrm{Pd}_{2}(\mathrm{dba})_{3} . \mathrm{CHCl}_{3}$ (Ukai, et al. 1974) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (Inorganic Synthesis, Vol. 28, 2009, 107) complexes were synthesized in the laboratory. Yields of crude mixtures and purity of prepared substrates were determined by quantitative ${ }^{1} \mathrm{H}$-NMR technique, using p-anisaldehyde as the internal standard (Hays and Thompson, 2009). The pure samples were analyzed via: GC-MS (Thermo/ISQ) equipped with Thermo TR-5MS ($30 \mathrm{~m}, 0.25 \mathrm{~mm}$ ID) column; nuclear magnetic resonance (NMR) spectra were acquired on Varian VnmrJ 400 spectrometer, CDCl_{3} and $\mathrm{C}_{6} \mathrm{D}_{6}$ were the solvents used as the NMR solvents and chemical shifts were reported in δ (ppm); a PerkinElmer Spectrum 100 was used to achieve infra-red spectra by ATR method with dry samples; high-resolution mass spectral analyses were performed at the Dortmund University of Technology Mass Spectrometry Laboratory on a Thermo Electron system.

DMF was dried by refluxing over CaH_{2} overnight, distilled under reduced pressure ($20 \mathrm{mmHg}, 80^{\circ} \mathrm{C}$) and stored over molecular sieve $4 \AA$. DCM was dried over activated molecular sieve $3 \AA$ for 48 hours. Toluene was dried over CaH_{2} and stored on molecular sieve $3 \AA$. $\mathrm{Et}_{2} \mathrm{O}$ and THF were distilled from benzophenone-ketyl under argon prior to use (Armarego and Chai, 2003).

3.2. Synthesis of Substrates

3.2.1. Synthesis of (Z)-1a

Figure 3.1. Synthesis of enyne aldehyde S5

To the mixture of commercially available, (Z)-pent-2-en-4-yn-1-ol (S1) (1.92 g, 20 mmol) and 3,4-dihydropyran ($2.2 \mathrm{~mL}, 24 \mathrm{mmol}$) was added p-toluenesulfonic acid (44 $\mathrm{mg}, 0.02 \mathrm{mmol}$) and then stirred for 45 min at room temperature (RT). Then, the mixture was diluted with 40 mL of dry THF under Ar and cooled to $-78^{\circ} \mathrm{C}$. At that temperature, 24 mmol of BuLi (1.6 M in hexane, 15 mL) was added dropwise via a syringe. After stirring the reaction mixture for 1 h at $0^{\circ} \mathrm{C}$, butyl bromide ($4.3 \mathrm{~mL}, 40 \mathrm{mmol}$) was added and the mixture was stirred for 5 days at reflux. The reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution and the reaction solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with water, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was used in the following step without any further purification (Betzer, et al. 1997).

To a solution of the preceding crude compound (S3) in methanol (60 mL) ptoluenesulfonic acid ($1.2 \mathrm{~g}, 6 \mathrm{mmol}$) was added and the resulting solution was stirred at RT for $45-60 \mathrm{~min}$. Then, triethylamine was added (1.8 mL), and the solution was concentrated under reduced pressure. The mixture was taken into DCM and washed with water. The combined extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel gave the enynol S4 (hexane-EtOAc, yield: $2.43 \mathrm{~g}, 80 \%$), (Ukai, et al. 1974).

To the solution of $\mathbf{S 4}(\approx 17 \mathrm{mmol})$ in 60 mL of dry diethyl ether, activated MnO_{2} ($30 \mathrm{~g}, 0.3 \mathrm{~mol}$) was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (S5) was used in the next step (Betzer, et al. 1997).

Figure 3.2. Synthesis of (Z)-1a

A hexane solution of $\mathrm{BuLi}(4.8 \mathrm{~mL}, 12 \mathrm{mmol}, 2.5 \mathrm{M})$ was added dropwise to a solution of isopropyl(triphenyl)phosphonium iodide ($4.32 \mathrm{~g}, 10 \mathrm{mmol}$) in THF (30 mL) at $0{ }^{\circ} \mathrm{C}$, and stirred for further 1 h . The enyne aldehyde $\mathbf{S 5}(1.8 \mathrm{~g}, 12 \mathrm{mmol})$, was added dropwise to the resulting mixture and stirred for 1 h , at RT. The reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution, and the organic layer was extracted with diethyl ether. The combined extracts were dried over MgSO_{4}, and chromatographed on a silica gel column to obtain pure S6 (hexane/EtOAc, yield: $1.65 \mathrm{~g}, 78 \%$), (Ming-Yuan, et al. 2004).

To a solution of $\mathbf{S 6}(352 \mathrm{mg}, 2 \mathrm{mmol})$ in DCM (30 mL) was added 12 mL solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})(25 \%)$ followed by $3.4 \mathrm{mmol}(587 \mathrm{mg}) m$-chloroperbenzoic acid in portions at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature and monitored with TLC until the reactant was consumed completely. At the end of the epoxidation process, the mixture was extracted with DCM , dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was chromatographed on $\mathrm{NEt}_{3}-$ pretreated short silica gel column which afforded the enyne oxirane (Z)-1a as a colorless oil (hexane-EtOAc, yield: $269 \mathrm{mg}, 70 \%$).

3.2.2. Synthesis of (Z)-1b and 1c

Figure 3.3. Synthesis of (\boldsymbol{Z})-1b and 1c

To a solution of $\mathrm{NaH}(525 \mathrm{mg}, 22 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was added triethyl phosphonoacetate $(4.8 \mathrm{~mL}, 24 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture stirred 1 h , at RT. Subsequently, to the reaction mixture was added $\mathbf{S 5}(3 \mathrm{~g}, 20 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$ and stirred for 1 h , at RT. The reaction was terminated by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered and concentrated under reduced pressure to give E / Z isomers with the isomeric ratio of 95:5. The crude mixture was purified on silica gel column to obtain $\mathbf{S 7}$ in pure isomeric form (hexane-EtOAc, yield: $3.17 \mathrm{~g}, 72 \%$), (Urabe, et al. 1997).

A DIBALH ($44 \mathrm{~mL}, 44 \mathrm{mmol}, 1.0 \mathrm{M}$ in cyclohexane) solution was added dropwise to the solution of $\mathbf{S 7}(3.85 \mathrm{~g}, 17.5 \mathrm{mmol})$ in DCM (120 mL) at $-78^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 4 h at the same temperature, $1 \mathrm{M} \mathrm{HCl}(a q)$ solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding $\mathbf{S 8}$ compound (hexane-EtOAc, yield: $2.65 \mathrm{~g}, 85 \%$), (Kajikawa, et al. 2009).

The epoxidation of $\mathbf{S 8}(356 \mathrm{mg}, 2 \mathrm{mmol})$ and the isolation of the product $(\mathrm{Z})-1 \mathbf{c}$ was performed as specified for (Z)-1a (hexane-EtOAc, yield: $233 \mathrm{mg}, 60 \%$). As for the alkylation of the pendant hydroxyl group of $(\mathrm{Z})-\mathbf{1 c}$, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of (Z)-1c (1 mmol) in DMF ($1 \mathrm{~mL} / \mathrm{mmol}$) at
$-20^{\circ} \mathrm{C}$. The mixture was stirred for further 30 min before the addition of methyl iodide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of $\mathrm{MeOH}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, and extracted with DCM. The combined extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over $\mathrm{NEt}_{3}-$ pretreated short silica gel column to afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (Z)-1b (hexane-EtOAc, yield: 87\%), (Caldentey, et al. 2011).

3.2.3. Synthesis of hydroxyl tethered (Z)-2,4-enyne oxiranes

Figure 3.4. Synthesis of S17
To a solution of alkynoic ester $\mathbf{S 1 0}(40 \mathrm{mmol})$ and acetic acid ($240 \mathrm{mmol}, 13.8$ mL or $512 \mathrm{mmol}, 20.8 \mathrm{~mL}$ when $\mathbf{S 1 0}$ is ethyl 4, 4-dimethylpent-2-ynoate and ethyl 3cyclohexylpropiolate) was added sodium iodide ($9.6 \mathrm{~g}, 64 \mathrm{mmol}$ or $19.2 \mathrm{~g}, 128 \mathrm{mmol}$ when S17 is ethyl 4,4-dimethylpent-2-ynoate and ethyl 3-cyclohexylpropiolate) and stirred for 3 h at $115{ }^{\circ} \mathrm{C}$. After completion of the reaction, the brown mixture was transferred while hot to a separatory funnel containing water ($10 \mathrm{~mL} / \mathrm{mmol}$ of the ester substrate). The reaction flask was washed with a mixture of water (5 mL) and diethyl
ether ($30 \mathrm{~mL} / \mathrm{mmol}$ of the ester substrate). The washings were combined in a separatory funnel. The phases were separated and the aqueous phase was extracted with diethyl ether. The combined organic phases were treated sequentially with saturated aqueous $\mathrm{NaHCO}_{3}(a q), \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(a q)(1 \mathrm{M})$, and brine and then dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (hexane-EtOAc, yields; $\mathrm{R}^{2}=\mathrm{H}, 7.6 \mathrm{~g}, 84 \% ; \mathrm{R}^{2}=\mathrm{Me}, 5.97$ $\mathrm{g}, 93 \% ; \mathrm{R}^{2}=\mathrm{t}-\mathrm{Bu}, 9.6 \mathrm{~g}, 85 \% ; \mathrm{R}^{2}=\mathrm{Cy}, 10.6 \mathrm{~g}, 86 \%, \mathrm{R}^{2}=\mathrm{Bu}, 9.8 \mathrm{~g}, 88 \%$;), (Piers, et al. 1994). A mixture of $\mathbf{S 1 1}$ (30 mmol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(210.6 \mathrm{mg}, 0.3 \mathrm{mmol}, 1 \% \mathrm{~mol}$ of Pd), and $\mathrm{CuI}(29 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.5 \% \mathrm{~mol}$ of Cu$)$ in 140 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred for 10 min at RT under Ar, and then, to this mixture was added a terminal alkyne (36 mmol). The mixture was stirred at RT for 3 h . At the end of the reaction, water was added to the resulting mixture and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over MgSO_{4}. The solvent was evaporated in vacuo and the product $\mathbf{S 1 2}$ was purified by column chromatography on silica gel (hexane-EtOAc, yields: $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 4.97 \mathrm{~g}$, $92 \% ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 5.97 \mathrm{~g}, 93 \% ; \mathrm{R}^{1}=\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 5.94 \mathrm{~g}, 90 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$, $4.95 \mathrm{~g}, 85 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{t}-\mathrm{Bu} 6.23 \mathrm{~g}, 88 \%, \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Bu} 6.30 \mathrm{~g}, 90 \%, \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=$ $\left.\mathrm{Cy}, 6.21 \mathrm{~g}, 79 \%, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} \% 90, \mathrm{R}^{1}=\mathrm{TMS}, \mathrm{R}^{2}=\mathrm{Me}, 4.90 \mathrm{~g}, 81 \%\right)$.

A DIBALH ($\sim 3 \mathrm{eq}, 1.0 \mathrm{M}$ in cyclohexane) solution was added dropwise to the solution of $\mathbf{S 1 2}$ in $\mathrm{DCM}(\sim 6 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 1 2})$ at $-78^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 4 h at the same temperature, $1 \mathrm{M} \mathrm{HCl}(a q)$ solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding $\mathbf{S 1 3}$ compound (hexaneEtOAc; yields of S13: $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 3.14 \mathrm{~g}, 91 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 4.89 \mathrm{~g}, 89 \%, \mathrm{R}^{1}=$ $\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 3.60 \mathrm{~g}, 81 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, 3.57 \mathrm{~g}, 94 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu}, 4.2 \mathrm{~g}, 88 \%$; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 3.87 \mathrm{~g}, 90 \%, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} \% 90, \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Bu} 5.70 \mathrm{~g}, 78 \%, \mathrm{R}^{1}=$ TMS, $\mathrm{R}^{2}=\mathrm{Me}, 87 \%$), (Kajikawa, et al. 2009).

To the solution of $\mathbf{S 1 3}(\approx 20 \mathrm{mmol})$ in 70 mL of dry diethyl ether, activated MnO_{2} ($35.1 \mathrm{~g}, 0.35 \mathrm{~mol}$) was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (S20) was used in the next step (Betzer, et al. 1997).

To a solution of $\mathrm{NaH}(1.1 \mathrm{eq})$ in THF ($2.5 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 1 4}$) was added triethyl phosphonoacetate (1.2 eq) at $0^{\circ} \mathrm{C}$ and the mixture stirred for 1 h , at RT. Subsequently, to
the reaction mixture was added $\mathbf{S 1 4}(6.5-10 \mathrm{mmol})$ dropwise at $-78^{\circ} \mathrm{C}$, and stirred for 1 h, at RT. The reaction was terminated by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure to obtain $\mathbf{S 1 5}$ with E / Z isomeric ratios varying in the range of 97:3 to 95:5 (Urabe, et al. 1997). The crude mixture was purified on silica gel column (hexaneEtOAc) to obtain $\mathbf{S 1 5}$ in pure isomeric form (yields of $\mathbf{S 1 5} \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 1.48 \mathrm{~g}, 72 \%$; $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 1.4 \mathrm{~g}, 68 \% ; \mathrm{R}^{1}=\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 1.97 \mathrm{~g}, 80 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, 1.80 \mathrm{~g}$, $82 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu}, 2.12 \mathrm{~g}, 81 \% ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 2.04 \mathrm{~g}, 85 \%, \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Bu} 5.50$ $\left.\mathrm{g}, 81 \%, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} \% 70, \mathrm{R}^{1}=\mathrm{TMS}, \mathrm{R}^{2}=\mathrm{Me}, 3.52 \mathrm{~g}, 90 \%\right)$.

A DIBALH ($\sim 3 \mathrm{eq}, 1.0 \mathrm{M}$ in cyclohexane) solution was added dropwise to the solution of $\mathbf{S 1 5}$ in $\mathrm{DCM}(\sim 6 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 1 5})$ at $-78^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 4 h at the same temperature, $1 \mathrm{M} \mathrm{HCl}(a q)$ solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding S16 compound (hexaneEtOAc; yields of S16: $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 1.12 \mathrm{~g}, 95 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 1.1 \mathrm{~g}, 94 \% ; \mathrm{R}^{1}=$ $\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 1.55 \mathrm{~g}, 95 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, 1.39 \mathrm{~g}, 95 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu}, 1.6 \mathrm{~g}, 90 \%$; $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Bu} 3.23 \mathrm{~g}, 71 \%, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 1.6 \mathrm{~g}, 92 \%, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} \% 85, \mathrm{R}^{1}=$ TMS, $\mathrm{R}^{2}=\mathrm{Me}, 2.82 \mathrm{~g}, 76 \%$), (Kajikawa, et al. 2009).

The epoxidation of $\mathbf{S 1 6}(2 \mathrm{mmol})$ and isolation of the corresponding $\mathbf{S 1 7}$ products were performed as specified for (Z) - $\mathbf{1 a}$ (yields of $\mathbf{S 1 7}: \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{H}, 0.19 \mathrm{~g}, 55 \% ; \mathrm{R}^{1}=$ $\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Cy}, 0.26 \mathrm{~g}, 49 \% ; \mathrm{R}^{1}=\mathrm{Cy}, \mathrm{R}^{2}=\mathrm{Me}, 0.25 \mathrm{~g}, 57 \% ; \mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}, 0.25 \mathrm{~g}, 65 \%$; $\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu}, 0.24 \mathrm{~g}, 50 \% ; \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Bu} 1.71 \mathrm{~g}, 49 \%, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}, 0.26 \mathrm{~g}$, $\left.60 \%, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me} \% 60, \mathrm{R}^{1}=\mathrm{TMS}, \mathrm{R}^{2}=\mathrm{Me}, 1.52 \mathrm{~g}, 43 \%\right)$.

