COUPLING REACTIONS OF ENYNE OXIRANS WITH GRIGNARD REAGENTS

A Thesis Submitted to The Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Chemistry

by İsmet Arınç AYTAÇ

> October2016 İZMİR

We approve the thesis of İsmet Arınç AYTAÇ

Examining Committee Members:

Prof. Dr. Levent ARTOK Department of Chemistry, İzmir Institute of Technology

Prof. Dr. Stephen Thomas ASTLEY Department of Chemistry, Ege University

Prof. Dr. Canan VARLIKLI

Department of Photonic, İzmir Institute of Technology

25 October 2016

Prof. Dr. Levent ARTOK Supervisor, Department of Chemistry İzmir Institute of Technology

Prof. Dr. Ahmet Emin EROĞLU Head of Department of Chemistry **Prof. Dr. R. Bilge KARAÇALI** Dean of the Graduate School of Engineering and Sciences

ACKNOWLEDGEMENTS

At the beginning of everything, I would like to thank my advisor Prof. Dr. Levent ARTOK. This thesis could not have been written without him who not only served as my supervisor but also pushed and challenged me throughout my academic program. It was an honor to study with him.

Special thanks to Prof. Dr. Stephen Thomas ASTLEY and Prof. Dr. Canan VARLIKLI for participating as committee member and for reviewing my work.

In addition to this, I would like to thank my lab mate Fırat Ziyanak, Doğan Taç and Erman Kıbrıs for all those who have helped me with my work at Chemistry Department. I would like to thank Prof. Dr. Durmuş ÖZDEMİR for having permission to use FT-IR instrument in his research laboratory

Also, I have to thank my family and my friends, Nurhan AYTAÇ, Fikret AYTAÇ, Seçkin AYTAÇ, Nurdan ALTINSEL, Seval AYTAÇ, Defne AYTAÇ for all supports and prayers. They always supported me for my educational decisions. They have always been by my side whenever I needed them.

At last, thanks to The Scientific and Technological Research Council of Turkey (TUBITAK-113Z155) for the financial support.

ABSTRACT

COUPLING REACTIONS OF ENYNE OXIRANS WITH GRIGNARD REAGENTS

Laboratory-synthesized (Z)-2,4-Enyne oxiranes were subjected iron-catalyzed reactions with Grignard reagents. The reactions afforded majorly *E*-configured vinylallenes with a hydroxyl group on the allylic carbon as the $1,5-(S_N2'')$ -substitution products. However, in some case, along with the desired vinyllallenes products, $1,1-(S_N2)$ and 1,3-substitution (S_N2') by-products were also recovered. Diastereo-selectivity of the method is strictly reliant on the syn/anti mode of the alkylation process. This study provides a new methodology for the synthesis of vinylallenes which are potential building blocks of biological active molecules.

ÖZET

ENİN OKSİRANLARIN GRİGNARD REAKTİFLERİ İLE KENETLENME TEPKİMELERİ

Laboratuvarda sentezlenen (*Z*)-2,4-enin oksiran bileşiklerinin Grignard reaktifleri ile demir katalizli tepkimeleri gerçekleştirilmiştir. Bu tepkimeler ana ürün olarak 1,5- (S_N2'') -sübstitüsyon ürünü olan *E*-konfigürasyona sahip allilik pozisyonunda hidroksil grubu bulunan vinilallen ürünleri vermektedir. 1,1- (S_N2) ve 1,3- (S_N2) ürünleri de bazı reaktiflerin tepkimelerinde oluşabilmektedir. Tepkimenin diastereo seçimliliği alkilasyonun yalnızca *syn* ya da *anti* modunda gerçekleşmesine bağlıdır. Bu çalışma, biyolojik olarak aktif moleküllerin çeşitli yapı taşları olabilecek vinylallen sentezi için yeni bir yöntem sunmaktadır.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLESX
LIST OF SYMBOLS AND ABBRAVIATIONSXI
CHAPTER 1. INTRODUCTION
CHAPTER 2. LITERATURE WORK
2.1. Metal-Catalysed S _N 2'-Type Reactions of Propargyl Epoxides
2.2. Metal-Catalysed SN2'-Type Reactions of Allyl Epoxides
2.3. Metal Catalysed Substition Reactions of 2,4-Enyne Reagents
2.4. Vinylallenes as Reactive Compounds11
CHAPTER 3. EXPERIMENTAL STUDY 14
3.2. Synthesis of Substrates
3.2.1. Synthesis of (Z)-1a 15
3.2.2. Synthesis of (Z)-1b and 1c 17
3.2.3 Synthesis of hydroxyl tethered (Z)-2,4-enyne oxiranes
3.2.4. Synthesis of (Z)-1d, e, f, g, h
3.2.5. Synthesis of (Z)-1i, j, k, l, m, n, o, p, r
3.2.6. Synthesis of (Z)-1s
3.2.7. Synthesis of (Z)-1t
3.2.8. Synthesis of (Z)-1u
3.2.9. Synthesis of (E)-1b
3.2.10. Synthesis of (Z)-1v
3.3. Characterization of Reactants
3.4. General Procedure for Iron Catalysed with Grignard Reagents
Reactions
3.5. Characterization of Products
CHAPTER 4. RESULTS AND DISCUSSION
CHAPTER 5. CONCLUSION
REFERENCES

APPENDICES

APPENDIX A. ¹ H AND ¹³ C SPECTRUM OF REACTANTS	74
APPENDIX B. ¹ H AND ¹³ C SPECTRUM OF PRODUCTS	119
APPENDIX C. MASS SPECTRUM OF PODUCTS	

LIST OF FIGURES

Figure	Page [Vage]
Figure 1.1. Allenic natural products and pharmacologically active allenes	1
Figure.2.1. 1,3-Substition method of propargyl acetates with stoichiometric level of organocuprates	3
Figure 2.2 Stoichiometric reactions of propargyl epoxides dialkyllithium cuprates	4
Figure 2.3. The reaction of an enantio-enriched enyne oxirane with organocuprates	4
Figure 2.4. CuBr catalysed reactions of propargylic epoxides and Grigrnard reagents.	4
Figure 2.5. Iron catalyzed reactions of propargylic epoxides with Grignard reagents.	5
Figure 2.6. The synthesis of aryllated allenols with rhodium catalysis via the reaction of propargyl epoxides with arylboronic acids	5
Figure 2.7. $S_N 2'$ reactions allyl epoxides and Grignard Reagentas	6
Figure 2.8. The coppercatalysed kinetic resolution of alkenyl oxiranes with Grignard Reagents	6
Figure 2.9. 1,5-SN2"-nucleophylic substitution reactions of 1-chloro-2-en-4- in compounds with methylmagnesium iodide or trimethylmagnesium chloride	7
Figure 2.10. 1,5-Substition reaction (SN2'') of 1,4-enyne acetates with organolithium cuprates	7
Figure 2.11. The reaction of E-enyne oxirane substrates and of Me ₂ CuLi, LiI or t-Bu ₂ CuLi, LiCN alkyl cuprates	
Figure 2.12. Palladium- and rhodium-catalyzed coupling reactions of carbonates and acetates of 2,4-enynols with organoboronic acids	9
Figure 2.13. Palladium-catalyzed alkoxycarbonylation reactions of enyne carbonates with enyne oxiranes.	9
Figure 2.14. Palladium-catalyzed alkoxycarbonylation reaction of (E and Z)- 2, 4-enyne carbonates leading to enantio-enriched vinylallene derivatives.	10

Figure 2.15. Anti-selective palladium catalysed alchoxycarbonilation reactions	10
Figure 2.16. Cu(I) catalysed reactions of enyne chlorides with Grignard reagents	11
Figure 2.17. Diels Alder reactions in high reactivity and stereo-selectivity	12
Figure 2.18. The synthesis of optically active sterpurene via intramolecular Diels Adler reaction ([4+2] catenulation) of a vinylallene structure	12
Figure 2.19. Intramolecular Diels Alder reaction of s vinylallene structure in the synthesis of esperamicin A	12
Figure 2.20. Rh(I) catalysis of vinylallenes with terminal alkynes	13
Figure 2.21. Pauson-Khand type reactions	13
Figure 2.22 Gold-catalysed cyclization of vinylallenes	13
Figure 2.23. Gold-catalysed cycloisomerisation reactions of vinylallenes in high stereo-selectivity	13
Figure 4.1. 1,5-(SN ₂ ") reaction of Z-1a reagent with iron-catalyzed Grignard reagent	52
Figure.4.2 Reaction of (Z)-1b with different Grignard reagent	57
Figure.4.3 Presence of a cyclohexyl group on the alkenyl carbon reaction with BuMgCl	57
Figure.4.4 The reactions of enyn oxirane (E)-1b with EtMgC1	59
Figure.4.5 Presence of a cyclohexyl group on the alkenyl carbon reaction with BuMgCl	66

LIST OF TABLES

Table 4.4. The reactions of enyn oxirane (Z)-1b with various Grignard Reagents	59
Table 4.5. Fe-catlysed Ractions of enyne oxirane with Grignard Reagents	62

LIST OF SYMBOLS AND ABBRAVIATIONS

Ac	Acetate
aq.	Aqueous
Ar	Aryl
Bu	Butyl
BINAP	2,2'-bis(diphenylphosphino)-1,1'-binaphthalene
BIPHEP	2,2'-bis(diphenylphosphino)-1,1'-biphenyl
Bn	Benzyl
Су	Cyclohexyl
dba	Dibenzylideneacetone
DCM	Dichloromethane
DIBALH	Diisobutylaluminum hydride
DMAP	4-Dimethylaminopyridine
DMF	N, N-Dimethylformamide
dppb	1,4-Bis(diphenylphosphino) butane
dppe	1,2-Bis(diphenylphosphino) ethane
dppf	1,1'-Bis(diphenylphosphino) ferrocene
dpph	1,6-Bis(diphenylphosphino) hexane
DPEphos	Bis[(2-diphenylphosphino) phenyl] ether
d.r.	Diastereomeric ratio
Et	Ethyl
etc.	and other things
equiv.	Equivalent
g	Grams
h.	Hour(s)
<i>i</i> -Pr	Iso-propyl
М	Molar
т	Meta
<i>m</i> -CPBA	meta-Chloroperbenzoic acid
Me	Methyl
mg	Milligrams
min.	Minutes

mL	Milliliters
μm	Micrometer
0	Ortho
p	Para
Ph	Phenyl
RT	Room temperature
t	Time
<i>t</i> -Bu	Tertiary butyl
TBDMS	Tertiary butyldimethylsilyl chloride
THF	Tetrahydrofurane
Ts	para-Toluenesulfonyl
Xantphos	4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

CHAPTER 1

INTRODUCTION

Allenes are among the crucial functional groups in synthetic organic chemistry. (Figure 1.1). Allenes can be used as elements for the syntheses of vast number of complex molecules due to their unique reactivities and high level of axial to center chirality transfer that they can undergo in the course various transformations. Also, the presence of large number of allene motifs in the nature in enantio-pure form make them particularly attractive for production of biologically active pharmacological reagents.

