
TEST CASE GENERATION FROM CAUSE EFFECT
GRAPHS

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Deniz KAVZAK UFUKTEPE

December 2016
İZMİR

We approve the thesis of Deniz KAVZAK UFUKTEPE

Examining Committee Members:

Asst. Prof. Dr. Tolga AYAV
Department of Computer Engineering, İzmir Institute of Technology

Asst. Prof. Dr. Tuğkan TUĞLULAR
Department of Computer Engineering, İzmir Institute of Technology

Asst. Prof. Dr. Mutlu BEYAZIT
Department of Computer Engineering, Yaşar University

27 December 2016

Asst. Prof. Dr. Tolga AYAV
Supervisor, Department of Computer Engineering
İzmir Institute of Technology

Assoc. Prof. Dr. Y. Murat ERTEN Prof. Dr. Bilge KARAÇALI
Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Asst. Prof. Dr. Tolga Ayav. The

door to his office was always open whenever I ran into a trouble spot or had a question

about my research or writing. He consistently allowed this paper to be my own work, but

steered me in the right the direction whenever he thought I needed it.

I would also like to thank to Prof. Dr. Fevzi Belli for sharing his knowledge and

supporting me both academically and spiritually. Also, I would like to thank to Asst. Prof.

Dr. Tuğkan Tuğlular for helping me during all phases of my master studies. Without their

support, this work wouldn’t be completed as it is.

Finally, I must express my very profound gratitude to my parents and to my hus-

band for providing me with unfailing support and continuous encouragement throughout

my years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

ABSTRACT

TEST CASE GENERATION FROM CAUSE EFFECT GRAPHS

Cause-effect graphing is a well-known requirement based testing technique. How-

ever, since it was introduced by Myers in 1979, there seems not to have been any suffi-

ciently comprehensive studies to generate test cases from these graphs. Yet there are

several methods introduced to generate test cases from Boolean expressions. This thesis

proposes to convert cause-effect graphs into Boolean expressions and find out the test

sets using test input generation techniques for Boolean expressions, such as MI, MAX-A,

CUTPNFP, MUMCUT, Unique MC/DC and Masking MC/DC. Generated test sets are

compared by using mutation analysis according to their fault detection capabilities.

Myers’ original test generation technique is also implemented and included in the muta-

tion analysis. A tool is created which allows to generate test cases by using the imple-

mented algorithms. The tool gets a “.graphml” file representing a cause- effect graph as

an input and gives the generated test set as an output. In addition, mutation analysis can be

done with the implemented tool. 14 Requirements of TCAS-II are used as an experiment.

Results of the mutation testing for these requirements showed that MUMCUT technique

has the highest mutant detection success for all fault types. Moreover, Unique MC/DC

technique has detected highest number of mutants per test case.

iv

ÖZET

NEDEN SONUÇ ÇİZGELERİNDEN TEST GİRİŞLERİNİN
ÜRETİLMESİ

Neden-sonuç çizgeleri çok bilinen gereksinim tabanlı yazılım test yöntemlerinden

biri olduğu halde Myers tarafından önerildiği 1979 yılından beri bu çizgelerden test girişleri

üretilmesi konusunda yeterince kapsamlı çalışma yapılmamıştır. Ancak, Boole

ifadelerden test girişlerinin üretilmesi için çeşitli yöntemler tanıtılmıştır. Bu tez çalışması,

çizgelerin Boole ifadelerine dönüştürülmesini ve Boole ifadelerinden test girişlerinin

oluşturulması için önerilmiş olan MI, MAX-A, CUTPNFP, MUMCUT, Unique MC/DC

ve Masking MC/DC yöntemlerini kullanarak test giriş kümelerinin üretilmesini

önermektedir. Üretilen test giriş kümeleri mutasyon analizi ile, hata yakalama başarıları

açısından kıyaslanmıştır. Myers’ın orijinal test giriş üretme yöntemi de uygulanmış ve

yapılan mutasyon analizine dahil edilmiştir. Uygulanan algoritmaları kullanarak test

girişlerinin üretildiği bir araç yaratılmıştır. Bu araç, çizgeyi ifade eden “.graphml” dosyasını

girdi olarak alır ve üretilen test girişleri kümesini çıktı olarak verir. Ayrıca, mutasyon anal-

izi de bu araç ile yapılabilir. Deney için TCAS-II sistemine ait 14 gereksinim kullanılmıştır.

Bu gereksinimler üzerinde yapılan mutasyon analizi sonuçları MUMCUT tekniğinin tüm

hata tiplerinde en yüksek mutant yakalama başarısını elde ettiğini göstermiştir. Ayrıca,

Unique MC/DC tekniği, test girişi başına yakalanan mutant sayısı bakımından en yüksek

değeri vermiştir.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF ABBREVIATIONS . x

CHAPTER 1. INTRODUCTION . 1

1.1. Aim of the Thesis and Objectives . 1

1.2. Organization of Thesis . 2

CHAPTER 2. RELATED WORK . 3

CHAPTER 3. BACKGROUND . 9

3.1. Cause-Effect Graph . 9

3.2. Test Generation Techniques . 11

3.2.1. Myers’ Technique . 11

3.2.1.1. UTP . 13

3.2.1.2. NFP . 14

3.2.2. Meaningful Impact (MI) . 14

3.2.2.1. MAX-A . 16

3.2.3. MUMCUT . 16

3.2.3.1. Multiple Unique True Point (MUTP) . 16

3.2.3.2. Multiple Near False Point (MNFP) . 17

3.2.3.3. Corresponding Unique True Point and Near False Point

Pair (CUTPNFP) . 18

3.2.4. Modified Condition/Decision Coverage (MC/DC) 19

3.2.4.1. Unique Modified Condition/Decision Coverage (Unique

MC/DC) . 19

3.2.4.2. Masking Modified Condition/Decision Coverage (Mask-

ing MC/DC) . 20

3.3. Mutation Analysis . 21

vi

CHAPTER 4. PROPOSED MODEL AND IMPLEMENTED TOOL 25

4.1. CEG Model . 25

4.2. DNF Conversion. 27

4.3. Mutation Analysis Implementation . 28

4.4. Implemented Tool . 28

CHAPTER 5. EVALUATION . 32

CHAPTER 6. CONCLUSION AND FUTURE WORK . 39

REFERENCES . 41

APPENDIX A. GRAPHML DESIGN . 45

vii

LIST OF FIGURES

Figure Page

Figure 3.1. The basic operations which can be used on cause effect graphs. 9

Figure 3.2. The constraints which can be defined on cause effect graphs. 10

Figure 3.3. Cause effect graph example. 11

Figure 3.4. Example graph for Myers technique. 12

Figure 3.5. Fault class hiearchy. 23

Figure 4.1. Class diagram of cause-effect graph model with Gephi toolkit. 26

Figure 4.2. Architecture of Generating Test Cases From Cause Effect Graphs. 27

Figure 4.3. Class diagram of mutant creation. 29

Figure 4.4. Test Case Generator tool main page. 29

Figure 4.5. Test Case Generator Mutation Analysis page. 30

Figure 4.6. The drawn Cause-Effect Graph of 14 requirements of TCAS-II. 31

Figure 5.1. Mutant Detection Success of Methods. 35

Figure 5.2. Mutant Detection Success Percentage of methods. 36

Figure 5.3. Mutant Detection Percentages for Fault Classses VNF+ENF, ORF,

SA0+SA1 and VRF. 37

Figure 5.4. Mutant Detection Percentages for Fault Classses CCF, CDF, MVF and

All Classes. 37

Figure 5.5. The number of detected mutants per test case for TCAS-II 38

viii

LIST OF TABLES

Table Page

Table 3.1. The causes and effects interpreted from the given specifications of the

example. 11

Table 3.2. Unique cause approach to independence pairs of Z = (A∨B)∧ (C∨D) 20

Table 3.3. Masking approach to independence pairs of Z = (A ∨B) ∧ (C ∨D) . . 22

Table 4.1. Truth table for the expression E = (A∧B)∨ (((A∧C)∨B)∧ (B∧C)) 28

Table 5.1. The number of test cases for TCAS-II . 33

Table 5.2. The number of created mutants for TCAS-II . 33

Table 5.3. The number of detected mutants for TCAS-II . 35

Table 5.4. Percentage of detected mutants over all mutants for TCAS-II 36

Table 5.5. The number of detected mutants per test case for TCAS-II 38

ix

LIST OF ABBREVIATIONS

CEG . Cause-Effect Graph

DNF . Disjunctive Normal Form

BOR . Boolean Operator

MI . Meaningful Impact

MC/DC . Modified Condition/Decision Coverage

RC/DC . Reinforced Condition/Decision Coverage

AST . Abstract Syntax Tree

UTP . Unique True Point

NFP . Near False Point

MVF . Missing Variable Fault

VNF . Variable Negation Fault

VRF . Variable Reference Fault

ORF . Operator Reference Fault

ENF . Expression Negation Fault

MUTP . Multiple Unique True Point

MNFP. .Multiple Near False Point

CUTPNFP Corresponding Unique True Point and Near False Point Pair

x

CHAPTER 1

INTRODUCTION

1.1. Aim of the Thesis and Objectives

Requirement based testing (RBT) techniques are very effective while dealing with

critical systems such as health systems, avionics, etc., where the requirements are well

defined and not likely to change. By these techniques, test cases can be created from the

defined requirement sentences, Boolean expressions representing them, models or graphs

representing them, etc. Cause-effect graphing is one of the RBT techniques which we can

represent the system requirements as a cause-effect graph (CEG) and then generate test

cases from that graph in early phases of the software development.

The aim of this thesis is to use some of the well-known test generation meth-

ods introduced for Boolean expressions in order to generate test cases from cause-effect

graphs by using the representative equivalence of the cause-effect graphs and Boolean

expressions. Another aim is to compare all these methods and Myers’ method according

to their fault detection capabilities for some fault classes. Thereby an evaluation can be

made about which test generation methods are more successful on which fault classes and

which methods can be combined together in order to get a better fault detection, etc. Also

their costs can be estimated according to the total number of test cases that are generated

by them. In the end, there will be an indicator for the selection of these techniques, respect

to the fault types that are desired to be revealed.

A tool is implemented which allows to import a cause-effect graph and to export

generated test cases by one of the implemented methods. Furthermore, this tool is used to

see the detection capability of the test cases that are generated.

