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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Physics

by
Canan Nurhan KARAHAN

December 2016
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ABSTRACT

STUDIES ON MODIFIED NEWTONIAN DYNAMICS AND DARK
MATTER

The flat rotation curves of the galaxies are considered to be anomalous observa-

tions according to Newtonian dynamics. There are two different approaches to explain

this challenge - Dark Matter (DM) and Modified Newtonian Dynamics (MOND). Both of

them possess some failures as well as many successes. Beyond these failures, they have

much more fundamental difficulties such as the lack of any direct or indirect detection

of proposed dark matter candidates and the lack of a full-fledged relativistic version of

MOND theory. In this thesis, focus will be on these fundamental problems.

First, the relativistic MOND theory will be studied. The first successful relativis-

tic version is Tensor-Vector-Scalar (TeVeS) theory based on bimetric gravity. However,

the addition of vector and scalar fields into the theory by hand is not much different than

the addition of dark matter. In this study, TeVeS theory will be constructed in a more

natural way. To do this, at first standard Einstein-Hilbert action will be extended by using

non-Riemannian structures (torsion, non-metricity, etc.) from metric-affine formalism.

It will then be shown that obtained extended theory of gravity could turn into a Tensor-

Vector-Scalar theory via decomposition of affine connection as Levi-Civita connection

and rank(1,2) tensorial structure composed of lower rank fundamental and composite

fields such as vector and scalar fields.

Subsequently, it will be continued with a study on the relativistic MOND theory,

without requiring an action principle. In this study, energy momentum tensor part will

be modified rather than the geometrical part of the Einstein field equations. This could

be considered as the first dynamical approach to relativistic MOND in the literature. It

will be shown that the modified field equations obtained via this dynamical approach

can be reduced to true MONDian force in the non-relativistic limit in some astrophysical

domains. This study can be also considered as an extension of Milgrom’s modified inertia

approach to relativistic domain.

Finally, a new phenomenological model- Higgsed Stueckelberg scenario - involv-

ing a hidden vector field with an accompanying scalar field ensuring the gauge invariance

will be proposed. It will be shown that the contributions from the hidden fields could

stabilize the Higgs boson mass at one-loop, where the set up can accommodate naturally

a viable DM candidate.
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ÖZET

MODİFİYE NEWTON DİNAMİĞİ VE KARANLIK MADDE
ÜZERİNE ÇALIŞMALAR

Galaksilerin düz dönme eğrileri Newton dinamiğine göre beklenenden farklı bir

gözlemdir. Bu aykırı gözlemi açıklamak için iki farklı yaklaşım bulunmaktadır: karan-

lık madde ve Modifiye Newton Dinamiği (MOND). İki yaklaşım da birçok başarılarının

yanısıra bazı başarısızlıklara sahiptir. Bu başarısızlıkların ötesinde önerilen karanlık mad-

de adaylarının doğrudan veya dolaylı olarak algılamanın olmaması ve MOND teorisinin

tam teşekküllü bir relativistik versiyonunun yokluğu gibi daha temel sorunları vardır. Bu

tezde, karanlık madde ve MOND teorisinin bu temel problemleri üzerine odaklanılmıştır.

İlk olarak MOND teorisinin relativistik genellemesi çalışılmıştır. MOND teorisi-

nin ilk öne sürülen başarılı relativistik versiyonu bimetrik gravitasyonuna dayanan Tensör-

Vektör-Skaler (TeVeS) teorisidir. Fakat vektör ve skaler alanların teoriye el ile eklenmesi,

karanlık madde eklemekten çok farklı değildir. Bu çalışmada, TeVeS teorisi daha doğal

bir yol ile elde edilmiştir. Metrik-afin formalizasyonundan gelen Riemann uzayında bu-

lunmayan yapılar vasıtasıyla Einstein-Hilbert eylemi genişletilmiştir. Bu genişletilmiş

gravitasyon teorisinin afin bağlantısının Levi-Civita bağlantısı ve (vektör ve skaler gibi

daha düşük ranklı temel ve bileşik alanlardan oluşan) rank(1,2) tensor yapısı şeklinde

ayrıştırılması yoluyla bir tensör-vektör-skaler teorisine dönüştüğü gösterilmiştir.

Daha sonra aksiyon prensibi olmaksızın bir relativistik MOND teorisi çalışmasıyla

devam edilmiştir. Bu çalışmada, Einstein alan denklemlerinin geometrik kısmının modi-

fikasyonundan ziyade enerji momentum tensörü kısmı modifiye edilmiştir. Bu, literatürde

relativistik MOND için ilk dinamik yaklaşım olarak düşünülebilir. Böyle bir dinamik yak-

laşım ile elde edilmiş modifiye alan denklemlerinin bazı astrofiziksel alanlarda relativistik

olmayan limitte gerçek MONDian kuvvetine indirgenebileceği gösterilmiştir. Bu çalışma

Milgrom’un modifiye eylemsizlik yaklaşımının relativistik alana genişletilmesi olarak da

düşünülebilinir.

Son olarak, ayar değişmezliği bir skaler alan tarafından sağlanan saklı bir vektör

alan içeren yeni bir fenomolojik model-Higgsed Stueckelberg senaryosu öne sürülmüştür.

Bu saklı alanlardan gelen katkıların tek halka düzeyinde Higgs bozonu kütlesinin sta-

bilizasyonunu sağladığı, ve ayrıca bu senaryonun doğal olarak oluşan geçerli karanlık

madde adaylarını içinde barındırdığı gösterilmiştir.

v



To the memory of my aunt Nurhan LEUE

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2. SCALARS, VECTORS AND TENSORS FROM METRIC-AFFINE

GRAVITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Tensor-Vector Theories from Non-Riemannian Geometry . . . . . . . . . . 16

2.3. Applications to Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1. TeVeS Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2. Vector Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 3. RELATIVISTIC MOND FROM MODIFIED ENERGETICS . . . . . . . . 38

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2. Modified Energetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1. Physical Properties of T (N)
µν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2. Physical Properties of the Acceleration Scalar a . . . . . . . . . . . . . . . . 44

3.2.2.1. Construction of gµν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2.2. Construction of a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3. Conclusion and Future Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CHAPTER 4. HIGGSED STUECKELBERG VECTOR AND HIGGS QUADRATIC

DIVERGENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3. Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4. Collider Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5. Dark Matter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6. Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



CHAPTER 5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

APPENDICES

APPENDIX A. CONTRACTION TENSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

APPENDIX B. POSITIVE-DEFINITE MASS MATRIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

APPENDIX C. VERTEX FACTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



LIST OF FIGURES

Figure Page

Figure 1.1. Rotational velocities for seven galaxies Source: (Rubin et al., 1978) . . . . 2

Figure 1.2. Flat rotation curve of the galaxy M33, comparatively. Green points:

observed velocities of the bodies orbiting the galaxy, The lower dashed

lines: predicted velocities by Newtonian mechanics with luminous mat-

ter in the galaxy, Source: NOAO, AURA, NSF, T.A.Rector. . . . . . . . . . . . . . . 3

Figure 1.3. Physics underlying the motion of the bodies with respect to the sizes

and the velocities. Left: DM approach, Right: MOND approach . . . . . . . . . 4

Figure 1.4. Rotation curve of the galaxy NGC6503 with DM Source: (Broeils

et al., 1991) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.5. Schematic representation of three detection methods . . . . . . . . . . . . . . . . . . . . . 9

Figure 4.1. The schematic representation of the quadratically divergent contribu-

tions to Higgs boson mass at one-loop level. Here, h denotes the Higgs

boson, W±, Z the electroweak bosons, t the top quark, V ,S the hidden

gauge boson Vµ and the Stueckelberg scalar S , respectively. Higgs mass

is protected from destabilizing quantum effects when the hidden gauge

sector is included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.2. The Feynman diagram for the pair production of S and Vµ states via

the dominant production mode of gluon fusion. g are the gluon fields,

f are the fermions of the SM, h is the Higgs boson and HS stand for

the hidden sector fields Vµ and S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.3. The number of events generated per year for the process pp → S S

via gluon fusion channel at LHC with
√

s = 13 TeV and luminosity 18

fb−1, and at FCC with c.m. energy
√

s = 100 TeV and luminosity 100

fb−1. The MMHT2014nnlo68cl PDF set has been used. . . . . . . . . . . . . . . . . . . 61

Figure 4.4. The number of events generated per year for the process pp → VV

via gluon fusion channel at LHC with
√

s = 13 TeV and luminosity 18

fb−1, and at FCC with c.m. energy
√

s = 100 TeV and luminosity 100

fb−1. The MMHT2014nnlo68cl PDF set has been used. . . . . . . . . . . . . . . . . . . 62

Figure 4.5. The number of events generated per year for the process pp → VS

via gluon fusion channel at LHC with
√

s = 13 TeV and luminosity 18

fb−1, and at FCC with c.m. energy
√

s = 100 TeV and luminosity 100

fb−1. The MMHT2014nnlo68cl PDF set has been used. . . . . . . . . . . . . . . . . . . 62

ix



Figure 4.6. The Feynman diagram for the pair production of photons together with

the HS states.g are the gluon fields, f are the fermions of the SM, h is

the Higgs boson and HS stand for the hidden sector fields Vµ and S and

γ is the photon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.7. The number of events generated per year for the process pp → HS γγ

via gluon fusion channel at LHC with
√

s = 13 TeV and luminosity 18

fb −1 with respect to the missing transverse energy. The MMHT2014nnl

o68cl PDF set has been used. The error bars are statitistical. . . . . . . . . . . . . . 64

Figure 4.8. The number of events generated per year for the process pp → HS γγ

via gluon fusion channel at LHC with
√

s = 13 TeV and luminosity 18

fb−1 with respect to the photon transverse momentum. The MMHT2014

nnlo68cl PDF set has been used. The error bars are statitistical. . . . . . . . . . 65

x



LIST OF TABLES

Table Page

Table 3.1. The acceleration dependence of the energy-momentum tensor Tµν of

matter. In general, a = a(T (N)) and Q = Q(T (N)) are functions of

the energy-momentum tensor T (N)
µν . These scalars take appropriate val-

ues for Newtonian (T (N)
µν is conserved) and MONDian (T (N)

µν is not con-

served) regimes. Namely, matter develops novel interactions (such

as the higher-derivative kinetic terms, determined in (Milgrom, 1994,

1999) in the non-relativistic regime) at small accelerations and its known

energy-momentum tensor T (N)
µν starts exhibiting non-conservation prop-

erties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xi



CHAPTER 1

INTRODUCTION

The motion is the action of changing position with respect to time and a reference

frame. It might be seen as the simplest branch of physics to study, but it is not. Actually, it

is the oldest concept and is more complex than estimated in elementary physics. From past

to present, physicists have been trying to describe the motion. Aristotales, Copernicus,

Kepler, Galileo and Newton are the major physicists and astronomers studying this notion.

Eventually, Newton was able to come up with a way to interpret it with three fundamental

laws called as Newton’s laws of motion. These laws are briefly summarized as follows:

1. Newton’s first law of motion: Every object in a state of uniform motion tends to

remain in that state of motion unless an external force is applied on it.

2. Newton’s second law of motion: The relationship between an object’s mass m, its

acceleration a, and the applied force F is

F = ma (1.1)

3. Newton’s third law of motion: For every action there is an equal and opposite reac-

tion.

The motion of bodies is explained very well via these three laws. The most pow-

erful one among them is the second one without any doubt since it describes the dynamics

of systems. In addition to these three laws of motion, Newton put forward a gravitational

force law. According to this law, every particle in the universe attracts every other parti-

cle with a force that is directly proportional to the product of their masses and inversely

proportional to the square of the distance between them (Newton, 1687).

F =
GNm1m2

r2 r̂ (1.2)

where GN is an empirical gravitational constant (Newton constant). Its value in SI units

is GN ' 6.67384 × 10−11m3kg−1s−2 (Mohr et al., 2016).
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Newton’s law of gravitation and Newton’s laws of motion are the cornerstones of

the classical mechanics. However, at this point the right question to ask is this: Are these

laws valid for all scales? The first answer to this question comes from the microscopic

world where Newtonian dynamics seem to fail. To describe the motion of atoms and the

subatomic particles, there is a new branch of physics, called "Quantum Mechanics". The

second answer to the question on the validity of Newton’s laws of motion comes from the

galactic systems. Up to galactic scales there is no problem. However, for larger scales,

some challenges arise in describing the motion of bodies via Newtonian mechanics.

In 1970’s Vera Rubin observed that the rotation curve of spiral galaxies was nearly

flat (Rubin and Ford Jr, 1970; Rubin et al., 1980). Some of the observation results of Vera

Rubin are given in the Figure1.1 below:

Figure 1.1. Rotational velocities for seven galaxies Source: (Rubin et al., 1978)

This was a surprising result. Because, according to Newtonian dynamics, veloc-

ities of stars in a galaxy should decrease as we go further away from the center of the

galaxy (v(r) ∝ 1/
√

r). However, the observations show that after particular distances

from the center of the galaxy, the velocities remain approximately constant. This contro-

versy is called as "Flat Rotation Curve of galaxies". This problem can be easily seen in

Fig.1.2. As it may clearly be understood, the observed velocities of stars at the outer or-
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bits do not match the expected ones from Newtonian Dynamics. The rotational velocities

of bodies at the outer parts of the galaxy are far faster than the predicted values. There-

fore, one may easily state that Newton’s laws of motion fail in explaining the motion

of the bodies at the galactic scales. There are two approaches to explain this challenge.

Figure 1.2. Flat rotation curve of the galaxy M33, comparatively. Green points: ob-
served velocities of the bodies orbiting the galaxy, The lower dashed lines:
predicted velocities by Newtonian mechanics with luminous matter in the
galaxy, Source: NOAO, AURA, NSF, T.A.Rector.

Newtonian dynamics is either not valid at galactic scales and thus should be modified or

not sufficient to explain the motion of the bodies with the amount of luminous matter.

In the literature, there are two most leading explanations on this anomalous observation:

Dark Matter (DM) and Modified Newtonian Dynamics (MOND). Considering these

two approaches, physics underlying the motion of the bodies at any scale with respect to

the sizes and the velocities may be summarized such as in the Figure 1.3:
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Figure 1.3. Physics underlying the motion of the bodies with respect to the sizes and
the velocities. Left: DM approach, Right: MOND approach

To explain the flat rotation curve of galaxies, Vera Rubin used the statement that

the observed mass is much less than the predicted one since there is a non-shining mass -

Dark Matter distributed there. Prior to the observation of flat rotation curve, this statement

had been used by Zwicky to explain the anomalous motions realized in Coma clusters in

the 1930s (Zwicky, 1933). This new type of non-baryonic matter is called Cold Dark

Matter (CDM) and the corresponding model of universe is called ΛCDM. The term Λ

stands for the cosmological constant which is responsible for the late-time accelerated ex-

pansion of the universe. ΛCDM model is accepted widely as the Standard Cosmological

Model. According to this model, Newtonian mechanics together with its corresponding

relativistic generalization General Relativity (GR) are the right theories to describe the

motion of bodies at any scales (except at quantum scales). However, as we have men-

tioned above, to be able to explain the aforementioned controversial observations, there

must exist a different kind of matter which does not interact with electromagnetic field.

It only interacts with the baryonic matter via gravitational interaction, such that it can be

detected from its gravitational effect.

From past to present, by using the concept of DM the flat rotation curves of the

galaxies have been well explained. In Fig.1.4 there is an example of rotation curve which

is explained by DM scenario. According to this scenario,at the outer parts of the galaxies

there should be dark halos whose mass changes directly proportional to the distance:

4



M(r) ∝ r (mass density ρ(r) ∝ 1/r2). This could be a true statement for missing mass

Figure 1.4. Rotation curve of the galaxy NGC6503 with DM Source: (Broeils et al.,
1991)

problem in the galaxies and at larger scales, but the lack of any direct or indirect detection

of dark matter particle is still a problem. Despite there is no detection of DM, it has been

widely accepted by scientific community. Moreover, it is still continued to be tested by

the increasing numbers of modern astronomical observations which are also progressively

upgrading their precession limits. The latest observational data from Planck is consistent

with the estimations of ΛCDM model (Ade et al., 2016).

An alternative explanation to the flat rotation curves of galaxies is Modified New-

tonian Dynamics proposed by Milgrom in 1983. According to Milgrom, to explain

the flat rotation curves, there is no need to propose a non-shining matter - dark matter

- unless there is an obligation to adhere to Newtonian dynamics. The modification of

Newtonian dynamics may be conceived as another alternative for describing this con-

founding observations (Milgrom, 1983a,b,c). This choice is not a new way in explaining
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the anomalous observations in physics. There are many examples in the past, such as

special relativity, Quantum mechanics, etc. Although MOND shows many successes at

galactic scales (Sanders and McGaugh, 2002; Begeman et al., 1991; Famaey and Mc-

Gaugh, 2012), at larger scales it is not as successful as DM. Moreover, despite there are

many attempts (Bruneton and Esposito-Farese, 2007; Skordis, 2009; Famaey and Mc-

Gaugh, 2012; Sanders, 1997; Bekenstein, 2004b; Sanders, 2005; Zlosnik et al., 2006,

2007; Bertolami et al., 2007, 2008; Stabile and Scelza, 2011; Bernal et al., 2011) the lack

of full fledge relativistic version of MOND may be confer as one of the biggest problems

of the model.

As understood from the statements above, when the whole universe is considered,

there is still need for dark matter and dark energy in explaining various anomalous obser-

vations (especially at large scales). There has been a big debate among scientists studying

MOND theory and those studying dark matter for years. Outside this debate there have

been some studies on the combination of these three phenomena (dark matter, dark energy

and MOND) to explain the whole universe (Khoury, 2015). According to us, It is not time

to be fanatic on neither MOND nor dark matter. It is the best to work on both until one of

them is completely confirmed.

This thesis involves three different studies: two of which are related to relativistic

version of MOND theory and one is related to DM. Therefore, before going on with these

studies it would be appropriate to give the basics of DM and MOND.

• Dark Matter

The concept of DM has started to be spread with the studies of Fritz Zwicky in the

1930s on the motions of galaxies in the Coma Clusters. Zwicky proposed that a

large amount of invisible matter - dark matter - should exist to keep these galaxies

bound together (Zwicky, 1933). More than 40 years later, Vera Rubin used the same

concept for explaining the flat rotation curves of the galaxies (Rubin and Ford Jr,

1970; Rubin et al., 1980). After that time, many observational evidences at a wider

range of scales have confirmed the existence of DM. The latest results of the Planck

satellite indicate that DM accounts for 26.8% (ordinary matter 4.9% and dark en-

ergy 68.3%) of the cosmological matter density (Ade et al., 2016), and nowadays

there is broad unanimity that the DM is most likely to be made up of an entirely

new elementary particle. However, the identity of the DM particle is still one of the

phenomenal mysteries in modern particle physics, astrophysics, and cosmology. To

understand the dark matter concept basically, introductory level information about

its strong observational evidences, candidates and detection methods is given below.
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– Observational evidences of DM from astrophysics and cosmology

The most powerful evidence for the existence of DM, without any doubt, is the

flat rotation curves of galaxies (Rubin and Ford Jr, 1970; Bosma, 1978; Rubin

et al., 1980). In addition, there are many other gravitational effects explained

very well by DM paradigm at galactic and larger scales. Velocity dispersions

of galaxies (Faber and Jackson, 1976; Minchin et al., 2005), gravitational lens-

ing (Wu et al., 1998; Refregier, 2003; Massey et al., 2007), CMB fluctuations

(Hinshaw et al., 2009; Ade et al., 2016),structure formation (Springel et al.,

2005) and bullet cluster indicates the strong evidences for DM.