Figure 1.1. Allenic natural products and pharmacologically active allenes. (Source: Tsuji, et al. 1995)

In last decades, the transition metal-catalyzed formation of allenes have become popular method and Cu, Rh, Pd, and Fe were the mostly used metals for this purpose.

While acetate, carbonate, phosphate, and halides of propargyl compounds have been generally used substrate types in S_N2 ' (1,3-substitution) type reactions that lead to

the allene structures, there are only a scarce number of $S_N 2$ '' (1,5-substitution) type application applied in the synthesis of multi substituted allenic structures.

In this context, we, first time, accomplished that the reactions of the conjugated enyne oxiranes with Grignard Reagents in the presence of an iron catalysis afforded vinylallene structures with a hydroxyl group on the allylic position.

CHAPTER 2

LITERATURE WORK

2.1. Metal-Catalysed S_N2'-Type Reactions of Propargyl Epoxides

The reaction of propargyl acetates with stoichiometric level organocuprates was the first 1, 3-substition of method established in synthesis of allenes in 1968 (Rona, 1968; 1969) (Figure. 2.1.). Later on, this technique was further improved and had a wide range of usage.

$$R^{1} \xrightarrow{\qquad \qquad } R^{2} \xrightarrow{\qquad \qquad } R^{4} \xrightarrow{\qquad \qquad } R^{4} \xrightarrow{\qquad \qquad } R^{1} \xrightarrow{\qquad \qquad } R^{2} \xrightarrow{\qquad } R^{2} \xrightarrow{\qquad \qquad } R^{2} \xrightarrow{\qquad } R^{2}$$

Figure.2.1. 1,3-Substition method of propargyl acetates with stoichiometric level of organocuprates (Source: Rona, et al. 1968; 1969)

In addition to acetates, benzoate, carbonate, sulphonate, ether, acetal, oxirane, and halide substituted of propargyllic reagents were also successfully used. (Alexakis, 1999; Hoffmann-Roder, 2004; Ma, 2004).

Especially the reactions of propargylic epoxide compounds have held great importance. Because these oxirane species create a hydroxyl group upon conjugate addition, which is an important reactive functional group, alongside allenyl moieties. The first stochiometric reactions of propargyl epoxide compounds with organometals were with dialkyllithium cuprate compounds which were carried out by de Montellano (1973). In these reactions, each case however, the reductively formed tri-substituted α -allenol products accompanied the formation of the desired alkylated tetra-substituted alkylated α -allenol products, (Figure 2.2). In this study the stereo-selectivity of the method was not determined.

Figure 2.2 Stoichiometric reactions of propargyl epoxides dialkyllithium cuprates (Source: de Montellano, et al., 1973)

However, Oehlschlager and Czyzewska (1983) established in their studies that an enantio-enriched propargyl epoxide with a terminal alkynyl group reacts with organocuprates in the presence of Me₂S in mainly *anti* S_N2' mode to afford enantiomerically enriched α -allenol structures (Figure 2.3).

Figure 2.3. The reaction of an enantio-enriched enyne oxirane with organocuprates (Source: Oehlschlager and Czyzewska, et al. 1983).

The method has been brought to catalytic level firstly by Alexakis and his group (1989; 1991). According to their findings, diasteroselectivity of allenol products resulting from CuBr catalyzed reactions of propargylic epoxides and Grignard reagents varies in respect to the ligand and other additive materials present in the reaction medium (Figure 2.4).

Figure 2.4. CuBr catalyzed reactions of propargylic epoxides and Grigrnard reagents. (Source: Alexakis et al. 1989; 1991)

Fürstner and coworkers found that the reaction can be catalyzed by an iron compound (2003). The *syn/anti* ratios of reaction vary between 80/20-90/10 range (Figure 2.5).

Figure 2.5. Iron catalyzed reactions of propargylic epoxides with Grignard reagents. (Source: Fürstner, et al. 2003)

The synthesis of arylated allenols with rhodium catalysis, via reaction of propargyl epoxides with arylboronic acid was made possible. The reaction happened mostly at *syn* mode (Miura, 2007) (Figure 2.6).

Figure 2.6. The synthesis of arylated allenols with rhodium catalysis via the reaction of propargyl epoxides with arylboronic acids (Source: Miura, et al. 2007)

2.2. Metal-Catalysed SN2'-Type Reactions of Allyl Epoxides

There are not many studies carried out on allyl epoxides S_N2' reactions with Grignard Reagents (Falciola, 2008). The main reason for this would be that the as the Grignard reactives are "hard" basic reactives, they are very prone to S_N2 reactions (Hyoung, 2008) (Figure 2.7).

Figure 2.7. S_N2' reactions allyl epoxides and Grignard Reagents (Source:Hyoung, et al. 2008)

However, Millet and Alexakis were able to conduct a copper-catalyzed kinetic resolution of cyclic alkenyl oxiranes with the help of a chiral ferrocene ligand (2007) (Figure 2.8).

Figure 2.8. The copper catalyzed kinetic resolution of alkenyl oxiranes with Grignard Reagents (Source: Millet and Alexakis, et al. 2007)

2.3. Metal Catalysed Substition Reactions of 2,4-Enyne Reagents

As mentioned above, the metal catalyzed reactions of the propargylic reagents create allenic structures through the S_N2' (1,3-substitution) reaction, whereas the allylic products can be obtained from S_N2' reactions of allylic reagents. As the 2,4-Enyne structure in fact has a leaving group on the allylic position, it would be reasonable to expect to observe S_N2 or S_N2' reactions.

Goré and Dulcere conducted 1,5- S_N2 "-nucleophylic substitution reactions of 1chloro-2-en-4-in compounds with methylmagnesium iodide or trimethylmagnesium chloride compounds in a non-catalyzed environment. Reactions created vinylallenes with a *E* and isomeric mixture (Figure 2.9) (Gore, 1972; Dulcere, 1974; Dulcere, 1981). However, this method is not very general and desired vinylallenes could not be obtained from all other Grignard Reagents.

Figure 2.9. 1,5-SN2"-nucleophylic substitution reactions of 1-chloro-2-en-4-in compounds with methylmagnesium iodide or trimethylmagnesium chloride (Source: Gore, et al. 1972; Dulcere, et al. 1974; Dulcere, et al. 1981)

Krause and Purpura accomplished a more general method for this purpose. 2,4enyne acetates underwent 1,5-substition reactions (S_N2'') with organolithium cuprates and thus yielded the corresponding alkylated vinylallene products (1999). The reactions proceeded with low diastereo-selectivity, yielding the products as the *E*/Z configurational mixtures, nevertheless, the high levels of center-to-axis enantiomeric transfer could be achieved with enantio-purely synthetized enyne acetates (Figure 2.10) (Krause, 2000) The absolute configuration of the products were not reported.

Figure 2.10. 1,5-Substition reaction (SN2'') of 1,4-enyne acetates with organolithium cuprates (Source: Krause, et al. 2000)

They also tried this method on two *E*-enyne oxirane substrates by using stochiometric quantities of Me₂CuLi LiI or t-Bu₂CuLi LiCN alkyl cuprates. The reaction of both enyne oxiranes with t-butylcuprate allow the production the corresponding alkylated vinylallenes, one of which being obtained in the form of E/Z mixture. However, using with the methylcuprate nucleophilic reagent resulted in only the formation of a non-alkylated reductive vinylallene product (Figure 2.11).

Figure 2.11. The reaction of *E*-enyne oxirane substrates and of Me₂CuLi, LiI or t-Bu₂CuLi, LiCN alkyl cuprates (Source: Krause, et al. 2000)

Our group have conducted palladium- and rhodium-catalyzed 1,5-substition reactions of enyne carbonate and enyne acetate structures, respectively, with arylboronic acids. Whereas both *E*- and *Z*-enyne carbonate structures were eligible reagents for palladium-catalyzed method which yielded the desired arylated vinylallene products with exclusively *E*-configuration, it's the rhodium-catalyzed version was only applicable to the *Z*-configured enyne acetates (Figure 2.12) (Uçüncü, 2011).

Figure 2.12. Palladium- and rhodium-catalyzed coupling reactions of carbonates and acetates of 2,4-enynols with organoboronic acids (Source: Uçüncü, et al. 2011)

Vinylallene esters could be obtained via palladium-catalyzed alkoxycarbonylation reactions of enyne oxiranes (Figure 2.13) (Akpınar, 2011).

Figure 2.13. Palladium-catalyzed alkoxycarbonylation reactions of enyne carbonates with enyne oxiranes. (Source: Akpınar, et al. 2011)

The reaction conditions were also applied to an enantio-enriched (Z)-2, 4-enyne carbonates. It was found that the reaction proceeded with complete racemization. But after tuning the reaction parameters, moderate to good transfer of chirality was observed depending on the olefin geometry and substituents on the alkyne moiety.

Figure 2.14. Palladium-catalysed alkoxycarbonylation reaction of (*E* and *Z*)-2, 4-enyne carbonates leading to enantio-enriched vinylallene derivatives. (Source: Karagöz, *et al.* 2014)

In a recent study that was conducted in our laboratories, the palladium-catalyzed alkoxycarbonylation reactions of enyne oxiranes proceeded with high stereo-selectivity and yielded 7-Hydroxy-2,3,5-trienoates chiefly in *Anti*-mode. (Figure 2.17). (Kuş, 2013b).

Figure 2.15. Anti-selective palladium catalyzed alkoxycarbonylation reactions (Source: Kuş, et al. 2013b).