3.2.4. Synthesis of (Z)-1d, e, f, g, h, i, j, k, l

Figure 3.5. Synthesis of (Z)-1d, e, f, g, h, I, j, k, l
As for the alkylation of the pendant hydroxyl group of S17, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of $\mathbf{S 1 7}(1 \mathrm{mmol})$ in DMF $(1 \mathrm{~mL} / \mathrm{mmol} \mathbf{~ S 1 7})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for further 30 min before the addition of methyl iodide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of $\mathrm{MeOH}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, and extracted with DCM. The combined extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over NEt_{3}-pretreated short silica gel column to afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (hexane-EtOAc, yields: (Z) 1d, 85%; (Z)-1e, 84%; (Z)-1f, 87%; (Z)-1g, 90%; (Z)-1h, 90%; (Z)-1i, 85\%; (Z)-1j, 87\%; (Z)-1k, 83\%, (Z)-11, 79\%,) (Caldentey, et al. 2011).

3.2.5. Synthesis of (Z)-1m and (Z)-1n

Figure 3.6. Synthesis of $(\boldsymbol{Z}) \mathbf{- 1 m}$ and $(\boldsymbol{Z}) \mathbf{- 1 n}$

A pendant hydroxyl group of (Z)-1c ($0.9-0.12 \mathrm{mmol}$), t-butyldimethylsilyl chloride ($0.2 \mathrm{~g}, 1.3 \mathrm{mmol}$), and 4-dimethylaminopyridine (DMAP) ($15 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was stirred at RT for 24 h . Then, the reaction was terminated by water and the content of the reaction flask was extracted with DCM. The organic solution was dried with MgSO_{4}, filtered, and evaporated. The residue was chromatographed over $\mathrm{NEt}_{3}-$ pretreated short silica gel column to afford silylated enyne oxiranes as a colorless oil (hexane-EtOAc, yields; (Z)-1m 79\%, (Z)-1n 72\%) (Schmidt, et al. 2002).

3.2.6. Synthesis of (Z)-1o

Figure 3.7. Synthesis of (Z)-10

As for the alkylation of the pendant hydroxyl group of (Z$)$ - $\mathbf{1 c}$, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of (Z) - $\mathbf{1 c}(1 \mathrm{mmol})$ in DMF ($1 \mathrm{~mL} / \mathrm{mmol}(\mathrm{Z})-\mathbf{1 c})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for further 30 min before the addition of methyl iodide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of $\mathrm{MeOH}(5 \mathrm{~mL})$ and brine (5 mL), and extracted with DCM. The combined extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over NEt3-pretreated short silica gel column to afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (hexane-EtOAc, yields: (Z)-10, 83\%).

3.2.7. Synthesis of (Z)-1p

Figure 3.8. Synthesis of (Z)-1p

To the dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ solution of $\mathbf{S 7}(1.1 \mathrm{~g}, 5 \mathrm{mmol})$ was added an ethereal (15 $\mathrm{mL})$ solution of 2.1 eq . $\mathrm{MeMgI}(5.25 \mathrm{~mL}, 10.5 \mathrm{mmol}, 2 \mathrm{M})$ dropwise at $-50^{\circ} \mathrm{C}$, and then the mixture stirred for 6 h at the same temperature then mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ and quenched by the addition of 30 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ solution before extracting with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were dried over MgSO_{4}, filtered, and evaporated. The resulting residue was purified on a silica gel column to afford $\mathbf{S 1 9}$ (hexane-EtOAc, yield: $0.49 \mathrm{~g}, 80 \%$).

The epoxidation of $\mathbf{S 1 9}(412 \mathrm{mg}, 2 \mathrm{mmol})$, -and isolation of the product $\mathbf{S 2 0}$ was performed as specified for (Z)-1a (hexane-EtOAc, yield: $0.27 \mathrm{~g}, 60 \%$).

The hydroxyl group of $\mathbf{S 2 0}(222 \mathrm{mg}, 1.0 \mathrm{mmol})$ was methylated as described above furnishing the enyne oxirane $(Z) \mathbf{- 1 p}$ in 90% yield $(0.21 \mathrm{~g})$.

3.2.8. Synthesis of (Z)-1r

Figure 3.9. Synthesis of (Z)-1r

To a stirred solution of diphenylethylphosphine oxide ($4.6 \mathrm{~g}, 20 \mathrm{mmol}$) in dry THF (70 mL) was added $\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $8.8 \mathrm{~mL}, 22 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$ and stirred for a further 30 min . The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and then the dienyne ester S18’ ($3.88 \mathrm{~g}, 20 \mathrm{mmol}$) was added dropwise. The solution was allowed to warm to ambient temperature and subsequently stirred overnight. The saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution was added and subsequently its THF content was removed under reduced pressure. The aqueous residue was diluted with brine (20 mL) and extracted with DCM. The combined organic phases were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product $\mathbf{S 2 6}$ was purified by column chromatography on silica gel (hexane-EtOAc, yield: $1.9 \mathrm{~g}, 25 \%$), (Buss, et al. 1985).

To a stirred solution of $\mathbf{S 2 6}(1.9 \mathrm{~g}, 5 \mathrm{mmol})$ in ethanol (50 mL) was added NaBH_{4} ($189 \mathrm{mg}, 5 \mathrm{mmol}$) in one portion and stirred for a further 8 h at ambient temperature. The reaction afforded $\mathbf{S 2 7}$ enriched in threo form. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)(15 \mathrm{~mL})$ was added and subsequently its ethanol content was removed under reduced pressure. The aqueous mixture was diluted with brine (20 mL), and- extracted with DCM. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product $\mathbf{S 2 7}$ was isolated in pure threo form by column chromatography on silica gel (hexane-EtOAc, yield: $1.31 \mathrm{~g}, 69 \%$), (Buss, et al. 1985).

To a stirred solution of $\mathbf{S} 27$ ($1.31 \mathrm{~g}, 3.45 \mathrm{mmol}$) in DMF (50 ml) was added NaH (60% dispersion in oil; $138 \mathrm{mg}, 3.45 \mathrm{mmol}$) in one portion at ambient temperature and
stirred for a further 3 h . The reaction was quenched by the addition 25 mL of water and 15 mL of brine and subsequently extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with water, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product $\mathbf{S 2 8}$ was purified by column chromatography on silica gel (hexane, yield: $330 \mathrm{mg}, 59 \%$), (Buss, et al. 1985). The epoxidation of $\mathbf{S 2 8}$ ($162 \mathrm{mg}, 1 \mathrm{mmol}$) and isolation of the product (Z)- $\mathbf{1 r}$ was performed (Hexane-EtOAc, yield: $35.6 \mathrm{mg}, 20 \%$).

3.2.9. Synthesis of (Z)-1s

Figure 3.10. Synthesis of (\boldsymbol{Z})-1s

A mixture of $3 \mathrm{mmol}(471 \mathrm{mg})$ trimethylsulfonium bromide, $12 \mathrm{mmol}(1.65 \mathrm{~g})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $0.48 \mathrm{mmol}(8.64 \mathrm{mg}) \mathrm{H}_{2} \mathrm{O}$ in 5 ml of acetonitrile was stirred for 5 min at 60 ${ }^{\circ} \mathrm{C}$. With vigorous stirring, a solution of $2 \mathrm{mmol}(300 \mathrm{mg}) \mathbf{S 5}$ in 3 ml of acetonitrile was added dropwise and stirred for further 2 h at $60^{\circ} \mathrm{C}$. After cooling to room temperature the mixture was filtered and 50 ml of $\mathrm{Et}_{2} \mathrm{O}$ was added to filtrate and filtered again. After washing of filtrate with pentane, solvent was removed in vacuo. The crude mixture was chromatographed on NEt_{3}-pretreated short silica gel column which afforded the enyne oxirane (Z)-1s as a colorless oil (hexane-EtOAc, yield: $82 \mathrm{mg}, 25 \%$) (Corey and Chaykovsky, 1965).

3.2.10. Synthesis of (Z)-1t

(Z)-1t

Figure 3.11. Synthesis of (Z)-1t
$\mathrm{PBr}_{3}(1.4 \mathrm{~mL}, 13.8 \mathrm{mmol})$ was added dropwise to a mixture of DMF $(1.2 \mathrm{~mL}$, $15.3 \mathrm{mmol})$ and chloroform $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then the resulting mixture was stirred for 1 h . Subsequently, 0.5 g of cyclohexanone (6 mmol) was added dropwise and stirred for 8 h , at RT. The reaction was terminated with water, neutralized with the addition of solid NaHCO_{3}, and extracted with DCM. The extract was washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The purification on short silica gel column provided the compound $\mathbf{S 2 1}$ (hexane-EtOAc, $0.92 \mathrm{~g}, 81 \%$), (Lian, et al. 2006).

A mixture of $\mathbf{S} 21(945 \mathrm{mg}, 5 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(123 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{~mol} \%$ of $\mathrm{Pd})$, and $\mathrm{CuI}(21 \mathrm{mg}, 0.1 \mathrm{mmol}, 2 \mathrm{mmol} \%$ of Cu$)$ in 10 mL of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred for 10 min at RT followed by the addition of 1-hexyne ($0.5 \mathrm{~g}, 6 \mathrm{mmol}$). After being stirred for 3 h , at RT, water was added and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to obtain endocyclic enyne aldehyde $\mathbf{S 2 2}$ (hexane-EtOAc, $0.84 \mathrm{~g}, 90 \%$), (Lian, et al. 2006).

The conversion of $\mathbf{S 2 2}(840 \mathrm{mg}, 4.42 \mathrm{mmol})$ to dienyne ester $\mathbf{S 2 3}$ was performed by HWE reaction as described above (hexane-EtOAc, 0.96 g, 84%). Further successive synthetic procedures; which involved the reduction of the ester $\mathbf{S 2 3}(960 \mathrm{mg}, 3.7 \mathrm{mmol})$ to the enyne alcohol S24 ($730 \mathrm{mg}, 91 \%$ yield), the epoxidation of $\mathbf{S} 24$ ($436 \mathrm{mg}, 2 \mathrm{mmol}$) to $\mathbf{S 2 5}$ ($260 \mathrm{mg}, \mathbf{5 5 \%}$ yield), and finally methyl derivatization of hydroxyl group of $\mathbf{S 2 5}$ ($260 \mathrm{mg}, 1.1 \mathrm{mmol}$) to obtain (Z) $\mathbf{- 1 t}(0.22 \mathrm{~g}, 90 \%$) were all conducted as described above.

3.2.11. Synthesis of (Z)-1v

Figure 3.12. Synthesis of (Z)-1v

To the solution of $\mathbf{S 1}(50 \mathrm{mmol})$ in 60 mL of dry diethyl ether, activated MnO_{2} $(30 \mathrm{~g}, 0.3 \mathrm{~mol})$ was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (S29) was used in the next step (Betzer, et al. 1997).

To a solution of $\mathrm{NaH}(1.1 \mathrm{eq})$ in THF ($2.5 \mathrm{~mL} / \mathrm{mmol}$) was added triethyl phosphonoacetate (1.2 eq) at $0^{\circ} \mathrm{C}$ and the mixture stirred for 1 h , at RT. Subsequently, to the reaction mixture was added $\mathbf{S 2 9}(\sim 50 \mathrm{mmol})$ dropwise at $-78{ }^{\circ} \mathrm{C}$, and stirred for 1 h , at RT. The reaction was terminated by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure to obtain $\mathbf{S 3 0}$ with E / Z isomeric ratio 95:5 (Urabe, et al. 1997). The crude mixture was purified on silica gel column (hexane-EtOAc) to obtain $\mathbf{S 3 0}$ in pure isomeric form (\%74 yield).

A DIBALH ($\sim 3 \mathrm{eq}, 1.0 \mathrm{M}$ in cyclohexane) solution was added dropwise to the solution of $\mathbf{S 3 0}$ in DCM ($\sim 6 \mathrm{~mL} / \mathrm{mmol} \mathbf{S 3 0}$) at $-78^{\circ} \mathrm{C}$. After the reaction mixture was stirred for 4 h at the same temperature, $1 \mathrm{M} \mathrm{HCl}(a q)$ solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding S31 compound (hexaneEtOAc; yields of S31 \%70).

To the mixture $\mathbf{S 3 1}(1.92 \mathrm{~g}, 20 \mathrm{mmol})$ and 3,4-dihydropyran ($2.2 \mathrm{~mL}, 24 \mathrm{mmol}$) was added p-toluenesulfonic acid ($44 \mathrm{mg}, 0.02 \mathrm{mmol}$) and then stirred for 45 min at room temperature (RT). Then, the mixture was diluted with 40 mL of dry THF under Ar and cooled to $-78{ }^{\circ} \mathrm{C}$. At that temperature, 24 mmol of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, 15 mL$)$ was added dropwise via a syringe. After stirring the reaction mixture for 1 h at $0^{\circ} \mathrm{C}$, methyl chloroformate (40 mmol) was added and the mixture was stirred for overnight at room temperature. The reaction was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(a q)$ solution and the reaction solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was washed with water, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was used in the following step without any further purification (Betzer, et al. 1997).

To a solution of the preceding crude compound (S33) in methanol (60 mL) ptoluenesulfonic acid ($1.2 \mathrm{~g}, 6 \mathrm{mmol}$) was added and the resulting solution was stirred at RT for $45-60 \mathrm{~min}$. Then, triethylamine was added (1.8 mL), and the solution was concentrated under reduced pressure. The mixture was taken into DCM and washed with water. The combined extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel gave the enynol S34 (hexane-EtOAc, yield: $2.43 \mathrm{~g}, 80 \%$), (Ukai, et al. 1974).

Further successive synthetic procedures; which involved the epoxidation of S34 ($360 \mathrm{mg}, 2 \mathrm{mmol}$) to $\mathbf{S 3 5}$ ($195 \mathrm{mg}, 50 \%$ yield), and finally methyl derivatization of hydroxyl group of $\mathbf{S 3 5}$ ($195 \mathrm{mg}, 1.0 \mathrm{mmol}$) to obtain (Z)-1v ($190 \mathrm{mg}, 90 \%$) were all conducted as described above.

3.2.12. Synthesis of (\boldsymbol{E})-1b

Synthesis of (E) - $\mathbf{1 b}$ was performed starting from (E)-configured $\mathbf{S} \mathbf{1}$ following the same method employed for the synthesis of $(Z) \mathbf{- 1 b}$. Yields: $\left(\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}\right):(E)-\mathbf{S} 7$, $1.12 \mathrm{~g}, 79 \%$; (E)-S17, $0.83 \mathrm{~g}, 91 \%$; (produced from 4.6 mmol of (E)-S8), $0.43 \mathrm{~g}, 47 \%$; $(E) \mathbf{- 1 b}$ (produced from 2.2 mmol of (E)-S17), $0.40 \mathrm{~g}, 88 \%$.

3.3. Characterization of Substrates

(Z)-1a
(Z)-1a: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.38(\mathrm{dq}, J=8.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.36$ (m, 4H), 1.35 (s, 3H), 1.27 (s, 3H), 0.9 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 130.7,125.5,95.9,79.1$, $62.6,60.5,30.9,24.9,24.2,22.1,19.6,19.3,13.7$.

(Z)-1b
(Z)-1b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.23(\mathrm{dd}, J=8.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}$, $J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=11.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=11.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (s, 3H), 3.08 (ddd, $J=5.7,3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.87$ (d, $J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.55-1.40(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 131.5$, $125.7,95.9,78.7,72.5,59.2,58.3,54.2,30.7,23.8,21.9,19.1,13.6$.

(Z)-1c
(Z)-1c: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta: 5.25$ (dd, $\mathrm{J}=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (dd, J= $12.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.87(\mathrm{dd}, \mathrm{J}=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, \mathrm{J}=12.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, C6D6) $\delta: 132.5,124.8,95.7,79.1,61.1,59.5,53.7$, 30.6, 23.5, 21.8, 19.0, 13.3.