In order to achieve these, first, a cause-effect graph representation format is formed

as a “.graphml” file, by making some additions to original graphml graph definitions. Af-

terwards, by using an open-source library named Gephi, the conversion from cause-effect

graph into Boolean expressions is made. Since some of the methods require the Boolean

expression to be in disjunctive normal form (DNF), the conversion of these expressions

into DNF is also made. This DNF conversion is made by using truth tables, which pro-

1

vides a canonical DNF. A canonical DNF can be used for the methods Meaningful Impact

(MI) and MAX-A. However, for the MUMCUT method, which is the union of the meth-

ods Multiple Unique True Point (MUTP), Multiple Near False Point (MNFP) and Corre-

sponding Unique True Point and Near False Point Pair (CUTPNFP), Boolean expression

should be in Irredundant DNF. Irredundant DNF can be defined as simplified DNF. There-

fore, to be able to implement MUMCUT, an open-source library named jbool expressions

for DNF conversion is also used, which makes the conversion to a simplified DNF. My-

ers’ technique, which is the original test case generation method for cause-effect graphs

is implemented. Then, the test generation methods defined for Boolean expressions:

MI, MAX-A, MUTP, MNFP, CUTPNFP, MUMCUT, Unique Modified Condition/De-

cision Coverage (MC/DC) and Masking Unique Modified Condition/Decision Coverage

(MC/DC) are implemented. Test cases are generated for each of these methods. Then,

mutants of nine different fault classes are created and the generated test cases are run on

these mutants. The number of mutants that each test case has detected are recorded and

evaluated together to be compared.

1.2. Organization of Thesis

In Chapter 2, related works on the test generation techniques from Boolean expres-

sions and cause-effect graphs are summarized. In Chapter 3, needed background concepts

and definitions are given. The definition of cause-effect graph and its properties are given

in the Section 3.1. Implemented test generation techniques and needed definitions are

given in the Section 3.2, and fault classes and mutation analysis are given in detail in the

Section 3.3.

In Chapter 4, the proposed cause-effect model is explained in the Section 4.1, and

the Disjunctive Normal Form (DNF) conversion algorithm is given in the Section 4.2. The

implementation of the mutation analysis is explained in the Section 4.3.

In Chapter 5, the results of the mutation analysis on different techniques for dif-

ferent fault classes is shared.

Finally, in Chapter 6, interpretation of the results and the planned future works are

explained.

2

CHAPTER 2

RELATED WORK

Cause-effect graph is developed in order to model a system’s specifications with

its components, their relationships and dependencies by Elmendorf (1973). Test cases

are intended to be generated from the created model. Firstly, Myers (1979) proposed

a systematic technique to create a refined decision table which guarantees to cover all

decisions in the model, once. With this technique, the number of needed decision table

combinations are reduced. Since, in big scale projects, the number of combinations can

be too much, this reduction is really valuable.

In the paper of Tai et al. (1993), a new fault-based approach to generate tests for

CEGs, called BOR (boolean operator) testing is presented. This method is based on the

detection of Boolean operator faults. How to generate test cases by using BOR method

is shown and an empirical study on a real-time boiler control and monitoring system is

done. The BOR method is shown to have effective results.

In another work, Tai (1993), discussed the existing test generation techniques for

simple predicates and explains the problems of them when the predicate is compound.

Then, two fault-based testing strategies are proposed which are: Boolean operator (BOR)

testing, which he defined for CEGs in the past, intends to detect Boolean operator faults,

and Boolean and relation operator (BRO) testing, which intends to detect Boolean opera-

tor faults and relational operator faults. The approximate number of test cases needed for

BOR testing is discussed and some experiment results are shared to show their success on

detection of faults.

Weyuker et al. (1994), presented a new family of test case generation techniques

from Boolean expressions. Several methods are proposed including Meaningful Impact

Method (MI) and MAX-A. Type of faults which these methods are expected to detect

are discussed. The methods defined are compared by their powers of detecting faults

in five different fault classes (variable negation fault, expression negation fault, variable

reference fault, operator reference fault, associative shift fault). All proposed methods are

shown to did good on detecting these fault classes. Also, the costs of these methods are

compared by the number of test cases they generate.

3

Paradkar (1994), did some empirical studies on testing CEGs of different real

software systems. The problems occurred in these studies are explained and solutions are

proposed to solve these problems. Also, the experiences earned from these evaluations

are discussed. In one of his next works Paradkar (1995), the previously proposed method

BOR is combined with the method MI defined by Weyuker et al. (1994) in order to solve

the problems of BOR when the Boolean expression is not singular. BOR is applied to the

singular components of the predicate and MI is applied to the rest. The number of high

test cases coming from MI could also be reduced this way.

Nursimulu and Probert (1995), discussed the problems of Myers’ cause-effect

graphing method and proposed some solutions to overcome these problems. A new ap-

proach by using path sensitization techniques in order to solve the problems encoun-

tered in the construction of the decision table phase is proposed. Moreover, the way of

CEG technique can be used to derive use case scenarios for validating requirements is

explained.

Later, Tai (1996) defined Boolean and relational expression (BRE) testing method

for compound predicates in addition to BOR and BRO testing methods he proposed ear-

lier. This new approach is intended to detect Boolean operator faults, relational operator

faults, and a type of fault involving arithmetical expressions. The algorithms are given

in order to generate test cases with BOR, BRO and BRE. In order to overcome the prob-

lem when a Boolean expression has multiple occurrences of same variable, a combination

with MI technique defined by Weyuker et al. (1994), is described.

Chen et al. (1999), studied the MUMCUT technique which combines the MUTP,

MNFP and CUTPNFP techniques which were proposed in the past. This method is shown

to detect faults in seven different fault classes. It is shown that the method is highly suc-

cessful on the fault classes expression negation fault, literal negation fault, term omission

fault, operator reference fault, literal omission fault, but not too good on the fault classes

literal insertion fault and literal reference fault. The way of generating test cases by using

this technique is defined and MUMCUT is compared with MAX-A and MAX-B methods

which are also shown to very effective on same fault classes. The MUMCUT technique

requires the Boolean expression on the form Irredundant DNF and both MAX-A,MAX-

B methods from Weyuker et al. (1994) are defined on Boolean expressions which are

in DNF. Irredundant DNF is the form where there is no simpler way of presenting that

Boolean expression in DNF.

4

In another work, Paradkar et al. (1996), proposed another technique for generating

test cases automatically from predicates. It was intended to extend one of the previous

works of him Tai et al. (1993), where a method called BOR was defined in order to

generate test cases from Boolean expressions. Using constraint logic programming (CLP)

to automatically generate test data for predicates is proposed. An incremental approach is

used in order to solve constraint systems with CLP.

Paradkar et al. (1997), later investigated a different approach on their previously

defined method BOR as CEG BOR, which works on CEGs. Informal specifications are

converted into CEGs, then the BOR technique is applied. Some empirical studies are

done and the test detection capabilities of the test set generated by CEG BOR, with the

test sets generated by exhaustive testing, constructed by using an extended finite state

machine (EFSM) representation are compared.

Chilenski and Miller (1994), described the modified condition/decision coverage

(MC/DC) and how to apply it in software testing. The advantages and disadvantages

of this approach are evaluated. In another work of report, Chilenski (2001) defined and

compared three forms of MC/DC in order to understand their strengths and weaknesses.

Chen and Lau (2001), compared different methods as MAX-B, CUTPNFP, MUTP

and MNFP by their detection capabilities of the literal insertion fault and the literal refer-

ence fault, which are the fault classes that MUMCUT was not highly effective on. Later,

the effectiveness of MUMCUT on general form Boolean expressions is examined by Chen

et al. (2009), excluding the requirement of the Boolean expressions must be in Irredundant

DNF.

Vilkomir and Bowen (2002), proposed a new testing criterion named Reinforced

Condition/Decision Coverage (RC/DC) which is a further development of MC/DC. It is

stated that this new method is more suitable for safety critical systems. A formal definition

for RC/DC and examples with proofs of some features are given.

Chen et al. (2003) implemented a tool that generates test cases from Boolean ex-

pressions, by using the technique they proposed, named MUMCUT. Kaminski and Am-

mann (2009), studied on MUMCUT and proposed another, less costly method named

Minimal-MUMCUT, which can detect same fault classes as MUMCUT. It covers the cri-

teria of MUMCUT, however, the number of the test cases is decreased.

Singh et al. (2006), examined Elmendorf’s technique, BOR, MC/DC and RC/DC

together in order to evaluate these test generation techniques from Boolean expressions

by their fault detection capabilities. Test cases and mutants were created by using branch

5

statements. Mutants were created by making only one operator or operand faults at the

same time. The experiments showed that BOR is effective for a subset of fault types.

MCDC and RCDC gave better results on all classes. Elmendorf’s (CEG) was the highest

since it selects all possible test cases.

In his book Aditya Mathur (2008), in addition to explaining all concepts of soft-

ware testing, explained in detail how to generate test cases by cause-effect graphing, BOR,

BRO and BRE tests, MC/DC testing, etc. He also explained how to combine BOR with

MI by constructing an Abstract Syntax Tree (AST) of the given Boolean expression and

using this AST in order to generate test cases.

Srivastava et al. (2009) discussed the original Myers’ cause-effect graphing tech-

nique and surveys how a CEG is converted into a decision table. Also, it is shown how

the CEG method can be used to test a software fulfills its requirement specifications or

not. It is aimed to find and show the problems of existing test generation algorithm and

try to understand how these problems can be solved.

Fraser and Gargantini (2010), formalized the fault detection process as a logical

Satisfiability (SAT) problem and compared the solution with MUMCUT technique. In

their next work Gargantini and Fraser (2011), they extended their technique so that it can

be used on general form Boolean expressions and they compared it with MUMCUT and

MC/DC.

Paul and Lau (2012), created new uniform fault classes in order to ignore the

differences on the fault detection success of different techniques caused by the form of

the Boolean expression (DNF, general form, etc.). It is stated that different techniques

with different constraints on Boolean expressions’ form, can be compared in a better way

with uniform fault classes.

Kaminski et al. (2013), used the ROR operator to create mutants on Boolean ex-

pressions, so that they eliminated the mutual mutants and reduced the total number of

mutants needed to be created. The precision of MC/DC is increased and it is stated that

minimal-MUMCUT is more effective than the more commonly used MC/DC in terms of

detecting faults.

Sziray (2013) developed a new algorithm to generate test cases from cause-effect

graphs by using decision trees with three-valued Boolean algebra. By using don’t care

values, the number of decisions are reduced. The algorithm proposed is applicable to any

cause-effect graph.