– Constituents of DM

As mentioned above, dark matter explains many cosmological observations

in a simple way. However, the constituents of dark matter are still unknown.

The most plausible scenarios are based on non-baryonic new particles such as

Weakly Interacting Massive Particles (WIMPs) (Barger et al., 2008) and ax-

ions (Weinberg, 1978; Preskill et al., 1983). Additionaly, the large objects like

Massive Compact Halo Objects (MACHOs) such as black holes (Hawkins,

2011; Alcock et al., 2000) are considered as baryonic dark matter candidates.

MACHOs are detected by searching for the gravitational microlensing ampli-

fication of light. The results of the searches indicates that the maximum 20%

of the dark halo can be in the form of MACHOs with 0.5M� (Becker et al.,

1999). This shows that there is not enough MACHOs to fill the dark halo in

a galaxy. On the other hand, since WIMPs are electrically neutral massive

particles which do not interact very strongly with other matter, they are strong

candidates for DM. This is why, in recent years the studies on Dark matter

generally include WIMPs as DM candidates.

According to Cosmic Microwave Background measurement of Planck satel-

lite, the latest density of non-baryonic dark matter and the baryonic matter

(Ade et al., 2016)

Ωnbmh2 = 0.1186 ± 0.0020

Ωbh2 = 0.02226 ± 0.00023 (1.3)

where h is the Hubble constant (in units of 100kms−1Mpc−1) whose present-

day value is given by H0 = 100h = 67.8 ± 0.9km/(s.Mpc). As understood,
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the amount of non-baryonic matter density (DM density) is approximately five

times bigger than the amount of ordinary matter density. This is not a small

fraction, therefore the detection of DM is one of very important steps to ex-

plain universe.

– Detection of DM

Many experiments are presently searching for a signal of DM (especially

WIMP-like ones). There are three ways to detect DM: direct detection, in-

direct detection and particle collider. Direct detection experiments rely on

measuring the energy deposited via the interaction of WIMPs with nuclei in a

detector on Earth. To avoid the background from cosmic radiation, this kind of

experiments are performed in underground laboratories. The latest experiment

PandaX-II indicates that there is no dark matter particle up to the cross section

2.5 × 10−46cm2 for a range of mass between 5 and 1000GeV/c2 (Tan et al.,

2016). On the other hand, WIMP-WIMP annihilation is a potential signal of

DM which is considered as indirect detection. The last method to detect a

DM particle is searching for them at particle collider experiments. Producing

and detecting DM particles in an accelerator is a good way toward confirm-

ing the existence of dark matter. Moreover, this detection method is ideal as

it allows a control on initial states and the experiments conducted in particle

accelerators are reproducible. Since DM candidate particles are not supposed

to interact with electromagnetic field, they escape detection as neutrinos do in

particle collider experiments. They appear as a characteristic signal of miss-

ing energy. This missing energy might be determined from the observed jets,

photons, heavy quarks and leptons. In spite of many proposed dark matter

model, there has been no detection of dark matter particles at colliders, yet.

The Figure 1.5 summarizes the detection methods with a simple schematic

representation.
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Figure 1.5. Schematic representation of three detection methods

In this thesis, we will propose an extended SM called as Higgsed Stueckelberg

scenario which involves a hidden vector field and a scalar field ensuring the gauge

invariance. Via detailed collider and dark matter analyses of the model, we show

that these hidden fields serve as perfect dark matter candidates.

• MOND Theory

One another most leading explanation for the flat rotation curves is MOND the-

ory proposed by Milgrom in 1983 (Milgrom, 1983a,b,c). Contrary to dark matter

paradigm, its main claim is based on the modification of Newton’s second law in

a such a way to obtain constant velocities at the outer parts of galaxies where the

acceleration is very small due to the weak gravitational force. This modification

may be also considered as a classical generalization of Newton’s second law via an
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interpolation function behaving asymptotically with respect to the the acceleration.

The form of this generalized MONDian force is given as follows:

F = mµ
(
|a|
a0

)
a (1.4)

where µ is the interpolation function and a0 = 1.2 × 10−8cm/s2 is an emprical uni-

versal constant in the units of acceleration. Here,the most important point is the

behaviour of the interpolation function µ in the larger and smaller limits of acceler-

ation with respect to the universal acceleration constant a0. Analytically, µ is given

as a piecewise function

µ

(
a
a0

)
=

 1 if a � a0

a
a0
, if a � a0

such that in the high acceleration limit a � a0 (at the distances close to the center of

the galaxy) the function µ takes the value 1, then the Eq. (1.4) reduces to Newton’s

second law given in Eq. (1.1). On the other hand, at the low acceleration limit

a � a0 the function µ goes to a/a0, then the MONDian force takes the quadratic

form in acceleration as

F = m
a2

a0
(1.5)

This form of force provides the expected constant velocity as

v =
4
√

GMa0 (1.6)

It is seen from the Eq. (1.6) that the velocity is independent of the distance r. This

result is consistent with the flat rotation curve obtained by observations. MOND is

a promising theory due to its achivements at galactic scales.

The cornerstone of MOND theory is the existence of a new emperical constant a0

with the dimension of acceleration and hence interpolation function is the heart

of the theory. This constant puts a boundary between Newtonian and MONDian

dynamics. As a0 → 0, acceleration |a| of any system may be viewed as bigger

than a0, and then MOND force law is reduced to Newton’s second law. Otherwise,
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MONDian force, which possesses a quadratic form in acceleration, holds for low

accelerated systems (|a| < a0) which should not be the case. A similar constant

also exists in Quantum Mechanics: ~. As ~ → 0, the equations of motion take the

classical forms. This similarity makes one think that the disclosure of the motions

of the bodies with small accelerations via a new force law may be the right track to

follow.

MOND was originally proposed to explain flat rotation curves of galaxies. How-

ever, to make it an alternative theory to DM at all scales, there exist ongoing studies

on MOND at galactic and also larger scales. The most leading one of these stud-

ies is about the relativistic version of MOND theory. Although GR has been the

most successful relativistic theory of gravity from past to present, like Newtonian

mechanics it fails to account for some dynamics at galactic and larger scales. As

mentioned above, to explain these dynamics, there are two different approaches

also in the relativistic limit. The first one is adding dark matter and dark energy to

the systems and the other one is the modification of the standard theory of general

relativity to extend MOND to the relativistic domain. In literature, there are many

extended theories of general relativity reducing to the MONDian force for low ac-

celerations in non-relativistic limits (Bekenstein and Sanders, 2006; Bekenstein,

2009, 2004b; Zlosnik et al., 2006; Mavromatos and Sakellariadou, 2007; Bernal

et al., 2011). The first and most successful extended version with action principle is

Tensor-Vector-Scalar theory proposed by Bekenstein (Bekenstein, 2004b). Before

going on the theoretical formulation of TeVeS theory, it would be appropriate to

give some basics of GR. General Relativity (GR) is the relativistic generalization

of Newtonian mechanics. It was first proposed by A. Einstein in 1915 as the theory

of space-time and matter. According to GR, matter curve the space-time and this

curvature tells the matter how to move.

GR is a purely metric theory of gravity. In other words, only dynamical variable of

the system is metric which is responsible for measuring the distances in spacetime.

The full action of the theory is given by

S EH[g, ψ] =
1

16πGN

∫
d4x
√
−gR(g) +

∫
d4x
√
−gLm(g, ψ) (1.7)

where the first term in Eq.(1.7) is the gravitational part and the second term is the

matter part. This action is called Einstein-Hilbert action. g is the determinant of the
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metric tensor gµν, R is Ricci scalar defining the curvature of the spacetime and Lm is

Lagrangian of any kind of ordinary matter. The metric convention is (-,+,+,+) and

the speed of light is set to one.

Gravitational equation of motion is obtained by taking the variation with respect to

the metric tensor (according to least action principle) as

Gµν = Rµν(g) −
1
2

gµνR(g) = 8πGNTµν (1.8)

Here, Tµν is the energy-momentum tensor of matter describing the density and flux

of energy and momentum in spacetime, Gµν is called Einstein tensor. Left Hand

Side (LHS) of this equation is gravitation part and Right Hand Side (RHS) is matter

part. The conservation of energy directly comes from the LHS (geometrical side).

It can be seen easily by taking the divergence of it.

As it mentioned, GR is not sufficient to explain some dynamics at astrophysical

bodies such as galaxies and large scale structures. TeVeS may be considered as an

alternative theory of gravitational interaction. Unlike GR, it is a bi-metrical theory.

This means that there are two different metric in the system. One of them is standard

gravitational metric gµν known from GR, the other one is called as physical metric

whose form is;

g̃µν = e2φgµν − 2 sinh(2φ)uµuν (1.9)

where φ is a scalar field and uµ and uν are unit vector fields. In this relativistic theory,

there is no need to postulate a different kind of unshining matter-CDM. Scalar and

vector fields undertake the task of it. The TeVeS action can be written as:

S =

∫
d4x

(
Lg + Ls + Lυ

)
(1.10)

The first term is standard Einstein-Hilbert Lagrangian

Lg =
1

16πGN
R
√
−g (1.11)
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and the second term corresponds to the scalar field Lagrangian in the form as:

Ls =
1
2

(
σ2hαβ∂αφ∂βφ +

1
2

G
`

2

σ4F(kGσ2)
)
√
−g (1.12)

where hαβ = gαβ − uαuβ, ` is a constant length, k is the dimensionless scalar cou-

pling constant and F is an unspecified dimensionless function. σ is non-dynamical

scalar field while φ is dynamical one. The last term in Eq.(1.10) is the vector field

Lagrangian:

Lυ =
K

32πGN

[
gαβgµνBαµBβν + 2

λ

K
gµνuµuν − 1

]
√
−g (1.13)

where Bαβ = ∂αuβ−∂βuα, K is dimensionless vector coupling constant of the theory.

The physical metric mentioned above takes the role in matter part. The action of

matter can be written by using physical metric as in the following closed form:

S =

∫
d4xLm

(
g̃µν, f α, f α;µ...

) √
−g̃ (1.14)

The equation of motion obtained from Eq.(1.10) reduces to MOND in the non-

relativistic limit. Moreover, it is consistent with gravitational lensing and some

other cosmological observations.

In spite of these achievements, TeVeS theory can not explain some astrophysical

observations such as recent observational evidence of dark matter - bullet clusters.

It is not a full-fledge relativistic version of MOND theory. Furthermore, the addition

of scalar and vector fields by hand gives rise to the question "What is the difference

TeVeS theory from DM hypothesis?".

As mentioned above, there are two alternative explanations to the flat rotation

curves of the galaxies. Although DM has much more achievements at galactic scales and

at larger ones, it has not been observed by experimentally in direct and indirect searches.

This is the most relevant challenge of DM hypothesis. On the other hand, MOND theory

is not a complete theory and the lack of a full-fledge relativistic version of MOND is one

of its biggest problems.

13



These problems of DM and MOND are our main motivations.The thesis is divided

broadly into three parts. In total there will be five chapters and three appendices. Firstly,

we start with the relativistic generalization of MOND theory. In Chapter 2 we focus on

the first successful relativistic version of MOND - TeVeS theory proposed by Bekenstein

(Bekenstein, 2004b). TeVeS theory possesses extra degrees of freedom such as vector and

scalar fields added by hand. In this study, we obtain TeVeS theory via metric-affine gravity

in a more natural way. In Chapter 3, we propose a relativistic version of MOND without

action principle (at the equation of motion level). We modify the energy-momentum ten-

sor part of Einstein Field Equations. The main importance of this modification is that we

modify the matter part rather than the geometrical part (Mishra and Singh, 2012; Bernal

et al., 2011). In Chapter 4, we propose some possible dark matter candidates and the the-

ory that lies behind them. We also give the detailed collider analyses of these candidates.

Then, we conclude in Chapter 5.
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CHAPTER 2

SCALARS, VECTORS AND TENSORS FROM

METRIC-AFFINE GRAVITY

In this chapter, we obtain TeVeS theory with a different formalism: metric-affine

formalism. The metric-affine gravity provides a useful framework for analyzing grav-

itational dynamics since it treats metric tensor and affine connection as fundamentally

independent variables. We show that, a metric-affine gravity theory composed of the in-

variants formed from non-metricity, torsion and curvature tensors can be decomposed into

a theory of scalar, vector and tensor fields. These fields are natural candidates for the ones

needed by various cosmological and other phenomena. Indeed, we show that the model

accommodates TeVeS gravity (relativistic modified gravity theory), vector inflation, and

aether-like models. Detailed analyses of these and other phenomena can lead to a standard

metric-affine gravity model encoding scalars, vectors and tensors.

2.1. Introduction

Spacetime is a smooth manifold M(g; G) endowed with a metric g and connection

G. Metric is responsible for measuring the distances while affine connection governs the

straightness of curves and twirling of the manifold. These two geometrical structures, the

metric and connection, are fundamentally independent geometrical variables, and they

play completely different roles in spacetime dynamics. If they are to exhibit any relation-

ship it derives from dynamical equations a posteriori. This fact gives rise to an alternative

approach to Einstein’s standard theory of general relativity: Metric-Affine Gravity.

The standard theory of general relativity is a purely metric theory of gravity since

connection is completely determined by the metric and its partial derivatives, a priori.

This determination is encoded in the Levi-Civita connection,

Γλαβ =
1
2

gλρ
(
∂αgβρ + ∂βgρα − ∂ρgαβ

)
(2.1)

which defines a metric-compatible covariant derivative (Carroll, 2004).
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The metric-affine theory of gravity (similar to the Palatini formalism (Palatini,

1919; Einstein, 1925) in philosophy), which treats an metric tensor and connection as

independent variables (Carroll, 2004; Peldan, 1994; Magnano, 1995), encodes a more

general approach to gravitation by breaking up the a priori relation (2.1). This breaking

inherently reveals the new dynamic structures torsion, nonmetricity in addition to curva-

ture.

In this work we shall study metric-affine gravity in regard to decomposing the

affine connection into independent vectors, tensors and scalars. We shall, in particular, be

able to derive certain interactions using solely the geometrical sector with no reference

to the matter sector that contains the known forces and species. Our starting point will

be the fundamental independence of connection and metric, and the field content of the

connection in the most general case.

The outline of this study is as follows. In Sec. II below we first construct the most

general ‘connection’ involving physically ‘distinct and independent’ structures, and then

form a general action containing vector and tensor fields. In Sec. III we give specific

applications of the derived action to vector inflation and TeVeS theory. Here we also

discuss the relation of the model to the ones in the literature. In Sec. IV we conclude.

2.2. Tensor-Vector Theories from Non-Riemannian Geometry

An affine connection, whose components to be symbolized by Gλαβ, governs parallel

transport of tensor fields along a given curve in spacetime, and parallel transport around

a closed curve, after one complete cycle, results in a finite mismatch if the spacetime is

curved. Curving is uniquely determined by the Riemann curvature tensor

Rµανβ (G) = ∂ν G
µ
βα −∂β G

µ
να + GµνλG

λ
βα − G

µ
βλG

λ
να (2.2)

which is a tensor field made up solely of the non-tensorial objects Gλαβ and their partial

derivatives. Notably, higher rank tensors involving (n + 1) partial derivatives of Gλαβ are

given by n-th covariant derivatives of Rµανβ, and hence, Rµανβ acts as the seed tensor field

for a complete determination of the spacetime curvature.

Affine connection determines not only the curving but also the twirling of the

spacetime. This effect is encoded in the torsion tensor
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Sλαβ (G) =Gλαβ − G
λ
βα (2.3)

which participates in structuring of the spacetime together with curvature tensor. Torsion

vanishes in geometries with symmetric connection coefficients, Gλαβ=G
λ
βα.

The spacetime gets further structured by the notions of distance and angle if it

is endowed with a metric tensor gαβ comprising clocks and rulers needed to make mea-

surements. The connection coefficients and metric tensor are fundamentally independent

quantities. They exhibit no a priori known relationship, and if they are to have any it

must derive from some additional constraints. This property is best expressed by the

non-metricity tensor

Qαβλ (g, G) = ∇
G
λg

αβ (2.4)

which is non-vanishing for a general connection Gλαβ. This rank (2,1) tensor would iden-

tically vanish if the connection were compatible with the metric. Indeed, in GR, for

instance, the constraint to relate Gλαβ to gαβ is realized by imposing Gλαβ= Γλαβ from the

scratch, where Γλαβ is the Levi-Civita connection (2.1) which respect to which metric stays

covariantly constant, ∇Γ
λgαβ = 0, and hence, non-metricity vanishes identically. Further-

more, for this particular connection, the torsion also vanishes identically since Γλαβ = Γλβα

by definition.

The curving and twirling of the spacetime are governed by the connection Gλαβ.

The metric tensor has nothing to do with them, and the Riemann curvature tensor (2.2)

contracts, with no involvement of the metric tensor, in three different ways to generate the

associated Ricci tensors of Gλαβ:

• Rαβ (G) ≡ Rµαµβ (G) ,

• R̂αβ (G) ≡ Rµαβµ (G) = −Rαβ (G) ,

• Rαβ (G) ≡ Rµµαβ (G) = ∂α G
µ
βµ −∂β G

µ
αµ .

The reason for having more than one Ricci tensor is that the Riemann tensor (2.2) pos-

sesses only a single symmetry Rµανβ (G) = −Rµαβν (G). It is this symmetry property that gives

the relation R̂αβ (G) = −Rαβ (G) between the first two Ricci tensors above. The third Ricci

tensor Rαβ (G) does not exist in the General Relativity (GR) since symmetries of the Rie-

mann tensor, Rµανβ (Γ) ≡ gµµ′R
µ′

ανβ (Γ) = −Rµαβν (Γ) = −Rαµνβ (Γ) = Rνβµα (Γ), admits only
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one single independent Ricci tensor, the Rαβ (Γ) defined above.

Unlike the Riemann and Ricci tensors, the curvature scalar is obtained only by

contraction with the inverse metric. Therefore, one finds the curvature scalar

R (g, G) ≡ gαβRαβ (G) = −gαβR̂αβ (G) ≡ −R̂ (g, G) (2.5)

from the first two Ricci tensors listed above. Likewise, the third Ricci tensor contracts to

R (g, G) = gαβRαβ (G) = 0 (2.6)

as dictated by the anti-symmetric nature of Rαβ (G). As a result, the theory possesses two

distinct Ricci tensors but a single Ricci scalar.

The action density describing matter and gravity is formed by invariants generated

by the tensor fields above plus the matter Lagrangian. A partial list includes

R, S • S, Q • Q, Q • S,

R2, R • R, R • R,

R • S • S, R • Q • Q, R • Q • S,

R • S • S, R • Q • Q, R • Q • S,

S • S • S • S, Q • Q • Q • Q,

S • Q • Q • Q, S • S • Q • Q,

S • S • S • Q, Lmatter (g, G, ψ) (2.7)

where Lm (g, G, ψ) is the matter Lagrangian which explicitly involves the matter and radi-

ation fields ψ, the metric g and the connection G. The first line of the list consists of mass

dimension-2 invariants while the rest involve mass dimension-4 ones. Those structures

having mass dimension-5 or higher are not shown. Also not shown are the invariants in-

volving the covariant derivatives of the tensors. The bullet ( • ) stands for contraction of

the tensors in all possible ways by using the metric tensor, in case needed.