(Z)-1d
(Z)-1d: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta: 5.23(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.73(\mathrm{~m}, 1 \mathrm{H})$, 3.71 (t, J=4.0 Hz, 1H), 3.41 (s, 3H), $3.40(\mathrm{dd}, \mathrm{J}=12.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 (ddd, J=5.7, 3.1, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.0(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 131.6$, 125.8, 91.3, 77.8, 72.6, 59.2, 58.4, 54.1, 23.8.

(Z)-1e
(Z)-1e: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.46-7.44$ (m, 2H), 7.34-7.32 (m, 3H), 5.38 (dq, $J=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.7,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.43 (dd, $J=11.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.42(\mathrm{~s}, 3 \mathrm{H}) 3.14$ (ddd, $J=6.0,3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 133.1,131.5,128.5,128.3,124.9,122.9$, 94.5, 87.3, 72.5, 59.2, 58.5, 54.1, 23.4 .

(Z)-1f
(Z)-1f: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.12$ (dd, $J=8.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (dd, $J=$ $8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34 (dd, $J=11.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=11.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (s, $3 \mathrm{H}), 2.90$ (ddd, $J=5.5,3.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, C6D6) $\delta: 132.8,124.5,103.4,77.7,72.4,58.5,58.0,53.7,30.6,27.9,23.4$.

(Z)-1g
(Z)-1g: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.14(\mathrm{dq}, J=9.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=$ $9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=11.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dd, $J=11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (s, 3 H), 2.91 (ddd, $J=5.5,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 1.71$ (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.66-1.03$ (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 132.7,124.7,99.5,79.2,72.4,58.5,58.1,53.7$, 32.5, 32.4, 29.6, 25.7, 24.6, 23.5.

(Z)-1h
(Z)-1h: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.33$ (dt, J=9.1, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (dd, $\mathrm{J}=12.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (dd, J=9.2, 2.2 Hz, 1H), 3.75 (dd, J=11.7, 4.3 Hz, 1H), 3.40 (s, 3 H), 3.03-3.01 (m, 1H), $1.92(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR: (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 133.8,129.6,100.2,95.5,62.8,61.4,60.3,54.1,21.9,0.1$.

(Z)-1i
(Z)-1i: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.10(\mathrm{dq}, J=8.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=$ $8.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.25 (dd, $J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.06-2.99 (m, 1H), 3.05 (s, 3H), 2.83 (ddd, $J=5.5,3.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right)$ §: $136.0,122.9,82.4,81.5,72.2,58.4,58.0,53.2,22.7$.

(Z)-1j
(Z)-1j: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.75(\mathrm{dtd}, J=10.8,2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ (dd, $J=10.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=8.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.44-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dt}, J=5.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{td}, J=6.8,2.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 137.2$, 115.4, 97.1, 72.3, 59.2, 58.2, 53.3, 50.4, 30.6, 21.9, 19.2, 13.5.

(Z)-1k
(Z)-1k: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=8.9$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.10$ (ddd, $J=5.6,3.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 140.2,127.4,97.4,72.7,59.2,58.5,54.7$, 36.1, 30.8, 28.9, 21.9, 19.2, 13.6.

(Z)-11: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dd, $J=8.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=11.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$, 3.07 (dt, $J=5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.20(\mathrm{~m}$, $14 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 136.3,129.1,97.0,76.7$, $72.6,59.2,58.5,54.3,45.4,31.7,31.6,30.8,29.7,26.2,26.0,22.0,19.2,13,6$.

(Z)-1m
(Z)-1m: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.22$ (dd, $J=9.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (dd, $J=12.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=9.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00$ (ddd, $J=4.8,3.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.86 (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$), $1.56-1.37$ $(\mathrm{m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 131.9,125.3,95.7,78.7,63.0,60.1,54.3,30.8,25.8,23.8,22.0,19.1$, 18.3, 13.6, -5.3, -5.4.

(Z)-1n
(Z)-1n: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.23(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, \mathrm{J}=12.1$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.80 (dd, J= 9.0, 2.3 Hz, 1H), 3.71 (dd, J=11.9, 4.5 Hz, 1H), 3.02 (dt, J=4.8, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (t, J=7.0 Hz, 2H), 2.12 (t, J=7.4 Hz, 2H), 1.54-1.38 (m, 6H), 1.35-1.26 (m, 2H), 0.93 (t, J=7.6 Hz, 3H), 0.91 (s, 9H), $0.90(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: (100 MHz, CDCl_{3}) $\delta: 131.2,130.4,96.2,78.0,63.1,60.2,54.3,37.3,30.8,30.2$, $25.8,22.0,19.2,18.3,13.9,13.6,-5.3$.

(Z)-10
(Z)-10: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 7.24-7.22$ (m, 2H), 7.14-7.10 (m, 2H), $7.05(\mathrm{dt}, \mathrm{J}=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, \mathrm{J}=8.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35\left(\mathrm{~d}, \mathrm{~A}\right.$ of $\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31\left(\mathrm{~d}, \mathrm{~B}\right.$ of $\left.\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=12.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.01(\mathrm{dd}, \mathrm{J}=8.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, \mathrm{J}$ $=11.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, \mathrm{J}=11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{ddd}, \mathrm{J}=5.5,3.0,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.06 (t, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.71 (d, J = $1.6 \mathrm{~Hz}, 3 \mathrm{H}$), $1.29-1.16$ (m, 4H), 0.7 (t, J = 7.2 Hz , $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 138.5,132.8,128.2,127.4,127.3,124.8,95.5,79.1$, $72.8,70.0,58.2,53.8,30.6,23.5,21.8,18.9,13.3$.

(Z)-1p: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.24(\mathrm{dd}, J=8.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}$, $J=8.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.87$ (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 132.2,125.3,95.8,79.0,74.0,64.9,53.4,50.9,30.9$, 23.9, 22.4, 22.0, 21.1, 19.2, 13.7.

(Z)-1r
(Z)-1r: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 5.16(\mathrm{dd}, J=8.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=$ $8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{qd}, J=5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.04(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 133.7,123.9,95.2,79.3,57.4,55.2,30.6,23.4,21.8,19.0,17.3,13.2$.

(Z)-1s
(Z)-1s: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.18(\mathrm{dd}, \mathrm{J}=9.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (ddd, $\mathrm{J}=9.0,4.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (dd, J=5.1, $4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.67 (dd, J=5.1, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (t, J=7.2 Hz, 2H), 1.88 (d, J=1.6 Hz, 3H), 1.58-1.50 (m, 2H), 1.48-1.39 (m, 2H), 0.92 (t, $\mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 132.5,125.5,95.7,78.7,50.7,48.7,30.8$, 23.8, 22.0, 19.1, 13.6.

(Z)-1t
(Z)-1t: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.00-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.73$ (dt, $J=11.2,2.8$ Hz, 1H), 3.45-3.30 (m, 4H), 3.20 (sext, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.21-2.10 $(\mathrm{m}, 2 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.32(\mathrm{~m}, 6 \mathrm{H}), 0.98-0.79(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) $\delta: 137.3,121.7,94.2,79.5,73.1,59.2,56.2,55.2,30.9,30.8,22.4,22.2,21.9$, 21.7, 19.2, 13.6 .

(Z)-1v
(Z)-1v: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.59(\mathrm{dq}, \mathrm{J}=9.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, 3.75-3.70 (m, 2H), 3.42 (dd, J=11.6, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.41 (s, 3H), 3.14-3.11 (m, 1H), 1.96 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 154.1,139.7,121.7,84.9,83.9,72.2,59.2,58.4$, 53.5, 52.8, 22.3.

(E)-1b
(\boldsymbol{E})-1b: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.35(\mathrm{dd}, J=9.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (dd, $J=11.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=11.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (s, 3H), 3.06 (ddd, $J=5.1,3.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93$ (d, $J=1.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 131.3$, $125.2,90.3,82.4,80.0,59.2,58.6,51.9,30.7,21.9,18.9,18.2,13.6$.

3.4. Synthesis of Organoborons

To the dry THF (15 mL) solution of organoboronic acid (10 mmol) was added $\mathrm{MgSO}_{4}(14 \mathrm{mmol}, 1.7 \mathrm{~g})$. Then, 2,2 dimethyl propan-1,3-diol ($11 \mathrm{mmol}, 1.2 \mathrm{~g}$) was added to the mixture and stirred overnight under Ar and at rt . The crude mixture was concentrated under a reduced pressure and boronic acid neopentyl glycol ester derivative was purified on silica gel column (hexane-EtOAc as an eluent) (Matthew et al. 2014). The yields are given in Table 3.1.

Table 3.1. Synthesis of neopentyl glycol esters

R (yield \%)

(90\%)

3.5. General Method for Palladium-Catalyzed Reactions of Enyne Oxiranes

The catalyst, the ligand, and the dry solvent (half of the volume necessary for the reaction) were added successively in to the schlenk flask which was dried in oven and cooled under Ar gas and mixture was stirred for 15 min . at $25^{\circ} \mathrm{C}$. Then, organoboron (3 equivalent), the solution of epoxide compound (0.1 mmol) in dry solvent (other half volume), base and prescribed amount of degassed water was added successively to the schlenk flask and the mixture was stirred in water or oil bath. The reaction was controlled with help of TLC. When the reaction was over, the mixture was concentrated under reduced pressure. The residue was purified using silica gel on column chromatography. In part of the optimization studies the crude product was filtered through a short silica gel column washed with $\mathrm{Et}_{2} \mathrm{O}$ and evaporated under reduced atmosphere. The residue was analyzed by ${ }^{1} \mathrm{H}$ NMR using p-anisaldehyde as the internal standard.

3.6. Characterization of Products

3aa: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.35-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.21(\mathrm{dd}, \mathrm{J}=16.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.74(\mathrm{dd}, \mathrm{J}=15.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{t}, \mathrm{J}=7.6,2 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.36(\mathrm{~m}, 10 \mathrm{H})$, 0.9 (t, J= $8.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.9,137.2,136.1,129.6,128.3$, 126.5, 126.2, 125.4, 120.7, 115.3, 105.1, 102.4, 71.1, 30.0, 29.9, 29.8, 22.4, 15.5, 13.9.; MS (EI, m/z): $270\left(<5, \mathrm{M}^{+}\right)$, 252(6), 195(10), 165(12), 153(15), 141(40), 128(23), 115(35), 91(62), 77(50), 59(100); HRMS (ESI, C $\left.{ }_{19} \mathrm{H}_{26} \mathrm{O}\left(\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right) \mathrm{H}\right)^{+}\right): 253.19508$ (calculated); 253.19524 (found). FTIR ($\mathrm{V}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3356, 2923, 1609, 1362, 1142, 974 , 763, 692.

3ba: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.43$ (dd, J=8.8, $1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18 (t, J=7.2 Hz, 2H), 7.06 (t, J=8.0 Hz, 1H), 6.55 (dd, J=15.6, 1.6 Hz, 1H), 5.63 (dd, J=16.0, 5.9 Hz, $1 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.6 \mathrm{~Hz}, \mathrm{JAX}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}$, B of ABX, JAB = $9.6 \mathrm{~Hz}, \mathrm{JBX}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.86$ $(\mathrm{s}, 3 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, minor), $0.85(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 3 \mathrm{H}$, major). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.8,138.0,130.4,129.1,128.5,127.3$, 127.1, 106.3, 103.4, 77.5, 71.7, 59.0, 30.8, 30.7, 23.1, 15.9, 14.5. MS (EI, m/z): 286 (8, M^{+}), 236(8), 198(15), 169(40), 129(45), 115(52), 91(100), 77(88), 56(84) HRMS (EI) $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H}]^{+}, 287.20056\right.$ (calculated); 287.20079 (found). FTIR ($\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3426, $2938,1923,1455,1198,1126,968,770,697$. m.p. $46.4-47.8^{\circ} \mathrm{C}$.

4ba: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.21(\mathrm{M}, 5 \mathrm{H}), 5.74(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08 (t, J= $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.95(\mathrm{t}, \mathrm{J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, \mathrm{J}=9.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.30$ (m, 4H), 2.38 (t, J=7.2 Hz, 2H), $1.82(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.0,134.7,128.7,128.3,126.7,120.2$, $94.9,79.5,75.2,73.0,59.1,50.5,30.9,23.7,22.0,19.2,13.6$.

3ba': ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.03$ (m, 1 H), 6.55 (dd, $J=15.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.63 (dd, $J=15.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ - $4.28(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}$, Major), $3.01(\mathrm{~d}, J=0.8$ $\mathrm{Hz}, 3 \mathrm{H}$, Minor), 2.39 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, Major), 2.40 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, Minor), 2.19 (br. $\mathrm{s}, 1 \mathrm{H}$), 1.86 ($\mathrm{s}, 3 \mathrm{H}$), 1.58-1.46(m, 2 H), 1.33 (m, 2 H), 0.86 (t, J=7.1 Hz, 3 H , Major), 0.85 (t, J=7.1 Hz, 3 H, Minor); ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.1,137.2,129.7,128.3$, $128.2,126.6,126.33,105.6,102.66,76.69,70.91,58.19,30.07,29.99,22.40,15.16,13.8$. MS (EI, m/z): 286 (<5, M ${ }^{+}$), 241(20), 223(25), 199(30), 181(45), 169(100), 91(70), 77(20), 45(50). HRMS (EI) $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H}]^{+}, 287.20056\right.$ (calculated); 287.20079 (found). FTIR ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 3428, 2931, 2163, 1925, 1438, 1115, 973, 761, 692.

3bb: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.41$ ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05 (d, J=7.8 Hz, 2H), 6.56 (dd, J=15.8, 1.0 Hz, 1H), 5.63 (dd, J=15.8, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34-4.28 (m, 1H), 3.14 (dd, A of ABX, JAB = 9.4 Hz, JAX = $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}$ $=3.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{~s}, 3 \mathrm{H}$, major), $2.98(\mathrm{~s}, 3 \mathrm{H}$, minor), $2.43(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, 1.87 (s, 3H), 1.54 (q, J=8 Hz, 2H), 1.37-1.30 (m, 2H), 0.87 (t, J=7.6 Hz, 3H, minor), 0.86 (t, J=7.6 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR (101 MHz, C6 D_{6}): δ 208.6, 136.8, 135.1, 130.7, 129.8, 127.1, 106.2, 103.3, 77.5, 71.7, 58.9, 30.9, 30.6, 23.2, 21.4, 16.0, 14.5. MS (EI, m / z): 300 (15, M^{+}), 282(5), 225(30), 193(30), 155(50), 141(30), 105(20), 91(15), 44(100). HRMS (EI) $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{Na}]^{+}, 323.19815\right.$ (calculated); 323.19834 (found). FTIR ($v_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3444, 2923, 1523, 1441, 1197, 1123, 961, 831, 603.

3bc: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.36$ (s, 1H), 7.31 (d, J=7.8 Hz, 1J), 7.17-7.13 (m, 1H), 6.92 (dt, J=7.4, 0.8 Hz, 1H), 6.58 (dd, J=15.8, 1.4 Hz, 1H), 5.63 (dd, J=16.0, 5.6 $\mathrm{Hz}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (dd, B of ABX, JAB = 9.4 Hz, JBX = $3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}$, minor), 2.44 (t, J=6.4 Hz, 2H, major), 2.27 (bs, 1H), 2.14 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.13 ($\mathrm{s}, 3 \mathrm{H}$, minor), $1.88(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 0.86 (t, J=7.2 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.8$, 138.4, 138.0, 130.6, 129.1, 128.5, 128.2, 127.8, 124.3, 106.4, 103.2, 77.5, 71.7, 58.9, 30.9, 30.8, 23.2, 21.9, 16.0, 14.5. MS (EI, m / z): 300 (5, M ${ }^{+}$), 237(15), 195(40), 183(85), 143(45), 105(100), 91(40), 77(25), 45(40). HRMS (EI) $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H}]^{+}, 301.21621\right.$ (calculated); 301.21639 (found). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3435, 2922, 1606, 1470, 1258, 1107, 956, 797, 699.