6

Vilkomir et al. (2013) measured the effectiveness of t-wise test, which is one of

the combinatorial testing approaches, on Boolean expressions by using mutation analysis.

The results of mutation detection successes are compared with random test generation.

Paul and Lau (2014) examined the previously defined different MC/DC forms by

doing a systematic literature review (SLR) and discussed the problems encountered when

there are coupled conditions. A new MC/DC form is defined. which has higher success

on detecting mutants when compared to previous MC/DC variants.

Arcaini et al. (2015), worked on the optimization of test generation by using SAT

and Satisfiability Modulo Theories (SMT) problem solvers. The advantages and disad-

vantages of using SAT and SMT problem solvers are discussed. This approach is said

to be an alternative to the classical algorithmic test generation methods defined before.

Dealing with constraints are easier with these approaches, however the amount of time

and space is higher, sometimes making it even infeasible. The optimization worked on

is said to be promising in order to use these approaches in the future for test generation

from Boolean expressions.

Chung (2014a), created new specified fault classes for cause-effect graphs and

compared Myers’ technique with combinatorial testing technique by their success on fault

detecting on these new fault classes. Later, Chung (2014b), used a SAT solver to generate

test cases by pairwise testing technique, which is again a combinatorial testing technique.

In addition to his previous works, Chung (2015a), developed an automated tool to gen-

erate test cases from cause-effect graphs by using pairwise testing technique. Also, in

another work, Chung (2015b), compared three different SAT problem solving approaches

in order to generate test cases by pairwise testing technique.

Ayav and Belli (2015), proposed a formalization of generating test cases from

cause-effect graphs by using MC/DC technique and Boolean differentiation. By this

approach, the test cases are generated mathematically by calculating the derivatives of

variables in the Boolean expressions of the graph. A mapping between Boolean expres-

sions and calculus is made by this approach and it is easy to implement the MC/DC test

generation by mathematical calculations.

Sun et al. (2015), gathered some of the test generation techniques on Boolean ex-

pressions (ONE, MIN, MUMCUT, and different forms of MUMCUT) and used the test

cases generated by these techniques on randomly generated Boolean expressions. Muta-

tion analysis is used in order to compare these methods’ successes. The successes of these

methods on general form Boolean expressions are also measured to see the effect of the

7

constraint that Boolean expressions must be in DNF. As a result, it is stated that MUM-

CUT technique gives the best results and they made some extension on that technique.

Since CEGs are defined and used in software testing by Elmendorf (1973) and

Myers (1979), few works are done in order to generate test cases from CEGs directly,

as CEG BOR. However, in order to generate test cases from Boolean expressions, there

are many different techniques defined and studied, as MI, MC/DC, MUMCUT, etc. Also,

comparisons for different methods are done in some of these works, but there is no work

which considers the methods using different approachs. For example, the methods gen-

erating test cases from DNF Boolean expressions are compared as MI and MUMCUT

together. However, no comparison of MC/DC and MI is done, which are using general

form of Boolean expressions and DNF Boolean expressions, respectively.

8

CHAPTER 3

BACKGROUND

3.1. Cause-Effect Graph

Cause-effect graph is an undirected graph connecting the set of causes with the

set of effects, which is used in software testing. The elements of the graph represent

the Boolean expressions of the system with cause nodes as variables. The requirements

are examined and the cause and effect nodes are determined so that: Cause nodes are

the inputs to the system representing a state or an action and effect nodes represent a

system state or a result effect, output from the system. All nodes in the graph can take

binary values (true or false, 1 or 0 equivalently). It is important to write correct system

requirements since the graph is drawn accordingly. In addition, it is important to draw the

cause-effect graph right since all the test case generation process continues assuming that

the graph represents the system correctly.

The formation of the nodes are from left to right as:

cause node→ intermediate node→ effect node

The relationships between nodes can be the basic Boolean operations AND, OR, NOT

which are shown in Figure 3.1.

Figure 3.1. The basic operations which can be used on cause effect graphs.

9

In addition to the basic relationships, under the assumption of a, b being cause

nodes and e, f being effect nodes, the constraints explained below and shown in Figure

3.2 can be defined:

• Exclusive Or (E): At most one of the variables a and b can be true.

• Inclusive Or (I): At least one of the variables a and b must be true.

• Only-one (O): One and only one of the variables a and b must be true.

• Required (R): In order to variable a to be true, variable b must be true.

• Masking (M): When the effect e is true, effect f must be false.

Figure 3.2. The constraints which can be defined on cause effect graphs.

Assume that we have a simple application which is also used in the book of Myers

(1979), with the system specifications below:

The system has two inputs, first input must be one of the letters ’A’ or ’B’. Second

input must be a number. If both inputs are valid, a file update is made. If first input is

invalid, an error message ’X12’, if second input is invalid, an error message ’X13’ is given.

The causes and effects interpreted from these specifications are given below in Table 3.1,

and the cause-effect graph representing them is given in Figure 3.3.

10

Table 3.1. The causes and effects interpreted from the given specifications of the ex-
ample.

Causes Effects
1- First input is ’A’ 70- file update is made
2- First input is ’B’ 71- ’X12’ error message is given

3- Second input is a number 72- ’X13’ error message is given

Figure 3.3. Cause effect graph example.

3.2. Test Generation Techniques

Definition Disjunctive Normal Form: In Boolean logic, a Boolean expression is in DNF,

if it is a disjunction of conjunctive literals. A literal is a variable or its negation. In other

words, it can be called as sum of products.

Example:

E = (B ∧ C) ∨ (A′ ∧D) ∨ (A′ ∧B′ ∧ C ∧D ∧ E ′)

Let E be a Boolean expression in DNF with n terms and m variables:

E = e1 ∨ e2 ∨ ... ∨ en (3.1)

Let all ei (1 ≤ i ≤ n), be a term with lj number of variables. By using this defini-

tion; MI, MAX-A, CUTPNFP, MUMCUT, Unique MC/DC and Masking MC/DC testing

techniques will be given in the following sections.

11

3.2.1. Myers’ Technique

Figure 3.4. Example graph for Myers technique.

Myers (1979), defined a technique to generate test cases from a cause-effect graph.

In this technique, a cause-effect graph or any form of (general form, DNF, CNF, etc.)

Boolean expressions representing the graph is needed. The technique is given below:

1. An effect node is chosen and assumed to have true value. Nodes are traversed in

the graph backwards towards the cause nodes.

2. All the combinations leading to the true value of chosen node are taken by consid-

ering the following:

(a) If the node is an “OR” node and it must take true value, at most one of the

nodes leading to this node must get true value. It is done in order to examine

the influence of only one variables’ effect at a time.

(b) If the node is an “AND” node and it must take false value

- only one case is chosen for each node getting false value

- in cases where at least one node gets false value, only one combination is

selected for all other nodes getting true value

12

Example: Generating test cases for the effect node E1 in graph given in Figure 3.4:

Corresponding Boolean expression: E1 = I1 ∧ I2 = (C1 ∨ C2) ∧ (C3 ∧ C4)

1. E1 = I1 ∧ I2 gets value 1→ all combinations make output true

(a) I1 = (C1 ∨ C2) gets value 1→ all combinations make output true, however,

only one input is true at the same time (0, 1, ,), (1, 0, ,).

(b) I2 = (C3 ∧ C4) gets value 1→ all combinations make output true (, , 1, 1).

E1 getting value 1→ I1 = 1, I2 = 1→ (1, 0, 1, 1), (0, 1, 1, 1)

So, the test set generated by Myers:

{(1, 0, 1, 1), (0, 1, 1, 1)}

3.2.1.1. UTP

Unique True Point (UTP): UTPi is the set of test inputs that makes term ei true,

and all other terms false in DNF Boolean expression (3.1). All unique true points for the

Boolean expression: UTP (E) =
⋃

i UTPi(E).

Example: For a simple example:

E = (C1 ∧ C2) ∨ (C3 ∧ C4) (3.2)

For e1 = C1 ∧ C2→ UTP1(E) = {(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)}

For e2 = C3 ∧ C4→ UTP2(E) = {(0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1)}

UTP (E) = {(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1)}

13

3.2.1.2. NFP

Near False Point (NFP): NFPi,j is the set of test inputs that makes term ei,j (which

is formed by negating the jth variable of the term ei) true, and all other terms false in

DNF Boolean expression (3.1). All near false points for the term ei of the Boolean ex-

pression: NFPi(E) =
⋃

j NFPi,j(E). All near false points for the Boolean expression:

NFP (E) =
⋃

i NFPi(E).

Example: For the same Example (3.2):

For e1,1 = C1′ ∧ C2→ NFP1,1(E) = {(0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0)}

For e1,2 = C1 ∧ C2′ → NFP1,2(E) = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0)}

For e2,1 = C3′ ∧ C4→ NFP2,1(E) = {(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1)}

For e2,2 = C3 ∧ C4′ → NFP2,2(E) = {(0, 0, 1, 0), (1, 0, 1, 0), (0, 1, 1, 0)}

NFP (E) = {(0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 0),

(1, 0, 0, 1), (1, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 0)}

3.2.2. Meaningful Impact (MI)

Meaningful Impact (MI) is defined by Weyuker et al. (1994), by studying it on the

Boolean expressions of TCAS-II system specifications. Given DNF Boolean expressions,

unique true point (UTP) and near false point (NFP) sets are found. By these sets, faults

such as missing variable fault (MVF), variable negation fault (VNF), variable reference

fault (VRF), operator reference fault (ORF) and expression negation fault (ENF) can be

caught. However, random selection of the UTPs may cause missing some of these faults.

A faulty term in a faulty Boolean expressions’ UTP or NFP might include another terms’

UTP or NFP in original Boolean expression. Furthermore, there might be same points in

different UTP and NFP sets for different Boolean expressions of the system. Thus, it is

not guaranteed to detect these faults in every case.

14

A formal algorithm of MI is given in Badhera et al. (2011):

1. For all ei, 1 ≤ i ≤ n, Tei sets are formed that makes ei true.

2. For all i 6= j, TSei ∩ TSej = ∅, TSei = Tei −
n⋃

j=1,i 6=j

Tej .

3. St
E is formed by randomly choosing one element from each TSei, 1 ≤ i ≤ n.

4. For all ei, 1 ≤ i ≤ n and 1 ≤ j ≤ lj , term eji is formed by taking the term ei and

negating its’ jth variable. Then, sets Feji are formed which make eji true.

5. FSeji = Feji −
n⋃

k=1

Tek.

6. Sf
E set is formed to minimally cover each FSeji set.

7. The needed set for E by MI is SE = St
E ∪ Sf

E .