The scalars in (2.7), most of which do not exist at all in the GR, contain novel

degrees of freedom reflecting the non-Riemannian nature of the underlying geometry.

These degrees of freedom can be explicated via the decomposition of the connection
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Gλαβ= Γλαβ + ∆λ
αβ (2.8)

with respect to the Levi-Civita connection (2.1), which is the most natural connection one

would consider in the presence of the metric tensor. In this decomposition, ∆λ
αβ, being

the difference between two connections, is a rank (1,2) tensor field, and it is the source

of various non-Riemannian invariants listed in (2.7). To this end, in response to (2.8), the

Ricci curvature tensor Rαβ (G) splits as

Rαβ (G) = Rαβ (Γ) + Rαβ (∆) (2.9)

where Rαβ (Γ) ≡ Rαβ (Γ) is the Ricci curvature tensor of the Levi-Civita connection, and

Rαβ = ∇µ∆
µ
βα − ∇β∆

µ
µα + ∆µ

µν∆
ν
βα − ∆

µ
βν∆

ν
µα (2.10)

where ∇α ≡ ∇Γ
α is the covariant derivative of the Levi-Civita connection Γλαβ. This tensor

is a rank (0,2) tensor field generated by the tensorial connection ∆λ
αβ alone. It is actually

not a true curvature tensor as it is generated by none of the covariant derivatives ∇G or ∇Γ.

It is a ‘quasi’ curvature tensor.

In response to (2.8), the purely non-Riemannian Ricci tensorRαβ (G) takes the form

Rαβ (G) = ∂αVβ − ∂βVα = ∇Γ
αVβ − ∇

Γ
βVα (2.11)

wherein the second equality, which ensures that Rαβ (G) is a rank (0,2) anti-symmetric

tensor field, follows from the symmetric nature of the Levi-Civita connection, Γλαβ = Γλβα.

It is obvious that Rαβ (G), in the form (2.11), is nothing but the field strength tensor

Rαβ (G) ≡ V(−)
αβ ≡ ∂αVβ − ∂βVα (2.12)

of the Abelian vector

Vα = ∆µ
αµ (2.13)
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which is of purely geometrical origin. Consequently, purely non-Riemannian curvature

tensorRαβ (G) plays a strikingly different role compared toRαβ (G) in that it directly extracts

a vector field out of the underlying geometry.

As a result of (2.8), the torsion and non-metricity tensors

Sλαβ (G) = ∆λ
αβ − ∆λ

βα (2.14)

Qαβλ (g, G) = ∆α
λµg

µβ + ∆
β
λµg

αµ (2.15)

reduce to plain algebraic expressions in terms of ∆λ
αβ.

Having explicated the ∆λ
αβ dependencies of the fundamental tensor fields, it is time

to ask what the tensorial connection actually is and what information about the geometry

can be extracted from it. In other words, ∆λ
αβ, which embodies non-Riemannian ingredi-

ents of the underlying geometry, must be refined in order to extract the novel geometrical

degrees of freedom it contains. As the first option to think of, it is possible that there

exist a fundamental rank (1,2) tensor field δλαβ, and the connection ∆λ
αβ equals just this

fundamental tensor field. Though this is possible, at present there is no indication for

such higher spin fields, and thus, it is convenient to leave this possibility aside. The other

option to think of is that ∆λ
αβ could be made up of lower spin fields, i. e. vectors, spinors

and scalars. To this end, given its rank (1,2) nature, it is obvious that the tensorial con-

nection must be decomposable into vector fields, which might be fundamental fields or

composites formed out of spinors or scalars. In general, ∆λ
αβ possesses 64 independent

elements, and hence, it should be fully parameterizable by 3 independent vector fields,

whose nature will be further analyzed in the sequel. One of the vectors is already defined

by the contraction Vα in (2.13). The other two

Uα = ∆µ
µα (2.16)

and

Wα = gµν∆α
µν (2.17)

are conveniently defined through the remaining two distinct contractions of ∆λ
αβ. These

two vectors, unlike Vα, do not possess an immediate kinetic term, and if they are to have
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any, it must come from the invariants involving the gradients of the fundamental tensors

in (2.7).

Given the metric tensor gαβ, Vα in (2.13), Uα in (2.16), and Wα in (2.17), the tenso-

rial connection ∆λ
αβ can be algebraically decomposed as

∆λ
αβ = δλαβ + avV

λgαβ + bvVαδ
λ
β + cvδ

λ
αVβ

+ auU
λgαβ + buUαδ

λ
β + cuδ

λ
αUβ

+ awW
λgαβ + bwWαδ

λ
β + cwδ

λ
αWβ

+
1

M2

∑(
νxyV

λ + υxyU
λ + ωxyW

λ
)
XαYβ (2.18)

because of its higher spin assuming that a fundamental rank (1,2) tensor field δλαβ does not

exist at all. The sum in the last line runs over X, Y = V, U, W, and M is a mass scale ex-

pected to be around the fundamental scale of gravity, MPl. The decomposition necessarily

involves linear and trilinear combinations of the vectors. There cannot exist any other ac-

ceptable combinations of the vectors. The expansion is unique in structure. However, one

notices that all three defining relations (2.13), (2.16), (2.17) are algebraic in nature, and

thus, the dimensionless coefficients a’s, . . . , ω’s cannot be prohibited to involve dressing

factors of the form Iδ/Mδ where δ ≥ 0 and I is an invariant generated by bilinear con-

tractions of the vectors V, U, W. These dressing factors introduce invariants with higher

and higher mass dimension. The defining relations (2.13), (2.16) and (2.17) are too few to

determine all the expansion coefficients in (2.18). Therefore, all one can do is to express

nine of the coefficients in terms of the rest. For instance, the coefficients in the linear

sector can be expressed in terms of those in the trilinear sector, leaving ν’s, υ’s and ω’s

undetermined, and accordingly, all the invariants in (2.7) can be expanded via (2.18) to

determine the dynamics of Vα, Uα, and Wα. Nevertheless, as clearly suggested by (2.18),

the main effect of trilinear terms is to generate quartic and higher order interactions of

vectors. Putting emphasis on quadratic interactions, the trilinear terms can thus be left

aside though they can be straightforwardly included in the formulae below by processing

the complete ∆λ
αβ in (2.18). Proceeding thus with linear terms in (2.18), one finds

av = cv = au = bu = bw = cw = −
1

18

bv = cu = aw =
5
18

(2.19)
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for which ∆λ
αβ gets decomposed linearly in terms of Vα, Uα and Wα.

Given the decomposition in (2.18) of the tensorial connection, all the invariants in

(2.7) can be expressed in terms of Vα, Uα and Wα to determine their dynamics as vector

fields hidden in the non-Riemannian geometry under consideration. To start with, the

curvature scalar R (g, G), as follows from (2.9), is composed of the GR part R (g,Γ) and

the quasi curvature scalar gαβRαβ (∆) ≡ R (g,∆). In response to the linear part of the

decomposition of ∆λ
αβ in (2.18), the latter takes the form

R (g,∆) = ∇ · (W − U) +
1

18

(
V · V + U · U + W · W − 4V · U − 4V · W + 14U · W

)
(2.20)

which shows that a term linear inR (g, G) in the gravitational Lagrangian yields the Einstein-

Hilbert term R (g,Γ) in GR plus a theory of three vector fields in which each vector de-

velops a ‘mass term’ and mixes with the others quadratically. The vectors do not acquire

a kinetic term from R (g, G) since the first term at the right-hand side of (2.20), the di-

vergence of Wα − Uα, does not contribute to dynamics as it can be integrated out of the

action by using
√
−g∇ · (W − U) = ∂α

(√
−g (Wα − Uα)

)
. One, however, notices that this

term becomes important in higher curvature terms like R2 (g, G).

From (2.11) it is already known that Rαβ (G) is the field strength tensor of the vector

field Vα. Then the associated invariant in (2.7) becomes

R • R = V(−)αβV(−)
αβ (2.21)

which is nothing but the kinetic term of the Abelian vector Vα.

Corresponding to the decomposition in (2.18), the torsion and non-metricity ten-

sors take the explicit form

Sλαβ =
1
3

(
Vαδ

λ
β − δ

λ
αVβ

)
−

1
3

(
Uαδ

λ
β − δ

λ
αUβ

)
, (2.22)

Qαβλ =
1
9

(
5Vλgαβ − Vαδ

β
λ − δ

α
λV

β − Uλgαβ + 2Uαδβλ + 2δαλU
β

− Wλgαβ + 2Wαδβλ + 2δαλW
β
)
, (2.23)

and thus, the related invariants in (2.7) read as
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S • S = 2 (V · V + U · U − 2V · U) , (2.24)

Q • Q =
2
9

(
22V · V + 7U · U + 7W · W + 20V · U + 20V · W + 14U · W

)
, (2.25)

Q • S =
4
3

(
2V · V + U · U − 3V · U − V · W + U · W

)
. (2.26)

This completes the decomposition of the quadratic invariants of the vector fields as gen-

erated by the curvature, torsion and non-metricity tensors. It is clear that these invariants

provide a kinetic term only for Vα; the other two vectors, Uα and Wα, acquire no kinetic

term from any of the invariants in (2.7). Nevertheless, a short glance at (2.22) and (2.23)

immediately reveals that the invariants formed by the gradients of curvature, torsion and

non-metricity tensors can generate the requisite kinetic terms. Specifically, from (2.22) it

is found that

Dαβ = ∇
G
λS

λ
αβ ⊃ −

1
3
V(−)
αβ +

1
3
U(−)
αβ (2.27)

where the terms O
(
∆2

)
are suppressed on the basis of unnecessity. The first term at

the right-hand side is the field strength tensor of Vα as mentioned in (2.11) and (2.12).

The second term is new in that it is the field strength tensor of the Uα field. Therefore,

divergence of torsion tensor generates the requisite kinetic term for Uα, and the associated

invariant

D • D ⊃
1
9

(
V(−)αβV(−)

αβ + U(−)αβU(−)
αβ − 2V(−)αβU(−)

αβ

)
(2.28)

encodes the kinetic terms of Vα and Uα as well as their kinetic mixing. One notices that,

not only the divergence operation (2.27) but also

gρα∇GρS
λ
αβ = −gρα∇GρS

λ
βα (2.29)

give contributions to the kinetic terms of vectors with similar structures as (2.28).

The candidate kinetic terms of Vα in (2.21), and the kinetic term of Uα in (2.28)

are of the form expected of an U(1) invariance. Of course, such an invariance is explicitly
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broken by the ‘mass terms’ generated by curvature, torsion and non-metricity tensors.

This is not the whole story, however. The kinetic terms generated by the derivatives of the

non-metricity tensor in (2.23) also violate possible U(1) invariance suggested by (2.21)

and (2.28). To see this, one notes that

Nαβ = gρλ∇GρQ
αβ
λ ⊃

1
9

(
5∇ · Vgαβ − V(+)αβ − ∇ · Ugαβ + 2U(+)αβ

− ∇ · Wgαβ + 2W(+)αβ
)

(2.30)

where

V(+)
αβ ≡ ∇αVβ + ∇βVα (2.31)

is the symmetric counterpart of the anti-symmetric field strength tensor V(−)
αβ in (2.12). This

definition holds also for the other vectors. Then the invariant generated by (2.30) reads as

N • N ⊃
1

162

3∑
i, j=1

A(+)
iαβK

αβµν
i j A

(+)
jµν (2.32)

where Ai ∈ (V, U, W), and Kαβµνi j is the (i, j)-th entry of the matrix-valued tensor

Kαβµν =


Kαβµν11 Kαβµν12 Kαβµν13

Kαβµν21 Kαβµν22 Kαβµν23

Kαβµν31 Kαβµν32 Kαβµν33

 (2.33)

where

Kαβµν11 = 202gαβgµν + gαµgβν + gανgβµ

Kαβµν12 = Kαβµν21 = Kαβµν13 = gαβgµν − 2gαµgβν − 2gανgβµ

Kαβµν22 = Kαβµν23 = Kαβµν32 = Kαβµν33 = −2gαβgµν + 4gαµgβν + 4gανgβµ

which describes the kinetic mixing among the three vector fields. As for the divergence
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of torsion in (2.28), one notices that, not only the divergence operation (2.30) but also

∇GαQ
αβ
λ = ∇GαQ

βα
λ (2.34)

give contributions similar to that in (2.32). In addition to these, contraction of

∇GQ • ∇GS = 0 (2.35)

due to symmetry conditions.

Having done with the decomposition of various invariants in terms of the vector

fields V, U and W, we now turn to analysis of interactions in such a non-Riemannian setup.

The most general action functional describing ‘gravity’ and ‘matter’ is of the form

I =

∫
d4x
√
−g

{
L

(
R,R,S,Q

)
+ Lm (g, G, ψ) − V0

}
(2.36)

which contains action densities for geometric and material parts, respectively. V0 stands

for the vacuum energy (containing the bare cosmological term fed by the geometrical

sector), and ψ stands for matter and radiation fields, collectively. Neither the geometrical

L nor the matter Lagrangian Lm contains any constant energy density; all such energy

components are collected in V0. The geometrical part reads explicitly as

L =
1
2

M2
Pl

(
R + cSS • S + cQQ • Q + cQSQ • S

)
+ c′S∇

GS • ∇GS + c′Q∇
GQ • ∇GQ + c′QS∇

GQ • ∇GS

+ cR2R2 + cRRR • R + cRRR • R + O

(
1

M2
Pl

)
(2.37)

where we have discarded termsO
(
1/M2

Pl

)
. Moreover, we have discarded higher-derivative

terms �GR and the like. c’s are all dimensionless couplings. The mass dimension-2 terms

are naturally scaled by the fundamental scale of gravity, MPl. One notices that R2 and

R • R contain higher-curvature terms R(g,Γ)2 and Rαβ(Γ)Rαβ(Γ), respectively. Indeed,

leaving aside the non-dynamical terms, one can show that
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R2 (G) ⊃ R(g,Γ)2 +
(
(∇.W)2 − 2(∇.W)(∇.U) + (∇.U)2

)
(2.38)

and

R (G) • R (G) ⊃ R2(g,Γ) + Rµν(g,Γ)Rµν(g,Γ) +
1

648

(
− 4(∇.V)2 + 162(∇.U)2 + 167(∇.W)2

− 330(∇.U)(∇.W) − 6(∇.V)(∇.U) + 4(∇.V)(∇.W) + 16∇µVν∇νVµ

+ 24∇µVν∇νUµ + 9∇µUν∇µUν + 10∇µVνV(−)µν − 18∇µVνU(−)µν

− 8∇µVνW(+)µν + 8∇µUνU(−)µν − 6∇µUνW(+)µν + 2∇µWνW(+)µν
)

(2.39)

wherein the GR-related parts are seen to involve higher-derivative interactions. In this

sense, the GR-part (the terms R2(g,Γ) and Rµν(g,Γ)Rµν(g,Γ) ) brings forth ghosts. Clearly,

these terms must be absent (cR2 and cRR must vanish) if such ghosty contributions in GR

are to be avoided. The remaining terms, after using their decompositions in terms of the

vector fields V, U and W, give rise to the action

I =

∫
d4x
√
−g

{
1
2

M2
PlR + Lm (g, G, ψ) − V0

}
+

∫
d4x
√
−g

{
cVVV

(−)αβV(−)
αβ + cUUU

(−)αβU(−)
αβ + cVUV

(−)αβU(−)
αβ

+ V(+)
αβ k

αβµν
VV V

(+)
µν + U(+)

αβ k
αβµν
UU U

(+)
µν + W(+)

αβ k
αβµν
WW W

(+)
µν + V(+)

αβ k
αβµν
VU U

(+)
µν + V(+)

αβ k
αβµν
VW W

(+)
µν

+ U(+)
αβ k

αβµν
UW W

(+)
µν + M2

Pl

(1
2

aVVV
αVα +

1
2

aUUU
αUα +

1
2

aWWW
αWα + aVUV

αUα + aVWV
αWα

+ aUWU
αWα

)}
(2.40)

where the first integral at the right-hand side is precisely the Einstein-Hilbert action in GR

(plus the contribution of matter and radiation), and the second integral pertains to a theory

of three vector fields in a spacetime with metric gαβ. The Einstein-Hilbert action above

would receive contributions from higher-curvature (and thus typically ghosty) terms had

we kept R2 and R • R terms in (2.37).

In essence, under the decomposition in (2.18), the non-Riemannian gravitational

theory in (2.37) reduces to a tensor-vector theory of the type in (2.40) (leaving aside the

matter sector Lm (g, G, ψ)). One notices that the general connection Gλαβ can directly couple

to matter fields as encoded in the matter Lagrangian. According to types of the matter
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fields, these couplings give rise to additional structures (like hyper-momentum) which

involve torsion and non-metricity. In (Vitagliano et al., 2011; Sotiriou and Liberati, 2007),

various effects of the general connection on the matter sector are analysed in detail. The

vector part of the action is written in a rather generic form by admitting that various terms

listed above plus similar ones coming, for example, from (2.29) and (2.34) give rise to, at

the quadratic level, the structures in (2.40) with dimensionless coefficients cVV , . . . , aUW .

These coefficients can be expressed as linear combinations of the coefficients weighing

individual contributions.

The tensor-vector theory in (2.40) has been obtained for a general setup involv-

ing curvature, torsion and non-metricity tensors exhaustively. The theory is GR plus a

theory of three vectors V, U and W. Any constraint or selection rule imposed on the non-

Riemannian geometry results in a more restricted theory. It could thus be useful to discuss

certain aspects of (2.40) here:

• Theory consists of three vector fields V, U and W. The vector action contains two

types of kinetic terms: ones with X(−)
αβ and those with X(+)

αβ . The V and U possess both

types of kinetic terms while W possesses only the second type i. e. W(+)
αβ . The X(−)

αβ

and hence the corresponding kinetic terms obviously possess an Abelian invariance.

However, there is no such invariance for the kinetic terms involving X(+)
αβ . Therefore,

the vector fields contained in (2.40) are not associated with a gauge theory; they are

not vectors originating from need to realize a local U(1) invariance.

The coefficients cVV , . . . , k
αβµν
UV , which seem being left arbitrary, can actually be fixed

in terms of the coefficients of individual terms in (2.37) which contribute to that

particular structure. The kinetic terms, both X(−)
αβ and X(+)

αβ type, receive contributions

from various structures, as addressed before. In particular, contributions of the

alternative structures given in (2.29) and (2.34) must also be included in forming

the vector action in (2.40).

• A highly crucial aspect concerns the signs of the coefficients cVV , . . . , k
αβµν
UV in the

kinetic part of the vector action. The kinetic terms of V, U and W must have the

correct sign required of a ghost-free theory. Indeed, any sign-flip in the kinetic

terms causes vector ghosts to show up in the spectrum. The various coefficients in

(2.37) must comply with this requirement.