3bd: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.26$ (d, J=6.7 Hz, 1H), 7.11-7.04 (m, 3H), 6.58 (dd, J=15.6, 1.6 Hz, 1H), 5.54 (dd, J=15.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.34-4.29 (m, 1H), 3.13 (dd, A of ABX, JAB = $9.4 \mathrm{~Hz}, \mathrm{JAX}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}$ $=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{~s}, 3 \mathrm{H}$, major), $3.00(\mathrm{~s}, 3 \mathrm{H}$, minor), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (td, J=7.2, 2.8 $\mathrm{Hz}, 2 \mathrm{H}), 1.8(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 0.84 (t, J=7.2 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 206.9$, 138.6, 136.3, 131.2, $130.9,128.8,127.9,127.5,126.6,104.9,100.5,77.5,71.6,58.9,34.7,30.7,23.1,21.2$, 16.0, 14.5. MS (EI, m/z): 300 (20, M ${ }^{+}$), 282(5), 225(30), 193(30), 155(50), 141(30), 105(20), 91(15), 44(100). HRMS (EI) $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{Na}]^{+}, 323.19815\right.$ (calculated); 323.19835 (found). FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3413, 2922, 1449, 1190, 1142, 959, 756, 728.

3be: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.06-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.63 (d, J=15.6 Hz, 1H, minor), 5.52 (ddd, $15.9,5.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $4.35-4.31$ (m, $1 \mathrm{H}), 3.13(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.2 \mathrm{~Hz}, \mathrm{JAX}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}$, B of $\mathrm{ABX}, \mathrm{JAB}$ $=9.2 \mathrm{~Hz}, \mathrm{JBX}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 204.8,138.9,136.0,130.7,128.3,127.7,127.5,104.1,100.8,77.5,71.6,58.9,34.1$, 30.8 (minor), 30.5 (major), 23.3, 20.8, 15.7, 14.6. MS (EI, m / z): 314 (50, M ${ }^{+}$), 269(60), 197(45), 157(30), 119(55), 45(100). HRMS (EI) $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H}]^{+}, 315.23186\right.$ (calculated); 315.23200 (found). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3421, 2944, 1470, 1386, 1190, 1129, 956, 760.

4be: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.00-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.35(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.69 (t, J=8.6 Hz, 1H), 4.27-4.22 (m, 1H), 3.18 (dd, J=9.4, 2.8 Hz, 1H), 3.14-3.07 (m, 1 H), 2.92 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.91 ($\mathrm{s}, 3 \mathrm{H}$, minor), 2.50-2.35 (m, 6H), $2.11(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $1.87(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$: $\delta 139.5,137.1,128.3,126.9,120.8,95.2,81.4,75.3,73.1,58.9,46.7,31.4,24.5$, 22.6, 20.0, 14.1. MS (EI, m / z): 314 (<5, M ${ }^{+}$), 269(15), 239(100), 198(55), 183(85), 169(95), 119(40), 55(40). HRMS (EI) $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H}]^{+}, 315.23186\right.$ (calculated); 315.23202 (found). FTIR ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 3451, 2912, 1460, 1391, 1122, 767.

3bf: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.84$ ($\mathrm{s}, 1 \mathrm{H}$), 7.72 (dd, J=8.4, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68$7.60(\mathrm{~m}, 3 \mathrm{H}), 7.26$ (quind, J=7.1, 1.6 Hz, 2H), 6.62 (dd, J=15.8, 1.4 Hz, 1H), 5.67 (dd, $\mathrm{J}=15.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.33(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{bs}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.38$ (sext, J=7.6 Hz, 2H), 0.89 (t, J=7.2 Hz, 3H, minor), 0.89 (t, J=7.2 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 209.6,135.4,134.7,133.5,130.3,128.8,128.7,126.7,126.5,126.3,124.6,106.6,103.8$, $77.5,71.7,59.0,30.8,30.7,23.2,16.0,14.6$. MS (EI, m/z): 336 (15, M ${ }^{+}$), 291(30), 261(30), 219(80), 207(55), 165(45), 141(100), 73(50), 45(60). HRMS (EI) $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2}$ $\left[(\mathrm{M}+\mathrm{Na}]^{+}, 359.19815\right.$ (calculated); 359.19828 (found). FTIR ($\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3451, 2950, 1449, 1363, 1122, 959, 863, 825, 747.

3bg: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 8.39$ (d, J=8.6 Hz, 1H), 7.66 (dd, J=8.2, 0.8 Hz, 1H), 7.57 (d, J=8.2 Hz, 1H), 7.41-7.37 (m, 2H), 7.29-7.24 (m, 2H), 6.67 (dd, J=15.8, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.66 (dd, J=15.8, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $5.54(\mathrm{dd}, \mathrm{J}=15.8,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.35-4.30 (m, 1H), 3.13 (dd, A of ABX, JAB = 9.4 Hz, JAX = 8.1 Hz, 1H), 3.08 (dd, B of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}=3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{~s}, 3 \mathrm{H}$, major), $2.99(\mathrm{~s}, 3 \mathrm{H}$, minor), 2.47 (td, J=7.5, 1.8 Hz, 2H), $1.84(\mathrm{~s}, 3 \mathrm{H}), 1.52$ (quint, J=7.2 Hz, 2H, major), 1.52 (quint, J=7.2 $\mathrm{Hz}, 2 \mathrm{H}$, minor), 1.33 (sext, J=7.6 Hz, 2H), 0.84 (t, J=7.6 Hz, 3H, minor), 0.83 (t, J=7.6 $\mathrm{Hz}, 3 \mathrm{H}$, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 207.3,135.0,132.4,130.8,129.2,128.1$, $126.6,126.3,126.3,126.3,126.1,104.5,100.7,77.5,71.6,58.9,35.5,31.0,23.1,16.1$, 14.5. MS (EI, m / z): 336 (20, M $^{+}$), 273(30), 261(55), 229(100), 217(65), 202(80), 165(60), 141(35), 44(95). HRMS (EI) $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{Na}]^{+}, 359.19815\right.$ (calculated); 359.19825 (found). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3435, 2922, 1946, 1470, 1206, 1129, 986, 804, 782.

3bh: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.38$ (d, J=9.2 Hz, 2H), 6.82 (d, J=8.4 Hz, 2H), 6.58 (dd, J= 15.8, 1.4 Hz, 1H), 5.64 (dd, J=15.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37-4.32 (m, 1H), 3.33 (s, 3 H , major), 3.32 (s, 3 H , minor), 3.16 (dd, A of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (dd, B of ABX, JAB = 9.4 Hz, JBX = $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (s, 3H, minor), $3.02(\mathrm{~s}, 3 \mathrm{H}$, major), 2.42 (t, J=6.8 Hz, 2H), 1.89 (s, 3H), 1.60-1.51 (m, 2H), 1.40-1.31 (m, 2H), 0.88 (t, J=7.2 Hz, 3H, minor), 0.87 (t, J=7.2 Hz, 3H, major), ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ 208.4, 130.9, 130.1, 128.2, 128.2, 114.7, 105.9, 103.3, 77.5, 71.7, 59.0, 55.2, 31.0, 30.9, 23.2, 16.1, 14.5. MS (EI, m / z): 316 (10, M ${ }^{+}$), 259(80), 209(100), 171(95), 121(75), 44(90). HRMS (EI) $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H}]^{+}, 317.21112\right.$ (calculated); 317.21117 (found). FTIR
$\left(\nu_{\max } / \mathrm{cm}^{-1}\right): 3444,2931,2867,1925,1613,1512,1454,1247,1174,1120,1041,967$, 835, 597.

3bi: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.53$ (t, J=2.0 Hz, 1H), 7.17 (dd, J=1.6, 0.8 Hz , 1 H), 7.04 (ddd, J=7.9, 2.1. $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.87 (t, J=8.0 Hz, 1H, major), 6.86 (t, J=8.0 Hz, 1 H , minor), 6.49 (dd, J=15.7, 1.6 Hz, 1H), 5.60 (dd, J=15.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.32-4.28 (m, $1 \mathrm{H}), 3.12(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}$ $=9.4 \mathrm{~Hz}, \mathrm{JBX}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}$, minor), $3.00(\mathrm{~s}, 3 \mathrm{H}$, major), $2.30(\mathrm{bs}, 1 \mathrm{H}), 2.22$ (t, J=7.6 Hz, 2H), 1.78 (s, 3H), 1.47-1.38 (m, 2H), $1.27(\mathrm{sext}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 0.82 (t, J=7.2 Hz, 3H, minor). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.8$, $140.2,135.3,130.3,129.7,129.1,127.3,126.9,125.2$ (major), 125.2 (minor), 105.4, 104.0, 77.4, 71.5, 59.0, 30.8 (minor), 30.6 (major), 30.4, 23.0, 15.7, 14.5. MS (EI, m / z): 320 (5, M ${ }^{+}$), 257(15), 203(45), 165(35), 125(40), 44(100). HRMS (EI) $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{FO}_{2}$ $\left[(\mathrm{M}+\mathrm{Na}]^{+}, 343.14408\right.$ (calculated); 343.14387 (found). FTIR ($\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3406, 2930, 1617, 1480, 1109, 972, 783, 686.

3bj: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.80(\mathrm{~m}, 3 \mathrm{H}), 6.59$ (dd, J=15.8, 1.4 Hz, 1H), $5.59(\mathrm{dd}, \mathrm{J}=16,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}=3.6$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.00(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{bs}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.44$ (m, 2 H), 1.32 (sext, J=8.0 Hz, 2H), 0.84 (t, J=7.2 Hz, 3H, minor), 0.83 (t, J=7.2 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 209.2,161.1$ (d, J=242 Hz), 130.4 (major), 130.4 (minor), 129.0, 128.9, 128.5, 126.6, 124.6, 116.7 (minor), 116.5 (major), 101.6 (major), 101.4 (minor), 77.4, 71.6, 58.9, 32.8 (major), 32.8 (minor), 30.8, 23.0, 16.0, 14.4. MS (EI, m / z): 304 (5, M ${ }^{+}$), 259(15), 199(25), 187(60), 133(25), 109(100), 45(35). HRMS (EI) $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{FO}_{2}\left[(\mathrm{M}+\mathrm{H}]^{+}, 305.19113\right.$ (calculated); 305.19129 (found). FTIR ($\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3425, 2923, 1487, 1440, 1196, 1110, 971, 752.

3bk: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.37$ (d, J=8.2 Hz, 2H), 7.22 (d, J=7.8 Hz, 2H), 6.54 (dd, J=15.7, 1.6 Hz, 1H, major), 6.53 (dd, J=15.7, 1.6 Hz, 1H, minor), 5.64 (dd, $\mathrm{J}=15.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.64 (dd, J=15.7, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.32 (dt, J=3.8, 1.8 Hz , $1 \mathrm{H}), 3.15(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=11.8 \mathrm{~Hz}, \mathrm{JAX}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}$, B of $\mathrm{ABX}, \mathrm{JAB}$ $=11.8 \mathrm{~Hz}, \mathrm{JBX}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.48-$ $1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), $0.88(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, major). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 209.3,141.8,129.5,129.2,129.0,127.1,125.9$ (q, $\mathrm{J}=3.8 \mathrm{~Hz}$), 105.5, 104.1, 77.4, 71.5, 59.0, 30.8 (minor), 30.6 (major), 30.4, 23.1, 15.7, 14.5. MS (EI, m / z): 354 ($<1, \mathrm{M}^{+}$), 309(35), 291(30), 267(45), 249(60), 237(90), 159(85), 109(45), 55(40), 45(100). HRMS (EI) $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H}]^{+}, 355.1784\right.$ (calculated); 355.18810 (found). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3435, 2941, 2862, 1609, 1326, 1160, 1133, 1071, 833, 612.

3bl: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.27-7.23$ (m, 2H), 7.12 (t, J=7.8 Hz, 2H), 7.057.02 (m, 1H), 6.83 (d, J=16.4 Hz, 1H, major), 6.81 (d, J=16.4 Hz, 1H, minor), 6.58 (d, $\mathrm{J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.57 (dd, J=15.8, $0.4 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.56 (dd, J=15.8, $0.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.64 (ddd, J=16, 5.6, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.64 (ddd, J=16, $5.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.36-4.31 (m, 1H), $3.14(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{~s}, 3 \mathrm{H}$, minor), $3.00(\mathrm{~s}, 3 \mathrm{H}$, major), 2.26 (t, J=7.2 Hz, 2H), $1.86(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 3 H , minor), 0.88 (t, J=7.6 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 212.4$, 138.4, $130.4,129.2,127.8,127.8,127.0,106.0,101.6,77.4,71.6,59.0,30.6,29.4,23.2,16.1$, 14.6. MS (EI, m / z): 312(40), 267(35), 223(15), 195(80), 165(60), 115(50), 91(100), 32(60). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3435, 2923, 1460, 1142, 957, 753, 693.

3bm: 1H NMR ($400 \mathrm{MHz}, \mathrm{C} 6 \mathrm{D} 6$): $\delta 6.53$ (dd, J=15.1, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 6.52 (dd, J=15.1, 1.0 Hz, 1H, minor), 6.09 (d, J=16.0 Hz, 1H, major), 6.09 (d, J=16.0 Hz, 1H, minor), 5.65 (dt, J=15.7, 7.0 Hz, 1H), 5.58 (dd, J=15.6, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.58 (dd, $\mathrm{J}=15.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.33-4.29 (m, 1H),), 3.13 (dd, A of $\mathrm{ABX}, \mathrm{JAB}=9.5 \mathrm{~Hz}$, $\mathrm{JAX}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.5 \mathrm{~Hz}, \mathrm{JBX}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}$, minor), 3.00 (s, 3H, major), $2.20(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$, $1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, minor), $0.87(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, 3 H , major), 0.85 (t, J=7.6 Hz, 3H, major), $0.85(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, minor). 13C NMR (101 MHz, C6D6): $\delta 210.5,131.0,129.6,128.7,127.8,105.3,101.2,77.5,71.6,58.9,35.8$, 30.7, 29.6, 23.4, 23.3, 16.2, 14.6, 14.3. MS (EI, m/z): 278(10), 233(25), 161(30), 119(45),

105(100), 93(60), 55(55). HRMS (EI) C19H32O2 [(M+Na] ${ }^{+}$, 315.23186 (calculated);
315.23202 (found). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3442, 2927, 1480, 1261, 1113, 958, 796.

3ca: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.45-7.42$ (m, 2 H), 7.21-7.16 (m, 2 H), 7.087.04 (m, 1 H), 6.42 (dd, J=15.6, 1.6 Hz, 1H), $5.51(\mathrm{dd}, \mathrm{J}=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.50 (dd, $\mathrm{J}=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$, major), 4.05-4.02 (m, 1H), 3.40-3.37 (m, 1H), 3.30-3.24 (m, 1 H), 2.40 (t, J=7.4 Hz, 2H), 1.82 (d, J= $0.8 \mathrm{~Hz}, 3 \mathrm{H}$), 1.55-1.48 (m, 2H), 1.38-1.28 (m, 2 H), 0.87 (t, J=7.6 Hz, 3H, minor), 0.86 ($\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, major). ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.9,137.9,130.9,129.1,127.4,127.1,106.4,103.3,73.8,67.2,30.8$ (minor), 30.8 (major), 30.7, 23.2, 15.9, 14.5. MS (EI, m / z): 256(25), 239(27), 112(95), 83(40), 70(75), 57(100), 43(65). HRMS (EI) $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H}]^{+}, 273.18491\right.$ (calculated); 273.18506 (found). FTIR ($v_{\text {max }} / \mathrm{cm}^{-1}$): 3365, 2951, 2920, 2862, 1925, 1597, 1454, 1079, 1031, 967, 750, 698.