First, for all term (ei) of the Boolean expression (E), true test case sets (Tei) are

generated making that term true. From these sets, mutually exclusive subsets (TSei) are

selected. Final true set (St
E) is formed by selecting one element from each of these subsets

randomly.

Then, for all term (ei), negation terms (eji) are created for each variable of that

term. False test case sets (Feji) are generated making these negation terms true. If there

are mutual elements in these sets created with the true test sets (Tei) created in the first

step, these elements are removed to form subsets (FSeji) of false test sets. This elimina-

tion is done in order to prevent the conflict of the aims of true and false sets. Then, a final

false set (Sf
E) is created including all the eliminated subsets.

MI is the union of the final true set (St
E) and final false set (Sf

E).

Example: Generating test cases by MI for the effect E3 in system below:

E1 = I1,

E2 = I1′ ∧ C3

E3 = I1′ ∨ C2 ∨ C3 ,where I1 = (C1 ∨ C2)

Effects converted to DNF:

E1 = (C1 ∨ C2),

E2 = C1′ ∧ C2′ ∧ C3

E3 = (C1′ ∧ C2′) ∨ C2 ∨ C3

15

True test case sets Tei for each term of E3 = (C1′ ∧ C2′) ∨ C2 ∨ C3:

Te1 = {(0,0,1), (0, 0, 0)} → TSe1 = {(0, 0, 0)}

Te2 = {(0, 1, 0), (1, 1, 0), (0,1,1)} → TSe2 = {(0, 1, 0), (1, 1, 0)}

Te3 = {(0,0,1), (0,1,1), (1, 0, 1)} → TSe3 = {(1, 0, 1)}

True test set for the effect E3: St
E3 = {(0,0,0),(0,1,0),(1,0,1)}

False test case sets Feji for each term i and each variable j of each term of

E3 = (C1′ ∧ C2′) ∨ C2 ∨ C3:

Fe11 = {(1,0,1), (1, 0, 0)} → FSe11 = {(1, 0, 0)}

Fe21 = {(0,1,1), (0,1,0)} → FSe21 = ∅

Fe12 = {(1,0,1), (1, 0, 0), (0,0,1)} → FSe12 = {(1, 0, 0)}

Fe13 = {(1,1,0), (1, 0, 0), (0,1,0)} → FSe13 = {(1, 0, 0)}

False test set for the effect E3: Sf
E3 = {(1,0,0)}

SE3 = St
E3 ∪ Sf

E3 = {(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 0, 0)}

3.2.2.1. MAX-A

For all terms of the Boolean expression, all points of TSei and FSeji are selected.

MAX-A set for the Boolean expression:

MAX − A(E) = TS(E) ∪ FS(E)

Example: For the same simple Example (3.2):

MAX − A(E) = {(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (0, 0, 1, 1),

(0, 1, 1, 1), (1, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1),

(0, 1, 1, 0), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 0)}

3.2.3. MUMCUT

MUMCUT is the union of three different techniques: MUTP, MNFP and CUTP-

NFP. The union of the test sets generated by MUTP, MNFP and CUTPNFP are taken in

MUMCUT technique.

16

3.2.3.1. Multiple Unique True Point (MUTP)

Multiple Unique True Point (MUTP): For all terms ei of the Boolean expression

E, unique true points are selected from the set UTPi(E), which will cover all possible

truth values of the variables not existent in that term.

Example: For the same simple Example (3.2):

For the selection of unique true points from UTP1(E); we cover all the possible

truth values of every missing literal e1 = C1∧C2 (that is, C3 and C4). Similarly, for the

selection of unique true points from UTP2(E); we cover all the possible truth values of

every missing literal e2 = C3 ∧ C4 (that is, C1 and C2).

Recall the sets from 3.2.1.1:

UTP1(E) = {(1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)}

UTP2(E) = {(0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1)}

Therefore, we need (1, 1, 0, 1) and (1, 1, 1, 0) from UTP1(E) in order to cover all

possible values of C3 and C4.

In addition, we need (0, 1, 1, 1) and (1, 0, 1, 1) from UTP2(E) in order to cover

all possible values of C1 and C2.

Hence, the test set

MUTP (E) = {(1, 1, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1)}.

3.2.3.2. Multiple Near False Point (MNFP)

Multiple Near False Point (MNFP): For all possible i and all possible j for that

term ei of the Boolean expression E, near false points are selected from the set NFPi,j(E),

which will cover all possible truth values of the variables not existent in ith term.

Example: For the same simple Example (3.2):

For the selection of near false points from NFP1,1(E); we cover all the possible

truth values of every missing literal of e1,1 = C1′ ∧ C2 (that is, C3 and C4).

Also, for NFP1,2(E); we cover all the possible truth values of every missing

literal of e1,2 = C1 ∧ C2′ (that is, C3 and C4).

Similarly, for the selection of near false points from NFP2,1(E); we cover all the

possible truth values of every missing literal of e2,1 = C3′ ∧ C4 (that is, C1 and C2).

17

Also, for NFP2,1(E); we cover all the possible truth values of every missing

literal of e2,2 = C3 ∧ C4′ (that is, C1 and C2).

Recall the NFPi,j(E) sets in 3.2.1.2:

NFP1,1(E) = {(0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0)}

NFP1,2(E) = {(1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0)}

NFP2,1(E) = {(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1)}

NFP2,2(E) = {(0, 0, 1, 0), (1, 0, 1, 0), (0, 1, 1, 0)}

So, we need (0, 1, 0, 1) and (0, 1, 1, 0) from NFP1,1(E), (1, 0, 0, 1) and (1, 0, 1, 0)

from NFP1,2(E), (1, 0, 0, 1) and (0, 1, 0, 1) from NFP1,1(E) and finally (1, 0, 1, 0) and

(0, 1, 1, 0) from NFP1,1(E),

Hence, the test set

MNFP (E) = {(0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0)}.

3.2.3.3. Corresponding Unique True Point and Near False Point Pair

(CUTPNFP)

Corresponding Unique True Point and Near False Point Pair (CUTPNFP): −→u and
−→v test inputs pair is selected respectively from UTPi(E) and NFPi,j(E) such that; they

must only differ in the truth value of the jth term. This selection is done for each j value

of each term and so, the CUTPNFP (E) set is formed. The set is expected to detect

faults as ORF, VNF and ENF.

Example: For the same simple Example (3.2):

For the UTP1(E) and NFP1,1(E) pair,

−→u1 = (1, 1, 0, 0) ∈ UTP1(E) and −→v1 = (0, 1, 0, 0) ∈ NFP1,1(E)

can be selected. The only difference between −→u and −→v is first term’s (e1 = C1 ∧ C2)

first variable’s (C1) truth value.

18

Similarly,

−→u2 = (1, 1, 0, 0) ∈ UTP1(E) and −→v2 = (0, 1, 0, 0) ∈ NFP1,2(E)

can be selected for the UTP1(E) and NFP1,2(E) pair. The only difference between
−→u and −→v is first term’s e1 = C1 ∧ C2 second variable C2’s truth value.

As in this example, different pairs may contain same elements (−→u1 and −→u2 are the

same). In fact, this is a desirable situation since it reduces the total number of test cases.

Continuing the same process for the UTP2(E) and NFP2,1(E) pair we can chose

−→u3 = (0, 0, 1, 1) ∈ UTP2(E) and −→v3 = (0, 0, 1, 0) ∈ NFP2,1(E).

Finally, for the UTP2(E) and NFP2,2(E) pair we can choose

−→u4 = (0, 0, 1, 1) ∈ UTP2(E) and −→v4 = (0, 0, 0, 1) ∈ NFP2,2(E).

Hence, the test set

CUTPNFP (E) = {(1, 1, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 1, 1), (0, 0, 1, 0), (0, 0, 0, 1)}.

3.2.4. Modified Condition/Decision Coverage (MC/DC)

Modified Condition/Decision Coverage (MC/DC) aims simply selecting test cases

to see each conditions’ effect on the outcome of the Boolean expression independently.

There are two different approaches for the technique.

3.2.4.1. Unique Modified Condition/Decision Coverage (Unique

MC/DC)

Unique Modified Condition/Decision Coverage: In unique-cause approach, an

pair of test cases is selected (named independence-pair) for each condition in the Boolean

expression. The test cases must be the same, except the truth values of the condition under

consideration and the outcomes of the test cases. Preserving the value of every other con-

dition fixed ensures that the condition with changed value is the only condition affecting

the value of outcome.

19

A truth table is often used to show the unique-cause approach. A truth table is

created for the Boolean expression with new columns added on the right which indicate

the possible independence pairs.

Example:

An example from CAST’s positions paper (Cast) (2001) for the Boolean expres-

sion Z = (A ∨B) ∧ (C ∨D):

Table 3.2. Unique cause approach to independence pairs of Z = (A ∨B) ∧ (C ∨D)

Variables Result Independence-Pairs
Test # A B C D Z A B C D

1 F F F F F
2 F F F T F 10 6
3 F F T F F 11 7
4 F F T T F 12 8
5 F T F F F 7 6
6 F T F T T 2 5
7 F T T F T 3 5
8 F T T T T 4
9 T F F F F 11 10

10 T F F T T 2 9
11 T F T F T 3 9
12 T F T T T 4
13 T T F F F 15 14
14 T T F T T 13
15 T T T F T 13
16 T T T T T

In the Table 3.2, we see the truth table of Z on the left side of the table, and the

possible pairs for each variable on the right side of the table. We can select any of the

possible pairs for each variable.

Test pairs (2,10), (3,11) and (4,12) can be selected to show the independent effect

of A, (2,6), (3,7), (4,8) can be selected for B, (5,7), (9,11), (13,15) can be selected for C,

(5,6), (9,10), (13,14) can be selected for D.

20

3.2.4.2. Masking Modified Condition/Decision Coverage (Masking

MC/DC)

The unique-cause approach guarantees the minimum tests for each condition when

there is no strongly coupled conditions or repeated conditions exists. If there are repeated

conditions in the expression (e.g. Z = (A ∨ B) ∧ (A ∨D)), unique-cause approach will

fail since it will force one of the same conditions to stay fixed and the other to change.

Masking means, in some specific cases, a value of a condition will determine the

output of that part of the expression, independent from the other conditions’ truth values.

For instance, a false valued condition makes an AND operation’s outcome as false, a true

valued condition makes an OR operation’s outcome as true.