• The vectors exhibit not only the kinetic mixings X(−)
αβ Y

(−)αβ and X(+)
αβ Y

(+)αβ but also

mass mixings of the form XαYα, as shown in the last line of the vector action. Their

masses and mixings are proportional to MPl with respective coefficients aVV , . . . , aUW .
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In {V, U, W} basis their mass-squared matrix reads as

1
2

M2
Pl


aVV aVU aVW

aVU aUU aUW

aVW aUW aWW

 (2.41)

each entry of which can be extracted from (2.37) as

aVV =
1

18
+ 2cS +

44
9

cQ +
8
3

cQS ,

aUU = cWW + 2cS +
4
3

cQS ,

aWW =
1

18
+

14
9

cQ ,

aVU = −
1
9
− 2cS +

20
9

cQ − 2cQS ,

aVW = −
1
9

+
20
9

cQ −
2
3

cQS ,

aUW =
7

18
+

14
9

cQ +
2
3

cQS . (2.42)

It is the eigenvalues of (2.41) that determine the light and heavy vector spectrum in

the theory. For having a stable theory free from tachyons, the eigenvalues of (2.41)

must each be positive semi-definite. This puts stringent constraints on the elements

aVV , · · · , aUW (See Appendix B for further details.). If off-diagonal entries are small

i. e. if cS , cQ and cQS are chosen appropriately then all three vector bosons weigh

MPl/3
√

2. Alternatively, if the mixings are sizeable, or equivalently, if all entries of

(2.41) are of similar size then there will exist two light and one heavy vectors in the

spectrum. Depending on the hierarchy of the couplings, there could exist just one

light state instead of two (Demir, 2004). In any case, it is with the hierarchy of the

couplings that the vector boson spectrum can exhibit different hierarchies. Needless

to say, the intra-hierarchy of the mass matrix entries aVV , . . . , aUW is determined by

the couplings cS , cQ and cQS via the relations (2.42).

Actually, having the vector fields with masses around MPl should come by no sur-

prise; the underlying theory (2.37) is a pure gravity of non-Riemannian structure,

and the mass scale in the theory is automatically fixed by the fundamental scale

of gravity MPl. However, the statement ‘a Planckian-mass vector field’ depends

crucially on what we mean by the vector field: Is it fundamental or is it a compos-
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ite structure? We will discuss answers and consequences of these questions in the

sequel.

• As is obvious from the general procedure, reduction of the non-Riemannian gravity

gives rise to GR plus extra degrees of freedom represented by the vector fields in

(2.40). These extra degrees of freedom can have astrophysical and cosmological

implications, and can give rise to observable phenomena at high-energy particle

colliders. These fields may form an invisible sector which couples to known matter

via Higgs or vector boson portals. We shall discuss some of their cosmological

effects in the next section.

• The framework we have reached in (2.40) is a rather general one in that we have

imposed no condition on metric, connection and any other geometro-dynamical

quantity. Imposition of certain selection rules, though seems to cause loss of gener-

ality, does actually prove highly useful for extracting information about behavior of

the system in certain reasonable situations. Here we shall discuss two such limiting

cases:

– Symmetric Connection: We first discuss the possibility of symmetric con-

nection i. e. Gλαβ=G
λ
βα. The prime implication of this selection rule is that the

torsion tensor identically vanishes, Sλαβ = 0. This statement is equivalent to

imposing

Vα = Uα, (2.43)

as is manifestly suggested by the decomposition of ∆λ
αβ in (2.18). This con-

straint is seen to nullify the invariants S · S and S · Q, in agreement with

vanishing torsion. This particular relation between V and U reduces the vec-

tor action in (2.40) into a theory of two vectors: the V and W. The structure

remains similar to that in (2.40) yet various terms containing V and U merge

together to give more compact relations.

– Antisymmetric Tensorial Connection: This time we consider the relation

∆λ
αβ = −∆λ

βα for the tensorial connection not for Gλαβ. Actually, since Γλαβ is

symmetric the connection Gλαβ possesses no obvious symmetry under the ex-

change of α and β. The prime implication of the anti-symmetric ∆ is that the

geodesics of test bodies remain as in the GR. This, however, does not mean
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that one can eliminate the non-Riemannian effects. The reason is that the

geodesic deviation, which involves the Riemann tensor Rαµβν, directly feels the

non-GR components of the curvature tensor. In the language of the expansion

(2.18), anti-symmetric ∆λ
αβ gives

Vα = −Uα and Wα = 0 (2.44)

which reduces thus the vector action in (2.40) to theory of a single vector field

V.

Here we have highlighted certain salient features of the Tensor-Vector theory of

(2.40) in regard to various structures and limiting cases the vector part can take.

2.3. Applications to Cosmology

Up to now, we have constructed a general action which consists of all possible

vector and tensor fields. In addition to this, we have given two limiting cases as symmetric

and antisymmetric tensorial connection. In next two subsections, by using antisymmetric

tensorial connection limit and some constraints, we obtain two well-known actions which

are defined in modified gravity theories These are TeVeS gravity and Vector Inflation.

2.3.1. TeVeS Gravity

In spite of its great success in describing the solar system, General Relativity

(GR) fails to account for dynamics at galactic scales without postulating a large amount

of cold dark matter (CDM) – non-baryonic, non-relativistic, electrically neutral, weakly

interacting particles of weak-scale masses (Bertone et al., 2005). The asymptotic flatness

of the galaxy rotation curves, which occurs towards galaxy outskirts involving extremely

small accelerations, manifestly disagrees with predictions of the GR unless the galactic

region is populated by non-shining, and hence, astrophysically unobservable CDM.

Apart from this, there are problems with structure formation: with the baryonic

matter alone, the large-scale structure as we observe it would not have been formed yet

if gravity is described by GR. Indeed, GR demands large amounts of ‘dark components’

(23% ‘dark matter’ for structure formation and 73% ‘dark energy’ for late-time inflation)
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to be able to account for the mounting cosmo-physical precision data (coming from obser-

vations on microwave background (Komatsu et al., 2009), large scale structure (Tegmark

et al., 2006), and supernovae (Astier et al., 2006)). However, the way these dark com-

ponents enter into gravitational field equations does not involve their origins and nature;

they are treated as ‘fluids’ with right density and equation of state. Nevertheless, the

positron excess reported by recent observations (Adriani et al., 2009; Abdo et al., 2009)

on cosmic rays, if interpreted to come from decays or annihilations of dark matter, can be

taken as indirect signals of dark matter (though there are alternative arguments in favor of

astrophysical sources (Hooper et al., 2009; Yüksel et al., 2009) of positron excess).

This ’dark paradigm’ necessitated by GR can in fact be evaded if an alternative

description of Nature takes over at extremely small accelerations and curvatures. This is

what has been postulated by Milgrom (Milgrom, 1983a; Bekenstein and Milgrom, 1984),

who replaced Newton’s second law of motion with

µ


∣∣∣~a∣∣∣
a0

~a = −~∇ΦN (2.45)

where ΦN is the gravitational potential, µ(x) { 1(x) for x � 1(x � 1), and a0 '

10−10 m/s2 is an acceleration scale appropriate for galaxy outskirts (Bernal et al., 2011).

This proposal, despite its empirical success, had to wait for the relativistic generaliza-

tions of (Sanders, 1997, 2005; Bekenstein, 2004b,a) to become a complete, alternative

theory of gravitational interactions (see also the review (Skordis, 2009)). The relativistic

generalization, dubbed as tensor-vector-scalar (TeVeS) theory of gravity, involves the ge-

ometrical fields Vµ and φ in addition to the metric tensor gµν such that, while the matter

sector involves gµν only, the gravitational sector involves

g̃µν = e2φgµν − 2 sinh(2φ)AµAν (2.46)

whose action can be generalized to incorporate aether effects (Zlosnik et al., 2006, 2007;

Skordis, 2008), too. Various astrophysical and cosmological phenomena exhibit observ-

able signatures of TeVeS (Giannios, 2005; Chiu et al., 2006; Skordis, 2006; Diaz-Rivera

et al., 2006; Chen and Zhao, 2006; Sagi and Bekenstein, 2008; Chen, 2008; Contaldi et al.,

2008; Bekenstein and Sagi, 2008; Tamaki, 2008; Ferreira et al., 2008; Mavromatos et al.,

2009; Ferreras et al., 2009; Lasky, 2009; Sagi, 2010; Reyes et al., 2010).
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TeVeS is essentially a bi-metrical gravitational theory where matter and gravity

are distinguished by the metric fields they operate with. It is thus natural to expect a

reformulation in bi-metrical language (Banados et al., 2009; Bañados et al., 2009) wherein

certain interactions and properties follow deductively.

The material produced in the last section is general and detailed enough to have

a re-look at the TeVeS gravity. In this section we will argue that TeVeS type extended

gravity theories do naturally follow from the non-Riemannian theories of the form (2.37)

under the decomposition (2.18).

• To establish contact with TeVeS gravity, it is necessary to discuss first the function µ

defined in (2.45). In relativistic formulation, µ is a non-dynamical field in the action.

Variation of the action with respect to µ fixes ‘gradient’ of its potential dV(µ)/dµ

in terms of the remaining terms in which µ appears at least linearly. Basically, µ

must multiply the kinetic term of (scalars or vectors) so that its force dV(µ)/dµ is

fixed in terms of the field gradient-squareds (actually the kinetic terms of the fields)

in accord with the requirements of the MOND. In summary, the MOND relation

(2.45) for µ arises from the equation of motion for µ (to be solved via dV(µ)/dµ

in terms of the kinetic terms of the fields in the spectrum). The relativistic theory

of (Bekenstein, 2004b,a) requires that µ should be non-dynamical, that is, it should

have no kinetic term. Therefore, the Lagrangian of µ can be directly constructed

from couplings in the action (2.40). We do this as follows:

– First, we postulate that the vacuum energy density V0 in (2.36) and (2.40) can

actually be decomposed as

V0 = V (µ) + ∆V (2.47)

where ∆V is a constant additive energy density while V varies with µ. At this

stage µ is a hypothetical parameter having no solid physical basis.

– We further postulate that the coefficients cVV , . . . , k
αβµν
UV weighing the individ-

ual kinetic terms in the vector part of the action (2.40) do actually depend on

the parameter µ at least in a linear fashion. In fact, it is not necessary to make

all these constants vary with µ; the µ dependence of one single parameter

suffices.

• Under these instructed changes for ‘creating’ or ‘explicating’ the non-dynamical
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field µ, the action (2.40) becomes essentially the Tensor-Vector Theory of (Zlosnik

et al., 2006, 2007; Skordis, 2008). This theory is obtained by eliminating the scalar

field through the constraints on the bimetrical theory of (Bekenstein, 2004b,a), and

is shown to be a viable replacement for cold dark matter. As an aether theory, it

works as good as the model in (Bekenstein, 2004b,a) as far as the MOND-change

of gravity is concerned. The main distinction between the theory obtained here and

that of (Zlosnik et al., 2006, 2007; Skordis, 2008) is that the model here consists

of three vectors in the most general case. If one specializes to cases like (2.43) or

(2.44), however, the model obtained here gets closer to the aether theory of (Zlosnik

et al., 2006, 2007; Skordis, 2008), which is shown therein to be an alternative to the

cold dark matter.

Consequently, the Tensor-Vector theory in (2.40) provides a general enough frame-

work (in terms of parameters and number of vector fields) for generating the TeVeS

gravity of (Milgrom, 1983a; Bekenstein and Milgrom, 1984; Sanders, 1997, 2005;

Bekenstein, 2004b,a; Skordis, 2009) through the analyses in (Zlosnik et al., 2006,

2007; Skordis, 2008). It should be kept in mind that, the TeVeS gravity of (Sanders,

1997, 2005; Bekenstein, 2004b,a) is based on a bimetrical theory where the geo-

metrical sector proceeds with metric involving a scalar field, vector field and the

metric field used by the matter Lagrangian. The theory in the present work, how-

ever, provides a compact approach to TeVeS gravity via the decomposition of the

tensorial connection in (2.18).

• At this point, one may wonder why we are dealing with the Tensor-Vector theory

of (Zlosnik et al., 2006, 2007; Skordis, 2008) instead of the true TeVeS gravity of

(Sanders, 1997, 2005; Bekenstein, 2004b,a; Skordis, 2009). Actually, as we will

shown below, the action (2.40) naturally contains the true TeVeS gravity. To this

end, the right question to ask concerns the vector fields themselves: Are they fun-

damental vector fields or composites of some other fields? They each could be of

either nature. Whatever their structure, however, they must be true vectors on the

spacetime manifold such that their vector property must not depend on the connec-

tions Gλαβ or Γλαβ or ∆λ
αβ. The reason is that the vectors themselves are just parameter-

izing the connection via (2.18), and hence, their independence from the connection

is required by the logical consistency of the construction. This constraint prohibits

all structures but
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Vα = a1Vα +
a0

MPl
∂αφ (2.48)

where Vα is a fundamental vector, and φ is a fundamental scalar field. The vector

property of Vα is obvious. Why the φ-dependent part is a vector is guaranteed by

the fact that ∇(any connection)
α φ = ∂αφ, and hence, it is a vector on the manifold inde-

pendent of the connection; may it be Gλαβ or Γλαβ or some other structure. Obviously,

if φ is to be a new degree of freedom (not a scalar formed form Vα itself) then it

is necessary to reduce the degrees of freedom contained in Vα by one unit. Any

‘gauge constraint’ such as ∇ · V = 0 proves sufficient for this purpose. Under these

conditions, the expansion (2.48) operates on each of the vectors V, U and W with

their respective scalar fields.

It is obvious that replacement of (2.48) and similar relations for Uα and Wα into

the vector action in (2.40) will yield a general tensor-vector-scalar theory of grav-

ity. The main difference from (Sanders, 1997, 2005; Bekenstein, 2004b,a; Skordis,

2009) will be the number of vectors and scalars in the theory. The difference will

be the dependence of the action on the scalars: Only the gradients of scalars are

involved. The scalars themselves do not enter the action. Nevertheless, one ar-

rives at a tensor-vector-scalar theory of gravity, and the theory is parametrically and

dynamically wide enough to cover the standard TeVeS gravity.

• As a concrete case study, here we shall discuss the reduced theory after imposing

the condition (2.44). The action (2.40) reduces to

I =

∫
d4x
√
−g

{
1
2

M2
PlR + Lm (g, G, ψ) − V0

+ cVVV
(−)αβV(−)

αβ + V(+)
αβ k

αβµν

VV V
(+)
µν

+
1
2

M2
PlaVVV

αVα

}
(2.49)

where the terms involving V and U in (2.40) combine to form the over-lined coeffi-

cients in here. The terms involving W in (2.40) are all nullified in accord with (2.44).

For instance, one directly finds

aVV =
1
3

+ 8cS + 2cQ + 8cQS (2.50)
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form (2.42). The reduced theory in (2.49) is precisely the one in (Zlosnik et al.,

2006, 2007; Skordis, 2008) except for the absence of quartic-in-V terms. The cou-

plings in and dynamics of the two theories can be matched via the terms involved

in two cases. This situation becomes especially clear after using VαVα = −1 in the

tensor-vector theory of (Zlosnik et al., 2006, 2007; Skordis, 2008).

Now, it is time to analyze (2.49) under the decomposition (2.48). One finds

I =

∫
d4x
√
−g

{
1
2

M2
PlR + Lm (g, G, ψ) − V0 + a2

1cVVV (−)αβV (−)
αβ + a2

1V (+)
αβ k

αβµν

VV V (+)
µν

+
1
2

M2
Pla

2
1aVVVαVα + MPla1a0aVVVα∂αφ + a2

0aVV∂
αφ∂αφ + O

(
1

MPl

) }
(2.51)

from which it is seen that setting V0 ≡ V(µ) + ∆V and a0 = ā0µ essentially suffices

to reproduce the results of TeVeS gravity (Bekenstein, 2004b,a; Skordis, 2009).

Setting VαVα = −1 as a constraint on the vector field, the mass term of Vα in (2.51)

just adds up to the vacuum energy V0.

Before closing this section we comment on MOND. The MOND theory (or its

relativistic realization TeVeS) has been put forth as an alternative to the Dark Matter

paradigm. As for any model, there are phenomena for which TeVeS cannot give a sat-

isfactory explanation. Indeed, while it can explain flat rotation curves with no need to

Dark Matter, it has phenomenological shortcomings related to explanations of the other

DM evidences such as Bullet Cluster. Nevertheless, like the Dark Matter paradigm all

these models are under theoretical and experimental investigation, and one can find bet-

ter realizations in terms of various constraints. The non-Riemannian origin we discuss is

not special to TeVeS or any other specific modeling; it holds in general and its parameter

space can be constrained by astrophysical observations or collider experiments.

2.3.2. Vector Inflation

According to the standart big bang cosmology, which is defined by using Friedmann-

Robertson-Walker (FRW) metric, universe is homogeneous and isotropic on large scales

(Liddle and Lyth, 2000; Tsujikawa, 2003). In addition to this, observations of Hubble in

redshifts of galaxies shows that universe is expanding. To understand dynamical proper-

ties of expansion, the solutions of Einstein equation for FRW metric are required. Com-
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bination of these solutions is given by

ä
a

= −
4π

3M2
pl

(ρ + 3p) (2.52)

as ρ implies energy density and p is pressure and a is scale factor. In the ligth of equa-

tion (2.52) one can think that universe expands by decelerating in case of (ρ + 3p) > 0.

However, this deceleration doesn’t solve some problem of standart big bang cosmology

such as flatness, horizon and so on. To solve these problems, accelerated expansion of

universe in early stage is treated instead of decelerated one i.e (ρ + 3p) < 0 and this

type of expansion is called "inflation". Inflation is generally driven by scalar fields to

prevent anisotropy occured in higher spin fields (Chiba, 2008). However, scalar inflation

models have fine-tuning problem and also scalar bosons which is base of these models

aren’t observed by experiments(Maki et al., 2010). Therefore, vector inflation model is

condsidered instead of scalar inflation model. (Ford, 1989; Golovnev et al., 2008) Also

p-forms inflation model is also considered in literature(Germani and Kehagias, 2009).

Vector inflation was firstly proposed in (Ford, 1989) by using spacelike vector

fields. In Ford’s paper vector fields gave anisotropic solution of inflation. So, instead of

spacelike vector fields, it was shown that timelike vector fields under some constraints

of vector field potential give rise to desired inflationary expansion (Koh, 2011; Jacobson

and Mattingly, 2001; Carroll and Lim, 2004). The other problems vector fields have

can be solved by using a triplet of mutually orthogonal vector fields and non- minimally

coupling.

In this section, we show that after a regularization ,the action (2.40) obtained by

using the anti-symmetric connection constraint give the same action in (Koh, 2011; Jacob-

son and Mattingly, 2001; Carroll and Lim, 2004) which is most general action of vector

inflation theory.

Combining the abelian and non-abelian part of vector field and defining new di-

mensionless coefficients lead to the action (leaving aside the matter sector):

I =

∫
d4x
√
−g

{
1
2

M2
PlR +

1
2
καβµν∇αVβ∇µVν + V(ξ)

}
(2.53)

where
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V(ξ) =
1
2

M2
PlaVVVαVα (2.54)

and

καβµν = κ1gαβgµν + κ2gαµgβν + κ3gανgβµ (2.55)

ξ = VαVα, and κ1, κ2, κ3 are random coefficients coming from general action.

κ1 =
44
18

c
′

Q,

κ2 =
8c
′

s + 2c
′

Q

18
,

κ3 =
2c
′

Q − 8c
′

s

18
(2.56)

Assigning suitable values (by excluding ones leading to linear instabilities or

negative-energy ghosts) to these coefficients reproduce the same results with the action

of general vector inflation in (Koh, 2011; Jacobson and Mattingly, 2001; Carroll and Lim,

2004).