3da: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.39$ (d, J=8.4 Hz, 2H), 7.16 (t, J=7.6 Hz, 2H), 7.05 (t, J=7.6 Hz, 1H), 6.52 (d, J=15.6 Hz, 1H, minor), 6.51 (d, J=15.6 Hz, 1H, major), 5.63 (ddd, J=15.8, 5.9, 0.8 Hz, 1H), 4.33-4.29 (m, 1H), 3.13 (dd, A of ABX, JAB = 8.7 $\mathrm{Hz}, \mathrm{JAX}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=8.7 \mathrm{~Hz}, \mathrm{JBX}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}$, 3 H), 2.36 (bs, 1H), 1.98 ($\mathrm{s}, 3 \mathrm{H}$, minor), 1.97 ($\mathrm{s}, 3 \mathrm{H}$, major), 1.83 (d, J=0.8 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.9,138.1,130.4,129.0,128.7,127.3,126.7,102.2,101.0$, 77.4, 71.7, 59.0, 17.5, 15.8. MS (EI, m/z): 244 (10, M ${ }^{+}$), 199(100), 181(35), 166(45), 128(35), 105(20), 91(30), 77(20), 45(25). FTIR ($\mathrm{V}_{\max } / \mathrm{cm}^{-1}$): 3432, 2922, 1498, 1449, 1135, 1027, 978, 767, 689, 593.

3eh: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}$, $\mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.58 (dd, J=15.8, 1.4 Hz, 1H), 5.63 (dd, J=15.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 (q, J=5.6 Hz, 1 H), 3.29 ($\mathrm{s}, 3 \mathrm{H}$, major), 3.29 ($\mathrm{s}, 3 \mathrm{H}$, minor), 3.11 (dd, A of ABX, JAB $=8.6 \mathrm{~Hz}, \mathrm{JAX}=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=8.6 \mathrm{~Hz}, \mathrm{JBX}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (bs, 1 H), $1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 210.5,160.0,138.2,130.6$ (minor), 130.6 (major), 130.0, 129.9, 129.4 (major), 129.4 (minor), 129.2, 129.1, 127.9, 114.7, 110.3, 103.2, 77.4, 71.6, 59.0, 55.2, 16.0. MS (EI, m/z): 336 ($30, \mathrm{M}^{+}$), 291(100), 262(65), 247(40), 183(30), 155(25), 30(25), 45(45). HRMS (EI) $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H}]^{+}, 337.17982\right.$ (calculated); 337.17992 (found). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3432, 2931, 1507, 1267, 1180, 1122, 1036, 978, 834, 767, 700.

3fa: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.30-7.27$ (m, 2H), 7.14-7.12 (m, 2H), 7.097.05 (m, 1H), 6.59 (dd, J=15.7, 1.2 Hz, 1H, major), 6.57 (dd, J=15.7, 1.2 Hz, 1H, minor), 5.51 (dd, J=16.0, 4.3 Hz, 1H), 4.35-4.31 (m, 1H, major), 4.29-4.25 (m, 1H, minor), 3.13 $(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.3 \mathrm{~Hz}, \mathrm{JAX}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.3 \mathrm{~Hz}$, $\mathrm{JBX}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}$, major), $2.97(\mathrm{~s}, 3 \mathrm{H}$, minor), $2.24(\mathrm{bs}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, 1.16 (s, 9H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 206.1,138.5,131.2,130.2,128.9,128.5$, 127.7, 127.3, 127.1, 100.9, 77.5, 71.6, 58.9, 35.7, 31.8, 30.5, 16.4. MS (EI, m / z): 286 (10, M^{+}), 241(75), 197(100), 165(35), 141(40), 105(85), 57(95). FTIR ($\left.\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 3422$, 2960, 1460, 1199, 1132, 969, 709.

4fa: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.40(\mathrm{~d}, 7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.07 (t, J=7.6 Hz, 1H), 6.12 (dd, J=9.6, 1.4 Hz, 1H), 4.26 (dd, J=9.8, 6.0 Hz, 1H), 4.10$4.06(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 143.4,136.4,129.1,128.5,128.3,127.0,121.1,102.8$, 79.7, 75.8, 74.6,59.0, 50.4, 31.6, 28.6, 24.0. MS (EI, m/z): 268(5), 212(100), 197(65), 169(65), 155(95), 141(35), 91(55), 41(40). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3446, 2910, 1459, 1364, 1117, 1079, 688.

3ga: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.43(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.08-7.04 (m, 1H), 6.57 (d, J=15.7 Hz, 1H, major), 6.56 (d, J=15.7 Hz, 1H, minor), 5.63 (ddd, J=15.7, 5.9, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36-4.32 (m, 1H), $3.15(\mathrm{dd}, \mathrm{A}$ of ABX, JAB $=9.2 \mathrm{~Hz}$, $\mathrm{JAX}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.2 \mathrm{~Hz}, \mathrm{JBX}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}$, major), 2.98 ($\mathrm{s}, 3 \mathrm{H}$, minor), 1.48-1.41 (m, 1H), 2.34 (bs, 1H), 1.96-1.93 (m, 2H), 1.86 (d, $\mathrm{J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.08(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $208.6,137.7,130.7,129.1,128.3,127.6,127.3,112.7,104.2,77.5,71.7,59.0,39.3,33.8$, 33.8, 27.3, 27.3, 27.0, 16.1. MS (EI, m / z): 312 (10, M ${ }^{+}$), 267(70), 181(100), 141(50), 91(80), 45(60). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3444, 2923, 2858, 1506, 1458, 1123, 953, 774, 701.

3ha: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.41$ (d, J=6.8 Hz, 2H, major), 7.41 ($\mathrm{d}, \mathrm{J}=6.8$ $\mathrm{Hz}, 2 \mathrm{H}$, minor), 7.18-7.15 (m, 2H), 7.05 (t, J=6.8 Hz, 1H), 6.56 (dd, J=15.6, 1.6 Hz, 1H, major), 6.54 (dd, J=15.6, 1.6 Hz, 1H, minor), 5.55 (dd, J=15.6, $5.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 5.54 (dd, J=15.6, 5.6 Hz, 1H, major), 4.35-4.31 (m, 1H, major), 4.26-4.21 (m, 1H, minor), 3.13 $(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}$, $\mathrm{JBX}=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00(\mathrm{~s}, 3 \mathrm{H}$, minor), $3.00(\mathrm{~s}, 3 \mathrm{H}$, major), $2.23(\mathrm{bs}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})$, 0.24 ($\mathrm{s}, 9 \mathrm{H}$, minor), 0.23 ($\mathrm{s}, 9 \mathrm{H}$, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 212.9,138.1$, 130.1, 129.2, 128.7,127.3 (minor), 127.3 (major), 127.0, 101.3, 97.3, 77.5, 71.7, 58.9, 15.3, 0.6 (minor), 0.2 (major). MS (EI, m / z): $302\left(\mathrm{M}^{+}\right)$, 257(5), 196(10), 140(5), 105(25), 73(100), 45(55). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3435, 2934, 1911, 1254, 1134, 845, 698.

3ia: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.23$ (d, J=6.8 Hz, 2H), 7.11 (t, J=7.6 Hz, 2H), 7.01 (t, J=7.2 Hz, 1H), 6.49 (d, J=16.0 Hz, 1H), 6.20 ($\mathrm{s}, 1 \mathrm{H}$), 5.62 (ddt, J=15.6, 5.6, 1.2 $\mathrm{Hz}, 1 \mathrm{H}$), 4.28 (bs, 1H. major), 4.16 (bs, 1H, minor), 3.11-3.08 (m, 1H), 3.00 (s, 3H), 3.02$2.90(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{bs}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 210.0,135.4$, $129.3,128.5,128.3,127.7,127.6$ (major), 127.6 (minor), 110.7, 104.1, 77.3, 71.6, 59.0, 15.7. MS (EI, m / z): 230(15, M^{+}), 185(100), 165(30), 152(45), 129(60), 115(50), 91(40), 77(30), 45(30). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3412, 2929, 1506, 1471, 1118, 966, 753, 683.

3ja: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.44(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.37$ (ddd, 15.3, 10.6, 1.2 Hz, 1H), 6.16 (dt, 10.6, 2,9 Hz, 1H), $5.61(\mathrm{dd}, 15.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JAX}$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.4 \mathrm{~Hz}, \mathrm{JBX}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.39-$ $2.34(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{bs}, 1 \mathrm{H}), 1.52($ quin, $\mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.32$ (sext, J=7.6 Hz, 2H), 0.86 (t, $\mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 0.85 (t, J=7.6 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 209.0$, $137.3,131.6,129.1,128.5,127.5,127.1,108.2,97.6,77.2,71.3,58.9,30.8,30.5,23.2$, 14.5. MS (EI, m / z): $272\left(<5, \mathrm{M}^{+}\right), 254(5), 227(20), 209(20), 185(65), 167(55), 155(75)$, 141(70), 129(65), 115(70), 91(100), 77(30), 45(50). FTIR ($\mathrm{v}_{\max } / \mathrm{cm}^{-1}$): 3426, 2932, 1450, 1133, 974, 772, 701.

3ka: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.52(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.06(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, \mathrm{J}=15.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, \mathrm{J}=15.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$, minor), 6.02 (dd, J=15.6, 5.2 Hz, 1H, major), 4.31 (bs, 1H), 3.04 (dd, A of ABX, JAB = 7.7 Hz, $\mathrm{JAX}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=7.7 \mathrm{~Hz}, \mathrm{JBX}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}$, minor), 2.93 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.47-2.42 (m, 2H), $2.24(\mathrm{bs}, 1 \mathrm{H}), 1.61$ (quin, J=7.6 Hz, 2H), $1.56(\mathrm{~s}, 3 \mathrm{H}$, minor), $1.55(\mathrm{~s}, 3 \mathrm{H}$, major), 1.39-1.33 (m, 2H), 1.19 (s, 9H, minor), 1.19 (s, 9 H , major), 0.90 (t, J=7.6 Hz, 3H, minor), 0.89 ($\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, major). ${ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $: \delta 203.0,138.2,130.8,129.2,128.3,127.2,126.4,125.7,117.3,109.3,77.4$, $71.5,58.8,34.9,31.0,30.8,30.4$ (minor), 30.1 (major), 23.4, 14.6. MS (EI, m / z): 309(<5), 253(20), 212(20), 197(65), 155(95), 140(60), 105(40), 91(100), 69(40), 57(95). FTIR $\left(\nu_{\max } / \mathrm{cm}^{-1}\right): 3421,2867,1453,1379,1242,1155,806,701$.

4ka: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.44$ (d, $\left.7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.06 (td, J=8.0, 1.2 Hz, 1H), 6.37 (d, J=9.8 Hz, 1H, minor), 6.33 (d, J=9.8 Hz, 1H, major), 4.37 (dd, J=9.6, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, \mathrm{A}$ of ABX, JAB $=9.3 \mathrm{~Hz}, \mathrm{JAX}$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.3 \mathrm{~Hz}, \mathrm{JBX}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.28$ ($\mathrm{s}, 1 \mathrm{H}$), $2.21(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.44-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, C6D6): $\delta 143.6,136.1,131.7,129.1,129.0,127.0,96.5,79.5,75.9$, 74.6, 59.0, 50.2, 36.5, 32.1 (minor), 31.7 (major), 29.9, 22.6, 19.8, 14.1. MS (EI, m / z): 328(<1, M^{+}), 310(5), 253(25), 197(65), 155(100), 91(40), 57(25). FTIR ($\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3452, 2958, 2923, 1468, 1354, 1115, 763, 710.

3la: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.51$ (d, J=7.4 Hz, 2H), $7.20(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.07 (t, J=7.2 Hz, 1H), 6.39 (dd, J=16.0, 1.2 Hz, 1H), 5.86 (dd, J=16.0, 5.9 Hz, 1H), 4.35$4.31(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.5 \mathrm{~Hz}, \mathrm{JAX}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.5 \mathrm{~Hz}, \mathrm{JBX}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{bs}, 1 \mathrm{H})$, 2.26-2.22 (m, 1H), 2.07-2.04 (m, 2H), 1.71-1.56 (m, 4H), 1.39-1.06 (m, 7H), 0.89 (t, $\mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 0.88 (t, J=7.2 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 207.1$, 138.0, 129.1, 128.9, 128.3, 127.3, 126.7, 114.4, 109.0, 77.5, 71.8, 58.9, 39.3, 33.8, 33.7, 31.1, 30.8, 27.3, 27.3, 27.0, 23.4, 14.5. MS (EI, m / z): 336(10), 309(35), 279(45), 207(40), 155(50), 91(100), 55(55), 32(55). FTIR ($\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3446, 2918, 2846, 1424, 1142, 1000, 777, 683.

4la: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.45$ (d, J=7.8 Hz, 2H), 7.20 (t, J=7.8 Hz, 2H), 7.08 (t, J=7.2 Hz, 1H), 6.22 (d, J=9.8 Hz, 1H), 4.34 (dd, J=9.8, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (bs, 1H), 3.39-3.25 (m, 2H), 3.04 (s, 3H), 2.21 (t, J=6.4 Hz, 2H), 2.08 (t, J=12.0 Hz, 1H), 1.84 (dd, $\mathrm{J}=26.4,12.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.29(\mathrm{~m}, 7 \mathrm{H}), 1.22-1.08(\mathrm{~m}, 3 \mathrm{H}), 0.82(\mathrm{t}$, $\mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 143.6,132.2,129.1,129.0,128.3,127.0$, $95.9,79.6,75.9,74.6,59.1,49.9,46.4,33.1,32.9,31.7,27.1,27.0,26.8,22.6,19.9,14.1$. MS (EI, m / z): 336(<5), 279(65), 223(55), 197(60), 155(100), 115(40), 91(85), 55(35). FTIR ($\nu_{\text {max }} / \mathrm{cm}^{-1}$): 3469, 2940, 1459, 1269, 1089, 876, 697.

3ma: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.44(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.07 (t, J=7.4 Hz, 1H), 6.59 (dd, J=16.0, 1.2 Hz, 1H, minor), 6.58 (dd, J=16.0, 1.2 Hz, 1 H , major), 5.65 (dd, J=15.8, $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), $4.25(\mathrm{bs}, 1 \mathrm{H}), 3.53(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.9$ $\mathrm{Hz}, \mathrm{JAX}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, \mathrm{B}$ of $\mathrm{ABX}, \mathrm{JAB}=9.9 \mathrm{~Hz}, \mathrm{JBX}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}$, $\mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.32 (d, J=3.1 Hz, 1H), 1.89 (s, 3H), 1.52 (quin, J=7.6 Hz, 2H), 1.38-1.29 $(\mathrm{m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, C6D $): \delta$ $208.8,137.9,134.9,131.5,130.6,129.1,127.4,127.1,106.3,103.4,73.5$ (major), 72.4 (minor), 68.2, 30.8, 30.7, 26.4, 23.2, 21.9, 18.8, 16.0, 14.5, -4.9. MS (EI, m/z): 386 (<1, M^{+}), 311(5), 237(30), 195(35), 181(55), 169(30), 105(35), 91(55), 75(100). HRMS (EI) $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}\left[(\mathrm{M}+\mathrm{H}]^{+}, 387.27138\right.$ (calculated); 387.27155 (found). FTIR ($\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3426, 2915, 1468, 1318, 1256, 1115, 851, 772, 683.