On contrary to the general trends with conjugated enyne systems, Li and Alexakis (2012) have found that the Cu(I) catalyzed reactions of primary enyne chlorides with Grignard reagents underwent $1,3-S_N2$ reaction. (Figure 2.18)

Figure 2.16. Cu(I) catalyzed reactions of enyne chlorides with Grignard reagents (Source: Li and Alexakis, et al. 2012)

2.4. Vinylallenes as Reactive Compounds

More than 150 types of allene and cumulene compounds from natural sources have been identified. Most of these compounds are enantiomerically pure and have biological activity (Krause, 2004a; 2004b; Hoffmann-Röder, 2004). There are significant number of natural compounds containing an alkenyl structure conjugated to allenyl sites, the most typical of these structures being the methyl (R, E) -(-)-tetradeca-2,4,5-trienoate (7) compound which is a pheromene isolated from bean weevil (*Acanthoscelides obtectus*).

The importance of allenic structures cannot be constricted to their biological activities. The unique reactivity of these structures makes their usage in the synthesis of complex structures possible. For example, in Diels Alder reactions they have high reactivity and stereo-selectivity (Figure 2.19) (Spino, 1998).

Their ability to transfer their axial chirality to cyclo-entrainment products makes asymmetric cyclic synthesis possible (Reich, 1988; Koop, 1996; Gibbs, 1989). Also, their tendency to adopt *s-cis* conformation in conformational balance makes their structures highly reactive (Reich, 1988; Koop, 1996; Bond, 1990).

Figure 2.17. Diels Alder reactions in high reactivity and stereo-selectivity (Source: Spino, et al. 1998)

Sterpurene compound, which is a fungal metabolite, were synthesized enantiopurely (Gibbs, 1989) (Figure 2.20) and racemically by intramolecular Diels Adler reaction ([4+2] catenulation) with vinylallenes (Krause, 1993) (Figure 2.20)

Figure 2.18. The synthesis of optically active sterpurene via intramolecular Diels Adler reaction ([4+2] catenulation) of a vinylallene structure (Source: Gibbs, 1989, Krause, et al. 1993)

The intramolecular Diels Alder reaction of vinylallenes have been used to synthesize a biogenetical intermediary structure called esperamicin A (Figure 2.21) (Schrieber, 1988). The ability to transfer chirality of allenic structure is especially important for this transformation.

Figure 2.19. Intramolecular Diels Alder reaction of s vinylallene structure in the synthesis of esperamicin A (Source: Schreiber, et al. 1988)

Vinylallenes can be helpful in various catalytic intramolecular cyclization reactions, as well. Rh(I) catalysis of vinylallenes with terminal alkynes have created *tri*-substituted benzenes (Figure 2.22) (Murakami, 1988).

Figure 2.20. Rh(I) catalysis of vinylallenes with terminal alkynes (Source: Murakami, et al. 1988)

Pauson-Khand type reactions also can be conducted with vinylallenes (Figure 2.23) (Murakami, 1999a, 199b).

Figure 2.21. Pauson-Khand type reactions (Source: Murakami, et al. 1999a, 199b)

It has been established that the vinylallenes form into cyclopentadiene derivatives as result of gold-catalyzed cyclization (Figure 2.24) (Lee, 2007).

Figure 2.22 Gold-catalyzed cyclization of vinylallenes (Source: Lee, et al. 2007)

One French group synthesized polycyclic structures with high stereo-selectivity by gold catalyzed cycloisomerisation reactions of vinylallenes with a tethered alkenyl group (Figure 2.25) (Gandon, 2008; Lemiere, 2009).

Figure 2.23. Gold-catalysed cycloisomerisation reactions of vinylallenes in high stereoselectivity (Source: Gandon, et al. 2008; Lemiere, et al. 2009)

CHAPTER 3

EXPERIMENTAL STUDY

3.1. General Methods of Drying Solvents

DMF, and DCM solvents were all purified by a solvent purification system. Et₂O and THF were distilled from benzophenone-ketyl under argon prior to use. For the iron-catalyzed reactions, THF solvent dried by refluxing over LiAlH₄.

3.2. Synthesis of Substrates

Syntheses of all enyne oxirane starting materials (1) were performed under Ar gas and purification of all synthesized molecules was performed by column chromatography on silica gel. Silica gel material used for the purification of enyne oxirane substrates had a particle size range of 60-200 mesh and treated by NEt₃ before use. It must be noted that the column chromatography of the substrate **1** on an untreated silica gel always resulted in decomposition. All other column purifications were performed on silica gel 60 (35-70 μ m). All substrates appeared either colorless or pale yellow oils. The Pd₂(dba)₃-CHCl₃ complex was synthesized in the laboratory (Ukai, et al. 1974).

3.2.1. Synthesis of (Z)-1a

To the mixture of commercially available, (Z)-pent-2-en-4-yn-1-ol (**S1**) (1.92 g, 20 mmol) and 3,4-dihydropyran (2.2 mL, 24 mmol) was added *p*-toluenesulfonic acid (44 mg, 0.02 mmol) and then stirred for 45 min at room temperature (RT). Then, the mixture was diluted with 40 mL of dry THF under Ar and cooled to -78 °C. At that temperature, 24 mmol of BuLi (1.6 M in hexane, 15 mL) was added dropwise via a syringe. After stirring the reaction mixture for 1 h at 0 °C, butyl bromide (4.3 mL, 40 mmol) was added and the mixture was stirred for 5 days at reflux. The reaction was quenched by the addition of saturated NH₄Cl(*aq*) solution and the reaction solution was extracted with Et₂O. The organic phase was washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was used in the following step without any other purification (Betzer, *et al.* 1997).

To a solution of the preceding crude compound (**S3**) in methanol (60 mL) *p*toluenesulfonic acid (1.2 g, 6 mmol) was added and the resulting solution was stirred at RT for 45-60 min. Then, triethylamine was added (1.8 mL), and the solution was concentrated under reduced pressure. The mixture was taken into DCM and washed with water. The combined extracts were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography on silica gel gave the enynol **S4** (hexane-EtOAc, yield: 2.43 g, 80%), (Ukai, *et al.* 1974).

To the solution of S4 (\approx 17 mmol) in 60 mL of dry diethyl ether, activated MnO₂ (30 g, 0.3 mol) was added, and the mixture was stirred overnight at RT. After filtration

through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (**S5**) was used in the next step (Betzer, *et al.* 1997).

A hexane solution of BuLi (4.8 mL, 12 mmol, 2.5 M) was added dropwise to a solution of isopropyl(triphenyl)phosphonium iodide (4.32 g, 10 mmol) in THF (30 mL) at 0 °C, and stirred for further 1 h. The enyne aldehyde **S5** (1.8 g, 12 mmol), was added dropwise to the resulting mixture and stirred for 1 h, at RT. The reaction was quenched by the addition of saturated NH₄Cl(*aq*) solution, and the organic layer was extracted with diethyl ether. The combined extracts were dried over MgSO₄, and chromatographed on a silica gel column to obtain pure **S3a** (hexane/EtOAc, yield: 1.65 g, 78%), (Ming-Yuan, *et al.* 2004).

To a solution of **S6** (352 mg, 2 mmol) in DCM (30 mL) was added 12 mL solution of Na₂CO₃(*aq*) (25%) followed by 3.4 mmol (587 mg) *m*-chloroperbenzoic acid dropwise at 0 $^{\circ}$ C. The mixture was stirred at same temperature and monitored with TLC until the reactant was consumed completely. At the end of the epoxidation process, the mixture was extracted with DCM, dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was chromatographed on NEt₃-pretreated short silica gel column which afforded the enyne oxirane (*Z*)-**1a** as a colorless oil (hexane-EtOAc, yield: 269 mg, 70%).

3.2.2. Synthesis of (Z)-1b and 1c

To a solution of NaH (525 g, 22 mmol) in THF (50 mL) was added triethyl phosphonoacetate (4.8 mL, 24 mmol) at 0 °C, and the mixture stirred 1 h, at RT. Subsequently, to the reaction mixture was added **S5** (3 g, 20 mmol) dropwise at -78 °C and stirred for 1 h, at RT. The reaction was terminated by the addition of aqueous NH₄Cl(*aq*) solution and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure to give E/Z isomer 95:5 isomeric ratios. The crude mixture was purified on silica gel column to obtain **S7** in pure isomeric form (hexane-EtOAc, yield: 3.17 g, 72%), (Urabe, *et al.* 1997).

A DIBALH (44 mL, 44 mmol, 1.0 M in cyclohexane) solution was added dropwise to the solution of **S7** (3.85 g, 17.5 mmol) in DCM (120 mL) at -78 °C. After the reaction mixture was stirred for 4 h at the same temperature, 1 M HCl(*aq*) solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding **S8** compound (hexane-EtOAc, yield: 2.65 g, 85%), (Kajikawa, *et al.* 2009).

The epoxidation of **S8** (356 mg, 2 mmol) and isolation of the product (**Z**)-1c was performed as specified for (*Z*)-1a (hexane-EtOAc, yield: 233 mg, 60%). As for the alkylation of the pendant hydroxyl group of (**Z**)-1c, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of (**Z**)-1c (1 mmol) in DMF (1 mL/mmol) at -20 °C. The mixture was stirred for further 30 min before the addition of methyl iodide

(1.2 eq) or benzyl bromide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of MeOH (5 mL) and brine (5 mL), and extracted with DCM. The combined extracts were dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over NEt₃-pretreated short silica gel column to afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (*Z*)-**1b** (hexane-EtOAc, yield: 87%), (Caldentey, *et al.* 2011).

3.2.3 Synthesis of hydroxyl tethered (Z)-2,4-enyne oxiranes

To a solution of alkynoic ester **S10** (40 mmol) and acetic acid (240 mmol, 13.8 mL or 512 mmol, 20.8 mL when **S10** is ethyl 4, 4-dimethylpent-2-ynoate and ethyl 3-cyclohexylpropiolate) was added sodium iodide (9.6 g, 64 mmol or 19.2 g, 128 mmol when **S17** is ethyl 4, 4-dimethylpent-2-ynoate and ethyl 3-cyclohexylpropiolate) and stirred for 3 h at 115 °C. After completion of the reaction, the brown mixture was transferred while hot to a separatory funnel containing water (10 mL/mmol of the ester substrate). The reaction flask was washed with a mixture of water (5 mL) and diethyl ether (30 mL/mmol of the ester substrate). The washings were combined in a separatory funnel. The phases were separated and the aqueous phase was extracted with diethyl ether.