2.4. Conclusion

Metric-affine gravity generalizes the GR by accommodating an affine connection

that extends the Levi-Civita connection. The tensorial part of the connection, under gen-

eral conditions, can be decomposed into three independent vector fields (and a funda-

mental rank (1,2) tensor field, if any) which can be fundamental fields or gradients of

some scalar fields. By this way the vector, scalar and tensor fields come into play when

the metric-affine action is decomposed accordingly. The resulting theory is rather gen-

eral. By imposing judicious constraints, theory can be reduced to more familiar ones like

TeVeS gravity, vector inflation or aether-like models, in general. In the text we have given

a detailed discussion of the TeVeS gravity and vector inflation.

From this work, one concludes that metric-affine gravity is rich enough to supply

various vector and scalar fields needed in cosmological phenomena. Analyses of various

effects may lead to a standard model of metric-affine gravity.
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CHAPTER 3

RELATIVISTIC MOND FROM MODIFIED

ENERGETICS

In this part, we obtain a relativistic version of MOND theory without action prin-

ciple. We begin to investigate the question of what modifications in energy-momentum

tensor can yield correct MOND regime. As a starting study, we refrain from insisting on

an action principle and focus exclusively on the equations of motion. The present work,

despite the absence of an explicit action functional, can be regarded to extend Milgrom’s

modified inertia approach to relativistic domain. Our results show that a proper MOND

limit arises if energy-momentum tensor is modified to involve determinant of the metric

tensor in reference to the flat metric, where the latter is dynamically generated as in grav-

itational Higgs mechanism. This modified energy-momentum tensor is conserved in both

Newtonian and MONDian regimes.

3.1. Introduction

Observations of several decades, ranging from the initial measurements by Oort

(see the discussion in (Kuijken and Gilmore, 1989)) to the primal ones by Rubin (Ru-

bin and Ford Jr, 1970; Rubin et al., 1980), have shown that galaxies exhibit flat rotation

curves, manifestly violating the Keplerian dynamics. This universal anomalous dynamics

has been interpreted in two distinct ways. The first, first proposed by Zwicky (Zwicky,

1933) in 1933, refers to Dark Matter (DM) hypothesis. According to the DM paradigm,

there must be a distribution of non-shining matter at the outer skirts of galaxies to measure

approximately constant velocities after particular distances from the centre of galaxies.

The DM hypothesis provides viable explanations not only for flat rotation curves but also

for various cosmological and astronomical observations describing different phases of the

evolution of Universe. Several experimental groups have been searching for DM particle

by utilizing various detection methods (see the recent review volumes (Bertone, 2010;

Fornengo, 2008)). So far, no signal of DM has been observed.

The second interpretation, first proposed by Milgrom (Milgrom, 1983a,b,c) in
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1983, postulates that the observed flat rotation curves result from modifications in the

Newtonian laws of motion. In this approach, instead of adding unknown ingredients to

galactic matter, one exercises modifications in motion equations which dominate at the

skirts of the galaxies. To this end, Newton’s law of motion ~F = m~a changes to

~F = mµ
(

a
a0

)
~a (3.1)

where ~F is the net force acting on the material point which has inertia m and accel-

eration ~a (with a2 = ~a · ~a). This dynamical equation, structuring Milgrom’s MOND

theory (Milgrom, 1983a,b,c), is characterized by the empirical function µ(a/a0) where

a0 ' 1.2 × 10−10ms−2 is a constant acceleration scale for all galaxies (Giné, 2009). It

appears in (3.1) as a critical acceleration scale set galactically by the mass M and radius

R of the galaxy as (GN M)/R2 ' a0 and cosmologically by the present-day value H0 of the

Hubble parameter as (cH0)/2π ' a0 (Easson et al., 2011).

The heart of the MOND theory is the empirical function µ(a/a0). There is yet no

dynamical theory for it; however, its asymptotic behavior is not difficult to guess

µ (x) �

 1 if x > 1

x if x < 1
(3.2)

if all the successes of the Newtonian theory are to be maintained. Here x does not need

to be very large or small compared to unity because µ(x) can attain its asymptotics even

when x is close to unity. For instance, the empirical form

µ(x) =
x
(

3
2

) 2
n2(

1
1+xn + xn

) 1
n

(3.3)

facilitates the asymptotics in (3.2) almost independently of x provided that n is large.

Indeed, taking n = 50 one finds µ(x) = 0.700, 0.900, 0.986, 0.996, 1.000, 1.000 for

x = 0.7, 0.9, 0.99, 1.01, 1.1, 2.0, respectively.

The behaviour in (3.2) ensures that matter in the galaxy exhibits flat rotation curves

far away from the galactic center. Indeed, in the limit of small accelerations the equation
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of motion (3.1) takes the form

~F = m
a~a
a0

(3.4)

so that at large radii R corresponding to outer skirts of the galaxy one finds not the Keple-

rian law | ~F| = (mv2)/R but | ~F| = (mv4)/(a0R2) which yields the constant speed

v4 = GN Ma0 (3.5)

for | ~F| = (GNmM)/R2. This relation accounts for the observed flat rotation curves (Rubin

and Ford Jr, 1970; Rubin et al., 1980; Sanders and Verheijen, 1998; Sanders and Noor-

dermeer, 2007; Brownstein and Moffat, 2006). The constant speed (3.5) is the reason for

and result from the whole idea of MOND. It depends crucially on the behaviour of the

empirical function (3.2) at low accelerations.

The empirical MOND relation in (3.1), supported by (3.2) and (3.3), needs be

formulated at a more fundamental level. In this regard, there arises two different interpre-

tations. In the first, after setting ~a = −~∇φg with φg being the gravitational potential, one

formulates MOND as a modification in gravitational laws (see the reviews (Bruneton and

Esposito-Farese, 2007; Skordis, 2009; Famaey and McGaugh, 2012)). In this case, one

is necessarily led to modified Newtonian gravity (Bekenstein and Milgrom, 1984; Mil-

grom, 2010b) or General Relativity (GR) extended by geometrical scalar and vector fields

(Sanders, 1997; Bekenstein, 2004b; Sanders, 2005; Zlosnik et al., 2006, 2007; Karahan

et al., 2013). Besides, there are alternative approaches based on f (R) gravity (Bertolami

et al., 2007, 2008; Stabile and Scelza, 2011; Bernal et al., 2011), bimetric gravity (Mil-

grom, 2009, 2010a), time foliation (Blanchet and Tiec, 2008; Blanchet and Marsat, 2011),

nonlocal metric theories (Soussa and Woodard, 2003; Deffayet et al., 2011), Galileons

(Babichev et al., 2011), and Horava-Lifshitz gravity (Romero et al., 2010). In general,

modified gravity theories introduced to replace the DM necessarily lead to MONDian

structure.

In the second interpretation, one conceives the equation of motion (3.1) as defining

an acceleration-dependent inertia m(a) = mµ(a/a0). This approach, the modified inertia

approach proposed in (Milgrom, 1994, 1999), in the non-relativistic limit, keeps gravita-

tional laws unchanged yet lets in nonlinear kinetic terms. In this framework, it is found

that the kinetic term of the point mass involves all derivatives of acceleration (Milgrom,
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1994, 1999; Romero and Zamora, 2006; McCulloch, 2007) yet it is stable and respects

causality (Bruneton and Esposito-Farese, 2007; Skordis, 2009; Famaey and McGaugh,

2012; Soussa and Woodard, 2003; Deffayet et al., 2011). In the present work, we pursue

this modified inertia viewpoint to generalize it to general-relativistic domain. The expe-

rience from non-relativistic study (Milgrom, 1994, 1999) ensures that forming an action

functional must be difficult, if not impossible, in the relativistic domain. We thus focus

exclusively on the equations of motion without specifying an action principle to derive

them.

3.2. Modified Energetics

As the beginning phase of a study programme aiming at finding dynamical alter-

natives to modified gravity models of relativistic MOND (Bruneton and Esposito-Farese,

2007; Skordis, 2009; Famaey and McGaugh, 2012), in this section we study gravitational

field equations where MOND phase is understood as changes in matter energy-momentum

tensor. This approach, aiming at carrying Milgrom’s modified inertia approach (Milgrom,

1994, 1999) into relativistic domain at the level of equations of motion, is based on the

matter energy-momentum tensor T (N)
µν in Newtonian domain and exploits its expected non-

conservation in the MOND regime to derive MONDian dynamics in an empirical way.

Having a complete knowledge of the interactions of matter, its energy-momentum ten-

sor T (N)
µν (with energy density T N

00, pressure T N
ii , momentum density T N

0i and shear stress

T N
i j ) is strictly conserved in the Newtonian regime. However, the same T (N)

µν is not con-

served in the MONDian regime because matter develops extra interactions even if one is

not able to know them explicitly. Those extra interactions generalize T (N)
µν to a conserved

energy-momentum tensor Tµν which can be approached only empirically in the absence of

a complete dynamical model (see (Mishra and Singh, 2012, 2014) for a similar approach

to modified gravity framework for MOND). We now give an empirical implementation of

this dynamical picture starting with Einstein field equations

Gµν = 8πGNTµν (3.6)

in which Tµν is the conserved energy-momentum tensor of matter at all acceleration scales

ranging from a = 0 to a = ∞. In general, Tµν is conserved on the equations of motion,

and these equations necessarily encode the novel interactions of matter responsible for the
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MOND. However, those new interactions are not known and our knowledge of Tµν is in-

complete; we are able to know it only when a > a0 for which it equals T (N)
µν . Consequently,

on an empirical basis we write for Tµν

Tµν = µ (a)
[
T (N)
µν − Qgµν

]
+ Qgµν (3.7)

where µ(x) is the MOND function in (3.2), Q is a scalar, and a is yet another scalar which

is to be judiciously constructed to have the empirical limit

a
v�c
−−−→ aNR =

a
a0

(3.8)

at non-relativistic energies. This correspondence between the relativistic (a) and non-

relativistic (a) regimes is crucial for the empirical structure in (3.7) to give a consistent

framework.

Physically, the grand energy-momentum tensor Tµν must correctly reproduce the

Newtonian and MONDian regimes. This is analyzed case by case in Table 3.1 as a func-

tion of the divergence of T (N)
µν . As suggested by the table, underlying dynamics can be

revealed after a proper understanding of Tµν and this requires T (N)
µν , a(T ) and Q(T ) to be

constructed in detail. We detail these physical variables in the three consecutive subsec-

tions that follow.

3.2.1. Physical Properties of T (N)
µν

It has been emphasized previously, specifically in Table 3.1, that T (N)
µν has the

same form as the energy-momentum tensor of matter in Newtonian regime yet it does not

qualify as true energy-momentum tensor in the MOND regime simply because its conser-

vation is spoiled by novel interactions of matter that arise at accelerations below a0. The

higher-derivative self interactions studied in (Milgrom, 1994, 1999; Romero and Zamora,

2006; McCulloch, 2007) form a concrete example of such effects. Let us consider, as an

illustrative example, dust (pressureless matter having only energy density in the comoving
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Acceleration MOND Function Energy-Momentum Tensor Matter Dynamics

a & 1 µ (a) ' 1

Tµν ' T (N)
µν(

∇µTµν = 0

hence ∇µT (N)
µν = 0

)
This is ‘Newtonian
regime’. Acceleration
of matter is above
a0 and µ (a) ensures
Tµν ' T (N)

µν so that
T (N)
µν is symmetric

and divergence-free
(∇µT (N)

µν = 0) in
agreement with (3.6).
In Newtonian regime
thus T (N)

µν qualifies as
the known conserved
energy-momentum
tensor of matter.

a . 1 µ (a) ' a

Tµν 6' T (N)
µν(

∇µTµν = 0
yet ∇µT (N)

µν , 0
)

This is ‘MONDian
regime’. Acceleration
of matter is below
a0 and µ (a) leads to
Tµν 6' T (N)

µν so that
T (N)
µν is symmetric yet

not divergence-free
(∇µT (N)

µν , 0). In
MOND regime thus
it is Tµν not T (N)

µν

which qualifies as the
conserved energy-
momentum tensor of
matter. In this small
acceleration regime,
matter develops novel
interactions that make
∇µT (N)

µν , 0 yet the
scalars a and Q help
Tµν be conserved and
give the observed flat
rotation curves.

Table 3.1. The acceleration dependence of the energy-momentum tensor Tµν of mat-
ter. In general, a = a(T (N)) and Q = Q(T (N)) are functions of the energy-
momentum tensor T (N)

µν . These scalars take appropriate values for Newto-
nian (T (N)

µν is conserved) and MONDian (T (N)
µν is not conserved) regimes.

Namely, matter develops novel interactions (such as the higher-derivative
kinetic terms, determined in (Milgrom, 1994, 1999) in the non-relativistic
regime) at small accelerations and its known energy-momentum tensor
T (N)
µν starts exhibiting non-conservation properties.

43



frame) for which

T (N)
µν = ρuµuν (3.9)

where ρ and uµ are energy density and velocity, respectively. ( One recalls that T (N)
µν =∫

dτρuµuν for a relativistic particle with trajectory yµ(τ) and energy density ρ = mc2δ4(x−

y(τ)).) It is divergence-free, ∇µT (N)
µν = 0, because densities and flows of dust are all con-

served. However, this conservation property holds only in normal circumstances where

Newtonian laws of motion are valid. In MONDian regime, where dust develops higher-

derivative kinetic interactions for instance, conservation breaks down, ∇µT (N)
µν , 0. On

dimensional grounds, it is likely to have structures of the form

∇µT (N)
µν ∼ ρa0uν (3.10)

in addition to terms involving derivatives of acceleration. In the absence of an invariant

action (like the non-relativistic model in (Milgrom, 1994, 1999)), this non-conservation

can be understood neither in origin nor in structure (ρa0uν in (3.10) is just an example).

Therefore, our goal is not to construct a model of the non-conservation of T (N)
µν but to

determine its consequences for structures and dynamics of a and Q.

3.2.2. Physical Properties of the Acceleration Scalar a

The acceleration scalar a, which must have the non-relativistic limit aNR given in

(3.8), must be constructed judiciously to correctly cover the Newtonian and MONDian

regimes. Hence, besides the crucial relation (3.8), it must have the following properties.

1. By our construction shown in Table 3.1, a must vary with the divergence of T (N)
µν as

a > 1 if ∇µT (N)
µν = 0

a < 1 if ∇µT (N)
µν , 0

(3.11)

while ∇µTµν = 0 in both cases.
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2. Being a scalar field, a involves contractions of the divergences of T (N)
µν . This neces-

sarily brings in the gravitational acceleration ~∇φg through the gravitational potential

φg = −1−g00 arising in the Newtonian limit of the metric tensor gµν. However, pres-

ence of ~∇φg must be prohibited for a to yield the kinetic acceleration in (3.8). It is

easy to see that this cannot be accomplished without using an independent source of

φg and the most natural source as such is the determinant g = Det(gµν) of the metric

tensor. However, being a scalar density rather than a scalar, g cannot appear in a by

itself; it must be divided by another scalar density to achieve covariance. This other

scalar density necessitates a new metric gµν, and naturally leads to a bi-metrical pic-

ture (whose relevance for MOND has been discussed in (Milgrom, 2009, 2010a)).

Then, acceleration scalar possess the functional form

a = a
(
a0,∇

µT (N)
µν ,T

(N)
µν , gµν, gµνg

µν, g/g
)

(3.12)

where g = Det(gµν) arises as an additional variable to be dynamically determined.

These two points plus (3.8) must be taken into account in formulating a. However, the

formulation process becomes utterly incomplete unless the additional metric gµν is demys-

tified. In the two subsections that follow, we first study gµν and then construct a model of

a.

3.2.2.1. Construction of gµν

The second metric tensor gµν, required to eliminate the gravitational acceleration
~∇φg from the acceleration scalar a, can be ascribed different structures depending on the

underlying dynamics. For instance, one may consider identifying it with T (N)
µν itself but

this attempt fails because its determinant vanishes in the case of dust (see equation (3.9)

above). Alternatively, one may take gµν as a second metric tensor with its own curva-

ture and dynamics but this setup, as was already elaborated by Milgrom in ((Milgrom,

2009, 2010a)) (see also (Soussa and Woodard, 2004)), gives a modified gravity theory

for MOND. This and other possible modified gravity models fall outside the scope of

the present work because the goal here is to develop a dynamical approach to relativistic

MOND similar in philosophy to Milgrom’s modified inertia approach (Milgrom, 1994,

1999).
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Our approach to gµν is dynamical rather than geometrical. In other words, the

dynamics underlying the asymptotics in Table 3.1 and structures in (3.12) proceed with

not only T (N)
µν but also gµν. Thus, gµν is a low-acceleration dynamical field, maybe one

of many as such, which facilitates the MOND regime. In modeling the dynamics, we

interpret the coupling gµνgµν between the two metrics as the kinetic term of four real

scalars φm (m = 0, . . . , 3), and construct the defining relation

gµν =
1

M4ηmn∂µφ
m∂νφ

n (3.13)

where ηmn is the flat Minkowski metric, and hence, scalar spectrum contains a a ghosty

(negative kinetic term) mode. We assume that φm develop the nontrivial backgrounds

〈gµν〉 =

 0 if 〈φm〉 = 0

ηµν if 〈φm〉 = M2xm
(3.14)

depending on whether the diffeomorphism invariance is exact (〈φm〉 = 0) or spontaneously

broken (〈φm〉 = M2xa) in the vacuum state governed by the vacuum expectation value

〈φa〉 of the scalars. Here, the scale M is around a0. The dynamics leading to (3.14) can

be known only in a setting where all interactions of matter and extra fields like φa are

specified. The diffeomorphism-breaking vacuum here sets the flat Minkowski metric ηµν
as the background metric about which gµν can be expanded in a perturbation series.

This induction mechanism is similar to what happens in gravitational Higgs mech-

anism (Percacci, 1991; Hooft, 2007; Kakushadze, 2008a,b; Demir and Pak, 2009) in

which a second metric tensor gµν is needed for writing a sensible graviton mass term

through the kinetic term gµνgµν of scalars and through the ratio of the determinants g/g.

Nevertheless, as was throughly analyzed in (Demir and Pak, 2009), these two contribu-

tions, instead of adding, can cancel each other to keep graviton massless, or equivalently,

gravity unmodified. This does not mean that the metric tensors in (3.14) do not participate

in other physical processes. Indeed, they can well generate our targeted structures involv-

ing the gravitational acceleration ~∇φ. Consequently, we associate the metric tensors in

(3.14) with the two phases of motion as

〈gµν〉 = 0 =⇒ Newtonian regime

〈gµν〉 = ηµν =⇒ MONDian regime
(3.15)
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keeping in mind that gravity is not necessarily massive. Indeed, the model of (Demir and

Pak, 2009) offers a wide parameter space to set V ′1(4) = 0 in equation (26) and ζV ′1(4) = 0

in equation (27). Moreover, potential terms in equation (11) give enough freedom to

realize massless and massive gravity phases. Therefore, as will be proven below, the

MOND regime can be realized by using the metrics in (3.14) without the necessity of

modifying gravity.

3.2.2.2. Construction of a

Having fixed all the variables in (3.12), we now start formulating the acceleration

scalar a. The kinetic term gµνgµν of scalars do not contribute to ~∇φg, and hence, the

argument of a in (3.12) represent the optimal list of dynamical variables. Out of various

possibilities, we consider for a a simple structure

a2a2
0

(
T (N)

)2
= ∇αT (N)β

α∇
θT (N)

θβ + c1

(
T (N)

)2
∇α

(
g
g

)
∇α

(
g
g

)
+ c2T (N)∇α

(
g
g

)
∇θT (N)

θα (3.16)

where all indices are raised and lowered with gαβ so that T (N) = gαβT (N)
αβ is the trace

of the matter energy-momentum tensor in Newtonian domain. Here, the dimensionless

constants c1,2 will be fixed in the weak field limit by imposing (3.8). The presence of

the metric determinants in (3.16) is crucially important for MOND because gravitational

acceleration ~∇φg is generated by derivatives of g/g (not gµνgµν, for instance).