3na: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.48(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.07 (t, J=6.8 Hz, 1H), $6.54(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{ddd}, \mathrm{J}=15.6,6.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (bs, 1H), $3.55(\mathrm{dd}, \mathrm{A}$ of $\mathrm{ABX}, \mathrm{JAB}=9.8 \mathrm{~Hz}, \mathrm{JAX}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, \mathrm{B}$ of ABX , $\mathrm{JAB}=9.8 \mathrm{~Hz}, \mathrm{JBX}=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-$ $1.54(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}$, major), $0.90(\mathrm{~s}, 9 \mathrm{H}$, minor), $0.87(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 3 \mathrm{H}$), $0.85(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.2,137.9$, 130.2, 129.1, 128.3, 127.4, 126.9, 108.6, 108.0, 73.6, 68.2, 31.0, 30.9, 30.8, 29.8, 26.4, $23.5,23.3,18.8,14.5,14.5,-4.9$. MS (EI, m / z): 371(10), 336(5), 315(20), 296(25), 279(25), 212(20), 168(45), 116(60), 91(55), 75(100), 56(95). FTIR ($\left.\mathrm{v}_{\max } / \mathrm{cm}^{-1}\right): 3437$, 2917, 1451, 1272, 1093, 849, 776, 685.

3oa: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.44$ (d, J=7.8 Hz, 2H), 7.20-7.14 (m, 6H), 7.11-7.05 (m, 2H), 6.57 (d, J= $16.0 \mathrm{hz}, 1 \mathrm{H}$), 5.60 (dd, J=15.7, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37-4.34 (m, $1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.28\left(\mathrm{dd}, \mathrm{A}\right.$ of $\left.\mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=9.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{AX}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.21(\mathrm{dd}, \mathrm{B}$ of $\left.\mathrm{ABX}, \mathrm{J}_{\mathrm{AB}}=9.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{BX}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{bs}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H})$, 1.51 (quin, J=7.4 Hz, 2H), 1.32 (sext, J=7.6 Hz, 2H), 0.86 (t, J=7.2 Hz, 3H, minor), 0.85 (t , J=7.2 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.8,139.0,137.9,130.5,129.1$, 129.0, 128.3, 128.2, 127.4, 127.1, 106.3, 103.4, 75.1, 73.6, 71.8, 30.8, 30.7, 23.2, 15.9, 14.5. MS (EI, m / z): $362\left(<5, \mathrm{M}^{+}\right), 320(5), 253(10), 197(20), 181(25), 169(45), 129(20)$, 91(100), 69(35), 41(40). HRMS (EI) $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{Na}]^{+}, 385.21380\right.$ (calculated); 385.21384 (found). FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 3435, 2915, 1503, 1450, 1142, 983, 763, 674.

3pa: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.44$ (d, J=7.2 Hz, 2H, major), 7.43 (d, J=7.2 $\mathrm{Hz}, 2 \mathrm{H}$, minor), 7.18 (t, J=7.6 Hz, 2H), 7.06 (t, J=7.2 Hz, 1H), 6.59 (d, J=15.6 Hz, 1H, minor), 6.54 (d, J=15.6 Hz, 1H, major), 5.77 (ddd, J=15.7, 6.6, 0.8 Hz, 1H), 4.06 (d, J=6.4 $\mathrm{Hz}, 1 \mathrm{H}$), $2.92(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{bs}, 1 \mathrm{H}), 2.39(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}$, minor), 1.88 (s , 3 H , major), 1.51 (quin, J=7.6 Hz, 2H), 1.32 (sext, J=7.6 Hz, 2H), 1.03 (s, 3H), 0.97 (s, 3 H , major), $0.96(\mathrm{~s}, 3 \mathrm{H}$, minor), 0.86 (t, $\mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 0.85 (t, J=7.6 Hz, 3 H , major). 13C NMR (101 MHz, C6D6): $\delta 208.7,138.0,134.9,131.4,131.3,129.1,127.3$, 127.1, 106.2, 103.5, 78.7, 78.0, 72.4, 49.4, 30.8 (major), 30.7 (minor), 23.1, 21.9, 21.1, 19.9, 16.0, 14.5. MS (EI, m/z): 314 (<1, M+), 242(5), 91(5), 115(5), 73(100). FTIR (vmax/cm-1): 3438, 2920, 1480, 1384, 1067, 962, 761, 708.

3ra: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.46$ (d, J=8.0 Hz, 2H, major), 7.45 (d, J=8.0 $\mathrm{Hz}, 2 \mathrm{H}$, minor), 7.19 (t, J=7.6 Hz, 2H), 7.07 (t, J=7.2 Hz, 1H), $6.30(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.59 (ddd, J=15.6, 6.4, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14-4.08 (m, 1H), 2.42 (t, J=7.2 Hz, 2H), 1.85 (d, $0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.54$ (quin, J=7.2 Hz, 2H), 1.39-1.30 (m, 2H), $1.13(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, minor), 1.12 (d, J=6.4 Hz, 3H, major), 0.87 (t, J=7.2 Hz, 3H, minor), 0.86 (t, J=7.2 Hz, 3H, major). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 208.7,138.0,134.1,129.1,128.3,127.4,127.0,106.2$, 103.3, 69.0, 30.9 (minor), 30.8 (major), 30.7, 24.1, 23.2 (minor), 23.2 (major), 16.0, 14.5. MS (EI, m/z): 256 (<5, M ${ }^{+}$), 238(5), 196(10), 181(15), 169(100), 155(25), 141(25), 129(20), 115(20), 91(25), 77(10), 43(25). FTIR ($\nu_{\max } / \mathrm{cm}^{-1}$): 3332, 2972, 2920, 1501, 1427, 1089, 982, 782, 708.

3sa: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.45(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.07 (td, J=7.6, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.29 (d, J=15.6 Hz, 1H), 5.59 (dtd, J=15.6, 6.0, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.90(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.54$ (quin, J=7.4 Hz, 2H), 1.39$1.30(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, C ${ }_{6} \mathrm{D}_{6}$): δ 208.6, 138.0, 129.7, 129.1, 129.1, 127.4, 127.0, 106.3, 103.4, 63.8, 30.8, 30.7, 23.2, 15.9, 14.5. MS (EI, m / z): 242 ($<5, \mathrm{M}^{+}$), 224(5), 200(15), 169(100), 154(20), 141(25), 128(20), 115(20), 91(30), 41(5). FTIR ($\nu_{\mathrm{max}} / \mathrm{cm}^{-1}$): 3345, 2912, 1488, 1449, 1305, 978, 689.

(E)-5ta: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.35$ (d, J=7.6 Hz, 2H), 7.20-7.16 (m, 2H), $7.11(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H})$, 2.51 (t, J=7.2 Hz, 2H), 2.08 (d, J=9.2 Hz, 4H), 1.58 (bs, 4H), 1.35-1.21 (m, 4H), 0.80 (t, $\mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 206.0,142.9,142.5,133.5,129.0,128.7$, $128.3,128.1,127.2,78.0,59.2,45.3,39.4,31.1,30.7,30.4,23.6,23.4,22.8,14.4 . \mathrm{MS}$ (EI, m / z): 326(10, M^{+}), 281(25), 238(95), 181(55), 129(30), 91(100), 45(35). FTIR $\left(v_{\max } / \mathrm{cm}^{-1}\right): 2922,1738,1440,1209,1094,767,700$.
(Z)-5ta: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.31$ (d, J=8.0 Hz, 2H), 7.20-7.16 (m, 2H), 7.08-7.03 (m, 1H), $6.12(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.40$ (t, J=7.2 Hz, 2H), 1.96 (bs, 2H), 1.87 (bs, 2H), 1.48-1.36 (m, 4H), $1.38(\mathrm{~s}, 4 \mathrm{H}), 0.82(\mathrm{t}$, $\mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 205.8,143.1,142.0,133.5,129.5,128.5$, $128.0,127.7,78.0,59.2,45.2,39.4,31.3,31.0,30.4,23.7,23.4,22.8,14.4$. MS (EI, m / z): 326(20, M^{+}), 281(25), 238(95), 181(60), 141(35), 91(100), 45(35). FTIR ($\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$): 2922, 1738, 1440, 1209, 1094, 767, 700.

3va: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.75$ (d, J=6.4 Hz, 2H), 7.18 (t, J=7.0 Hz, 2H), 7.07 (t, J= $7.8 \mathrm{~Hz}, 6.46$ (dd, J=15.8, 1.2 Hz, 1H, minor), 6.43 (dd, J=15.8, 1.2 Hz, 1H, major), $5.59(\mathrm{dd}, \mathrm{J}=16.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{bs}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}$, minor), $3.40(\mathrm{~s}, 3 \mathrm{H}$, major), 3.05-3.00 (m, 2H), $2.99(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{bs}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=0.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 216.7,166.5,139.9,131.1,129.4,129.0,128.3,127.0,105.2,103.4$, 77.1, 71.4, 59.0, 52.2, 15.0; MS (EI, m/z): 288 (2, M+), 256 (3), 211 (5), 183(5), 155 (17), 115 (8), 89 (4), 77 (9), 51 (5), 45 (100); HRMS (ESI): $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{MH})^{+}: 289.1434$ (calculated), 289.1439 (found). FTIR ($\mathrm{vmax} / \mathrm{cm}^{-1}$): 3419, 2922, 2851, 1926, 1716, 1492, 1434, 1369, 1321, 1273, 1195, 1171, 1123, 1062, 1039, 964, 918, 898, 781, 694

6ba: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, 7.32-7.29 (m, 2H), 7.15 (d, J=7.6 Hz, 2H), $6.00(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, \mathrm{J}=5.5 \mathrm{~Hz}$, 1 H), 3.93 ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.64-3.56 (m, 2H), 3.43 ($\mathrm{s}, 3 \mathrm{H}$, minor), 3.41 ($\mathrm{s}, 3 \mathrm{H}$, major), 3.14 (dd, J=8.6, $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56-2.48 (m, 1H), 2.40-2.33 (m, 2H), 2.06 (t, J=1.6 Hz, 3 H), 1.34-1.24 (m, 4H), $0.83(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 178.8$, $177.0,143.6,140.8,138.4,131.8,129.1,128.8,128.2,128.2,127.3,126.5,126.0,74.8$, 69.7, 59.1, 47.1, 44.9, 40.0, 36.0, 30.5, 22.9, 22.2, 13.9. MS (EI, m / z): 441(90), 385(50), 328(40), 237(20), 207(30), 181(100), 145(90), 91(90), 45(35). FTIR ($v_{\max } / \mathrm{cm}^{-1}$): 2954, 2849, 1724, 1512, 1367, 1209, 1128, 719.

CHAPTER 4

RESULTS AND DISCUSSION

The $\operatorname{Pd}(0)$-catalyzed reaction of enyne oxirane (1a) with phenyl boronic acid was initiated by performing the reaction over the catalyst $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right) 4$ in THF/water mixture at $50^{\circ} \mathrm{C}$ of reaction temperature to obtain vinylallenols with a phenyl group.

Table 4.1. Effect of Reaction Parameters on the $\mathrm{Pd}(0)$-Catalyzed Arylation of 1a

Entry	Pd (mol \%)	THF/H2O(ml)	Time(h)	${ }^{\text {a }}$ Yield \%
$\mathbf{1}$	1	$2 / 1$	18	$\mathbf{6 2}$
$\mathbf{2}$	2	$2 / 1$	2	$\mathbf{6 8}$
$\mathbf{3}$	3	$2 / 1$	1.5	$\mathbf{7 3}$
$\mathbf{4}$	3	$2 / 2$	1.5	$\mathbf{7 2}$
$\mathbf{5}$	3	$2 / 0$	24	$\mathbf{0}$
$\mathbf{6}$	3	$1 / 0.5$	1.5	$\mathbf{7 1}$
$\mathbf{7}$	3	1.5		

${ }^{\text {a }}$ NMR yield Reactions were performed with 0.1 mmol of $\mathbf{1 a}$

Initially, the palladium \% loading was investigated for 1a conversion and the highest yield was obtained with 3% Pd loading (Table 4.1., Entry 3). Then the water content was varied and it was determined that presence of water is needed for the formation of product (Entry 5). The variation of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ ratio seems to have no dramatic effect on the product (3aa) (Entry 3,4).). The method is applicable at more diluted
medium (Entry 6), whereas a comperetively lower yield was obtained at more concentrated solution. (Entry 7).

After these results, the method was studied with the monosubstituted enyne epoxide $\mathbf{1 b}$ having a disubstituted oxirane ring. When the reaction was performed with phenyl boronic acid, boronic acid ester was formed with the enyne oxirane 1b (Figure 4.1) as the result of lack of steric hindrence of $\mathbf{1 b}$ compared to $\mathbf{1 a}$. Beside phenyl boronic acid, formation of boronic acid ester was also observed with potassium phenyl trifluoroborate and phenyl boroxine.

Figure 4.1. Boronic Acid Ester Formation of Enyne Oxirane

Table 4.2. Effect of Reaction Parameters on the $\operatorname{Pd}(0)$-Catalyzed Arylation of 1b

Reactions were performed with $0.1 \mathrm{mmol} \mathbf{1 b},{ }^{a}$ NMR yield, ${ }^{\mathrm{b}}$ Isolated yield, ${ }^{\mathrm{c}}$ Phenylboronic acid neopenthyl glycol ester.

When the arylboron source was changed to the sodium salt of tetraphenyl borate and phenylboronic acid neopentyl glycol ester, the target product could be obtained in good yields and with moderate diastereoselectivities (Table 4.2.) The decrease of the THF:water ratio from $2 / 1$ to $2 / 0.5$ caused to improve the desired product 3ba yield some extent (Entries 1 and 2). However a further decrease to $2 / 0.25$ led to decrease the yield dramatically (Entry 3). Interestingly when reaction was performed at room temperature not only 3ba but also an allylic substitution product 4ba was formed in moderate yield (Entry 5). The formation of 4ba seems directly proportional with the water amount added into the reaction medium (Entry 4). Decreasing the Pd loading showed no positive effect on the yield and the diastereoselectivity (Entry 6 and 7). The application of different concentration (lower or higher) was detrimental for the product formation (Entry 9 and 10). When phenylboronic acid neopentyl glycol ester was used instead the yield of 3ba increased but decrease in diastereomeric ratio (Entry 8). As the $\operatorname{Pd}(0)$ source changed to chloroform adduct dibenzylideneacetone (dba) complex of palladium and triphenylphosphine as ligand, both reaction yield and dr ratio decreased relatively (Entry 11). Due to the being air and temperature sensitive of tetrakis(triphenylphosphine) palladium(0) complex and ease of usage of air stable palladium-dba complex especially when ligand change was desired for diasteroselectivity palladium-dba complex was chosen as palladium precursor.

When the reaction was performed with phenylboronic acid neopentyl glycol ester (2a) and with the presence of the dba complex of Pd^{2} and PPh_{3} combination at $50^{\circ} \mathrm{C}$, a good yield was obtained with moderate dr level (Table 4.3., Entry 1). While a slight increase of P / Pd ratio from $4 / 1$ to $4.5 / 1$ ratio the dr level somewhat, a decreased of the yield was observed (Entry 2). However, a significantly lower dr level could be provided with the further increase of the ligand to Pd ratio (5/1) (Entry 3). It appears that a better dr level could be provided when the reaction was performed at rt with a P to Pd ratio 4.5/1 (Entry 4). It apparent that $\mathrm{Pd}_{(}\left(\mathrm{PPh}_{3}\right)_{4}$ catalyst cannot surrogate $\mathrm{Pd}_{2}\left(\mathrm{dba}_{3}\right)_{3} \mathrm{CHCl}_{3} / \mathrm{PPh}_{3}$ combination as the comparable experiment with the former catalyst afforded the corresponding vinylallene rather in a lower yield and with a lower dr level (Entry 5).