Masking Modified Condition/Decision Coverage: The masking approach allows

more than one condition’s truth value to change in an independence pair, if that change

does not change the truth value of the outcome under consideration. In other words, that

changes must be masked and must not affect the outcome.

A truth table is often used to show the masking-cause approach, in the same man-

ner as the unique-cause approach.

An example from CAST’s positions paper (Cast) (2001) for the Boolean expres-

sion Z = (A ∨B) ∧ (C ∨D):

*X represents (A ∨B), Y represents (C ∨D).

In the Table 3.3, we see the truth table of Z on the left side of the table, and the

possible pairs for each variable on the right side of the table. We can select any of the

possible pairs for each variable. For example;

Test pairs (2,10), (2,11), (2,12), (3,10), (3,11), (3,11), (4,10), (4,11), (4,12) can

be selected to show the independent effect of A, (2,6), (2,7), (2,8), (3,6), (3,7), (3,8),

(4,6), (4,7), (4,8) can be selected for B, (5,7), (5,11), (5,15), (7,9), (7,13), (9,11), (9,15),

(11,13), (13,15) can be selected for C, (5,6), (5,10), (5,14), (6,9), (6,13),(9,10), (9,14),

(10,13), (13,14) can be selected for D.

21

Table 3.3. Masking approach to independence pairs of Z = (A ∨B) ∧ (C ∨D)

Term 1 Term 2 Result Independence-Pairs
Test # A B X* C D Y* Z A B C D

1 F F F F F F F
2 F F F F T T F 10, 11, 12 6, 7, 8
3 F F F T F T F 10, 11, 12 6, 7, 8
4 F F F T T T F 10, 11, 12 6, 7, 8
5 F T T F F F F 7, 11, 15 6, 10, 14
6 F T T F T T T 2, 3, 4 5, 9, 13
7 F T T T F T T 2, 3, 4 5, 9, 13
8 F T T T T T T 2, 3, 4
9 T F T F F F F 7, 11, 15 6, 10, 14
10 T F T F T T T 2, 3, 4 5, 9, 13
11 T F T T F T T 2, 3, 4 5, 9, 13
12 T F T T T T T 2, 3, 4
13 T T T F F F F 7, 11, 15 6, 10, 14
14 T T T F T T T 5, 9, 13
15 T T T T F T T 5, 9, 13
16 T T T T T T T

3.3. Mutation Analysis

Mutation analysis is widely used in order to compare the fault detection success

of test sets. Mutants are formed by making specific changes on the original Boolean

expressions. These changes are made by certain rules that are inferred from the common

mistakes made by programmers. Previous studies on mutant generation has defined that

a generated mutant may refer one or more fault classes, based on the type of changes that

have been made. A test set is said to kill a mutant, if it detects a mutant when it is run on

that mutant. The success of a test set is measured by the number of the mutants it can kill.

The aim of a good test case generation technique is killing as many mutants with fewer

test case.

On an example Boolean expression as S = (C0 ∨ (C1 ∧ C2)) ∧ C3, main fault

types can be defined as follows Mathur (2008):

ORF Operator Reference Fault. “AND” operator is replaced by “OR”, or “OR” operator

is replaced by “AND”. Ex.: (C0 ∨ (C1 ∧ C2)) ∨ C3.

ENF Expression Negation Fault. A sub expression of the expression is negated.

Ex.: (C0 ∨ (C1 ∧ C2)′) ∧ C3.

22

VNF Variable Negation Fault. A variable in the expression is negated.

Ex.: (C0 ∨ (C1′ ∧ C2)) ∧ C3.

MVF Missing Variable Fault. A variable is forgotten. Ex.: (C0 ∨ (C1 ∧ C2)).

VRF Variable Reference Fault. A variable is changed by another variable.

Ex.: (C1 ∨ (C1 ∧ C2)) ∧ C3.

CCF Clause Conjunction Fault. a ∧ b is written instead of variable a.

Ex.: (C0 ∨ (C1 ∧ C3 ∧ C2)) ∧ C3.

CDF Clause Disjunction Fault. a ∨ b is written instead of variable a.

Ex.: (C0 ∨ C3 ∨ (C1 ∧ C2)) ∧ C3.

SA0 Stuck at-0. A variable is always set to 0. Ex.: (0 ∨ (C1 ∧ C2)) ∧ C3.

SA1 Stuck at-1. A variable is always set to 1. Ex.: (C0 ∨ (1 ∧ C2)) ∧ C3.

After all mutants are created for all fault classes, running test sets on all these

mutants can be infeasible in the means of time and sources, for large scale programs.

According to Kuhn (1999)’s study, if a fault class can cover another fault class’ faulty

expressions, that fault class is considered as stronger than the other one. In Kuhn’s study,

it is shown that ENF is stronger than VNF, and VNF is stronger than VRF in a hierarchy.

Tsuchiya and Kikuno (2002) added missing expression fault class into the hierar-

chical structure which Kuhn (1999) introduced. Lau and Yu (2005) extended the hierarchy

by analyzing and adding term and variable faults.

Figure 3.5. Fault class hiearchy.

23

In all studies mentioned above, analyzed Boolean expression should be given in

DNF. Kapoor and Bowen (2007) reformed the hierarchical structure and added new fault

classes, so that it can be viable for general Boolean expressions. Chen et al. (2011) ex-

tended Kapoor and Bowen (2007)’s study and presented the hierarchical structure given

in the Figure 3.5. Arrows go from weaker to stronger. According to this structure, con-

sidering only four of nine fault classes is enough: ORF, CCF, CDF and ENF.

24

CHAPTER 4

PROPOSED MODEL AND IMPLEMENTED TOOL

4.1. CEG Model

In order to define and model a cause-effect graph, an XML based file format cre-

ated to represent graphs named GraphML (2016) is used. GraphML’s base has main

components of a graph as node, edge, etc. and main properties on them as label, id, etc.

This base can be extended by adding new node and edge properties if needed. To be able

to define a proper cause-effect graph, it was sufficient to add the property of negation to

the edges. Furthermore, the following properties are added to the nodes:

• grade - is used to draw the graph properly

• relation - is used to define the Boolean expression forming the node

• node type - cause, effect, intermediate, constraint nodes

• constraint result - is used to store the intermediate or effect node that a constraint is

connected

Detailed explanation of how to create the corresponding “.graphml” file from a

cause-effect graph is given in Appendix A.

A graph visualization desktop application named Gephi (2016) and its open source

library are used in order to draw cause-effect graphs, import a “.graphml” file to see its

corresponding graph and export drawn graphs in “.graphml” file format. By using the Java

based Gephi library, the graph information is taken from an imported “.graphml” file. This

information is transformed into the desired cause-effect model by the implemented tool,

which is also developed in Java language. The class diagram of cause-effect graph model

with Gephi toolkit can be seen in Figure 4.1

Boolean expressions are formed in general form for each effect node by using

the relation information between nodes in the graph. In order to use these Boolean ex-

pressions for the techniques MI, MAX-A and CUTPNFP, they are converted into DNF.

25

Figure 4.1. Class diagram of cause-effect graph model with Gephi toolkit.

This DNF is in canonical form since each term contains all variables. In order to apply

MUTP, MNFP and MUMCUT methods the DNF Boolean expression cannot be canon-

ical, since there must be some literals missing in terms, in order to apply these algo-

rithms. For these methods, another open source tool named jbool expressions developed

by Podgursky (2016) is used. In order to create mutants, different mutation models are

created for different fault classes. By using the original Boolean expression formed for

each effect node, and the mutation model, mutants are created. The overall flow can be

seen in Figure 4.2.

26

Figure 4.2. Architecture of Generating Test Cases From Cause Effect Graphs.

4.2. DNF Conversion

Recall that DNF is the disjunction of conjunctive literals from Section 3.2. These

conjunctive literals form different terms of the expression. A term is called a minterm

if it contains all variables once. Minterms also can be represented as truth table lines

which has true result value, and vice versa. By using this property, we can convert a given

Boolean expression into canonical DNF, by simply creating its corresponding truth table

and then selecting true resulted lines.

All combinations for all variables are considered for each effect node. The lines

that resulting in true value are chosen. These lines are examined if they have any con-

straint in between (exclusive or, inclusive or, required, etc.). Considering existent con-

27

straints, if the line conflicts with one of the constraints, that line is not chosen. Variables

in these lines are taken as a term such as: a variable which has true value is directly se-

lected, a variable which has false value is taken by its negation, then these variables are

connected with “AND” operator. All chosen lines represent different terms of the new

DNF Boolean expression. These terms are connected with “OR” operators, so that the

DNF expression is formed.

Ex: Assume we have a Boolean expression as:

E = (A ∧B) ∨ (((A ∧ C) ∨B) ∧ (B ∧ C))

Table 4.1. Truth table for the expression E = (A ∧B) ∨ (((A ∧ C) ∨B) ∧ (B ∧ C))

A B C E
T T T T
T T F T
T F T F
T F F F
F T T T
F T F F
F F T F
F F F F

Selecting the lines 1,2 and 5 in Table 4.1, we get the corresponding canonical DNF as:

E = (A ∧B ∧ C) ∨ (A ∧B ∧ C ′) ∨ (A′ ∧B ∧ C)

4.3. Mutation Analysis Implementation

Recall the fault classes in section 3.3: Operator Reference Fault (ORF), Expres-

sion Negation Fault (ENF), Variable Negation Fault (VNF), Missing Variable Fault (MVF),

Variable Reference Fault (VRF), Clause Conjunction Fault (CCF), Clause Disjunction

Fault (CDF) Stuck at-0 (SA0), Stuck at-1 (SA1). Although, only four of them are enough

to cover the others, all nine fault classes are modeled in order to create mutants for each

fault class from the original Boolean expression. Here, only one change is done on the

original expression for each mutant created, mixed mutants are not used to examine indi-

vidual faults. The class diagram of the mutant creation can be seen in Figure 4.3.

28

Figure 4.3. Class diagram of mutant creation.

4.4. Implemented Tool

Implemented tool allows user to import a cause-effect graph as a .graphml file.

One of the implemented methods can be selected (Myers, MI, MC/DC, etc.). Generated

test cases can be seen and can be exported. These can be done in the main page of the

tool, can be seen in Figure 4.4.

Figure 4.4. Test Case Generator tool main page.

29

Mutation analysis can be done for all 9 fault types and also the results of the

mutation analysis can be exported. Mutation analysis page of the tool can be seen in

Figure 4.5.

Figure 4.5. Test Case Generator Mutation Analysis page.

30

Figure 4.6. The drawn Cause-Effect Graph of 14 requirements of TCAS-II.