The combined organic phases were treated sequentially with saturated aqueous NaHCO₃(*aq*), Na₂S₂O₃(*aq*) (1 M), and brine and then dried over MgSO₄, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (hexane-EtOAc, yields; R^2 = H, 7.6 g, 84%; R^2 = Me, 8.4 g, 87%; R^2 = t-Bu, 9.6 g, 85%; R^2 = Cy, 10.6 g, 86%), (Piers, *et al.* 1994). A mixture of **S11** (30 mmol), PdCl₂(PPh₃)₂ (210.6 mg, 0.3 mmol, 1% mol of Pd), and CuI (29 mg, 0.15 mmol, 0.5% mol of Cu) in 140 mL of Et₃N was stirred for 10 min at RT under Ar, and then, to this mixture was added a terminal alkyne (36 mmol). The mixture was stirred at RT for 3h. At the end of the reaction, water was added to the resulting mixture and then extracted with Et₂O. The combined organic layers were dried over MgSO₄. The solvent was evaporated in vacuo and the product **S12** was purified by column chromatography on silica gel (hexane-EtOAc, yields: R¹= Bu, R²= H, 4.97 g, 92%; R¹= Ph, R²= Me, 5.97 g, 93%; R¹= Cy, R²= Me, 5.94 g, 90%; R¹= *t*-Bu, R²= Me, 4.95 g, 85%; R¹= Bu, R²= t-Bu 6.23 g, 88%, R¹= Bu, R²= Cy, 6.21 g, 79%, R¹= H, R²= Me %90).

A DIBALH (~3 eq, 1.0 M in cyclohexane) solution was added dropwise to the solution of **S12** in DCM (~6 mL/mmol **S12**) at -78 °C. After the reaction mixture was stirred for 4 h at the same temperature, 1 M HCl(*aq*) solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding **S13** compound (hexane-EtOAc; yields of **S13**: R¹= Bu, R²= H, 3.14 g, 91%; R¹= Bu, R²= Cy, 4.89 g, 89%, R¹= Cy, R²= Me, 3.60 g, 81%; R¹= *t*-Bu, R²= Me, 3.57 g, 94%; R¹= Bu, R²= *t*-Bu, 4.2 g, 88%; R¹= Ph, R²= Me, 3.87 g, 90%, R¹= H, R²= Me %90), (Kajikawa, *et al.* 2009).

To the solution of **S13** (\approx 20 mmol) in 70 mL of dry diethyl ether, activated MnO₂ (35.1 g, 0.35 mol) was added, and the mixture was stirred overnight at RT. After filtration through Celite, the solution was concentrated under reduced pressure. The crude aldehyde (**S20**) was used in the next step (Betzer, *et al.* 1997).

To a solution of NaH (1.1 eq) in THF (2.5 mL/mmol **S14**) was added triethyl phosphonoacetate (1.2 eq) at 0 °C and the mixture stirred for 1 h, at RT. Subsequently, to the reaction mixture was added **S14** (6.5-10 mmol) dropwise at -78 °C, and stirred for 1 h, at RT. The reaction was terminated by the addition of saturated NH₄Cl(*aq*) and extracted with Et₂O. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure to obtain **S15** with E/Z isomeric ratios varying in the range of 97:3

to 95:5 (Urabe, *et al.* 1997). The crude mixture was purified on silica gel column (hexane-EtOAc) to obtain **S15** in pure isomeric form (yields of **S15** R^1 = Bu, R^2 = H, 1.48 g, 72%; R^1 = Bu, R^2 = Cy, 1.4 g, 68%; R^1 = Cy, R^2 = Me, 1.97 g, 80%; R^1 = *t*-Bu, R^2 = Me, 1.80 g, 82%; R^1 = Bu, R^2 = *t*-Bu, 2.12 g, 81%; R^1 = Ph, R^2 = Me, 2.04 g, 85%, R^1 = H, R^2 = Me %70).

A DIBALH (~3 eq, 1.0 M in cyclohexane) solution was added dropwise to the solution of **S15** in DCM (~6 mL/mmol **S15**) at -78 °C. After the reaction mixture was stirred for 4 h at the same temperature, 1 M HCl(*aq*) solution was added before extracting with DCM. The organic layers were combined, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude mixture was subjected to silica gel column chromatography to purify the corresponding **S16** compound (hexane-EtOAc; yields of **S16**: R¹= Bu, R²= H, 1.12 g, 95%; R¹= Bu, R²= Cy, 1.1 g, 94%; R¹= Cy, R²= Me, 1.55 g, 95%; R¹= *t*-Bu, R²= Me, 1.39 g, 95%; R¹= Bu, R²= *t*-Bu, 1.6 g, 90%; R¹= Ph, R²= Me, 1.6 g, 92%, R¹= H, R²= Me %85), (Kajikawa, *et al.* 2009).

The epoxidation of **S16** (2 mmol) and isolation of the corresponding **S17** products were performed as specified for (*Z*)-**1a** (yields of **S17**: $R^1 = Bu$, $R^2 = H$, 0.19 g, 55%; $R^1 = Bu$, $R^2 = Cy$, 0.26 g, 49%; $R^1 = Cy$, $R^2 = Me$, 0.25 g, 57%; $R^1 = t$ -Bu, $R^2 = Me$, 0.25 g, 65%; $R^1 = Bu$, $R^2 = t$ -Bu, 0.24 g, 50%; $R^1 = Ph$, $R^2 = Me$, 0.26 g, 60%, $R^1 = H$, $R^2 = Me$ %60).

3.2.4. Synthesis of (Z)-1d, e, f, g, h

1h: R¹⁼ Bu, R²= Cy

As for the alkylation of the pendant hydroxyl group of **S17**, a suspension of sodium hydride (1.1 eq) in DMF (1 mL) was added to a solution of **S17** (1 mmol) in DMF (1 mL/mmol **S17**) at -20 °C. The mixture was stirred for further 30 min before the addition of methyl iodide (1.2 eq) or benzyl bromide (1.2 eq). The mixture was stirred for 4 h at the same temperature and then the reaction was terminated by the addition of MeOH (5 mL) and brine (5 mL), and extracted with DCM. The combined extracts were dried over MgSO4, filtered, and concentrated under reduced pressure. The crude mixture was subjected to column chromatography over NEt₃-pretreated short silica gel column to afford the corresponding alkoxy-substituted enyne oxirane products as colorless oil (hexane-EtOAc, yields: (*Z*)-1d, 85%; (*Z*)-1e, %84; (*Z*)-1f, 83%; (*Z*)-1g, 87%; (*Z*)-1h, 83%), (Caldentey, *et al.* 2011).

3.2.5. Synthesis of (Z)-1i, j, k, l, m, n, o, p, r

A pendant hydroxyl group of **S17** (0.9 - 0.12 mmol), *t*-butyldimethylsilyl chloride (0.2 g, 1.3 mmol), and 4-dimethylaminopyridine (DMAP) (15 mg, 0.12 mmol) in CH₂Cl₂ (12 mL) was stirred at RT for 24 h. Then, the reaction was terminated by water and the content of the reaction flask was extracted with DCM. The organic solution was dried with MgSO₄, filtered, and evaporated. The residue was chromatographed over NEt₃-pretreated short silica gel column to afford silylated enyne oxiranes as a colorless oil (hexane-EtOAc, yields: (*Z*)-1i, 70%; (*Z*)-1j, 83%; (*Z*)-1k, 86%; (*Z*)-1l, 73%, (*Z*)-1m, 78%, (*Z*)-1n, 80%, (*Z*)-1o, 79%, (*Z*)-1p, 72%, (*Z*)-1r, 74%. (Schmidt, *et al.* 2002).

3.2.6. Synthesis of (Z)-1s

To the dry Et₂O (15 mL) solution of **S7** (1.1 g, 5 mmol) was added an ethereal (15 mL) solution of 2.1 eq. MeMgI (5.25 mL, 10.5 mmol, 2 M) dropwise at -50 °C, and then the mixture stirred for 6 h at the same temperature. The mixture was allowed to warm to 0 °C and quenched by the addition of 30 mL of saturated NH₄Cl(*aq*) solution before extracting with Et₂O. The combined extracts were dried over MgSO₄, filtered, and evaporated. The resulting residue was purified on a silica gel column to afford **S19** (hexane-EtOAc, yield: 0.49 g, 80%).

The epoxidation of **S19** (412 mg, 2 mmol), and isolation of the product **S20** was performed (hexane-EtOAc, yield: 0.27 g, 60%).

The hydroxyl group of **S20** (222 mg, 1.0 mmol) was methylated as described above furnishing the enyne oxirane (*Z*)-**1s** in 90% yield (0.21 g).

3.2.7. Synthesis of (Z)-1t

PBr₃ (1.4 mL, 13.8 mmol) was added dropwise to a mixture of DMF (1.2 mL, 15.3 mmol) and chloroform (10 mL) at 0 °C and then the resulting mixture was stirred for 1 h. Subsequently, 0.5 g of cyclohexanone (6 mmol) was added dropwise and stirred for 8 h, at RT. The reaction was terminated with water, neutralized with the addition of solid NaHCO₃, and extracted with DCM. The extract was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The purification on short silica gel column provided the compound **S21** (hexane-EtOAc, 0.92 g, 81%), (Lian, *et al.* 2006).

A mixture of **S21** (945 mg, 5 mmol), Pd(PPh₃)₄ (123 mg, 0.1 mmol, 2 mol % of Pd), and CuI (21 mg, 0.1 mmol, 2 mmol % of Cu) in 10 mL of Et₃N was stirred for 10 min at RT followed by the addition of 1-hexyne (0.5 g, 6 mmol). After being stirred for 3 h, at RT, water was added and extracted with Et₂O. The combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was

purified by column chromatography on silica gel to obtain endocyclic enyne aldehyde **S22** (hexane-EtOAc, 0.84 g, 90%), (Lian, *et al.* 2006).

The conversion of S22 (840 mg, 4.42 mmol) to dienyne ester S23 was performed by HWE reaction as described above (hexane-EtOAc, 0.96 g, 84%). Further successive synthetic procedures; which involved the reduction of the ester S23 (960 mg, 3.7 mmol) to the enyne alcohol S24 (730 mg, 91% yield), the epoxidation of S24 (436 mg, 2 mmol) to S25 (260 mg, 55% yield), and finally methyl derivatization of hydroxyl group of S25 (260 mg, 1.1 mmol) to obtain (*Z*)-1t (0.22 g, 90%) were all conducted as described above.