Having fixed its functional form in (3.16), we now start checking if a satisfies its

defining asymptotics in (3.2) and Table 3.1. This requires its evaluation in the two vacua

in (3.14) since they correspond to the Newtonian and MONDian regimes as indicated in

(3.15).

1. 〈gµν〉 = 0 and ∇µT (N)
µν = 0. In this vacuum, 〈g〉 vanishes identically and, as follows

from (3.16), a becomes infinitely large thanks to the fact that c1,2 > 0, as will

be proven below. Now, having found a > 1, one gets µ (a) ' 1 and this gives

Tµν ' T (N)
µν from (3.7). Thus, the Einstein field equations (3.6) reduce to

Gµν = 8πGNT (N)
µν (3.17)
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in which consistency of the Bianchi identity on Gµν is maintained by the conserva-

tion of T (N)
µν . This conservation, ∇µT (N)

µν = 0, gives the usual Newtonian equations

for free-fall

~a = −~∇φg (3.18)

for dust distribution characterized by the energy-momentum tensor in (3.9). Clearly,

this equation holds if the metric tensor takes the form

gµν = Diag.
(
−(1 + 2φg), 1, 1, 1

)
µν

(3.19)

as appropriate for the non-relativistic limit.

In conclusion, as conjectured in equation (3.15), the minimum energy configuration

〈g〉 gives rise to the Newtonian regime for motion. Small perturbations about this

vacuum makes g , 0 but this determinant is expected to be sufficiently small to

secure the Newtonian regime a > 1.

2. 〈gµν〉 = ηµν and ∇µT (N)
µν , 0. In this vacuum, in the non-relativistic limit in which

metric tensor is given by (3.19), the acceleration scalar defined in (3.16) becomes

a2
NR =

~a · ~a
a2

0

+ (2 − c2)
~a · ~∇φg

a2
0

+ (1 − c2 + c1)
~∇φg · ~∇φg

a2
0

(3.20)

for dust whose energy-momentum tensor is given partly by (3.9) and partly by extra

interactions occurring in low-acceleration regime. It is due to this alleged extra

piece that T (N)
µν in (3.9) satisfies ∇µT (N)

µν , 0.

It is clear that, the acceleration scalar exhibits correct non-relativistic limit if

c1 = 1 , c2 = 2 (3.21)

because then the last two terms of (3.20) drop out to enable the required limit in

(3.8). Thus, the construct in (3.16) for a does indeed reduce to the acceleration of
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the point mass rather than the gravitational acceleration −~∇φg. The non-relativistic

result in (3.20), which holds for a < 1 or equivalently a < a0, entails µ (a) ' a so

that Einstein field equations (3.6) takes the form

Gµν = 8πGN

{
a

[
TN µν − Qgµν

]
+ Qgµν

}
(3.22)

where the scalar field Q is to be chosen judiciously to make the right-hand side to

have vanishing divergence. This constraint, ensuring conservation of Tµν, can be

difficult to satisfy if Q does not involve T (N)
µν and g/g. As a plausible structure, we

set

Q =
g T (N)

g
(3.23)

where one can of course consider alternative structures giving similar results in the

non-relativistic limit. In 〈gµν〉= ηµν vacuum, in the non-relativistic limit, conserva-

tion of Tµν gives

∇µ

(
a
a0

) {
ρuµu j − ρ

(
g
g

)
gµ j

}
= −

a
a0

{
ρ
(
a j + ∇ jφg

)
− ρ∇ jφg − (1 + 2φg)∇µρgµ j

}
− ρ∇ jφg − (1 + 2φg)∇µρgµ j (3.24)

where the metric tensor is given by (3.19). This differential equation is too involved

to suggest the MOND dynamics. Nevertheless, a closer look reveals that, if (i)

energy density ρ varies slowly in space (|~∇ρ| � ρ|~∇φg|) and if (ii) acceleration ~a

varies slowly both in space and time (|∇µρ| � ρ|∇µφg|) then one gets from (3.24)

a~a
a0

= −~∇φg (3.25)

which is the desired MOND relation given in equation (3.4).

3. Non-Conservation of T µν
N . Having obtained motion equations in the two regimes

of gµν, we now turn to a discussion of the non-conservation of T µν
N . In view of
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the discussions summarized in Table 3.1, the energy-momentum tensor Tµν, intro-

duced in (3.6) and defined in (3.7), is always conserved. This is necessary for the

consistency of the gravitational field equations (3.6). The T µν
N tensor, however, is

conserved only in the Newtonian regime. To see how these conservation features

hold, it proves useful to examine the divergence of T µν
N

∇µT
µν
N = f νN (3.26)

where

f νN = −[∇α ln µ (a)]
(
Tαν

N − Qgαν
)

+

(
1 −

1
µ (a)

)
∇νQ (3.27)

as follows from (3.6) with (3.7). It is obvious that, in the Newtonian regime, µ (a)→

1 and f νN vanishes identically to ensure conservation of T µν
N . In MONDian regime,

however, µ (a)→ a , 1, and f νN stays non-vanishing. This prohibits conservation of

T µν
N . These features are precisely the ones listed in Table 3.1. The MONDian force

is consistent with (3.22). Since a is related to gµν as in (3.16), the second metric gµν
turns out to be a fundamental ingredient of the entire formalism. Not surprisingly,

effective forces similar to f νN also arise in modified gravity theories which couple

curvature and energy-momentum tensor T µν
N directly (Haghani et al., 2013; Sharif

and Zubair, 2013; Odintsov and Sáez-Gómez, 2013).

In this section, we have succeeded to get the MONDian dynamics starting from (3.6) by

defining the acceleration scalar a as in (3.16), the Q scalar as in (3.23), and the second

metric tensor as in (3.13). Moreover, we have explicitly ensured conservation of the total

energy-momentum tensor T µν while determining effective MOND force associated with

the non-conservation of T µν
N . The analysis here provides an existence proof.

3.3. Conclusion and Future Prospects

In the present paper, we reported our results on relativistic MOND as derived from

modified dynamics rather than modified gravity. Our approach is an empirical one and

gives the beginning stage of a general investigation of relativistic MOND. The formalism

developed, though lacks an action principle, can be regarded as generalizing Milgrom’s
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modified inertia approach (Milgrom, 1994, 1999; Romero and Zamora, 2006; McCul-

loch, 2007) to relativistic domain. It is based on the energy-momentum tensor of matter.

The reason for this is that, the energy-momentum tensor of matter in Newtonian regime,

which necessarily looses its conservation property due to extra interactions occurring at

sub-Hubble accelerations, seems to provide correct path way to quadratic acceleration in

MOND regime. In fact, this dynamical structure cannot follow from other sources such as

potentials, metric tensor and curvature tensor. The main observation behind our approach

is that, matter possesses its usual energy-momentum tensor under the usual circumstances

where Newtonian laws hold. However, the same matter, at exceedingly small accelera-

tions below the Hubble scale, develops novel interactions causing non-conservation of

its energy-momentum tensor, and it is with these interactions that MONDian dynamics

arises. Our empirical relativistic model is essentially a bi-metric theory. However, our

approach to the second metric tensor mimics models of gravitational Higgs mechanism in

which the vacuum expectation value of the second metric tensor equals the flat Minkowski

metric, and it provides the requisite terms clearing the gravitational acceleration contribu-

tions to enable the quadratic acceleration piece needed for MOND.

The present study can be extended in various aspects for rectifying and improving

the present model.

• In the present work we have taken matter at the skirts of galaxies as dust. For

an accurate analysis of matter distribution, however, one may need to extend it to

perfect fluid and other forms of matter.

• In obtaining the MOND equation of motion (3.25) we have neglected contributions

from spatial variation of ρ. The situation can be improved by incorporating such

terms from (3.24). The effect can be pronounced especially at the arms of spirals

where dust density changes sharply.

Last but not least, the present model would be grossly improved if an invariant

action could be written. The alleged action, which must directly generalize Milgrom’s

modified inertia approach in (Milgrom, 1994, 1999) to relativistic velocities could be too

complicated to construct due mainly to the presence of the fixed acceleration scale a0. It

might necessitate a0 to be included in relativistic transformations.
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CHAPTER 4

HIGGSED STUECKELBERG VECTOR AND HIGGS

QUADRATIC DIVERGENCE

In this chapter we show that, a hidden vector field whose gauge invariance is

ensured by a Stueckelberg scalar and whose mass is spontaneously generated by the Stan-

dard Model Higgs field contributes to quadratic divergences in the Higgs boson mass

squared, and even leads to its cancellation at one-loop when Higgs coupling to gauge

field is fine-tuned. In contrast to mechanisms based on hidden scalars where a complete

cancellation cannot be achieved, stabilization here is complete in that the hidden vector

and the accompanying Stueckelberg scalar are both free from quadratic divergences at

one-loop. This stability, deriving from hidden exact gauge invariance, can have important

implications for modelling dark phenomena like dark matter, dark energy, dark photon

and neutrino masses. The hidden fields can be produced at the LHC.The detailed analysis

on the fingerprints of this scenario at the Large Hadron Collider and at the Future Circular

Collider are also presented. We find that the model is within the reach of current and

future colliders and the results are not in conflict with existing data. Last but not least,

this scenario accommodates naturally occurring viable dark matter (DM) candidates.

4.1. Introduction

With the discovery of a new resonance at the Large Hadron Collider (LHC), hav-

ing a mass mh = 125.9 ± 0.4 GeV (Aad et al., 2012; Collaboration et al., 2012) and cou-

plings well consistent with the Standard Model (SM) predictions (Ellis and You, 2013;

Djouadi and Moreau, 2013), the Higgs naturalness problem (Weisskopf, 1939; Wilson,

1971; Susskind, 1979) has become the foremost problem to be tackled. The resolution,

if any, brings its own new physics structure. The squared-masses of fundamental scalars,

contrary to chiral fermions and gauge bosons whose masses are protected by chiral and

gauge invariances, receive additive quantum corrections proportional to Λ2 – the UV

boundary of the SM. In explicit terms, one-loop quantum correction to Higgs squared-
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mass, originally computed by Veltman (Veltman, 1981), reads as

(δm2
H)quad =

Λ2

16π2

(
6λH +

9
4

g2 +
3
4

g′2 − 6g2
t

)
(4.1)

where g and g′ are the S U(2)L and U(1)Y gauge couplings of the SM, respectively, and

gt = mt/υH (υH = 246 GeV is the VEV of the Higgs field) is the top quark Yukawa

coupling. The top quark, being the most strongly coupled SM particle to the Higgs field,

induces the biggest contribution and ensures a nonvanishing, unremovable coefficient be-

fore Λ2. The Higgs boson mass is stabilized to electroweak scale if |δm2
H | < m2

H < Λ2.

This is the Veltman condition (VC). The parameters in it have all been measured, and

it violates the LHC results for Λ > 500 GeV (Feng, 2013; Wells, 2015; Giudice, 2013;

Altarelli, 2013).

Having no symmetry to prevent the Higgs boson mass from sliding to the higher

scales via (4.1), frequently a cancellation mechanism is implemented via fine-tuning of

counter terms in which low and high energy degrees of freedom are mixed. This renders

the whole procedure unnatural. It would be more natural, if the cancellation occurs by

means of a symmetry principle at higher scales, or if it arises by accidental cancellations

of certain terms. In fact, models of new physics constructed to complete the SM beyond

Fermi energies have all been motivated by Higgs naturalness problem (Feng, 2013; Wells,

2015; Giudice, 2013; Altarelli, 2013) (see also (Liu and Nath, 2013; Masina and Quiros,

2013; Lu et al., 2014; Fowlie, 2014) for studies within supersymmetry). So far, how-

ever, in the 7 TeV and 8 TeV LHC searches reaching out beyond the TeV domain, no

compelling sign of evidence for new physics has been found (Flechl, 2013; Feng et al.,

2010).

In consequence, having no TeV scale new physics for achieving naturalness, one

is forced to understand the electroweak unnaturalness within the SM plus general relativ-

ity, albeit with some imperative extensions required by specifics of the approach taken.

In 1995, conformal symmetry (Bardeen, 1995) was proposed as a mechanism for solv-

ing the Higgs mass hierarchy problem (the latest studies on the conformal symmetry as

a solution to the fine-tuning problem may be found in (Demir, 2012; Heikinheimo et al.,

2014; Tavares et al., 2014; Kawamura, 2013; Holthausen et al., 2013; Antipin et al., 2014;

Guo and Kang, 2015)). Recently, the Higgs coupling to spacetime curvature has been

found to stabilize the electroweak scale by a harmless, soft fine-tuning (Demir, 2014).

Furthermore, anti-gravity effects have been claimed to improve Higgs naturalness (Salvio
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and Strumia, 2014). Alternatively, one may view the parameters chosen by nature as

the necessity of existence, and this leads to anthropic considerations (Agrawal et al.,

1997). In variance with all these approaches, a fine-tuning method based on singlet scalars

(Chivukula and Golden, 1991; Chivukula et al., 1992; Bjorken, 1992) has also been em-

ployed. In this approach, main idea is to cancel the quadratic divergences in Higgs boson

mass with the loops of the singlet scalars that couple to Higgs field (Ruiz-Altaba et al.,

1991; Peyranere et al., 1991; Andrianov et al., 1995; Kundu and Raychaudhuri, 1996;

Bazzocchi et al., 2007). This method, though a fine-tuning operation by itself, nullifies

the quadratic divergences and accommodates viable dark matter candidates (Chakraborty

and Kundu, 2013; McDonald, 1994; Demir, 1999; Burgess et al., 2001; Barger et al.,

2008, 2009; Guo and Wu, 2010; Djouadi et al., 2012; Gonderinger et al., 2012; Batell

et al., 2012; Baek et al., 2012; Biswas and Majumdar, 2013; Bélanger et al., 2013; Cline

and Kainulainen, 2013; Demir et al., 2014; Haba et al., 2014). Nevertheless, for real sin-

glet scalars with vacuum expectation value (VEV), it is not possible to kill the quadratic

divergences consistently because there is a mixing between the CP-even component of

the Higgs field and the real singlet scalar, and it does not allow for simultaneous cancel-

lation of the quadratic divergences in Higgs boson and singlet scalar masses (Karahan

and Korutlu, 2014). There are also studies on two-Higgs doublet models without flavor

changing neutral currents, demonstrating that, although the cancellation in the coefficient

of the one-loop quadratically divergent terms is possible, the parameter space is severely

constrained (Chakraborty and Kundu, 2014b). An additional complex scalar triplet ex-

tension of the SM has also been studied and proven to be a solution to the fine-tuning

problem (Chakraborty and Kundu, 2014a).

In the present work, as a completely new approach never explored before, we

study protection of the Higgs boson mass by a SM-singlet gauge field (not a scalar field

as in (Ruiz-Altaba et al., 1991; Peyranere et al., 1991; Andrianov et al., 1995; Kundu

and Raychaudhuri, 1996; Bazzocchi et al., 2007)). In contrast to the attempts based on

hidden scalars (Ruiz-Altaba et al., 1991; Peyranere et al., 1991; Andrianov et al., 1995;

Kundu and Raychaudhuri, 1996; Bazzocchi et al., 2007; Chakraborty and Kundu, 2013,

2014b,a), which are now known to be unable to simultaneously protect the masses of

the Higgs boson and the singlet scalar (Karahan and Korutlu, 2014), in the present work,

we consider a hidden U(1) gauge field Vµ whose invariance is ensured by a Stueckelberg

scalar S and whose mass is spontaneously induced by the SM Higgs field. We show that

Vµ and S enable cancellation of the quadratic divergence in Higgs boson mass with no

quadratic divergence arising in their own masses. It is important that the SM Higgs boson
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is stabilized at one-loop along with already-stable hidden gauge and Stueckelberg scalar.

This phenomenological advantage has important implications not only for stabilizing the

Higgs boson mass but also for correlating the SM Higgs field with hidden sectors.

The study is organized as follows. In Section 2 below, we construct the model

starting from the basic Stueckelberg setup. Section 3 is devoted to computation of the

quadratic divergences and vanishing of the Higgs mass divergence by fine-tuning. We

conclude in Section 4.

4.2. The Model

In this section, we consider a massive Abelian gauge field Vµ accompanied by a

real scalar field S (x), introduced to preserve the gauge invariance of the theory. Originally

proposed by Stueckelberg (Stueckelberg, 1938a,b) and noted afterwards by Pauli (Pauli,

1941) that, Vµ satisfies a restricted U(1) gauge invariance, with the gauge function Θ(x)

obeying a massive Klein-Gordon equation. The mechanism provides an alternative to the

Higgs mechanism, where the vector boson acquires its mass with the breakdown of the

gauge invariance of not the Lagrangian but of the vacuum. These features are encoded in

the Stueckelberg model (Körs and Nath, 2004, 2005)

L = −
1
4

V2
µν +

1
2

m2
(
Vµ −

1
m
∂µS

)2

−
1
2

(
∂µVµ + mS

)2
(4.2)

where m is the common mass for Vµ and S . Despite its massive spectrum, this model

enjoys a U(1)m invariance

Vµ(x)→ V ′µ(x) = Vµ(x) + ∂µΘ(x),

S (x)→ S ′(x) = S (x) + mΘ(x) (4.3)

provided that
(
� + m2

)
Θ(x) = 0. Consequently, in spite of its nonvanishig hard mass, Vµ

enjoys exact gauge invariance, albeit with a restricted gauge transformation function Θ(x)

(Körs and Nath, 2004, 2005). In the massless limit, m→ 0, the Stueckelberg Lagrangian

(4.2) reduces toLm=0 = −1
4V2

µν+ 1
2∂µS ∂

µS , which is obviously U(1)m invariant in Lorentz

gauge (∂µVµ = 0) with an unrestricted Θ(x). Interestingly, the Stueckelberg scalar S ,

transforming like the gauge field Vµ in massive case, turns into a gauge-singlet scalar in
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massless limit.

Inspired from the Stueckelberg model (4.2), we propose the Higgsed Stueckelberg

model

L = −
1
4

V2
µν + λ1H†H

(
Vµ −

1
√
λ1aH

∂µS
)2

−
1
2

(
∂µVµ +

√
λ1aHS

)2
(4.4)

where λ1 is a positive dimensionless constant and aH is a mass parameter. This model

is manifestly gauge-invariant under both the hidden U(1)m invariance with m →
√
λ1aH,

and the electroweak gauge group S U(2)L⊗U(1)Y . The Higgs potential V(H) = m2
HH†H +

λH

(
H†H

)2
and hence the total energy is minimized at the Higgs field configuration

〈H†H〉 =


υ2

H
2 if m2

H < 0,

0 if m2
H > 0,

(4.5)

where υH =

√
−

m2
H

λH
is the Higgs VEV in the broken phase (m2

H < 0), to which masses of

the SM particles are all proportional. In this phase electroweak gauge group S U(2)L ⊗

U(1)Y is spontaneously broken down to electromagnetism. In unbroken phase (m2
H > 0)

electroweak group stays exact and all the SM particles but Higgs boson are massless.