31

CHAPTER 5

EVALUATION

TCAS-II is an aviation collision avoidance system compatible with many aircraft

types. It has been frequently used in literature on testing Lau and Yu (2005); Chen et al.

(2009); Badhera et al. (2011); Weyuker et al. (1994); Gargantini and Fraser (2011). 14

requirements of TCAS-II are modeled as in Figure 4.6 and the corresponding graphml file

of the graph is provided.

The cause-effect graph taken as graphml file is converted to Boolean expressions.

From these expressions test cases are generated by using Myers’ original method, Unique

MC/DC and Masking MC/DC. Then these Boolean expressions are converted into canon-

ical DNF, by using the method explained in Section 4.2. From these canonical DNF ex-

pressions, test cases are generated by using methods MI, MAX-A, MUTP, MNFP, CUTP-

NFP and MUMCUT.

In order to use the given mutation analysis model in Section 4.3, for all nine fault

classes mentioned, all possible mutants are created by making only one change on original

expression. Generated test sets by different methods are run on created mutants and the

number of mutants each test set can detect are listed. The Boolean expression evaluations

are done by an open source library JBooleanExpression (2016).

Results of the experiments are given in tables below as: The number of test cases

of methods are given in Table 5.1 and the number of total created mutants are given

in Table 5.2. In Table 5.3, the total number of the mutants detected by the methods

(success of methods) are given. Moreover, in Table 5.4, the detection success percentages

of methods over total number of mutants are given. Lastly, in Table 5.5, the number

of detected mutants per test case is given for each method. Furthermore, corresponding

diagrams of the tables are given in Figures 5.1, 5.2, 5.3, 5.4, 5.5.

Comparing the number of test cases generated by different methods that uses

Boolean expression in DNF: For MAX-A, since all true and false points are selected

for each variable in each term of canonical DNF, the number of test cases is the high-

est. As mentioned before, MI and MAX-A are from the same family of test generation

methods. However, the number of test cases generated by MI are less, because in MI

32

Table 5.1. The number of test cases for TCAS-II

Number of Test Cases
MI 2125

MAX-A 4370
MUTP 1082
MNFP 1251

CUTPNFP 274
MUMCUT 2044

Unique MC/DC 87
Masking MC/DC 2304

Myers 708
Random1 87
Random2 300
Random3 750
Random4 1538
Random5 2200
Random6 3000
Random7 4370

Table 5.2. The number of created mutants for TCAS-II

VNF+ENF ORF SA0+SA1 VRF CCF CDF MVF All
Mutants 391 238 504 238 252 252 140 2029

method, only one test case is selected from true points, while all true points are selected

in MAX-A. For MUTP and MNFP, the number of test cases is lesser, since the used DNF

expressions were not canonical as MAX-A and MI. MUTP and MNFP focuses on true

and false points, respectively. On the other hand, CUTPNFP has the least number of test

cases, since it focuses on only specific types of faults. MUMCUT is the union of the

test cases generated by MUTP, MNFP and CUTPNFP. However, the number of test cases

of MUMCUT is lesser than the exact summation of the number of test cases of MUTP,

MNFP and CUTPNFP. This difference occurs due to the existence of the common test

cases generated for different effects in the graph. For instance, a test case that is gener-

ated for a specific effect by MUTP can be mutual with a test case generated for another

effect by MNFP.

Comparing the number of test cases generated by the methods that use Boolean

expression in general form: Unique MC/DC has generated the least number of test cases.

This is because, Unique MC/DC directly selects independence pairs for each variable of

each effect’s expression. These pairs are selected in order to examine each variable’s in-

33

dependent effect on the outcome of the corresponding effect. Masking MC/DC generated

higher number of test cases. Since it selects different combinations of intermediate nodes,

where these combinations does not change the independent effect of the variable under

consideration on the outcome of the corresponding effect’s expression. Finally, Myers

generated a number of test cases that is in between Unique and Masking MC/DC.

For all types of faults, MUMCUT and MAX-A have the highest success percent-

age values. MUTP and MNFP have the next best values, since they are parts of MUM-

CUT. Other methods have close values among each other. Although, evaluating only the

success percentages is not meaningful without considering the total number of test cases

and the cost of processes needed in order to generate these test cases. MI and MAX-A

have the highest cost since the Boolean expressions are converted into canonical DNF

first. For MUTP, MNFP, CUTPNFP and MUMCUT, a conversion is done into DNF, how-

ever, it is done by another tool which converts the Boolean expressions into irredundant

DNF. The cost difference between {MI, MAX-A} and {MUTP, MNFP, CUTPNFP and

MUMCUT} comes from this DNF conversion difference. Normally, MI is expected to

have a better result, because it uses a DNF Boolean expression and checks for each vari-

able in each term. However, MI has a success percentage which is close to the methods

Myers, Unique MC/DC and Masking MC/DC. The reason behind is the random selection

of true points in MI method, since a randomly selected true point may not detect the con-

sidered fault. Test cases generated by Myers’ and MC/DC types have similar costs since

there is no conversion needed.

Comparing the successes on all types of faults except MVF, choosing MAX-A or

MUMCUT seems better. However, considering their computational costs and total test

cases, MUMCUT is a better choice. Although MUTP is the best choice for MVF accord-

ing to the success percentage, it depends on the problem size and the time constraints are

important. Using the MUMCUT method may not be feasible or the number of test cases

may be too high to run under certain constraints. Under these circumstances, it may be

better to use Unique MC/DC, Masking MC/DC or Myers methods, since they generate

less number of test cases, even if their successes are lower.

Comparing the number of mutants killed per test case for each method, Unique

MC/DC has the best result since it kills the highest number of mutants per test case. But

again, this metric is not solely enough to make a choice between methods, since the result

for Random test case generation is the same as MAX-A, but the percentage of their mutant

killing success overall 0.31 and 0.85 respectively.

34

Table 5.3. The number of detected mutants for TCAS-II

Number of Detected Mutants
VNF+ENF ORF SA0+SA1 VRF CCF CDF MVF All

MI 270 176 254 146 99 91 85 1119
MAX-A 344 214 438 215 220 218 85 1734
MUTP 318 198 399 196 201 200 119 1631
MNFP 339 209 418 206 206 200 108 1686

CUTPNFP 267 168 150 130 84 64 85 948
MUMCUT 344 214 440 217 220 220 119 1774
U. MC/DC 267 172 239 139 93 78 85 1073
M. MC/DC 270 177 254 148 99 91 85 1124

Myers 267 173 252 148 92 86 119 1137
Random1 78 50 49 27 18 14 19 255
Random2 118 78 76 44 30 21 34 399
Random3 147 99 103 64 44 31 41 529
Random4 151 102 109 68 46 36 43 555
Random5 163 114 117 72 50 34 47 597
Random6 190 127 145 89 60 43 54 708
Random7 224 148 181 107 76 58 65 859

Figure 5.1. Mutant Detection Success of Methods.

35

Table 5.4. Percentage of detected mutants over all mutants for TCAS-II

Percentage of Detected Mutants
VNF+ENF ORF SA0+SA1 VRF CCF CDF MVF All

MI 0.69 0.74 0.50 0.61 0.39 0.36 0.60 0.55
MAX-A 0.88 0.90 0.87 0.90 0.87 0.87 0.60 0.85
MUTP 0.81 0.83 0.79 0.82 0.80 0.79 0.85 0.80
MNFP 0.87 0.88 0.83 0.87 0.82 0.79 0.77 0.83

CUTPNFP 0.68 0.71 0.30 0.55 0.34 0.25 0.60 0.46
MUMCUT 0.88 0.90 0.87 0.91 0.87 0.87 0.85 0.87
U. MC/DC 0.68 0.73 0.47 0.58 0.37 0.31 0.60 0.53
M. MC/DC 0.69 0.74 0.50 0.62 0.39 0.36 0.60 0.55

Myers 0.68 0.73 0.50 0.62 0.36 0.34 0.85 0.56
Random1 0.20 0.21 0.09 0.11 0.07 0.05 0.13 0.12
Random2 0.30 0.33 0.15 0.18 0.12 0.08 0.24 0.20
Random3 0.37 0.41 0.20 0.27 0.17 0.12 0.29 0.26
Random4 0.39 0.43 0.22 0.28 0.18 0.14 0.31 0.27
Random5 0.42 0.48 0.23 0.30 0.20 0.13 0.33 0.29
Random6 0.48 0.53 0.29 0.37 0.24 0.17 0.38 0.35
Random7 0.57 0.62 0.36 0.45 0.30 0.23 0.46 0.42

Figure 5.2. Mutant Detection Success Percentage of methods.

36

Figure 5.3. Mutant Detection Percentages for Fault Classses VNF+ENF, ORF,
SA0+SA1 and VRF.

Figure 5.4. Mutant Detection Percentages for Fault Classses CCF, CDF, MVF and All
Classes.

37

Table 5.5. The number of detected mutants per test case for TCAS-II

Number of Detected Mutants per Test Case
VNF+ENF ORF SA0+SA1 VRF CCF CDF MVF All

MI 0.13 0.09 0.12 0.07 0.05 0.04 0.04 0.53
MAX-A 0.08 0.05 0.10 0.05 0.05 0.05 0.02 0.40
MUTP 0.29 0.18 0.37 0.18 0.18 0.18 0.11 1.51
MNFP 0.27 0.17 0.33 0.16 0.16 0.16 0.09 1.35

CUTPNFP 0.97 0.61 0.55 0.47 0.31 0.23 0.31 3.46
MUMCUT 0.17 0.10 0.22 0.11 0.11 0.11 0.06 0.87
U. MC/DC 3.07 1.98 2.75 1.60 1.07 0.90 0.98 12.3
M. MC/DC 0.12 0.08 0.11 0.06 0.04 0.04 0.04 0.49

Myers 0.38 0.24 0.36 0.21 0.13 0.12 0.17 1.60
Random1 0.90 0.57 0.57 0.31 0.20 0.16 0.22 2.93
Random2 0.39 0.26 0.25 0.15 0.10 0.07 0.11 1.33
Random3 0.19 0.13 0.14 0.08 0.06 0.04 0.05 0.70
Random4 0.09 0.06 0.07 0.04 0.03 0.02 0.03 0.36
Random5 0.07 0.05 0.05 0.03 0.02 0.01 0.02 0.27
Random6 0.06 0.04 0.05 0.03 0.02 0.01 0.01 0.23
Random7 0.05 0.03 0.04 0.02 0.01 0.01 0.01 0.20

Figure 5.5. The number of detected mutants per test case for TCAS-II

38

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis; a cause-effect model is created where a cause-effect graph is repre-

sented in a .graphml file. By using this file, corresponding Boolean expressions are cre-

ated. Then, these Boolean expressions are converted into DNF. Selected test generation

techniques are implemented from the Boolean expressions or DNF expressions accord-

ing to the requirements of these methods. Then, an experiment is done on some of the

requirements of a real system. Mutants are created for selected fault types and mutation

analysis is done on test cases generated by all implemented methods. As a result, it was

seen that MUMCUT technique has the highest mutant detection success. Furthermore,

Unique MC/DC detected the highest number of mutants per test case.