3.2.8. Synthesis of (Z)-1u

To a stirred solution of diphenylethylphosphine oxide (4.6 g, 20 mmol) in dry THF (70 mL) was added BuLi (2.5 M in hexane, 8.8 mL, 22 mmol) dropwise at 0 °C and stirred for a further 30 min. The solution was cooled to -78 °C and then the dienyne ester **S18'** (3.88 g, 20 mmol) was added dropwise. The solution was allowed to warm to ambient temperature and subsequently stirred overnight. Saturated NH₄Cl(*aq*) solution was added and subsequently its THF content was removed under reduced pressure. The aqueous residue was diluted with brine (20 mL) and extracted with DCM. The combined organic phases were dried over MgSO₄, filtered, and concentrated under reduced pressure. The product **S26** was purified by column chromatography on silica gel (hexane-EtOAc, yield: 1.9 g, 25%), (Buss, *et al.* 1985).
To a stirred solution of **S26** (1.9 g, 5 mmol) in ethanol (50 mL) was added NaBH₄ (189 mg, 5 mmol) in one portion and stirred for a further 8h at ambient temperature. The reaction afforded **S27** enriched in *threo* form. Saturated NH₄Cl(*aq*) (15 mL) was added and subsequently its ethanol content was removed under reduced pressure. The aqueous mixture was diluted with brine (20 mL), extracted with DCM. The combined organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. The product **S27** was isolated in pure *threo* form by column chromatography on silica gel (hexane-EtOAc, yield: 1.31 g, 69%), (Buss, *et al.* 1985).

To a stirred solution of **S27** (1.31 g, 3.45 mmol) in DMF (50 ml) was added NaH (60% dispersion in oil; 138 mg, 3.45 mmol) in one portion at ambient temperature and stirred for a further 3 h. The reaction was quenched by the addition 25 mL of water and 15 mL of brine and subsequently extracted with Et₂O. The combined extracts were washed with water, dried over MgSO₄, filtered, and concentrated under reduced pressure. The product **S28** was purified by column chromatography on silica gel (hexane, yield: 330 mg, 59%), (Buss, *et al.* 1985).

The epoxidation of **S28** (162 mg, 1 mmol) and isolation of the product (*Z*)-1u was performed (Hexane-EtOAc, yield: 35.6 mg, 20%).

3.2.9. Synthesis of (*E*)-1b

Synthesis of (*E*)-**1b** was performed starting from (*E*)-configured **S1** following the same method employed for the synthesis of (*Z*)-**1b**. Yields: (R^1 = Bu, R^2 = Me): (*E*)-**S7**, 1.12 g, 79%; (*E*)-**S17**, 0.83 g, 91%; (produced from 4.6 mmol of (*E*)-**S8**), 0.43 g, 47%; (*E*)-**1b** (produced from 2.2 mmol of (*E*)-**S17**), 0.40 g, 88%.

3.2.10. Synthesis of (Z)-1v

A mixture of 3 mmol (471 mg) trimethylsulfonium bromide, 12 mmol (1.65 g) of K_2CO_3 and 0.48 mmol (8.64 mg) H_2O in 5 ml of acetonitrile was stirred for 5 min at 60 oC. With vigorous stirring, a solution of 2 mmol (300 mg) S5 in 3 ml of acetonitrile was added dropwise and stirred for further 2h at 60 °C. After cooling to room temperature, the mixture was filtered and 50 ml of Et₂O was added to filtrate and filtered again. After washing of filtrate with pentane, solvent was removed in vacuum. The crude mixture was chromatographed on NEt₃-pretreated short silica gel column which afforded the enyne oxirane (Z)-**1v** as a colorless oil (hexane-EtOAc, yield: 82 mg, 25%) (Purpura and Krause, 1999).

3.3. Characterization of Reactants

NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are reported in ppm downfield from Me₄Si.

(Z)-**1a:** ¹H NMR (400 MHz, CDCl₃) δ: 5.38 (dq, *J*= 8.9, 1.5 Hz, 1H), 3.65 (d, *J*= 8.9 Hz, 1H), 2.34 (t, *J*= 6.8 Hz, 2H), 1.87 (s, 3H), 1.56-1.36 (m, 4H), 1.35 (s, 3H), 1.27 (s, 3H), 0.9 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 130.7, 125.5, 95.9, 79.1, 62.6, 60.5, 30.9, 24.9, 24.2, 22.1, 19.6, 19.3, 13.7.

(*Z*)-**1b:** ¹H NMR (400 MHz, CDCl₃) δ : 5.23 (dd, *J*= 8.9, 1.2 Hz, 1H), 3.74 (dd, *J*= 8.9, 2.4 Hz, 1H), 3.71 (dd, *J*= 11.6, 3.2 Hz, 1H), 3.40 (dd, *J*= 11.6, 5.7 Hz, 1H), 3.40 (s, 3H), 3.08 (ddd, *J*= 5.7, 3.2, 2.4 Hz, 1H), 2.35 (t, *J*= 7.2 Hz, 2H), 1.87 (d, *J*= 1.2 Hz, 3H), 1.55-1.40 (m, 4H), 0.92 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 131.5, 125.7, 95.9, 78.7, 72.5, 59.2, 58.3, 54.2, 30.7, 23.8, 21.9, 19.1, 13.6.

(Z)-**1c**: 1H NMR (400 MHz, CDCl3) δ: 5.25 (dd, J= 9.0, 1.4 Hz, 1H), 3.96 (dd, J= 12.6, 2.3 Hz, 1H), 3.87 (dd, J= 9.0, 2.3 Hz, 1H), 3.68 (dd, J= 12.6, 4.1 Hz, 1H), 3.11-3.09 (m, 1H), 2.36 (t, J= 7.0 Hz, 2H), 1.88 (d, J= 1.4 Hz, 3H), 1.56-1.39 (m, 4H), 0.92 (t, J= 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, C6D6) δ: 132.5, 124.8, 95.7, 79.1, 61.1, 59.5, 53.7, 30.6, 23.5, 21.8, 19.0, 13.3.

(Z)-**1d**: 1H NMR (400 MHz, CDCl3) δ: 5.23 (d, J=9.0 Hz, 1H), 3.74-3.73 (m, 1H), 3.71 (t, J=4.0 Hz, 1H), 3.41 (s, 3H), 3.40 (dd, J=12.0, 8.0 Hz, 1H), 3.08 (ddd, J=5.7, 3.1, 2.2 Hz, 1H), 2.0 (s, 3H), 1.87 (d, J=1.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 131.6, 125.8, 91.3, 77.8, 72.6, 59.2, 58.4, 54.1, 23.8.

(*Z*)-**1e:** ¹H NMR (400 MHz, CDCl₃) δ : 7.46-7.44 (m, 2H), 7.34-7.32 (m, 3H), 5.38 (dq, *J*= 9.0, 1.5 Hz, 1H), 3.84 (dd, *J*= 9.0, 2.4 Hz, 1H), 3.74 (dd, *J*= 11.7, 3.2 Hz, 1H), 3.43 (dd, *J*= 11.7, 6.0 Hz, 1H), 3.42 (s, 3H) 3.14 (ddd, *J*= 6.0, 3.2, 2.4 Hz, 1H), 2.00 (d, *J*= 1.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 133.1, 131.5, 128.5, 128.3, 124.9,122.9, 94.5, 87.3, 72.5, 59.2, 58.5, 54.1, 23.4.

(Z)-**1f:** ^hH NMR (400 MHz, C₆D₆) δ : 7.24–7.22 (m, 2H), 7.14–7.10 (m, 2H), 7.05 (dt, J = 7.2, 1.6 Hz, 1H), 5.14 (dd, J = 8.9, 1.6 Hz, 1H), 4.35 (d, A of AB, J_{AB} = 12.1 Hz, 1H), 4.31 (d, B of AB, J_{AB} = 12.1 Hz, 1H), 4.01 (dd, J = 8.9, 2.2 Hz, 1H), 3.45 (dd, J = 11.4, 3.0 Hz, 1H), 3.25 (dd, J = 11.4, 5.5 Hz, 1H), 2.95 (ddd, J = 5.5, 3.0, 2.2 Hz, 1H), 2.06 (t, J = 6.8 Hz, 2H), 1.71 (d, J = 1.6 Hz, 3H), 1.29–1.16 (m, 4H), 0.7 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆) δ : 138.5, 132.8, 128.2, 127.4, 127.3, 124.8, 95.5, 79.1, 72.8, 70.0, 58.2, 53.8, 30.6, 23.5, 21.8, 18.9, 13.3.

(Z)-1g: ¹H NMR (400 MHz, CDCl₃) δ : 5.24 (d, *J*= 8.9 Hz, 1H), 3.81 (dd, *J*= 8.9, 2.4 Hz, 1H), 3.74 (dd, *J*= 11.2, 3.1 Hz, 1H), 3.42-3.38 (m, 1H), 3.41 (s, 3H), 3.10 (ddd, *J*= 5.6, 3.1, 2.4 Hz, 1H), 2.39 (t, *J*= 7.2 Hz, 2H), 1.59-1.41 (m, 4H), 1.11 (s, 9H), 0.93 (t, *J*= 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 140.2, 127.4, 97.4, 72.7, 59.2, 58.5, 54.7, 36.1, 30.8, 28.9, 21.9, 19.2, 13.6.

(Z)-**1h:** ¹H NMR (400 MHz, CDCl₃) δ : 5.21 (d, *J*= 8.7 Hz, 1H), 3.77 (dd, *J*= 8.7, 2.4 Hz, 1H), 3.72 (dd, *J*= 11.5, 3.1 Hz, 1H), 3.38 (dd, *J*= 11.5, 5.7 Hz, 1H), 3.40 (s, 3H), 3.07 (dt, *J*= 5.7, 2.4 Hz, 1H), 2.37 (t, *J*= 7.2 Hz, 2H), 2.02-1.97 (m, 1H), 1.76-1.20 (m, 14H), 0.92 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 136.3, 129.1, 97.0, 76.7, 72.6, 59.2, 58.5, 54.3, 45.4, 31.7, 31.6, 30.8, 29.7, 26.2, 26.0, 22.0, 19.2, 13,6.

(*Z*)-**1i**: ¹H NMR (400 MHz, CDCl₃) δ: 5.21 (d, *J*= 9.0 Hz, 1H), 3.87 (dd, *J*= 12.0, 3.2 Hz, 1H), 3.74 (m, 2H), 3.01 (m, 1H), 1.86 (s, 3H), 1.26 (s, 9H), 0.90 (s, 9H), 0.08 (s, 6H); ¹³C NMR: (100 MHz, CDCl₃) δ: 131.6, 125.3, 103.8, 77.1, 62.9, 60.2, 54.3, 31.0, 28.1, 25.9, 23.9, 18.3, -5,3.