Table 4.3. $\operatorname{Pd}(0)$ Precurser and Ligand Effect on Yield and Diastereoselectivity of 3ba

Reactions were performed with $0.1 \mathrm{mmol} \mathbf{1 b}$ and 3 eq. of $\mathbf{2 a},{ }^{\text {a }} \mathrm{NMR}$ yield

After the determination optimum conditions related to P to Pd ratio, temperature, THF:water ratio a variety of mono-and bidentate ligands were tested for their efficiency on the catalytic activity of the palladium (Table 4.4). When strongly electron withdrawing -trifluoromethyl- substituted phenyl phosphine ligand was examined, although no stereoselectivity was detected, the percent yield of 3ba was nearly quantitative with this ligand (Entry 5). With the aim of increasing the diastereomeric selectivity, the lower reaction temperatures $10^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ tested. Under these conditions the selectivity was improved up to dr level of $84 / 16$ though required longer reaction times for a complete conversion (Entry 6 and 7). Except with tris(2-furyl) phosphine and methyl diphenylphosphine (Entry 8 and10) with other monodentate ligands poor results were attained on the bases of dr level. Air stable tetrafluoroborate salt of trialkylphosphine ligands (tris(tert-butyl) phosphine and tricyclohexyl phosphine) was also examined. In order to liberate the bare forms of trialkylphosphines a basic medium is required (Netherton and Fu, 2001).

Therefore, with these ligands NaHCO_{3} was present as the base within the reaction medium, with the presence of tricyclohexyl phosphine no product formation was observed (Entry 12). When the base was changed to KF, 3ba formation was in 78% yield but proceeded with low diastereoselectivity (Entry 13). When the reaction was carried out with bidentate ligands, despite the best selectivity was observed with dppe ligand, reaction time was unaffordable long with this ligand (Entry 22). Then the reaction temperature was raised to $50{ }^{\circ} \mathrm{C}$ to accelerate the reaction but diastereoselectivity diminished at this temperature (Entry 23). Apparently, no benefit was gained with the presence of the base NaHCO_{3} with the ligand dppp. (Entry 24). Nevertheless, it was pleasure to find that the beneficial effect of NaHCO_{3} was noticeable over the activity of $\mathrm{Pd} / \mathrm{DPEphos}$ catalyst system, providing a complete conversion of the substrate to the desired product being recovered in an excellent yield (96%) with a synthetically meaningful dr level (87:13) within an acceptable period of time (Entry 26). No better result could be obtained when performing the reaction at a sub-room temperature.

Table 4.4. Ligand Effect on Yield and Diastereoselectivity of 3ba

Reactions were performed with $0.1 \mathrm{mmol} \mathbf{1 b}$ and 3 eq. of 2a, ${ }^{\mathrm{a}} \mathrm{NMR}$ yield, ${ }^{\mathrm{b}} 10^{\circ} \mathrm{C},{ }^{\mathrm{c}} 0^{\circ} \mathrm{C}$, ${ }^{\mathrm{d}} 3 \mathrm{eq}$. of NaHCO_{3} was used, ${ }^{\mathrm{e}} 3$ eq. of KF was used, ${ }^{\mathrm{f}} 41 \%$ starting material was recovered, ${ }^{9} 50^{\circ} \mathrm{C}$

With DPEPhos as the choice of the ligand in hand, the optimization studies were continued to survey the most suitable base of the method. Among the bases tested, generally the amine bases revealed better results than inorganic bases especially in terms of diastereoselectivity (Table 4.5). The highest yield and diastereoselectivity were obtained with the presence of N,N-diisopropylethyl amine (Entry 10). A heteroaryl 2,2-bipyridyl- was entirely incompetent for the method (Entry 18). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was tested once again under the modified conditions. However, no better result was possible with this preligated Pd catalyst (Entry 19). Even CO was evaluated as for its potency as ligand, but failed to show any promotive effect with its presence as the combination of $\mathrm{Ar} / \mathrm{CO}(9 / 1)$ under a balloon pressure. In this condition however the yield was moderate, diastereoselectivity was not high (Entry 20). When reaction was performed in air atmosphere the yield was convincing but diastereoselectivity was not (Entry 21).

Table 4.5. Effect of Base on Yield and Diastereoselectivity of 3ba

$\overline{\text { Reactions were performed with } 0.1 \mathrm{mmol} \mathrm{1b} \text { and } 3 \text { eq. of 2a, }{ }^{a} \text { NMR yield, }{ }^{\text {b }} \text { values in paranthesis are the }}$ yield of starting material that recovered, ${ }^{c} 2,2$-Bipyridyl used as ligand, ${ }^{d} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ was used as Pd source, ${ }^{\mathrm{e}}$ reaction was performed under $\mathrm{Ar} / \mathrm{CO}(9 / 1)$ atmosphere in balloon pressure, ${ }^{\mathrm{f}}$ Air atmosphere.

The solvent effect was also evaluated. Besides THF, different ethereal solvents and also polar protic and aprotic solvents were tried (Table 4.6.). Ethereal solvents commonly showed higher yield and selectivity.

Table 4.6. Solvent Effect on Formation of 3ba

 1b	 2a	$3 \% \mathrm{Pd}, \mathrm{Pd}_{2}\left(\mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}\right.$ DPEPhos (P/Pd: 4.5/1) $(i-\mathrm{Pr})_{2} \mathrm{EtN}$ (3 eq.) Solvent $/ \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~m} / 0.5 \mathrm{ml})$ $25^{\circ} \mathrm{C}$	 3ba	
Entry	Solvent	Time(h)	Yield ${ }^{\text {a }}$	dr
1	Dioxane	2	95	89:11
2	DME	2	91	86:14
3	ACN	20	67	65:35
4	DMF	20	74	74:26
5	$i-\mathrm{PrOH}$	2	74	81:19

Reactions were performed with $0.1 \mathrm{mmol} \mathbf{1 b}$ and 3 eq. of $\mathbf{2 a},{ }^{\text {a }} \mathrm{NMR}$ yield

As the choice of the solvent THF in hand variation of the amounts of components of the reaction, such as base, water and as well as the temperature of reaction medium was assessed (Table 4.7.). The product 3ba was obtained with a higher dr level as the base amount increases and 4 eq. was decided to be sufficient on in terms of the economy and a satisfactory dr level could be afforded under these conditions (Entry 1-2-3). No improvement could be achieved with variation of water content and concentration of the solution and it must be noted that lessening the water content lowered the reaction rate significantly (Entry 6 and 7). A slight improvement at dr level is possible by reducing the reaction temperature to 10 or $0^{\circ} \mathrm{C}$ (Entry 8 and 9). Finally, the organoboron content of the reaction mixture could be gratefully lessened to 2 equivalent from 3 equivalent without compromising the product yield the reaction rate (Entry 10).

Table 4.7. Effect of Base Amount, Water Ratio, Concentration and Temperature of 3ba

 1b		 2a	$\xrightarrow[\substack{\text { (i-Pr) })_{2} \mathrm{EtN}, \text { THF } / \mathrm{H}_{2} \mathrm{O} \\ 25^{\circ} \mathrm{C}}]{\substack{\left.3 \% \mathrm{Pd}, \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3} \\ \text { DPEPhos (P/Pd: } 4.5 / 1\right)}}$			OMe
Entry	Eq. Of Base	THF/H2O (ml)	${ }^{\mathbf{0}} \mathrm{C}$	Time(h)	Yield ${ }^{\text {a }}$	dr
1	2	2/0.5	25	3	90	90:10
2	4	2/0.5	25	2	92	91:9
3	6	$2 / 0.5$	25	2	89	92:8
4	4	2/1	25	4	71	89:11
5	4	2/0.25	25	16	78	88:12
6	4	1/0.25	25	1.5	72	88:12
7	4	4/1	25	3	95	91:9
8	4	2/0.5	10	4	91	92:8
9	4	2/0.5	0	9	85	92:8
$10^{\text {b }}$	4	2/0.5	25	2.5	87	91:9

Reactions were performed with $0.1 \mathrm{mmol} \mathbf{1 b}$ and 3 eq. of 2a, ${ }^{a}$ NMR yield, ${ }^{\mathrm{b}} 2$ eq. $\mathbf{2 a}$ was used

After the optimized reaction parameters were determined, the reaction established was verified on the (E) configured enyne oxirane $(\boldsymbol{(} \boldsymbol{E}) \mathbf{- 1 b})$. It was interesting to find that the method afforded the desired vinylallene product in high yield, but with a quite low dr level (24:76) with a major stereoisomeric form (3ba') that is the diastereomer of 3ba which is the product of its (Z)-configured counterpart (Figure 4.2).

Figure 4.2. $\operatorname{Pd}(0)$-Calayzed Arylation Reaction of $(\boldsymbol{E}) \mathbf{- 1 b}$

Having determined that the method is more stereoselective with (Z)-configured enyne oxiranes, next the scope of the method was surveyed for both a number of organoborons and enyne oxirane structures as well.

The scope of the method seems to be astonishingly wide for the location and diversity of functional groups on organoboron structures (Table 4.8).

Table 4.8. $\operatorname{Pd}(0)$-Catalyzed Reaction of the (Z)-Enyne Oxirane ((\mathbf{Z})-1a) with Different Organoboronates

Entry
(cont. on next page)

Table 4.8 (cont.)

8

9

 2k
10

11

12
$13{ }^{\text {c }}$

$2 i$

21

$2 m$
 $2 n$

9
3bi
78
90:10

6
3bj
83
92:8

12
3bk
81
92:8

3bl

3bm
63
85:15

Reactions were performed with $0.1 \mathrm{mmol} \mathbf{1 b}$ and 3 eq. of 2, ${ }^{\text {a }}$ Isolated yields, ${ }^{\text {b }} 43 \%$ allylic arylated by product was formed. ${ }^{\mathrm{c}} \beta$-hydride elemination byproduct was observed as inseperable mixture of the target product.

Electron-rich arylboronates provided the corresponding arylated vinylallenol products with good to high yields except with the highly sterically hindered 2,6dimethylphenylboronate (Table 4.8. Entry 4). When 2,6-substituted phenylboronate was used allylic arylated by product (4be) (Figure 4.3.) was recovered with 43% isolated yield. It was noticed that the reactions with electron-deficient arylboronates needed longer reaction times for completion, affording the corresponding products in moderate yields but good dr levels. This reactivity difference might be resulted from the less reactivity of the electron poor organoborons toward transmetallation step with the intermediate of π allyl palladium complex. When alkenylboronate was used both the reaction yield and selectivity decreased (Table 4.8. Entry 11 and 12).

Figure 4.3. Allylic Arylated Product 4be

Performing the reaction with 3-thienylboronate lead to the formation of a byproduct (Figure 4.4.) formed as a result of β-hydride elemination afterwards formation of a π-allyl-Pd complex with the help of the base in the medium with the ratio $1 / 4$ corresponding to the target vinyallenol . It is considered that the sulfide coordination of palladium probably switched its activity toward elimination rather than transmetallation route.

Figure 4.4. β-hydride Elemination Product

Next we explored the scope of the method on different substrate type beginning with the enyne oxirane with different substituents $\left(\mathbf{R}^{1}\right)$ on the alkynyl carbon. The yields and dr levels of the corresponding products were comparable to that obtained with $\mathbf{1 b}$ when methyl (3de) or phenyl (3eh) substituted enyne oxiranes were reacted with esters of phenylboronic acid and p-methoxyphenylboronic acid, respectively. (Table 4.9., Entry 1 and 2). However, when \mathbf{R}^{1} was substituted with a comparatively bulky cyclohexyl (3ga), t-butyl (3fa) and trimethylsilyl (3ha) group, the corresponding desired vinyallene products were obtained in lower yields and their formation was accompanied by the formation of allylic substitution products 4fa, 4ga and 4ha respectively (Entry 3, 4 and 5). To minimize difficulty of migration of π-allyl coordinated palladium to α-allenylpalladium intermediate, the reactions with bulky susbstituents on alkynyl moiety were also performed with less bulky PPh_{3} ligand instead of DPEPhos. No allylic addition product formation was observed with the reaction of $\mathbf{1 g}$ and $\mathbf{1 h}$. Nevertheless with t-butyl group 5\% yield of 4fa was obtained. The enyne oxiranes with terminal alkyne moiety (R^{1} $=\mathrm{H}, \mathbf{3 i a})$ and disubstituted alkenyl moiety $\left(\mathrm{R}^{2}=\mathrm{H}, \mathbf{3} \mathbf{j a}\right)$ both afforded the corresponding vinylallene products in moderate yields. The product selectivity is evidently influenced
by the size of the alkenyl substituent \mathbf{R}^{2}. The presence of cyclohexyl group in \mathbf{R}^{2} led the formation of the allylic substituted product 4la in 16% along with the moderate formation of the vinylallene 3la (Entry 9). When ligand was changed to PPh_{3}, formation of 4la was inhibited. The presence of a highly-encumbered group, such as tert-butyl, at \mathbf{R}^{2} caused to cease the formation of an vinyallene product and hence was the allylic arylation product ($\mathbf{4 k a}$) only to form which was recovered with 62% percent yield at the end of the reaction. As presence of bulky groups in alkynyl moiety, the reaction was performed with PPh_{3} ligand instead of DPEPhos when alkenyl moiety was bulky either. Even if reaction was performed in the presence of PPh_{3} when \mathbf{R}^{2} was t-butyl- $\mathbf{4 k} \mathbf{k}$ was still major product, but 16% vinylallenol ($\mathbf{3 k a}$) product was obtained.

It seems that the method can tolerate various substituent types and organization of substituents $\left(\mathbf{R}^{\mathbf{3}}\right)$ on the epoxide ring moiety. When the pendant oxygen functionality is free hydroxyl group there was some reduction in the corresponding product formation (Entry 10). The presence of this group as benzyloxymethyl group (3oa) (Entry 12) or in a silyl protected form (3ma) (Entry 11) had no noticible effect on the effectiveness of the method.

While the presence of dimethyl (1a) or dimethylmethoxy methyl (1p) groups on the oxirane terminus was well tolerated with the proposed methodology and thus the corresponding products were isolated in high yields and dr levels (Entry 13 and 14). The presence of only one methyl substituent (1r) on the oxirane terminus, interestingly led the lengthening the reaction period for the complete conversion of the substrate (Entry 15). When there was no substituent on oxirane ring, the desired product 3sa could also be obtained in a good yield (Entry 16)

Table 4.9. Arylation of Enyne Oxiranes

				 3	
Entry	Product		Time (h)	Yield \% ${ }^{\text {a }}$	dr
1			1	93	92:8
2		3eh	3	93	91:9
	Me	DPEPhos	16	68	92:8
	t-Bu 3fa	PPh_{3}	10	71	88:12
3	 4fa	DPEPhos PPh_{3}	16 10	11 5	$\begin{aligned} & \text { N.D. }{ }^{\text {b }} \\ & \text { N.D. }{ }^{\text {b }} \end{aligned}$
	3ga	DPEPhos PPh_{3}	8 5	71 73	$\begin{aligned} & 92: 8 \\ & 85: 15 \end{aligned}$
4		DPEPhos PPh_{3}	8 5	9	N.D. ${ }^{\text {b }}$

(cont. on next page)

Table 4.9 (cont.)

Table 4.9 (cont.)

10
1.5

2 3ma

12

13

$1.5 \quad 88$ 92:9 3na
11

87
92:8

88
2.5

88
90:10
1.5

94
3aa

15

16

17

3sa
73
91:9
73
$2 \quad 78$

An unexpected result has been faced with the substrate having an endocyclic double bond. The reaction resulted in formation of an arylated dienone structure (5ta) with 55% percent yield together with an allylic arylation product (4ta) was obtained with 10\% yield (Figure 4.6.). The expected vinylallene 3ta should be the precursor the structure 5ta. As it is formed, successive isomerization and tautomerization of 3ta should be responsible for the formation of 5ta.

Figure 4.5. Pd-Catalyzed Reaction of the Enyne Substrate (1s) Containing an Endocyclic Double Bond with 2a

To determine which diastereomer is the major one, a reaction with methyl ester group on alkynyl moiety (1v) was performed (Figure 4.6). Ester group was chosen because forming arylated vinylallenol is identical with the product of alkoxycarbonylation reaction of enyne epoxide that bears phenyl group on alkynyl moiety which was published in 2015 by Kuş et al. As comparing the 1H NMR spectra of these two products, we can conclude that different diasteromers of the same compound was formed in arylation and alkoxycarbonylation reaction. Kuş et al. also determined the exact structure of compound by X-Ray crystallography.