From (4.4) it is clear that, the two phases of the SM directly leave distinguishable

effects on the mass of Vµ and kinetic term of S . And the Stueckelberg structure in (4.2) is

achieved properly if the mass parameter aH can keep track of the two electroweak phases.

This feature is implemented into the Higgsed Stueckelberg model (4.4) by setting

aH = Re


√
−

m2
H

λH

 =


υH if m2

H < 0,

0 if m2
H > 0,

(4.6)

which obviously dogs the Higgs VEV in (4.5). It turns out that 〈H†H〉 = a2
H/2 in both

broken and exact electroweak phases, and υH = aH specifically in the broken phase.

This switching ability of aH ensures that, in the broken phase of electroweak group, there

arises, in addition to the massive SM spectrum, a massive vector Vµ with mass M2
V = λ1υ

2
H

and a massive scalar m2
S = λ1a2

H. In the unbroken phase, however, the Higgs field stands

as the only massive field. The rest, inclusing Vµ and S , are all massless. In what follows,
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we will work in the physical vacuum of the broken electroweak phase and necessarily set

aH = υH everywhere.

It is instructive to study the transcription of the Stueckelberg U(1)m symmetry in

(4.3) into the Higgsed Stueckelberg case. To this end, one notes that the Stueckelberg

scalar S (x) facilitates U(1)m gauge invariance of the hidden sector, and also, helps keep

the Hamiltonian positive definite 1 (Stueckelberg, 1938a,b). In this formalism, Lorentz

subsidiary condition does not follow from equation of motion. Imposing an operator

equation of the form ∂µV (−)
µ (x)|phys〉 = 0, where V (−)

µ (x) involves the free field annihi-

lation operators, however, gives rise to conflict between the operator equation and the

canonical commutation relations. This puzzle is solved via the introduction of an addi-

tional scalar field S (x), replacing the operator equation with Φ(x)|phys〉 ≡ [∂µV (−)
µ (x) +

mS (−)(x)]|phys〉 = 0, where S (−)(x) also involves free field annihilation operators. The

operator equation decreases the number of degrees of freedom of the Lagrangian to four.

The required constraint to decrease it to three for a massive vector field comes into play

with the gauge transformation

Vµ(x)→ V ′µ(x) = Vµ(x) + ∂µΘ(x),

S (x)→ S ′(x) = S (x) +
√
λ1υHΘ(x) (4.7)

which closely follows the Stueckelberg transformation (4.3). The U(1)m invariance is en-

sured if (∂2 + λ1υ
2
H)Θ(x) = 0. This restricted gauge invariance changes to an unrestricted,

standard gauge invariance in the unbroken (m2
H > 0) electroweak phase in which Vµ and

S are massless and non-interacting. Moreover, S is a gauge singlet in this phase. The

Vµ and its Stueckelberg companion S do possess identical masses in broken and unbro-

ken phases of the electroweak symmetry. In broken phase, Stueckelberg-Feynman gauge,

1Note that the last term in (4.4) can also be written as Lgf = − 1
2α (∂µVµ + α

√
λ1υHS )2, where α is

a real parameter, similar to t’Hooft’s parametrization for Abelian Higgs model. The choice of α = 1
corresponds to the Stueckelberg-Feynman gauge. When α , 1, the restriction on the gauge function changes
to (�+αλ1υ

2
H)Λ(x) = 0. It is also possible to choose two different parameters α1 and α2, to check the gauge

independence of the parameters. However, there is the disadvantage that the terms of the form Vµ∂µB
survives for this choice. In the present work, we will work in Stueckelberg-Feynman gauge.
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their propagators read as

∆µν = −
i gµν

q2 − m2 , ∆ =
i

q2 − m2 (4.8)

where m2 = λ1υ
2
H is the common mass for Vµ and S .

4.3. Phenomenology

In this section we study quantum corrections to masses of the Higgs boson h and

Stueckelberg fields S and Vµ. The main constraint on the model is that Higgs boson

must weigh mh = 125.9 GeV (Aad et al., 2012; Collaboration et al., 2012). As follows

from (4.4), there are three-point and four-point interactions among the vector boson Vµ,

the Stueckelberg field S , and the Higgs field h. The vertex factors are summarized in

the Appendix C. The Higgsed Stueckelberg hidden sector then modifies the Veltman

condition (4.1) as

(δm2
H)quad =

Λ2

16π2

(
11
3
λH +

9
4

g2 +
3
4

g′2 − 6g2
t + λ1

)
(4.9)

wherein λ1 shows up as a new degree of freedom. In the philoshopy of the original at-

tempts in (Ruiz-Altaba et al., 1991; Peyranere et al., 1991; Andrianov et al., 1995; Kundu

and Raychaudhuri, 1996; Bazzocchi et al., 2007), one can suppress (δm2
H)quad by choos-

ing λ1 appropriately. In particular, (δm2
H)quad vanishes for λ1 = 4.41. The Vµ and S are

degenerate in mass, and for this specific value of λ1 they weigh m =
√
λ1υH = 517 GeV.

It is possible to decrease the value of λ1 by simply introducing N such fields, which in

turn lowers the masses of the new fields while increasing their number. In Figure 4.1, a

schematic representation of the one-loop quantum corrections to Higgs mass is shown in

our extended scenario. As it is apparent from this figure, a hidden Abelian gauge sector

splendidly cancels the quadratically divergent contributions to Higgs mass from the SM

fields.s

It is clear that suppressing (δm2
H)quad requires λ1 to be finely tuned. The fine-tuning

here is of the same size as the fine-tunings required for hidden scalar sectors (Ruiz-Altaba

et al., 1991; Peyranere et al., 1991; Andrianov et al., 1995; Kundu and Raychaudhuri,

1996; Bazzocchi et al., 2007; Chakraborty and Kundu, 2013; Karahan and Korutlu, 2014;
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Figure 4.1. The schematic representation of the quadratically divergent contributions
to Higgs boson mass at one-loop level. Here, h denotes the Higgs bo-
son, W±, Z the electroweak bosons, t the top quark, V ,S the hidden gauge
boson Vµ and the Stueckelberg scalar S , respectively. Higgs mass is pro-
tected from destabilizing quantum effects when the hidden gauge sector is
included.

Chakraborty and Kundu, 2014b,a). There is one big difference, however. Indeed, these

models based on hidden scalars suffer from the fact that masses of the hidden scalars

and of the SM Higgs boson cannot be protected simultaneously (Karahan and Korutlu,

2014). The hidden scalar continues to have a mass O(Λ) after suppressing the radiative

contribution to the Higgs boson mass. In the Higgs-Stueckelberg model this impasse

is overcome. To see this, one notes that mass of the Stueckelberg field does actually

receive quadratically divergent radiative corrections from two self energy diagrams (one

with Higgs boson in the loop and another with both Higgs and the Stueckelberg field S in

the loop). The self energy diagram with a Higgs boson and vector boson Vµ in the loop

diverges logarithmically. The spruceness of this scenario emerges at this point in that the

quadratically-divergent contributions to the mass of the Stueckelberg field from the two

loop diagrams cancel out to give

(δm2
S )quad = 0 (4.10)

In the same manner, the mass of Vµ is protected against quadratically-divergent quantum
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corrections

(δm2
V)quad = 0 (4.11)

Leaving aside the logarithmic corrections, masses of Vµ and S are found to be UV-

insensitive. This is actually expected by gauge invariance because there exists an unbro-

ken U(1)m invariance in both broken and unbroken electroweak phases. The invariance

protects the mass of Vµ. Interestingly, it also protects the mass of S because S by itself

acts like a gauge field when Vµ is massive and becomes a non-interacting U(1)m singlet

when Vµ is massless. Clearly, the radiative stability of the hidden sector can have impor-

tant implications for modelling ‘dark phenomena’ like Dark Matter, Dark Energy, Dark

Photon and neutrino masses.

4.4. Collider Analysis

In the Higgsed Stueckelberg scenario, the Vµ and S states appear as Higgs portal

fields. By virtue of the fact that they do not interact with any other SM particles but the

Higgs boson, the HS fields remain cosmologically stable and might serve as perfect DM

candidates. Accordingly, even though they can be pair produced in the decay of Higgs

Boson, of which the dominant production mode is the gluon fusion at both LHC and FCC,

they remain undetectable and would appear only as missing energy. The Feynman dia-

gram of the process is shown in Fig. 4.2. The virtual Higgs boson, when produced in

association with the gluon fusion, may decay into either two S particles, two Vµ states or

one S and one Vµ. Additional production channels are not taken into account, as they con-

tribute to the forenamed process at least ten times less than the gluon fusion mode for the

whole energy range (See the recent analysis on the prospects for Higgs physics at energies

up to 100 TeV (Baglio et al., 2015)). For the numerical analysis of our model, we modi-

fied the SM in LanHEP-3.2.0 (Semenov, 2016), and exported the new model to FeynArts-

3.9 (Hahn, 2000) and FormCalc-9.0 (Hahn and Perez-Victoria, 1999). LHAPDF-6.1.5

(Buckley et al., 2015) is used for evaluating parton density functions (PDFs). We have

computed the number of events generated via gluon fusion channel at LHC with center of

mass energies of
√

s = 13 TeV at 18 fb−1, and at FCC with
√

s = 100 TeV at 100 fb−1 as a

function of λ1. Although, for a natural scenario at one loop one needs λ1 = 4.41, at higher

loops, this result is subject to changes and this is why we have plotted our results with
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Figure 4.2. The Feynman diagram for the pair production of S and Vµ states via the
dominant production mode of gluon fusion. g are the gluon fields, f are
the fermions of the SM, h is the Higgs boson and HS stand for the hidden
sector fields Vµ and S .

respect to the λ1 parameter. The results are summarized in the following three figures.
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Figure 4.3. The number of events generated per year for the process pp → S S via
gluon fusion channel at LHC with

√
s = 13 TeV and luminosity 18 fb−1,

and at FCC with c.m. energy
√

s = 100 TeV and luminosity 100 fb−1. The
MMHT2014nnlo68cl PDF set has been used.
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Figure 4.4. The number of events generated per year for the process pp → VV via
gluon fusion channel at LHC with

√
s = 13 TeV and luminosity 18 fb−1,

and at FCC with c.m. energy
√

s = 100 TeV and luminosity 100 fb−1. The
MMHT2014nnlo68cl PDF set has been used.
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Figure 4.5. The number of events generated per year for the process pp → VS via
gluon fusion channel at LHC with

√
s = 13 TeV and luminosity 18 fb−1,

and at FCC with c.m. energy
√

s = 100 TeV and luminosity 100 fb−1. The
MMHT2014nnlo68cl PDF set has been used.
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Figure 4.6. The Feynman diagram for the pair production of photons together with the
HS states.g are the gluon fields, f are the fermions of the SM, h is the
Higgs boson and HS stand for the hidden sector fields Vµ and S and γ is
the photon.

All three give similar results in the sense that the number of events generated

decreases as the λ1 increases. Given that the masses of HS particles are found by mHS =
√
λ1υH where υH = 246 GeV (Demir et al., 2015), in the parameter space with 4.0 ≤ λ1 ≤

5.0, we obtain 492 GeV ≤ mHS ≤ 550 GeV. Hence, clearly, the Higgesd Stueckelberg

scenario reopens the door for new physics at TeV scale and the results obtained are within

the reach of both high-luminosity LHC (HL-LHC) and FCC. As both S and Vµ states are

stable, they contribute to the invisible decays of the virtual Higgs boson. The most recent

ATLAS searches set the upper limit for the invisible branching ratio of Higgs boson to

0.23 (Aad et al., 2015). Then, the ratio

R(h→ inv) =
σ(gg→ HS HS )

σ(gg→ h)BR(h→ inv)
(4.12)

for the highest production rate of hidden sector in the Higgsed Stueckelberg scenario reads

0.00015 for 13 TeV center of mass energy, and 0.0026 for 100 TeV. The production cross

sections for the Higgs boson might be found in the recent paper (Baglio et al., 2015). The

smallness of the ratio indicates that, the Hidden sector does not bring any deviation in

the invisible decays of Higgs boson and therefore our model is well consistent with the

existing data. This result steer us into the elegant solution for the DM problem of the SM.

One possible observation channel of this scenario at LHC might be through the

diphoton production. The Feynman diagram is given in Fig 4.6. We compute number

of events generated at the LHC at
√

s = 13 TeV with integrated luminosity 18 fb−1 both
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Figure 4.7. The number of events generated per year for the process pp → HS γγ via
gluon fusion channel at LHC with

√
s = 13 TeV and luminosity 18 fb −1

with respect to the missing transverse energy. The MMHT2014nnlo68cl
PDF set has been used. The error bars are statitistical.

with respect to photon transverse momentum and mising energy. The simulation pro-

grams used in the analysis of this events are FeynRules (Christensen and Duhr, 2009;

Christensen et al., 2011; Alloul et al., 2014) for implementing our model and CalcHEP

(Belyaev et al., 2013) for the calculation of Feynman diagrams, integration over multi-

particle phase space and parton level event simulation. The interface between FeynArts

and Calchep is validated by (Christensen et al., 2011). Fig. 4.7 and Fig. 4.8 summa-

rizes our results. The analysis indicate that it is possible to detect the fingerprint of this

scenario through diphoton production channel in the missing energy higher than 1.8 TeV.

64



D
at
a/
B
k
g

100081563044526075

10−2

10−3

10−4

10−5

background

signal

/pT (GeV)

E
ve
n
ts
/G

eV
@
18
fb

−
1

100081563044526075

102

101

100

10−1

10−2

10−3

10−4

10−5

Figure 4.8. The number of events generated per year for the process pp → HS γγ
via gluon fusion channel at LHC with
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4.5. Dark Matter Analysis

Assuming a replica of the Lagrangian given in Eq. (4.4) with Vµ → V ′µ, S → S ′

and λ1 → λ2 one can obtain a natural Higgs scenario together with the DM candidates V ′µ
and S ′ satisfying the 2013 PLANCK measurement of the relic density (Ade et al., 2014)

ΩCDMh2 = 0.1199 ± 0.0027 (4.13)

at 68% CL. While the naturalness of the Higgs boson is achieved via the unprimed fields

in Lagrangian given in Eq. (4.4), the relic density result of Planck Space Telescope is

satisfied with the primed fields. The DM analysis is completed via the routines of Mi-

cromegas software (Bélanger et al., 2015). The relic density constraint fixes the coupling

of primed HS fields with the Higgs field as λ2 = 0.0465.

The condition in Eq. (4.9) with the additional terms from the replica HS reads

(δm2
H)quad =

Λ2

16π2

(
4
3
λH +

9
4

g2 +
3
4

g′2 − 6g2
t + λ1 + λ2

)
(4.14)

resulting an effective naturalness for Higgs at the TeV scale.

4.6. Conclusion and Outlook

The discovery of a new scalar (Aad et al., 2012; Collaboration et al., 2012) at the

LHC, consistent with the SM Higgs boson, has accelerated studies on the UV-sensitivity

of the Higgs boson. As opposed to the physical masses of chiral fermions and gauge

bosons, which are protected by chiral and gauge symmetries, there is no symmetry prin-

ciple to protect the Higgs boson mass against quadratically divergent quantum corrections.

In the very absence of TeV-scale new physics, one is left with a finely-tuned Higgs sector

where nature and degree of fine-tuning vary with the modeling details. In the presence

of hidden scalars, despite the protection of the Higgs boson mass the hidden sector itself

is UV-unstable. In case the hidden sector is formed by the spacetime curvature scalar,

the fine-tuning is severe yet harmless because the SM fields and couplings are immune

to its presence. The fine-tuning is as severe as hidden scalars in other field-theoretic ap-
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proaches.

In this chapter of the thesis we have shown that a hidden sector spanned by an

Abelian vector field whose mass is induced by electroweak breaking and whose gauge in-

variance is sustained by a Stueckelberg scalar can lead to stabilization of the Higgs boson

mass by finely tuning its coupling to the SM Higgs field. In spite of this unavoidable fine-

tuning, the Higgsed Stueckelberg model possesses the striking property that the hidden

sector is insensitive to the UV scale. This stability, deriving from unbroken hidden gauge

invariance, can have important collider, astrophysical and cosmological implications. In-

deed, a stable hidden sector can be utilized in constructing viable models of Dark Matter,

Dark Energy, Dark Photon and neutrino masses. The model can be tested at the LHC (and

its successor FCC) via direct productions of Vµ and S fields.

We have also analysed the fingerprints of the Vµ and S fields from Higgsed Stueckelberg

scenario at the HL-LHC and the FCC. Thanks to its simplistic formalism, the only new

parameter in the model is λ1, the coupling of the Higgs field with the HS fields. Al-

though, at one loop the Higgs mass stability is realized via setting λ1 = 4.41, considering

the possible higher loop effects, the analysis is performed in the interval 4.0 ≤ λ1 ≤ 5.0.

We compute the number of events generated for the HS fields against λ1 at LHC with
√

s = 13 TeV and luminosity 18 fb−1, and at FCC with c.m. energy
√

s = 100 TeV and

luminosity 100 fb−1, and find that the production cross sections gg→ S S , gg→ VµVν and

gg → S Vµ decrease while λ1 increases. The results are not in conflict with the existing

data in the invisible Higgs branching ratio and are within the reach of both at HL-LHC

and FCC. The possible observation channel of this scenario might be through diphoton

production with missing energy which might serve as distinctive signal of this scenario.

67



CHAPTER 5

CONCLUSION

An anamolous observation -flat rotation curves of galaxies lead to two different

hypothesis - Dark Matter and MOND. Dark Matter (DM) approach states that there is non-

shining matter at the outer parts of galaxies. It is a well established hypothesis to explain

anomalous observations not only at galactic scales but also at larger scales. In spite of

many achievements, up to now the lack of direct and indirect detection of dark matter

candidates proposed up to now yields the question whether there is really dark matter

in the Universe or not. On the other hand, Modified Newtonian Dynamics (MOND)

approach is based on the modification of well known laws of the motion - Newtonian

Dynamics. However, the lack of full-fledge relativistic generalization of MOND is still

a problem. Both of them possess some challenges as well as many achievements.In this

thesis, we focus on the main problems of Dark Matter and MOND theory.

We began with the relativistic generalization of MOND theory. The first success-

ful relativistic generalization is TeVeS theory based on bimetric gravity. TeVeS includes

vector and scalar field actions in addition to the standard tensor field action. These extra

degrees of freedom are added by hand in an unnatural way. In this study, we have shown

that TeVeS-like theory can be obtained in a more natural way via metric-affine gravity

wherein metric and connection is treated as two independent variables. We have obtained

vector and scalar fields from the geometry, that is what we mean by a natural way. To do

this, we first decomposed affine connection as Levi-Civita connection and rank (1,2) ten-

sor field. By using the fact that a higher rank tensor field can be decomposed to the lower

rank tensor fields such as vector fields, we have obtained a tensor-vector theory. Since

there are three different ways for the contraction of rank(1,2) tensor field while getting

vector fields, there arise also three different vector fields. To decrease the number of these

fields, we used some plausible constraints on the tensorial structure- non-symmetric ten-

sor field. Imposing this constraint makes the theory a tensor-vector theory. However, the

lack of scalar field prevents us from obtainig a tensor-vector-scalar theory. At this point,

we used the fact that a vector field may be composite field composed of a fundamental

vector field and the gradient of a scalar field. Via this definition, we have obtained a true

tensor-vector-scalar theory which is more familiar ones like TeVeS gravity

Secondly, we have studied the relativistic MOND theory without action principle.
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The difference of our study from the ones in the literature is our dynamical approach to the

relativistic MOND theory. We have focused on the modified dynamics rather than mod-

ified gravity. We began with the question that what modifications in energy-momentum

tensor may yield the MONDian regime. Then, we modified the energy-momentum ten-

sor by using a new scalar structure in relativistic domain called as acceleration scalar a

and another scalar quantity Q based on a second metric. The construction of these scalar

quantities and the physics that lies under are very elegant. Acceleration scalar a involves

the divergence of energy-momentum tensor and the gradient of the other new scalar Q.