(*Z*)-**1j**: ¹H NMR (400 MHz, CDCl₃) δ : 5.41 (dq, J= 8.8, 0.8 Hz, 1H), 3.88 (dd, J=12.1, 3.1 Hz, 1H), 3.80 (dd, J= 9.0, 2.0 Hz, 1H), 3.72 (dd, J= 12.1, 4.7 Hz, 1H), 3.19 (s, 1H), 3.06-3.03 (m, 1H), 1.91 (d, J=1.2 Hz, 3H), 0.90 (s, 9H), 0.08 (s, 6H). ¹³C NMR: (100 MHz, CDCl₃) δ : 135.4, 123.5, 82.2, 81.7, 62.9, 60.1, 54.0, 25.9, 23.2, 18.3, -5.3.

(*Z*)-**1k:** ¹H NMR (400 MHz, CDCl₃) δ: 5.32 (dt, J=9.1, 2.0 Hz, 1H), 3.88 (dd, J=12.1, 3.1 Hz, 1H), 3.81 (dd, J=9.2, 2.2 Hz, 1H), 3.75 (dd, J= 11.7, 4.3 Hz, 1H), 3.03-3.01 (m, 1H), 2.14 (td, J= 7.4, 1.2 Hz, 2H), 1.53-1.43 (m, 2H), 1.36-1.27 (m, 2H), 0.90 (s, 9H), 0.90 (t, J=7.6 Hz, 3H), 0.20 (s, 9H), 0.09 (s, 6H). ¹³C NMR: (100 MHz, CDCl₃) δ: 133.8, 129.6, 100.2, 62.8, 60.3, 54.1, 36.8, 30.1, 25.9, 21.9, 18.3, 13.8, 0.1, -5.3.

(*Z*)-**11:** ¹H NMR (400 MHz, CDCl₃) δ: 5.40 (d, J=9.4 Hz, 1H), 3.90 (dd, J=12.1, 3.1 Hz, 1H), 3.82 (dd, J=9.0, 2.0 Hz, 1H), 3.72 (dd, J= 12.0, 4.5 Hz, 1H), 3.19 (d, 0.8 Hz, 1H), 3.06-3.04 (m, 1H), 2.16 (t, J=7.8 Hz, 2H), 1.55-1.47 (m, 2H), 1.37-1.27 (m, 2H), 0.90 (s, 9H), 0.90 (t, J=7.6 Hz, 3H), 0.08 (s, 6H). ¹³C NMR: (100 MHz, CDCl₃) δ: 134.8, 128.6, 82.7, 81.1, 63.0, 60.2, 54.0, 36.7, 30.0, 25.9, 22.0, 18.3, 13.8, -5.3.

(Z)-**1m:**¹H NMR (400 MHz, CDCl₃) δ : 5,23 (dd, J = 1,6, 9,0 Hz, 1 H), 3,88 (dd, J = 3,1, 12,1 Hz, 1 H), 3,79 (dd, J = 2,2, 9,2 Hz, 1 H), 3,73 (dd, J = 4,5, 11,9 Hz, 1 H), 3,02 (s, 1 H), 2,57 - 2,48 (m, 1 H), 1,88 (d, J = 1,6 Hz, 3 H), 1,86 - 1,78 (m, 2 H), 1,76 - 1,65 (m, 2 H), 1,56 - 1,43 (m, 3 H), 1,32 (br, s, 3 H), 0,91 (s, 9 H), 0,08 (d, J = 1,6 Hz, 6 H). ¹³C NMR (101 MHz, CDCl₃) δ : 131,7, 125,3, 99,7, 78,6, 62,9, 62,9, 60,1, 54,3, 32,7, 29,7, 25,9, 24,8, 23,9, 18,3, -5,3, -5,3.

(Z)-**1n:** ¹H NMR (400MHz, CDCl₃) δ : 5,73 (dtd, J = 0,8, 2,3, 10,6 Hz, 1H), 5,45 (dd, J = 9,0, 11,0 Hz, 1H), 3,91 (dd, J = 2,7, 12,1 Hz, 1H), 3,86 (dd, J = 1,6, 9,0 Hz, 1H), 3,74 (dd, J = 4,3, 11,7 Hz, 1H), 3,08 - 3,04 (m, 1H), 2,35 (dt, J = 2,2, 7,1 Hz, 2H), 1,52 (s, 2H), 1,42 (d, J = 7,0 Hz, 2H), 0,92 (t, J = 7,2 Hz, 3H), 0,91 (s, 9 H), 0,09 (d, J = 2,3 Hz, 6H). ¹³C NMR (101 MHz CDCl₃) δ : 137,6, 115,0, 96,9, 76,1, 62,8, 60,1, 53,4, 30,7, 25,9, 22,0, 19,2, 13,6, -5,3, -5,3.

(*Z*)-10: ¹H NMR (400 MHz, CDCl₃) δ : 5.22 (dd, *J*= 9.1, 1.5 Hz, 1H), 3.86 (dd, *J*= 12.1, 3.2 Hz, 1H), 3.76 (dd, *J*= 9.1, 2.4 Hz, 1H), 3.71 (dd, *J*= 12.1, 4.8 Hz, 1H), 3.00 (ddd, *J*= 4.8, 3.2, 2.4 Hz, 1H), 2.33 (t, *J*= 7.2 Hz, 2H), 1.86 (d, *J*= 1.5 Hz, 3H), 1.56-1.37 (m, 4H), 0.91 (t, *J*= 6.8 Hz, 3H), 0.89 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 131.9, 125.3, 95.7, 78.7, 63.0, 60.1, 54.3, 30.8, 25.8, 23.8, 22.0, 19.1, 18.3, 13.6, -5.3, -5.4.

(*Z*)-**1p:** ¹H NMR (400 MHz, CDCl₃) δ: 5.21 (d, *J*= 9.0 Hz, 1H), 3.87 (dd, *J*= 12.0, 3.2 Hz, 1H), 3.74 (m, 2H), 3.01 (m, 1H), 1.86 (s, 3H), 1.26 (s, 9H), 0.90 (s, 9H), 0.08 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ: 131.6, 125.3, 103.8, 77.1, 62.9, 60.2, 54.3, 31.0, 28.1, 25.9, 23.9, 18.3, -5,3.

(Z)-**1r:** ¹H NMR (400 MHz, CDCl₃) δ : 5.23 (d, J= 9.4 Hz, 1H), 3.89 (dd, J=12.1, 3.1 Hz, 1H), 3.80 (dd, J= 9.0, 2.3 Hz, 1H), 3.71 (dd, J=11.9, 4.5 Hz, 1H), 3.02 (dt, J=4.8, 2.5 Hz, 1H), 2.35 (t, J=7.0 Hz, 2H), 2.12 (t, J=7.4 Hz, 2H), 1.54-1.38 (m, 6H), 1.35-1.26 (m, 2H), 0.93 (t, J=7.6 Hz, 3H), 0.91 (s, 9H), 0.90 (t, J= 7.4 Hz, 3H), 0.09 (s, 6H). ¹³C NMR: (100 MHz, CDCl₃) δ : 131.2, 130.4, 96.2, 78.0, 63.1, 60.2, 54.3, 37.3, 30.8, 30.2, 25.8, 22.0, 19.2, 18.3, 13.9, 13.6, -5.3.

(Z)-**1s:** ¹H NMR (400 MHz, CDCl₃) δ : 5.24 (dd, *J*= 8.9, 1.5 Hz, 1H), 3.69 (dd, *J*= 8.9, 2.3 Hz, 1H), 3.29 (s, 3H), 2.87 (d, *J*= 2.3 Hz, 1H), 2.36 (t, *J*= 6.7 Hz, 2H), 1.87 (d, *J*= 1.5 Hz, 3H), 1.56-1.39 (m, 4H), 1.18 (s, 3H), 1.15 (s, 3H), 0.92 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 132.2, 125.3, 95.8, 79.0, 74.0, 64.9, 53.4, 50.9, 30.9, 23.9, 22.4, 22.0, 21.1, 19.2, 13.7.

(*Z*)-**1t:** ¹H NMR (400 MHz, CDCl₃) δ: 4.00-3.97 (m, 1H), 3.73 (dt, *J*= 11.2, 2.8 Hz, 1H), 3.45-3.30 (m, 4H), 3.20 (sext, *J*= 2.8 Hz, 1H), 2.34 (t, *J*= 6.8 Hz, 2H), 2.21-2.10 (m, 2H), 2.02-1.91 (m, 2H), 1.79-1.32 (m, 6H), 0.98-0.79 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ: 137.3, 121.7, 94.2, 79.5, 73.1, 59.2, 56.2, 55.2, 30.9, 30.8, 22.4, 22.2, 21.9, 21.7, 19.2, 13.6.

(Z)-1u: ¹H NMR (400 MHz, C₆D₆) δ : 5.16 (dd, *J*= 8.9, 1.4 Hz, 1H), 3.75 (dd, *J*= 8.9, 2.1 Hz, 1H), 2.64 (qd, *J*= 5.4, 2.1 Hz, 1H), 2.08 (t, *J*= 6.8 Hz, 2H), 1.73 (d, *J*= 1.4 Hz, 3H), 1.31-1.20 (m, 4H), 1.04 (d, *J*= 5.2 Hz, 3H), 0.72 (t, *J*= 7.2 Hz, 3H); ¹³C NMR (100 MHz, C₆D₆) δ : 133.7, 123.9, 95.2, 79.3, 57.4, 55.2, 30.6, 23.4, 21.8, 19.0, 17.3, 13.2.

(*Z*)-**1v:** ¹H NMR (400 MHz, CDCl₃) δ : 5.18 (dd, J=9.0, 1.6 Hz, 1H), 3.84 (ddd, J=9.0, 4.3, 2.7 Hz, 1H), 3.00 (dd, J=5.1, 4.3 Hz, 1H), 2.67 (dd, J=5.1, 2.7 Hz, 1H), 2.36 (t, J=7.2 Hz, 2H), 1.88 (d, J=1.6 Hz, 3H), 1.58-1.50 (m, 2H), 1.48-1.39 (m, 2H), 0.92 (t, J=7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 132.5, 125.5, 95.7, 78.7, 50.7, 48.7, 30.8, 23.8, 22.0, 19.1, 13.6.