The conclusions made above should be verified by repeating the same experiments

by using other cause-effect graphs. Results may vary in different types of programs under

test. Moreover, when choosing a method over another, chosing one of them may be more

logical or not according to the structure of the program and the related Boolean expres-

sions of the effects. For example, using Masking MC/DC is meaningful for a system with

expressions that have repetitive variables.

In the future, the “.graphml” model can be improved by directly deriving the re-

lation attribute of the nodes. Furthermore, the tool can be extended in order to enable

the user to import the graph with different file types that are supported by Gephi (GEXF,

GDF, GML, etc.). Moreover, other test generation methods can be added into the tool as

RC/DC, MIN-A, etc. In addition, a format for system requirements can be determined, so

that the corresponding Boolean expressions and the representative “.graphml” file can be

created automatically.

Furthermore, by using different cause-effect graphs, test cases need to be gen-

erated and compared in order to have more data to anaylse, in order to make a better

conclusion on the selection of different methods. By considering the difference between

the number of test cases and the probabilities of different methods’ mutant detection pos-

sibilities, a better metric should be researched and used so that the comparison between

methods can be more meaningful.

39

In mutation analysis, equivalent mutants can be examined in the mutant creation.

Moreover, mutant detection success of different methods can be examined in the means

of recording the exact mutants they detected. Using this knowledge, a guidance can be

given in order to select method pairs. If two methods detect different mutants in the set

of mutants, together these methods can be selected in order to have a better success on

overall.

40

REFERENCES

Arcaini, P., A. Gargantini, and E. Riccobene (2015). How to optimize the use of sat and

smt solvers for test generation of boolean expressions. The Computer Journal 58(11),

2900–2920.

Ayav, T. and F. Belli (2015). Boolean differentiation for formalizin myers’ cause-effect

graph testing technique. In Software Quality, Reliability and Security-Companion, pp.

138–143.

Badhera, U., P. G.N., and S. Taruna (2011). Fault based techniques for testing boolean ex-

pressions : A survey. International Journal of Computer Science & Engineering 3(1),

81–90.

(Cast), C. A. S. T. (2001). Rationale for Accepting Masking MC/DC in Certification

Projects.

Chen, T., M. Lau, and Y. Yu (1999). Mumcut: A fault-based strategy for testing boolean

specications. In Asia-Pacic Software Engineering Conference, pp. 606.

Chen, T. Y., D. D. Grant, M. F. Lau, S. P. Ng, and V. Vasa (2003). Beat:boolean expression

fault-based test case generator. In Information Technology:Research and Education

Conference, pp. 625–629.

Chen, T. Y. and M. F. Lau (2001). Test case selection strategies based on boolean speci-

fications. Software Testing, Verification, Reliability 11, 165–180.

Chen, T. Y., M. F. Lau, K. Y. Sim, and C. Sun (2009). On detecting faults for boolean

expressions. Software Quality Journal 17(3), 245–261.

Chen, Z., T. Y. Chen, and B. Xu (2011). A revisit of fault class hierarchies in general

boolean specifications. ACM Transactions on Software Engineering and Methodol-

ogy 20(3), 13:1–13:11.

Chilenski, J. and S. Miller (1994). Applicability of modified condition/decision coverage

to software testing. Software Engineering Journal 9(5), 193–200.

Chilenski, J. J. (2001). An investigation of three forms of the modified condition decision

coverage (mcdc) criterion. Technical report, DTIC Document.

Chung, I. (2014a). Investigating effectiveness of software testing with cause-effect

41

graphs. International Journal of Software Engineering and Its Applications 8(7), 41–

54.

Chung, I. (2014b). Modeling pairwise test generation from cause-effect graphs as a

boolean satisfiability problem. International Journal of Contents 10(3), 41–46.

Chung, I. (2015a). Cegpairgen: an automated tool for generating pairwise tests from

cause–effect graphs. International Journal of Software Engineering and Its Applica-

tions 9(1), 53–66.

Chung, I. (2015b). Using boolean satisfiability solving for pairwise test generation from

cause-effect graphs: Comparison of three approaches. International Journal of Soft-

ware Engineering and Its Applications 9(9), 65–78.

Elmendorf, W. R. (1973). Cause-effect graphs in functional testing. Technical report,

[Poughkeepsie, N.Y.] : IBM.

Fraser, G. and A. Gargantini (2010). Generating minimal fault detecting test suites for

boolean expressions. In Software Testing, Verification, and Validation Workshops, pp.

37–45.

Gargantini, A. and G. Fraser (2011). Generating minimal fault detecting test suites for

general boolean specifications. Information and Software Technology 53(11), 1263–

1273.

Gephi (2016). Gephi: The open graph viz platform. https://gephi.org/. Online;

Accessed: 2016-06-25.

GraphML (2016). The graphml file format. http://graphml.graphdrawing.

org/. Online; Accessed: 2016-06-25.

JBooleanExpression (2016). Jbooleanexpression: Java boolean expression evaluator.

http://jboolexpr.sourceforge.net/. Online; Accessed: 2016-06-25.

Kaminski, G., P. Ammann, and J. Offutt (2013). Improving logic-based testing. Journal

of Systems and Software 86(8), 2002–2012.

Kaminski, G. K. and P. Ammann (2009). Using logic criterion feasibility to reduce test

set size while guaranteeing fault detection. In ICST’09: Proceedings of the 2nd Inter-

national Conference on Software Testing Verification and Validation, pp. 356–365.

Kapoor, K. and J. P. Bowen (2007). Test conditions for fault classes in boolean specifica-

tions. ACM Transactions on Software Engineering and Methodology 16(3), 10.

42

Kuhn, R. (1999). Fault classes and error detection capability of specification-based test-

ing. ACM Transactions on Software Engineering and Methodology 8(4), 411–424.

Lau, M. F. and Y. T. Yu (2005). An extended fault class hierarchy for specification-based

testing. ACM Transactions on Software Engineering and Methodology 14(3), 247–

276.

Mathur, P. A. (2008). Foundations of Software Testing (First Edition ed.). Pearson Publi-

cation.

Myers, G. J. (1979). The art of software testing. A Willy-Interscience Pub, pp.–1979.

Nursimulu, K. and R. L. Probert (1995). Cause-effect graphing analysis and validation

of requirements. In Proceedings of the 1995 Conference of the Centre for Advanced

Studies on Collaborative research, pp. 46. IBM Press.

Paradkar, A. (1994). On the experience of using cause-effect graphs for software speci-

fication and test generation. In Proceedings of the 1994 conference of the Centre for

Advanced Studies on Collaborative research, pp. 51. IBM Press.

Paradkar, A. (1995). A new solution to test generation for boolean expressions. In Pro-

ceedings of the 1995 Conference of the Centre for Advanced Studies on Collaborative

Research, CASCON ’95, pp. 48–. IBM Press.

Paradkar, A., K. C. Tai, and M. Vouk (1997). Specification-based testing using cause-

effect graphs. Annals of Software Engineering 4, 133–157.

Paradkar, A., K. C. Tai, and M. A. Vouk (1996). Automatic test-generation for predicates.

IEEE Transactions on Reliability 45(4), 515–530.

Paul, T. K. and M. F. Lau (2012). Redefinition of fault classes in logic expressions. In

2012 12th International Conference on Quality Software, pp. 144–153. IEEE.

Paul, T. K. and M. F. Lau (2014). A systematic literature review on modified condition and

decision coverage. In Proceedings of the 29th Annual ACM Symposium on Applied

Computing, pp. 1301–1308. ACM.

Podgursky, B. (2016). jbool expressions. https://github.com/bpodgursky/

jbool_expressions/. Online; Accessed: 2016-06-25.

Singh, R. K., P. Chandra, and Y. Singh (2006). An evaluation of boolean expression

testing techniques. ACM SIGSOFT Software Engineering Notes 31(5), 1–6.

43

Srivastava, P. R., P. Patel, and S. Hatrola (2009). Cause effect graph to decision table

generation. ACM SIGSOFT Software Eng.Notes 34(2).

Sun, C.-A., Y. Zai, and H. Liu (2015). Evaluating and comparing fault-based testing

strategies for general boolean specifications: A series of experiments. The Computer

Journal 58(5), 1199–1213.

Sziray, J. (2013). Evaluation of boolean graphs in software testing. In Computational

Cybernetics (ICCC), 2013 IEEE 9th International Conference on, pp. 225–230. IEEE.

Tai, K.-C. (1993). Predicate-based test generation for computer programs. In Software

Engineering, 1993. Proceedings., 15th International Conference on, pp. 267–276.

IEEE.

Tai, K.-C. (1996). Theory of fault-based predicate testing for computer programs. IEEE

Transactions on Software Engineering 22(8), 552–562.

Tai, K.-C., A. Paradkar, H.-K. Su, and M. A. Vouk (1993). Fault-based test generation

for cause-effect graphs. In Proceedings of the 1993 Conference of the Centre for Ad-

vanced Studies on Collaborative Research: Software Engineering - Volume 1, CAS-

CON ’93, pp. 495–504. IBM Press.

Tsuchiya, T. and T. Kikuno (2002). On fault classes and error detection capability of

specification-based testing. ACM Transactions on Software Engineering and Method-

ology 11(1), 58–62.

Vilkomir, S. and J. Bowen (2002). Reinforced condition/decision coverage (rc/dc): A new

criterion for software testing. In 2nd International Conference, Formal Specification

and Development in Z and B, Lecture Notes in Computer Science, Volume 2272, pp.

295–313.

Vilkomir, S., O. Starov, and R. Bhambroo (2013). Evaluation of t-wise approach for test-

ing logical expressions in software. In Software Testing, Verification and Validation

Workshops (ICSTW), 2013 IEEE Sixth International Conference on, pp. 249–256.

IEEE.

Weyuker, E., T. Goradia, and A. Singh (1994). Automatically generating test data from a

boolean specification. IEEE Transactions on Software Engineering 20(5), 353–363.