The only relativistic structure related to the acceleration in weak field limit is the diver-

gence of energy-momentum tensor. This is why we generalize the energy momentum

tensor with a such that relativistic scalar quantity. The other scalar quantity is based on an

induced metric defined by four real scalars developing non-trivial backgrounds depending

on the whether the diffeomorphism invariance is exact or spontaneously broken. There-

fore, the existence of second metric leads to arise two different regimes( Newtonian and

MONDian regimes) depending on the whether the diffeomorphism invariance breaks or

not. When diffeomorphism invariance is exact, equations of motion are reduced to the

standard Einstein Field Equations, and then Newtonian dynamics in weak field limit. On

the other hand, spontaneously broken of the diffeomorphism invariance yields to modified

equations of motion which may be reduced to true MONDian force in the non-relativistic

limit.

Finally, we have proposed an extended SM scenario called Higgsed Stueckelberg

model. This scenario involves a hidden sector composed of an Abelian vector field whose

gauge invariance is guaranteed by a Stueckelberg scalar. We have shown that the contri-

butions from hidden sector to the quadratic divergences in the Higgs boson mass-squared

may stabilize the Higgs boson mass at one-loop. Moreover, by adding the primed replicas

of these fields with a new coupling constant, we have shown that primed Higgsed Stueck-

elberg fields can serve as perfect dark matter candidates which provides the current relic

density of DM. In order to test the model at LHC and FCC, we have also analysed the

fingerprints of the Vµ and S fields. As a result, the Higgsed Stueckelberg scenario is

exquisite in the sense that it wins the battle against the destabilization of the Higgs mass

and also does not push the new physics beyond TeV scale. As the quanta of HS fields are

stable Higgs portal states, while they serve for the purposes of naturalness their primed

replicas may satisfy the current relic density result without touching the stabilization of

Higgs at the TeV scale.
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mond with hořava gravity? Modern Physics Letters A 25(29), 2501–2506.

Romero, J. M. and A. Zamora (2006). Alternative proposal to modified newtonian dy-

namics. Physical Review D 73(2), 027301.

Rubin, V. C. and W. K. Ford Jr (1970). Rotation of the andromeda nebula from a spectro-

scopic survey of emission regions. The Astrophysical Journal 159, 379.

Rubin, V. C., W. K. Ford Jr, and N. Thonnard (1980). Rotational properties of 21 sc

galaxies with a large range of luminosities and radii, from ngc 4605/r= 4kpc/to ugc

84



2885/r= 122 kpc. The Astrophysical Journal 238, 471–487.

Rubin, V. C., N. Thonnard, and W. Ford Jr (1978). Extended rotation curves of high-

luminosity spiral galaxies. iv-systematic dynamical properties, sa through sc. The As-

trophysical Journal 225, L107–L111.

Ruiz-Altaba, M., B. González, and M. Vargas (1991). Cern-th. 5558/89, 1989; m. capde-

qui peyranere, jc montero, g. moultaka. Phys. Lett. B 260, 138.

Sagi, E. (2010). Propagation of gravitational waves in the generalized tensor-vector-scalar

theory. Physical Review D 81(6), 064031.

Sagi, E. and J. D. Bekenstein (2008). Black holes in the tensor-vector-scalar theory of

gravity and their thermodynamics. Physical Review D 77(2), 024010.

Salvio, A. and A. Strumia (2014). Agravity. Journal of High Energy Physics 2014(6),

1–26.

Sanders, R. (1997). A stratified framework for scalar-tensor theories of modified dynam-

ics. The Astrophysical Journal 480(2), 492.

Sanders, R. (2005). A tensor-vector-scalar framework for modified dynamics and cosmic

dark matter. Monthly Notices of the Royal Astronomical Society 363(2), 459–468.

Sanders, R. and E. Noordermeer (2007). Confrontation of modified newtonian dynamics

with the rotation curves of early-type disc galaxies. Monthly Notices of the Royal

Astronomical Society 379(2), 702–710.

Sanders, R. and M. Verheijen (1998). Rotation curves of ursa major galaxies in the context

of modified newtonian dynamics. The Astrophysical Journal 503(1), 97.

Sanders, R. H. and S. S. McGaugh (2002). Modified newtonian dynamics as an alternative

to dark matter. Annual Review of Astronomy and Astrophysics 40(1), 263–317.

Semenov, A. (2016). Lanhep-a package for automatic generation of feynman rules from

the lagrangian. version 3.2. Computer Physics Communications 201, 167–170.

85



Sharif, M. and M. Zubair (2013). Energy conditions in f (r, t, r µν t µν) gravity. Journal

of High Energy Physics 12(2013), 1–21.

Skordis, C. (2006). Tensor-vector-scalar cosmology: covariant formalism for the back-

ground evolution and linear perturbation theory. Physical Review D 74(10), 103513.

Skordis, C. (2008). Generalizing tensor-vector-scalar cosmology. Physical Review

D 77(12), 123502.

Skordis, C. (2009). The tensor-vector-scalar theory and its cosmology. Classical and

Quantum Gravity 26(14), 143001.

Sotiriou, T. P. and S. Liberati (2007). The metric-affine formalism of f (r) gravity. In

Journal of Physics: Conference Series, Volume 68, pp. 012022. IOP Publishing.

Soussa, M. and R. P. Woodard (2003). A nonlocal metric formulation of mond. Classical

and Quantum Gravity 20(13), 2737.

Soussa, M. and R. P. Woodard (2004). A generic problem with purely metric formulations

of mond. Physics Letters B 578(3), 253–258.

Springel, V., S. D. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro,

R. Thacker, D. Croton, J. Helly, et al. (2005). Simulations of the formation, evolu-

tion and clustering of galaxies and quasars. nature 435(7042), 629–636.

Stabile, A. and G. Scelza (2011). Rotation curves of galaxies by fourth order gravity.

Physical Review D 84(12), 124023.

Stueckelberg, E. (1938a). Forces of interaction in electrodynamics and in the field theory

of nuclear forces.(parts ii and iii). Helv. Phys. Acta 11, 299–328.

Stueckelberg, E. (1938b). Forces of interaction in electrodynamics and in the field theory

of nuclear forces.(parts ii and iii). Helv. Phys. Acta 11, 299–328.

Susskind, L. (1979). Dynamics of spontaneous symmetry breaking in the weinberg-salam

theory. Physical Review D 20(10), 2619.

86



Tamaki, T. (2008). Post-newtonian parameters in the tensor-vector-scalar theory. Physical

Review D 77(12), 124020.

Tan, A., M. Xiao, X. Cui, X. Chen, Y. Chen, D. Fang, C. Fu, K. Giboni, F. Giuliani,

H. Gong, et al. (2016). Dark matter results from first 98.7 days of data from the

pandax-ii experiment. Physical Review Letters 117(12), 121303.

Tavares, G. M., M. Schmaltz, and W. Skiba (2014). Higgs mass naturalness and scale

invariance in the ultraviolet. Physical Review D 89(1), 015009.

Tegmark, M., D. J. Eisenstein, M. A. Strauss, D. H. Weinberg, M. R. Blanton, J. A.

Frieman, M. Fukugita, J. E. Gunn, A. J. Hamilton, G. R. Knapp, et al. (2006). Cos-

mological constraints from the sdss luminous red galaxies. Physical Review D 74(12),

123507.

Tsujikawa, S. (2003). Introductory review of cosmic inflation.

Veltman, M. (1981). Acta Phys. Pol. B 12, 437.

Vitagliano, V., T. P. Sotiriou, and S. Liberati (2011). The dynamics of metric-affine grav-

ity. Annals of Physics 326(5), 1259–1273.

Weinberg, S. (1978). A new light boson? Physical Review Letters 40(4), 223.

Weisskopf, V. (1939). On the self-energy and the electromagnetic field of the electron.

Physical Review 56(1), 72.

Wells, J. D. (2015). The utility of naturalness, and how its application to quantum electro-

dynamics envisages the standard model and higgs boson. Studies in History and Phi-

losophy of Science Part B: Studies in History and Philosophy of Modern Physics 49,

102–108.

Wilson, K. G. (1971). Renormalization group and strong interactions. Physical Review

D 3(8), 1818.

Wu, X.-P., T. Chiueh, L.-Z. Fang, and Y.-J. Xue (1998). A comparison of different cluster

mass estimates: consistency or discrepancy? Monthly Notices of the Royal Astronom-

87



ical Society 301(3), 861–871.

Yüksel, H., M. D. Kistler, and T. Stanev (2009). Tev gamma rays from geminga and the

origin of the gev positron excess. Physical review letters 103(5), 051101.

Zlosnik, T., P. Ferreira, and G. D. Starkman (2006). Vector-tensor nature of bekenstein’s

relativistic theory of modified gravity. Physical Review D 74(4), 044037.

Zlosnik, T., P. Ferreira, and G. D. Starkman (2007). Modifying gravity with the aether:

An alternative to dark matter. Physical Review D 75(4), 044017.

Zwicky, F. (1933). Die rotverschiebung von extragalaktischen nebeln. Helvetica Physica

Acta 6, 110–127.

88



APPENDIX A

CONTRACTION TENSORS

Contraction of tensors becomes a tedious operation as their rank becomes larger

and larger. Already at the rank-3 level, there arise various possibilities in contracting the

indices. Indeed, if one defines

A • B ≡ AλαβΞ
αβµν
λρ B

ρ
µν (A.1)

the contraction tensor Ξ
αβµν
λρ is found to have the most general form

Ξ
αβµν
λρ = gλρ

(
gαβgµν ⊕ gαµgβν ⊕ gανgβµ

)
⊕ δαλ

(
gβνδµρ ⊕ gβµδνρ ⊕ gµνδβρ

)
⊕ δ

β
λ

(
gανδµρ ⊕ gαµδνρ ⊕ gµνδαρ

)
⊕ δ

µ
λ

(
gβνδαρ ⊕ gαβδνρ ⊕ gανδβρ

)
⊕ δνλ

(
gβµδαρ ⊕ gαβδµρ ⊕ gαµδβρ

)
(A.2)

where ⊕ implies + or − depending on whether symmetric or antisymmetric combinations

of the indices are involved. Clearly, ⊕ also contains the appropriate symmetry factors.

As an example, let us take Bρµν = Sρµν which is antisymmetric in (µ, ν). In this case,

when contracting Sρµν with Ξ
αβµν
λρ only the anti symmetric part of Ξ

αβµν
λρ in (µ, ν) matters. In

other words, when Bρµν = Sρµν we consider only

Ξ
αβ[µν]
λρ =

1
2

[
gλρ

(
gαµgβν − gανgβµ

)
⊕ δαλ

(
gβνδµρ − gβµδνρ

)
⊕ δ

β
λ

(
gανδµρ − gαµδνρ

)
⊕

[
δ
µ
λ

(
gβνδαρ ⊕ gαβδνρ ⊕ gανδβρ

)
− δνλ

(
gβµδαρ ⊕ gαβδµρ ⊕ gαµδβρ

) ]]
(A.3)

which is anti-symmetric in (µ, ν).

If Aλαβ in (A.1) is antisymmetric in (α, β) then we consider antisymmetric part of
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(A.3).

Ξ
[αβ][µν]
λρ =

1
4

[
δαλ

(
gβνδµρ − gβµδνρ

)
− δ

β
λ

(
gανδµρ − gαµδνρ

) ]
+

1
4

[
δ
µ
λ

(
gβνδαρ − gανδβρ

)
− δνλ

(
gβµδαρ − gαµδβρ

) ]
+

1
2

gλρ
(
gαµgβν − gανgβµ

)
(A.4)

For instance, S • S will be computed by using this contraction tensor.

However, ifAλαβ in (A.1) is symmetric in (α, β) then we have to consider symmetric

part of (A.3).

Ξ
(αβ)[µν]
λρ =

1
4

[
δαλ

(
gβνδµρ − gβµδνρ

)
+ δ

β
λ

(
gανδµρ − gαµδνρ

) ]
+

1
4

[
δ
µ
λ

(
gβνδαρ + gανδβρ

)
− δνλ

(
gβµδαρ + gαµδβρ

) ]
+

1
2

gαβ
(
δ
µ
λδ

ν
ρ − δ

ν
λδ

µ
ρ

)
(A.5)

For instance, Q • S should be computed by using this contraction tensor. In computing

Q •Q we should symmetrize in both (µ, ν) and (α, β). Then contraction tensor of Q •Q is

given

Ξ
(αβ)(µν)
λρ = gαβgµνgλρ +

1
2

[
gλρ

(
gαµgβν + gανgβµ

)
+ gµν

(
δαλδ

β
ρ + δ

β
λδ

α
ρ

)
+ gαβ

(
δ
µ
λδ

ν
ρ + δνλδ

µ
ρ

) ]
+

1
4

[
δαλ

(
gβνδµρ + gβµδνρ

)
+ δ

β
λ

(
gανδµρ + gαµδνρ

) ]
+

1
4

[
δ
µ
λ

(
gβνδαρ + gανδβρ

)
+ δνλ

(
gβµδαρ + gαµδβρ

) ]
(A.6)

In addition to these, one can compute contraction of divergence of tensors as

∇GA • ∇GB = ∇
G
λAλ

αβΞ
αβµν∇GρB

ρ
µν (A.7)
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Ξαβµν is contraction tensor and defined in general form as

Ξαβµν = gαβgµν ⊕ gαµgβν ⊕ gανgβµ (A.8)

If A is symmetric in (α, β) and B is symmetric in (µ, ν) contraction tensor takes the form

Ξ(αβ)(µν) = gαβgµν +
1
2

(
gαµgβν + gανgβµ

)
(A.9)

this contraction tensor can be used to compute ∇Q • ∇Q because Q is symmetric in (αβ).

To compute ∇S •∇S, one needs contraction tensor which is antisymmetric both couple of

indices.So,

Ξ[αβ][µν] =
1
2

(
gαµgβν − gανgβµ

)
(A.10)

If one writes contraction tensor of ∇Q • ∇S, it is as;

Ξ(αβ)[µν] = 0 (A.11)
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APPENDIX B

POSITIVE-DEFINITE MASS MATRIX

In the text, we mentioned that for a stable theory, each of the three eigenvalues

must individually be positive. This leads to non-trivial constraints on the coefficients in

(2.42). In this appendix we shall discuss certain related details. The eigenvalues of (2.41)

follow from the cubic algebraic equation

−λ3 + bλ2 + cλ + d = 0 (B.1)

where

b = aVV + aUU + aWW ,

c = −aVVaUU − aVVaWW − aUUaWW + a2
UW + a2

VU + a2
VW ,

d = aVVaUUaWW + 2aVUaUWaVW − a2
UWaVV − a2

VWaUU − a2
VUaWW . (B.2)

The roots of (B.1) must each be non-negative for guaranteeing absence of instabilities.

The analytic expressions for roots are well-known. However, the constraint equations

they lead to are too complicated to achieve specific statements about the elements of the

mass matrix (2.41). Nevertheless, in a given specific problem, one can determine the

allowed ranges for aVV , · · · , aUW at least numerically,

As an algebraically simpler case to exemplify, one can focus on the special case

of vanishing discriminant, that is, one considers

∆ = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2 (B.3)

so that only two independent eigenvalues are left. Indeed, one has

λ1 = −
b

3a
−

2
3a

3

√
1
2

[2b3 − 9abc + 27a2d] (B.4)
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and

λ2 = −
b

3a
+

1
3a

3

√
1
2

[2b3 − 9abc + 27a2d] (B.5)

For positive-definite mass matrix, λ1 and λ2 must each be positive:

λ1 > 0⇒ −
b
2
<

3

√
1
2

[2b3 − 9abc + 27a2d] (B.6)

and

λ2 > 0⇒ b >
3

√
1
2

[2b3 − 9abc + 27a2d] (B.7)

These two constraints lead one at once to the bound

−
b
2
<

3

√
1
2

[2b3 − 9abc + 27a2d] < b (B.8)

Similar bounds can be derived for general as well as special cases (Demir, 2004). In

general, constraints on various coefficients become more suggestive in some physically

relevant special cases. We here thus exemplify two such cases: Symmetric and Antisym-

metric connections.

1. Symmetric Connection : Gλαβ=G
λ
βα

As we have mentioned in the text, in this case, torsion tensor identically vanishes

(Sλαβ = 0), and consequently Vα = Uα. The theory then reduces to a two-vector

theory of V and W. From Eq. (2.40) the mass-squared matrix of vectors is found to

be

1
2

M2
Pl

 a′VV + a′UU + 2a′VU a′VW + a′UW

a′VW + a′UW a′WW

 (B.9)
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where various coefficients are given by

a′VV =
1

18
+

44
9

cQ ,

a′UU = aWW ,

a′WW =
1

18
+

14
9

cQ ,

a′VU = −
1
9

+
20
9

cQ ,

a′VW = −
1
9

+
20
9

cQ ,

a′UW =
7

18
+

14
9

cQ . (B.10)

which follow from (2.40) for vanishing torsion. Clearly, cQ is the only variable.

The eigenvalues of (B.9) follow from the quadratic algebraic equation;

λ2 + b′λ + c′ = 0 (B.11)

where

b′ = −a′VV − a′UU − 2a′UU − a′WW ,

c′ = (a′VV + a′UU + 2a′UU)a′WW − (a′VW + a′UW)2 . (B.12)

From the equation (B.11), one directly determines the discriminant

∆ =
11680

81
c2

Q +
872
162

cQ +
109
324

(B.13)

and eigenvalues

λ1,2 =
a′VV + a′UU + 2a′UU + a′WW ±

√
∆

2

=
− 1

18 + 112
9 cQ ±

√
∆

2
(B.14)
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For a physically sensible theory, the eigenvalues must all be positive. By consid-

ering the constraint of positive discriminant and roots, one finds two appropriate

intervals

cQ < −0.046, cQ > 0.68 (B.15)

This shows that except for the small interval containing origin, all values of cQ lead

to a stable massive two-vector theory.

2. Anti-symmetric tensorial connection: Vα = −Uα and Wα = 0

In this case we end up with a single-vector theory with mass-squared 1
2 M2

PlāVV

where āVV = 1/3 + 8cS + 2cQ + 8cQS . This coefficient must be positive and hence

4cS + cQ + 4cQS > −
1
6

(B.16)

A much more special arises when non-metricity vanishes. In this special case, the

coefficients cQ and cQS both vanishe, and one finds

cS > −
1

24
(B.17)

as a bound on cS .
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APPENDIX C

VERTEX FACTORS

Here we list the vertex factors:

λhhVV =2iλ1gµν,

λhhSS =−
2i
υ2

H

kµqνgµν,

λhVV =2iλ1υHgµν,

λhSS = −
2i
υH

kµqνgµν,

λhVS =2
√
λ1kµgµν. (C.1)

where kµ is the momentum of S . We used aH = υH in aH dependent vertices.
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