Figure 4.6. Determination of Major Diastereomer

As an application study of vinyl allenol products a Diels-Alder cyclization reaction was conducted between 3ba with phenyl maleimide which yielded the expected [4+2] cyclization product in 62% percent yield with complete endo and facial selectivities (Figure 4.7). This reaction revealed the importance of vinyl allenols for producing a potential valuable building block for the synthesis of complex molecules.

Figure 4.7. Diels-Alder Reaction of 3ba with Phenyl maleimide

Figure 4.8. NOESY study of 6ba

The relative configuration of the adduct 6ba was determined through NOESY NMR analysis. The NOESY spectrum showed a relationship between H^{1} and $\mathrm{H}^{3}, \mathrm{H}^{1}$ and H^{6}, and H^{4} and H^{5} indicating a structure in consistent with those of previous (Whipple and Kelly, 1988 and Luo et al., 2016).

The mechanisms illustrated in Figure 4.8. is proposed to account for the stereoselective formation of $\mathbf{3}$. The reaction cycle should begin with ring-opening by the attack of a palladium complex to $\mathbf{1}$ in anti-mode leading to formation of π-allylpalladium complexes \mathbf{A} and \mathbf{B} respectively. After transmetallation with arylboron intermediates \mathbf{A}^{\prime} and \mathbf{B} ' forms. These intermediates additionally undergo a palladium shift to the far alkynyl carbon proceeding mainly with retention to form vinylallenyl palladium complex C, respectively. When a bulky group is positioned at \mathbf{R}^{1} and \mathbf{R}^{2} it retards the effective migration of the π-allyl coordinated palladium and as a result allylic arylated products form. (Figure 4.9.)This σ-allenylpalladium complex (C) undergo reductive elemination to yield $\mathbf{3}$ stereoselectively.

Figure 4.9. Mechanism of Arylation of Conjugated Enyne Oxiranes
C
B^{\prime}

A^{\prime}

Figure 4.10. Mechanism of Allylic Arylated Products

CHAPTER 5

CONCLUSION

To conclude, a novel palladium-catalyzed diastereoselective arylation reaction of 2,4-enyne oxiranes with organoborons was performed. This palladium catalyzed reactions resulted in the introduction of possibly functionalized group in 1,5-relation with respect to the oxirane group, affording aryl bearing vinylallenol structures. These products are versatile building blocks for valuable target molecules that is proofed by performing Diels-Alder cyclization reaction of synthesized vinylallenol.

REFERENCES

Akpınar, G. E., Kuş, M., Üçüncü, M., Karakuş, E., Artok, L., Org. Lett., 2011, 13, 748751.

Armarego, W.L.F. and Chai C.L.L Purification of Laboratory Chemicals, Elsevier Science, 2003.

Betzer, J.-F.; Delaloge, F.; Muller, B.; Pancrazi, A.; Prunet, J. J. Org. Chem. 1997, 62 (22), 7768-7780.

Buss, A. D.; Warren, S. J. Chem. Soc. Perkin Trans. I 1985, 2307-2325.

Caldentey, X. C.; Cambeiro, X. C.; Pericàs, M. Tetrahedron 2011, 67, 4161-4168.

Corey, E. J.; Chaykovsky, M., J. Am. Chem. Soc. 1965, 87, 1353-1364

Elsevier, C. J.; Stehouwer, P. M.; Westmijze, H.; Vermeer, P. J. Org. Chem. 1983, 48 (7), 1103-1105.

Jeffery-Luong, T.; Linstrumelle, G. Tetrahedron Lett. 1980, 21 (52), 5019-5020.

Hays, P. A.; Thompson, R. A. Magn Reson Chem, 2009, 47 (10), 819-824.

Kajikawa, T.; Aoki, K.; Singh, R. S.; Iwashita, T.; Kusumoto, T.; Frank, H.A.; Hashimoto, H.; Katsumura, S. Org. Biomol. Chem. 2009, 7, 3723-3733.

Karagöz, E. Ş.; Kuş, M.; Akpınar, G. E.; Artok, L. J. Org. Chem. 2014, 79 (19), 92229230.

Kjellgren, J.; Aydin, J.; Wallner, O. A.; Saltanova, I. V.; Szab, K. J. Chem. Eur. J. 2005, 11, 5260-5268

Kuş M.; Artok L.; Aygün M. J. Org. Chem. 2015, 80, 5494-5506.

Lian, J. J.; Chiang, P. C.; Lin, Y. P.; Ting, H. C.; Liu, R. S. J. Am. Chem. Soc. 2006, 128, 11372-11373

Luo, H., Yu, Y., Ma, S., Org. Chem. Front., 2016, 3, 1705-1710.

Mandai T.; Ogawa M.; Yamaoki H.; Nakata T.; Murayama H.; Kawada M.; Tsuji J. Tetrahedron Lett., 1991, 32(28), 3397-3398.

Matthew, S C, B W Glasspoole, P Eisenberger, and C M Crudden., J. Am. Chem. Soc. 2014, 136 (16): 5828-5831.

Ming-Yuan, L.; Madhushaw, R. J.; Liu, R. S. J. Org. Chem. 2004, 69, 7700-7704.

Moriya, T.; Miyaura, N., Suzuki, A. Synlett, 1994, 149

Murahashi, S.; Imada, Y.; Taniguchi, Y.; Higashiura, S. J. Org. Chem. 1993, 58 (6), 1538-1545.

Netherton, M. R. and Fu, G. C., Org. Lett., 2001, 3, 4295-4298.

Ohmiya, H.; Makida, Y.; Tanaka,T; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 17276.

Piers, E.; Wong, T.; Coish, P.; Rogers, C. Can. J. Chem. 1994, 72, 1816-1819.

Piotti, M. E.; Alper, H. J. Org. Chem. 1997, 62, 8484-8489.

Rosales, V.; Zambrano, J. L.; Demuth, M. J. Org. Chem. 2002, 67 (4), 1167-1170.

Schmidt, B.; Pohler, M.; Costisella, B. Tetrahedron 2002, 58, 7951-7958.

Shimizu, I.; Maruyama, T.; Makuta, T.; Yamamoto, A. Tetrahedron Lett., 1993, 34, 21352138

Tsuji, J. Palladium Reagents and Catalysts; John Wiley \& Sons: Chichester, 2004, pp 543-563.

Tsuji, J. Transition Metal Reagents and Catalysts Transition Metal Reagents and Catalysts; 2000; Vol. 0

Tsuji, J., Sugiura, T., Minami, I. Tetrahedron Lett., 1986, 27, 731-734.

Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253-266.

Urabe, H.; Suzuki, K.; Sato, F. J. Am. Chem. Soc. 1997, 119, 10014-10027.

Üçüncü, M., Karakuş, E., Kuş, M., Akpınar, G. E., Aksın-Artok, Ö., Krause, N., Karaca, S., Elmacı, N., Artok, L., J. Org. Chem., 2011, 76, 5959-5971.

Whipple, W. L. and Kelly, M. J., J. Am. Chem. Soc., 1988, 110, 6432-6435.

Yoshida M.; Hayashi M.; Shishido K. Org. Lett., 2007, 9, 1643-1646.

Yoshida M.; Ueda H.; Ihara M., Tetrahedron Lett., 2005, 39, 6705-6708

APPENDIX A

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR SPECTRA of PRODUCTS

Acquismon Time (sec)	2.5559	Commery	Gradlent Shimming	Dave	Apr 302013	Das Samp	Apr 302013
File Name	C-IUSERSIFIRATDESKTOPIEPOXIDE1210T092-FINAL RAPORUINYR FIDSIFIRATVZ-FWV16-2K-FR1_20130430_O11PROTON_O1.FID.FID						
Frequency (MHz)	399.92	Nucieus	1H	Number of Transienis	8	Onqunal Pomes Count	16384
Points Coums	16384	Pulse Sequence	52pul	Recener Gan	50.00	Solvert	CHLOROFORM-d
Specurm Offer (Hz)	2399.5020	Specrum Type	STANDARD	Sweep Wiath (Hz)	6410.26	Temperamue (deqree C)	25.000

Acquisition Time (sec)	1.3107	Comment	FZ-FW199-SAF	Date	Oct 62015	Date Stamp Oct 62015
File Name	C:IUSERS\FIRATGGOOGLE DRIVEVIsLER GüçLERIEPOXIDE\EPOX SPECTRA\&CHROMATOGRAMSWMMRIFZ-FW199-SAF_20151006_01VCARBON_01.FIDVID					
Frequency (MHz)	100.57	Nucleus	13C	Number of Transients	400	Oriqinal Points Count 32768
Points Count	32768	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent BENZENE-d6
Spectrum Offset (Hz)	11136.3936	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C) 25.000

${ }^{1881}$
78 8 !
98 Z .
\longrightarrow

Acquisition Time (sec)	1.3107	Comment	FZ-FW180-SAF	Date	Jul 72015	Date Stamp	Jul 72015
File Name	C:IUSERSIFIRATIGOOGLE DRIVEVsLER GüçLERIEPOXIDEIEPOX SPECTRA\&CHROMATOGRAMSWMRIFZ-FW190-SAF_20150707_011CARBON_01.FIDFID						
Frequency (MHz)	100.57	Nucleus	13C	Number of Transients	512	Oriqinal Points Count	32768
Points Count	32768	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent	BENZENE-d6
Spectrum Offset (Hz)	11136.3836	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C	25.000

Chemical Shit (ppm)

$\begin{array}{llllllllll}230 & 220 & 210 & 200 & 180 & 180 & 150 & 150\end{array}$

Acquisition Time (sec)	1.3107	Comment	FZ-FW229	Date	Nov 102016	Date Stamp	Nov 102016
File Name	C:IUSERSVFIRATIGOOGLE DRIVEVIsLER GüçLERIEPOXIDEVEPOX SPECTRA\&CHROMATOGRAMSWMRIFZ-FW229_20161110_011CARBON_01.FIDIFID						
Frequency (MHz)	100.57	Nucleus	13C	Number of Transients	512	Oriqinal Points Count	32768
Points Count	32768	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent	BENZENE-d6
Spectrum Offset (Hz)	11135.6309	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C	25.000

VerticalScaleFactor $=1$ © \#.

Acquisition Time (sec)	1.3107	Comment	FZ-FW233	Date	Nov 112016	Date Stamp	Nov 112016
File Name	C:IUSERSIFIRATIGOOGLE DRIVEVIsLER GüçLERIEPOXIDEIEPOX SPECTRA\&CHROMATOGRAMSWMRIFZ-FW233_20161109_011CARBON_02.FIDIFID						
Frequency (MHz)	100.57	Nucleus	13C	Number of Transients	30000	Oriqinal Points Count	32788
Points Count	32788	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent	BENZENE-d6
Spectrum Offset (Hz)	11135.6309	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C	25.000

$\left.\begin{array}{l}1.82! \\ 78 \mathrm{Bl}, \\ 98 \mathrm{Bl},\end{array}\right]$
VerticalScaleFactor $=1$

3ka

VerticalScaleFactor $=1 \quad$ ©ै

Acquisition Time (se	1.3107	Comment	FZ-FW210	Date	Dec 232015	Date Stamp	Dec 232015
File Name	C:IUSERSIFIRATIGOOGLE DRIVEVIsLER GüçLERIEPOXIDEIEPOX SPECTRA\&CHROMATOGRAMSINMRIFIRAT-08.01.2016IFZ-FW210_20151223_011CARBON_01.FIDVID						
Frequency (MHz)	100.57	Nucleus	13 C	Number of Transients	448	Oriqinal Points Count	32768
Points Count	32768	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent	BENZENE-d6
Spectrum Offset (Hz)	11136.3836	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C	25.000

Acquisition Time (sec)	1.3107	Comment	FZ-FW216-2-KOLON-C6D6			Date	Feb 222016
Date Stamp	Feb 222016						
File Name	C:IUSERSIFIRATIGOOGLE DRIVEVIsLER GücLERIEPOXIDEIEPOX SPECTRA\&CHROMATOGRAMSINMRIFRT-08.01-04.05IFZ-FW216-2-KOLON-C6D6_20160222_011CARBON_01.FIDIFID						
Frequency (MHz)	100.57	Nucleus	13 C	Number of Transients	1000	Oriqinal Points Count	32788
Points Count	32788	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent	BENZENE-d6
Spectrum Offset (Hz)	11135.6309	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C	25.000

Acquisition Time (sec)	1.3107	Comment	FZ-FW209-2K-SAF	Date	Dec 222015	Date Stamp	Dec 222015
File Name							
Frequency (MHz)	100.57	Nucleus	13 C	Number of Transients	1000	Oriqinal Points Count	32788
Points Count	32768	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent	BENZENE-d6
Spectrum Offset (Hz)	11134.8682	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C	25.000

Acquisition Time (sec)	2.5559	Comment	FZ-FW218-TK	Date	May 32016	Date Stamp	May 32016
File Name	C:IUSERSIFIRATIGOOGLE DRIVEVşLER GüçLERIEPOXIDEIEPOX SPECTRA\&CHROMATOGRAMSINMRIUSER 1 -06.05-2016-14.10.2016VFZ-FW 218 -TK 20160503 011PROTON 01.FIDIFID						
Frequency (MHz)	399.92	Nucleus	1 H	Number of Transients	8	Oriqinal Points Count	16384
Points Count	16384	Pulse Sequence	s2pul	Receiver Gain	60.00	Solvent	BENZENE-d6
Spectrum Offset (Hz)	2415.9839	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature / dearee C	25.000

[^0]

APPENDIX B

MASS SPECTRA of PRODUCTS

FZ-FW202 151106102126 \#5703 RT: 25,4 AV: 1 NL: 1,07E6
T: $\{0 ; 0\}+$ c El Full ms $[40,00-500,00]$
$\{0 ; 0\}+\mathrm{C}$ El Full ms [40,00-500,00] 141,1
 əouepunq* әл!̣еןә्у

FW211＿160123150644 \＃5239 RT： 23,81 AV： 1 NL：3，62E7
T：$\{0 ; 0\}+$ c El Full ms［40，00－500，00］
음
内 \％囚

\circ
$\stackrel{\circ}{9}$

45，08
饶 素
20 ＇162
3eh
，OMe

Abundance

-2
3fa

Abundance

3 ga

$m / Z-\gg$

Abundance

Abundance

$m / z->$

3la

Abundance
$\mathrm{m} / \mathrm{z}^{-->}$

Abundance

3pa
$m / z->$

VITA

PERSONAL INFORMATION

Surname, Name: ZİYANAK FIRAT
Nationality: Turkish (T.C.)
Date and Place of Birth: 11.01.1984, İzmir/TURKEY
Marital Status: Married
Phone: (+90) 5308843398
E-mail: firatziyanak@gmail.com

EDUCATION

Degree Institution Year of Graduation
PhD İzmir Institute of Technology 2016
MSc İzmir Institute of Technology 2011
BSc İzmir Institute of Technology 2008
WORK EXPERIENCE
Year Place Enrollment
2016 - R\&D Responsible, TOYO Printing Inks
2008 - 2016 İzmir Institute of Technology, Teaching and Research Assistant
2007 - DYO Inks Chemical Company, Trainee
2006 - Türk Henkel A.Ş. Chemical Company, Trainee
FOREIGN LANGUAGE

English (Advanced)

PUBLISHED ARTICLES

1) Rhodium Catalyzed Alkoxycarbonylative Cyclization Reactions of 1,6 Enynes, ADVANCED SYNTHESIS \& CATALYSIS, $353,897-902,2011)$
2) Synthesis of α, β-Unsaturated Ketones by Rhodium-Catalyzed Carbonylative Arylation of Internal Alkynes with Arylboronic Acids, SYNLETT, Issue 17, 2587-2592, 2008)

[^0]: Temperature (degree C) 25.000
 $\stackrel{\circ}{\infty}$
 $\stackrel{\text { @ }}{\infty}$