44

APPENDIX A

GRAPHML DESIGN

First, the cause and effect nodes are determined from the requirements of the

program. Afterwards, the combinations of causes resulting in effect nodes are determined

and the constraints are added if needed. Then, the corresponding graph can be drawn in

any graph visualization tool and need to be exported as a “.graphml” file, Gephi is used

in experiments for this thesis. Also, without using any tool, the “.graphml” file can be

Written directly. There are same extra attributes need to be added to the nodes and edges

in order to form a cause effect graph.

The attributes added to the nodes and how to define them:

• grade: This attribute is used only for visualization purposes. Cause constraints are

started with grade 0, then each level represented by adding 1, i.e. Cause nodes are

at grade 1, Intermediate nodes are at grade 2, etc.

• label: This attribute is directly the name of the node. Naming of the node labels is

important. Different types of nodes must have certain labels as:

– Constraint nodes must be named by their type directly, it is enumerated as:

E, I, R, O, M

– Cause nodes must be named starting with the letter “C” as: C1, C7, C12, etc.

– Intermediate nodes must be named starting with the letter “I” as: I1, I5, etc.

– Effect nodes must be named starting with the letter “E” as: E1, E8, etc.

• relation: Relation node represents the corresponding Boolean expression forming

that node. Relation attribute exists for Intermediate and Effect nodes. For example,

if an Intermediate node I5 is formed by C1 ∧ C2 ∧ C3;

relation attribute must be: C1 + C2 + C3− AND.

• nodeType: This attribute is also enumerated, represents the type of node in the cause

effect graph. Can have the values: Cause, Intermediate, Effect, Constraint.

• consInt: This attribute is added for the Constraint nodes.

45

– For the constraints connected to Cause nodes, these nodes are also connected

to an Intermediate or Effect node. This attribute represents the resulting node

of the Constraint. For example, if an Intermediate node I3 is formed by C5 ∨
C6 ∨ C7 with an E (Exclusive OR) Constraint; the consInt attribute in the

corresponding Constraint node must be: I3.

– For the constraint connecting Effect nodes, which is the M (Masking) Con-

straint; if the Effect E3 is Masking the Effect E4, the consInt attribute must

be: E3− E4.

• neg: The only attribute added to the edges is the negation attribute, which represents

if the edge is negated or not. If an edge is negated, the attribute neg must be: NOT.

An example with the cause effect graph in Figure A.1 and the corresponding

.graphml file can be found in Listing A below.

Figure A.1. Example cause effect graph.

46

Listing A.1 .graphml File Example

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g = ”UTF−8” ?>

<graphml xmlns=” h t t p : / / graphml . g r a p h d r a w i n g . o rg / xmlns ”

x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−i n s t a n c e ”

x s i : s c h e m a L o c a t i o n =” h t t p : / / graphml . g r a p h d r a w i n g . o rg / xmlns

h t t p : / / graphml . g r a p h d r a w i n g . o rg / xmlns / 1 . 1 / graphml . xsd ”>

<!−−C o n t e n t : L i s t o f graphs and da ta−−>

<key i d =” g r a d e ” f o r =” node ” a t t r . name=” g r a d e ”

a t t r . t y p e =” i n t ”>

<d e f a u l t>n u l l< / d e f a u l t>

< / key>

<key i d =” l a b e l ” f o r =” node ” a t t r . name=” l a b e l ”

a t t r . t y p e =” s t r i n g ”>

<d e f a u l t>n u l l< / d e f a u l t>

< / key>

<key i d =” r e l a t i o n ” f o r =” node ” a t t r . name=” r e l a t i o n ”

a t t r . t y p e =” s t r i n g ”>

<d e f a u l t>n u l l< / d e f a u l t>

< / key>

<key i d =” nodeType ” f o r =” node ” a t t r . name=” nodeType ”

a t t r . t y p e =” s t r i n g ”>

<d e f a u l t>n u l l< / d e f a u l t>

< / key>

<key i d =” c o n s I n t ” f o r =” node ” a t t r . name=” c o n s I n t ”

a t t r . t y p e =” s t r i n g ”>

<d e f a u l t>n u l l< / d e f a u l t>

< / key>

47

<key i d =” neg ” f o r =” edge ” a t t r . name=” neg ”

a t t r . t y p e =” s t r i n g ”>

<d e f a u l t>n u l l< / d e f a u l t>

< / key>

<graph e d g e d e f a u l t =” u n d i r e c t e d ”>

<node i d = ” 1 ”>

<d a t a key=” l a b e l ”>C1< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

<node i d = ” 2 ”>

<d a t a key=” l a b e l ”>C2< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

<node i d = ” 3 ”>

<d a t a key=” l a b e l ”>C3< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

<node i d = ” 4 ”>

<d a t a key=” l a b e l ”>C4< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

<node i d = ” 5 ”>

<d a t a key=” l a b e l ”>C5< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

48

<node i d = ” 6 ”>

<d a t a key=” l a b e l ”>C6< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

<node i d = ” 7 ”>

<d a t a key=” l a b e l ”>C7< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

<node i d = ” 8 ”>

<d a t a key=” l a b e l ”>C8< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

<node i d = ” 9 ”>

<d a t a key=” l a b e l ”>C9< / d a t a>

<d a t a key=” g r a d e ”>1< / d a t a>

<d a t a key=” nodeType ”>Cause< / d a t a>

< / node>

<node i d = ” 10 ”>

<d a t a key=” l a b e l ”>E< / d a t a>

<d a t a key=” g r a d e ”>0< / d a t a>

<d a t a key=” nodeType ”>C o n s t r a i n t< / d a t a>

<d a t a key=” c o n s I n t ”>I1< / d a t a>

< / node>

<node i d = ” 11 ”>

<d a t a key=” l a b e l ”>E< / d a t a>

<d a t a key=” g r a d e ”>0< / d a t a>

<d a t a key=” nodeType ”>C o n s t r a i n t< / d a t a>

<d a t a key=” c o n s I n t ”>I2< / d a t a>

< / node>

<node i d = ” 12 ”>

49

<d a t a key=” l a b e l ”>I1< / d a t a>

<d a t a key=” g r a d e ”>2< / d a t a>

<d a t a key=” nodeType ”> I n t e r m e d i a t e< / d a t a>

<d a t a key=” r e l a t i o n ”>C3+C4+C5 − OR< / d a t a>

< / node>

<node i d = ” 13 ”>

<d a t a key=” l a b e l ”>I2< / d a t a>

<d a t a key=” g r a d e ”>2< / d a t a>

<d a t a key=” nodeType ”> I n t e r m e d i a t e< / d a t a>

<d a t a key=” r e l a t i o n ”>C6+C7+C8 − OR< / d a t a>

< / node>

<node i d = ” 14 ”>

<d a t a key=” l a b e l ”>I3< / d a t a>

<d a t a key=” g r a d e ”>3< / d a t a>

<d a t a key=” nodeType ”> I n t e r m e d i a t e< / d a t a>

<d a t a key=” r e l a t i o n ”>C1+C2+ I1 + I2 − AND< / d a t a>

< / node>

<node i d = ” 15 ”>

<d a t a key=” l a b e l ”>E1< / d a t a>

<d a t a key=” g r a d e ”>4< / d a t a>

<d a t a key=” nodeType ”>E f f e c t< / d a t a>

<d a t a key=” r e l a t i o n ”>I3 +C9 − AND< / d a t a>

< / node>

<node i d = ” 16 ”>

<d a t a key=” l a b e l ”>E2< / d a t a>

<d a t a key=” g r a d e ”>4< / d a t a>

<d a t a key=” nodeType ”>E f f e c t< / d a t a>

<d a t a key=” r e l a t i o n ”>I3 +C9 − AND< / d a t a>

< / node>

<node i d = ” 17 ”>

<d a t a key=” l a b e l ”>E3< / d a t a>

<d a t a key=” g r a d e ”>4< / d a t a>

<d a t a key=” nodeType ”>E f f e c t< / d a t a>

50

<d a t a key=” r e l a t i o n ”>I3 +˜C9 − AND< / d a t a>

< / node>

<node i d = ” 18 ”>

<d a t a key=” l a b e l ”>E4< / d a t a>

<d a t a key=” g r a d e ”>4< / d a t a>

<d a t a key=” nodeType ”>E f f e c t< / d a t a>

<d a t a key=” r e l a t i o n ”>˜ I3 − NOT< / d a t a>

< / node>

<edge s o u r c e = ” 10 ” t a r g e t = ” 3 ” />

<edge s o u r c e = ” 10 ” t a r g e t = ” 4 ” />

<edge s o u r c e = ” 10 ” t a r g e t = ” 5 ” />

<edge s o u r c e = ” 11 ” t a r g e t = ” 6 ” />

<edge s o u r c e = ” 11 ” t a r g e t = ” 7 ” />

<edge s o u r c e = ” 11 ” t a r g e t = ” 8 ” />

<edge s o u r c e = ” 1 ” t a r g e t = ” 14 ” />

<edge s o u r c e = ” 2 ” t a r g e t = ” 14 ” />

<edge s o u r c e = ” 3 ” t a r g e t = ” 12 ” />

<edge s o u r c e = ” 4 ” t a r g e t = ” 12 ” />

<edge s o u r c e = ” 5 ” t a r g e t = ” 12 ” />

<edge s o u r c e = ” 12 ” t a r g e t = ” 14 ” />

<edge s o u r c e = ” 6 ” t a r g e t = ” 13 ” />

<edge s o u r c e = ” 7 ” t a r g e t = ” 13 ” />

<edge s o u r c e = ” 8 ” t a r g e t = ” 13 ” />

<edge s o u r c e = ” 13 ” t a r g e t = ” 14 ” />

<edge s o u r c e = ” 14 ” t a r g e t = ” 15 ” />

51

<edge s o u r c e = ” 14 ” t a r g e t = ” 16 ” />

<edge s o u r c e = ” 14 ” t a r g e t = ” 17 ” />

<edge s o u r c e = ” 14 ” t a r g e t = ” 18 ” >

<d a t a key = ” neg ”>NOT< / d a t a>

< / edge>

<edge s o u r c e = ” 9 ” t a r g e t = ” 15 ” />

<edge s o u r c e = ” 9 ” t a r g e t = ” 16 ” />

<edge s o u r c e = ” 9 ” t a r g e t = ” 17 ”>

<d a t a key = ” neg ”>NOT< / d a t a>

< / edge>

< / g raph>

< / g raphml>

52