(*E*)-**1b:** (400 MHz, CDCl₃) δ : 5.35 (dd, *J*= 9.0, 1.0 Hz, 1H), 3.67 (dd, *J*= 11.3, 3.0 Hz, 1H), 3.48 (dd, *J*= 9.0, 2.2 Hz, 1H), 3.44 (dd, *J*= 11.3, 5.1 Hz, 1H), 3.38 (s, 3H), 3.06 (ddd, *J*= 5.1, 3.0, 2.2 Hz, 1H), 2.28 (t, *J*= 6.8 Hz, 2H), 1.93 (d, *J*= 1.0 Hz, 3H), 1.54-1.37 (m, 4H), 0.90 (t, *J*= 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 131.3, 125.2, 90.3, 82.4, 80.0, 59.2, 58.6, 51.9, 30.7, 21.9, 18.9, 18.2, 13.6.

3.4. General Procedure for Iron Catalysed with Grignard Reagents Reactions

FeCl₂ was weighed into a Schlenck apparatus in glow box, then a gas balloon filled with dry Ar gas (the gas was passed through a P₂O₅ filled glass tube) was attached. THF (2 mL) was added and then stirred for 15 minutes magnetically at a prescribed reaction temperature. The Grignard Reagent was added drop by drop and the reaction mixture was stirred approximately 15 minutes before the addition of the substrate. The reaction was initiated by the addition of the enynye oxirane drop-wise in 1 mL of THF When the reaction progress is complete as judged by TLC analysis, the excess Grignard was neutralized with saturated NH₄Cl_(aq), extracted with diethyl ether and dried over MgSO₄. The solvent content was removed under reduced pressure and the residue was purified by column chromatography on silica gel to afford the product as a pale-yellow oil.

3.5. Characterization of Products

The synthesized alkylation products were analyzed by GC-MS. NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are reported in ppm downfield from Me₄Si. Infrared spectra were obtained by ATR method with neat samples. High-resolution mass spectral analyses of new compounds were performed using EI-High Resolution Double Focusing Magnetic Sector (ionization mode: 70 eV, emission current: 1 mA, source temperature: 160 °C, resolution: 10,000 (10% valley definition)) and ESI-LTQ Orbitrap (source voltage: +3.8 kV, capillary voltage: 41 V, capillary temperature: 275 °C, tube lens voltage: 140 V, system resolution: 60,000 (10% valley definition)). The coupling constants of olefinic protons and NOE studies confirmed (*E*)-configured structures. ¹H NMR analyses of vinylallene products, were performed in C₆D₆. With this solvent, the ¹H NMR signals of diastereomers were resolved adequately, allowing to determine diastereomeric ratios smoothly. In contrast, when using CDCl₃ solvent, diastereomeric signals were all overlapped.

2aa: ¹H NMR (400 MHz, C₆D₆) δ : 6.45 (d, J=16.0 Hz, 1H), 5.64 (d, J= 15.6 Hz, 1H), 1.94 (dt, J= 7.4, 3.6 Hz, 2H), 1.86 (s, 3H), 1.68 (s, 3H), 1.43 (sextet, J= 7.2 Hz, 2H), 1.30 (sextet, J=7.2 Hz, 2H), 1.19 (s, 6H), 0.94 (bs, 1H), 0.86 (t, J=7.4 Hz, 3H); ¹³C NMR (101 MHz, C₆D₆) δ : 204.9, 136.0, 126.8, 99.1, 98.8, 70.5, 34.3, 30.2, 30.2, 30.1, 22.6, 19.2, 16.2, 14.1; MS (EI, m/z): 208 (<5, M⁺), 166(15), 123(35), 107(80), 93(75), 59(70), 43(100); FTIR (ν_{max}/cm^{-1}): 3349, 2968, 2934, 2868, 1458, 1367, 1251, 1151, 969, 903.

2ba: ¹H NMR (400 MHz,C₆D₆) δ : 6.52 (dd, J = 15.9, 1.2 Hz, 1H) (Major), 6.51 (dd, J = 15.9, 1.2 Hz, 1H) (Minor), 5.50 (dd, J = 15.9, 6.0 Hz, 1H), 4.30 (dddd, J = 7.8, 6.0, 4.0, 1.2 Hz, 1H), 3.11 (dd, A of ABX, J_{AB} = 17.4 Hz, J_{AX} = 4.0 Hz, 1H), 3.06 (dd, B of ABX, J_{AB} = 17.4 Hz, J_{BX} = 7.8 Hz, 1H), 2.96 (s, 3H) (Major), 2.97 (s, 3H) (Minor), 2.02 (bs, 1H), 1.86 (t, J = 7.2 Hz, 2H), 1.79 (s, 3H), 1.60 (s, 3H) (Major), 1.59 (s, 3H) (Minor), 1.41-1.20 (m, 4H), 0.81 (t, J = 7.2 Hz, 3H) (Major), 0.82 (t, J = 7.2 Hz, 3H) (Minor); ¹³C NMR (101 MHz, C₆D₆) δ : 204.8, 131.4, 126.3 (Minor), 126.2 (Major), 98.9, 98.6, 76.9 (Minor), 76.8 (Major), 71.0 (Major) 71.0 (Minor), 58.2, 33.9, 29.7, 22.3, 18.8, 15.8, 13.8; MS (EI, *m*/*z*): 224 (<1, M⁺), 179(20), 137(50), 123(65), 107(100), 95(80), 81(50), 67(55), 43(759; FTIR (v_{max}/cm⁻¹): 3471, 2970, 2922, 2853, 1705, 1597, 1480, 1283, 1156, 842, 793, 627.

2bb: ¹H NMR (400 MHz, C₆D₆) δ : 6.51 (dd, J=15.8, 1.2 Hz, 1H), 5.50 (dd, J=14.8, 6.0 Hz, 1H), 4.32-4.24 (m, 1H), 3.13-3.02 (m, 2H), 2.96 (s, 3H), 2.17 (bs, 1H), 1.91-1.83 (m, 4H), 1.80 (s, 3H), 1.43-1.21 (m, 4H), 0.98 (t, J=7.2 Hz, 3H) (Major), 0.97 (t, J=7.6 Hz, 3H, (Minor)), 0.83 (t, J=7.6 Hz, 3H) (Minor), 0.82 (t, J=7.6 Hz, 3H) (Major); ¹³C NMR (101 MHz, C₆D₆) δ : 204.2, 131.5, 126.1, 105.8, 101.1, 76.9, 71.1, 58.2, 32.6, 29.9, 25.9, 22.4(Minor), 22.4 (Major) 15.8, 13.8, 12.3 ; MS (EI, *m*/*z*): 238 (<5, M⁺), 220(5), 193(45), 175(25), 151(45), 133(40), 121(90), 109(100), 91(60), 55(50), 45(55); FTIR (ν_{max}/cm^{-1}): 3441, 2921, 2853, 1460, 1382, 1097, 960, 734, 695

2be: ¹H NMR (400MHz, C₆D₆) δ : 6.57 (dt, *J* = 15.8, 1.5 Hz, 1H), 5.55 (dd, *J* = 15.8, 6.1 Hz, 1H), 4.39 - 4.31 (m, 1H), 3.16 (dd, A of ABX, JAB = 9.4 Hz, JAX = 3.5 Hz, 1H), 3.12 (dd, B of ABX, JAB = 9.4 Hz, JBX = 8.3 Hz, 1H), 3.01 (s, 3H), 2.32 (br. s., 1H), 1.96 (t, J = 7.6 Hz, 4H), 1.85 (s, 3H), 1.53 - 1.40 (m, 4H), 1.38 - 1.23 (m, 6H), 0.89 (dquin, J = 7.6, 3.6, 3.6, 3.6, 3.6 Hz, 6H); ¹³C NMR (101 MHz, C₆D₆) δ : 204.4, 131.4, 126.2, 103.6, 100.4, 76.9, 71.0, 58.2, 32.8 (Major), 32.8 (Minor), 32.6 (Minor), 32.6 (Minor), 31.5 (Minor) 29.9, 27.4, 22.5, 22.4, 15.7, 14.0, 13.8; MS (EI, *m/z*): 280 (<5, M⁺), 235(30), 205(15), 179(30), 149(60), 119(359, 109(95), 93(95), 81(75), 55(80), 43(100); FTIR (v_{max}/cm⁻¹): 3422, 2911, 2853, 1705, 1460, 1264, 1097, 842, 783, 685.

2bf: ¹H NMR (400 MHz, C₆D₆) δ : 6.58 (dt, *J*=15.7, 1.76 Hz, 1H), 5.55 (dd, *J*=15.7, 6.06 Hz, 1H), 4.38 - 4.32 (m, 1H), 3.16 (dd, A of ABX, J_{AB} = 9.4 Hz, J_{AX} = 3.6 Hz, 1H), 3.12 (dd, B of ABX, J_{AB} = 9.4 Hz, J_{BX} = 7.9 Hz, 1H), 3.01 (s, 3H), 2.29 (br. s., 1H), 1.95 - 2.02 (m, 4H), 1.86 (s, 3H), 1.54 - 1.23 (m, 16H) 0.94 - 0.86 (m, 6H); ¹³C NMR (101 MHz, C₆D₆) δ : 204.5, 131.4, 126.1, 103.6, 100.4, 76.9, 71.0 (Major), 71.0 (Minor), 58.2, 32.9 (Minor), 32.9 (Major), 32.6 (Major), 32.6 (Minor), 31.9, 29.9, 29.6, 29.4, 29.4, 27.8, 22.7, 22.4, 15.7, 14.0, 13.8; MS (EI, *m*/*z*): 322 (5, M⁺), 277(40), 247(20), 205(30), 179(559, 149(100), 109(80), 93(85), 57(95); FTIR (ν_{max}/cm^{-1}): 3490, 2961, 2931, 2843, 1695, 1617, 1509, 1254, 1097, 1029, 832, 774, 636, 617.

2bg: ¹H NMR (400 MHz, C₆D₆) δ : 7.46 - 7.40 (m, 2H), 7.22 - 7.16 (m, 2H), 7.10 - 7.03 (m, 1H), 6.55 (dd, *J*=15.8, 1.4 Hz, 1H), 5.63 (dd, *J*=15.8, 5.9 Hz, 1H), 4.35 - 4.28 (m, 1H), 3.15 (dd, A of ABX, JAB = 9.4 Hz, JAX = 4.3 Hz, 1H), 3.08 (dd, B of ABX, JAB = 9.4 Hz, JBX = 7.8 Hz, 1H), 3.00 (d, *J*=0.8 Hz, 3H) (Major), 3.01 (d, *J*=0.8 Hz, 3H) (Minor), 2.39 (t, *J*=7.1 Hz, 2H) (Major), 2.40 (t, *J*=7.1 Hz, 2H) (Minor), 2.19 (br. s, 1H), 1.86 (s, 3H), 1.58 - 1.46 (m, 2H), 1.33 (m, 2H), 0.85 (t, *J*=7.1 Hz, 3H) (Major), 0.86 (t, *J*=7.1 Hz, 3H) (Minor); ¹³C NMR (101MHz , C₆D₆) δ : 208.1, 137.2, 129.7, 128.3 (Minor), 128.3 (Major), 126.6 (Minor), 126.6 (Major), 126.3, 105.6, 102.6, 76.7, 70.9 (Major), 70.9 (Minor) 58.2, 30.1 (Minor), 30.1 (Major), 30.0 (Major), 30.0 (Minor), 22.4(Major), 22.4 (Minor), 15.16, 13.8; MS (EI, *m*/*z*): 286 (20, M⁺), 241(20), 225(30), 181(45), 169(100), 129(40), 91(75), 45(95); FTIR (v_{max}/cm⁻¹): 3433, 2948, 2920, 2855, 1456, 1363, 1195, 1130, 971, 757, 691.

2ca: ¹H NMR (400 MHz, C₆D₆) δ : 6.44 (dd, J = 1.4, 15.8 Hz, 1H) (Major), 6.42 (dd, J = 1.4, 15.8 Hz, 1H) (Minor), 5.43 (dd, J = 6.3, 15.7 Hz, 1H), 4.12 - 4.03 (m, 1H), 3,42 (dd, $J_{AB} = 11,0$ Hz, $J_{AX} = 7,5$ Hz, 1H) (Major), 3,42 (dd, $J_{AB} = 11,0$ Hz, $J_{AX} = 7,5$ Hz, 1H) (Minor), 3,32 (dd, $J_{AB} = 11,0$ Hz, $J_{BX} = 3,9$ Hz, 1H) (Minor), 3,31 (dd, $J_{AB} = 11,0$ Hz, $J_{BX} = 3,9$ Hz, 1H) (Major), 1.94 - 1.88 (m, 2H), 1.80 (s, 3H), 1.65 (s, 1H) (Major), 1.64 (s, 1H) (Minor), 1.46 - 1.23 (m, 7H), 0.87 (t, J = 7.2 Hz, 3H) (Minor), 0.86 (t, J = 7.2 Hz, 3H) (Major); ¹³C NMR (101 MHz, C₆D₆) δ : 204.8, 131.8, 126.2, 98.8, 98.7, 73.2 (Minor), 73.1 (Major), 66.6, 33.9 (Minor), 33.8 (Major), 29.7 (Minor), 29.7 (Major), 22.3 (Minor), 22.3 (Major), 18.8, 15.6, 13.8 ; MS (EI, m/z): 210 (<5, M⁺), 167(5), 137(15), 107(100), 91(40), 77(35), 67(40), 43(45); FTIR (v_{max}/cm⁻¹): 3343, 2951, 2921, 2862, 1450, 1372, 1146, 1058, 1029, 960.

3bh: ¹H NMR (400 MHz, C₆D₆) δ : 7.36 (d, *J*=7.0 Hz, 2H), 7.21 (t, *J*=7.4 Hz, 2H), 7.08 (t, *J*=7.40 Hz, 1H), 5.95 (dd, *J*=9.4, 1.2 Hz, 1H), 3.91 (dt, *J*=8.8, 2.8 Hz, 1H), 3.33 -3.27 (m, 1H), 3.22 - 3.10 (m, 3H), 2.97 (s, 3H), 2.86 (dd, B of ABX, J_{AB} = 11.7 Hz, J_{BX} = 4.7 Hz, 1H), 2.29 (br. s., 1 H), 2.18 (t, *J*=7.0 Hz, 2H), 1.83 (d, *J*=1.6 Hz, 3H), 1.43 -1.28 (m, 4H), 0.82 (t, *J*=7.0 Hz, 3H); ¹³C NMR (101 MHz, C₆D₆) δ : 140.5, 135.6, 129.4, 128.2, 125.9, 120.0, 93.5, 80.2, 76.2, 70.2, 58.1, 45.0, 38.1, 31.0, 23.4, 21.9, 19.0, 13.4; MS (EI, *m*/*z*): 255(5), 184(55), 135(30), 105(25), 93(100), 45(75); FTIR (v_{max}/cm⁻¹): 3402, 2921, 2878, 1500, 1441, 1088, 1039, 960, 754, 695.

3bi: ¹H NMR (400 MHz, C₆D₆) δ : 5.94 (ddt, *J*=17.0, 10.1, 7.1 Hz, 1H), 5.82 (dd, *J*=9.8, 1.4 Hz, 1H), 5.15 (dq, *J*=17.0, 1.3 Hz, 1H), 5.05 (dt, *J*=10.0, 1.3 Hz, 1H), 3.97 (ddd, *J*=7.2, 4.3, 3.3 Hz, 1H), 3.28 - 3.37 (m, 2H), 3.06 (s, 3H), 3.05 - 2.96 (m, 2H), 2.53 (dt, J=14.1, 7.1 Hz, 1H), 2.38 (dt, J=14.1, 7.1 Hz, 1H), 2.31 (br. s., 1H), 2.17 (t, J=6.9 Hz, 2H), 1.86 (d, J=1.4 Hz, 3H), 1.44 - 1.27 (m, 4H), 0.80 (t, J=6.9 Hz, 3H); ¹³C NMR (101 MHz, C₆D₆) δ : 137.0, 135.7, 120.1, 115.7, 93.5, 80.4, 76.1, 71.7, 58.3, 43.1, 36.4, 30.9, 23.4, 21.8, 19.0, 13.3; MS (EI, *m*/*z*): 232(<5), 208(10), 158(10), 121(20), 119(30), 105(35), 93(100), 45(75); FTIR (v_{max}/cm⁻¹): 3412, 2931, 2862, 1695, 1607, 1509, 1254, 1156, 1117, 1039, 842, 617.

2dd: ¹H NMR (400 MHz, C₆D₆) δ : 6.56 (dd, *J*=15.9, 1.4 Hz, 1H) (Minor), 6.55 (dd, *J* = 15.8, 1.4 Hz, 1H) (Major), 5.54 (dd, J = 15.9, 6.0 Hz, 1H), 4.38 - 4.30 (m, 1H) 3.19 - 3.07 (m, 2H), 3.01 (s, 3H) (Major), 3.00 (s, 3H) (Minor), 2.26 (br. s., 1H), 1.91 (t, *J*=7.20 Hz, 2H) (Major), 1.90 (t, J = 7.2 Hz, 2H) (Minor), 1.83 (s, 3H), 1.64 (s, 3H) (Minor), 1.64 (s, 3H) (Major), 1.46 - 1.35 (m, 2H) 1.35 - 1.22 (m, 2H) 0.86 (t, *J*=7.4 Hz, 3H) (Major), 0.85 (t, *J*=7.4 Hz, 3H) (Minor); ¹³C NMR (101 MHz, C₆D₆) δ : 205.0, 131.8, 126.6 (Major), 126.6 (Minor), 99.2, 99.0, 77.2, 71.4 (Major), 71.3 (Minor) 58.5, 34.2 (Major), 34.2 (Minor), 30.0, 22.6, 19.1, 16.0, 14.1; MS (EI, m/z): 224 (<1, M⁺), 179(15), 162(20), 137(40), 123(60), 107(100), 95(80), 77(50), 55(75), 45(95); FTIR (v_{max}/cm⁻¹): 3432, 2926, 2851, 1450, 1367, 1193, 1127, 961, 612.

2ea: ¹H NMR (400 MHz, C₆D₆) δ : 7.44 – 7.36 (m, 2H), 7.21 – 7.12 (m, 2H), 7.09 – 7.01 (m, 1H), 6.52 (ddd, J = 1.4, 4.3, 15.8 Hz, 1H), 5.63 (dd, J = 6.1, 15.8 Hz, 1H), 4.31 (dd, J = 1.6, 5.5 Hz, 1H), 3.13 (dd, $J_{AB} = 9.4$ Hz, $J_{AX} = 7.9$ Hz, 1H), 3.10 (dd, $J_{AB} = 9.4$ Hz, $J_{BX} = 3.4$ Hz, 1H), 3.01 (s, 3H), 2.33 – 2.22 (br, s, 1H), 1.98 (s, 3H) (Major), 1.98 (s, 3H) (Minor), 1.83 (s, 3H); ¹³C NMR (100 MHz, C₆D₆) δ : 208.2, 137.3, 129.7, 128.3 (Minor), 128.3 (Major), 126.6 (Minor), 126.6 (Major), 126.0, 101.5, 100.2, 76.7, 70.9 (Major), 70.9 (Minor), 58.2, 16.8 (Major), 16.7 (Minor), 15.1; MS (EI, m/z): 244 (25, M⁺), 199(100), 181(55), 166(60), 143(30), 129(35), 91(30), 77(25), 43(80); FTIR (v_{max}/cm⁻¹): 3450, 2926, 2852, 1500, 1450, 1367, 1193, 1127, 1068, 961, 754, 704, 612.

2fa: ¹H NMR (400 MHz ,C₆D₆) δ : 7.26 – 7.12 (m, 4H), 7.12 – 7.04 (m, 1H), 6.56 (ddd, J = 1.4, 4.0, 15.7 Hz, 1H), 5.52 (ddd, J = 0.8, 4.0, 16.0 1H), 4.44 – 4.34 (m, 1H), 4.25 (s, 2H), 3.30 (dd, $J_{AB} = 9.3$ Hz, $J_{AX} = 8.0$ Hz, 1H), 3.23 (dd, $J_{AB} = 9.3$ Hz, $J_{BX} = 3.4$ Hz, 1H), 2.31 (br. s., 1H), 1.82 (s, 3H), 1.64 (d, J = 3.1 Hz 3H), 1.45 – 1.34 (m, 2H), 1.34 – 1.22 (m, 2H), 0.86 (t, J = 12 Hz, 3H) (Minor), 0.85 (t, J = 12 Hz, 3H) (Major); ¹³C NMR (101MHz , C₆D₆) δ : 204.7, 138.3, 131.5 (Major), 131.5 (Minor), 128.2, 127.5, 126.2 (Minor), 126.1 (Major), 98.9, 98.6, 74.5, 72.9, 71.2 (Minor), 71.2, 33.9 (Minor), 33.9 (Major), 29.7, 22.3, 18.8, 15.7, 13.8; MS (EI, m/z): 300 (<1, M⁺), 282(<5), 123(10), 107(20), 91(100), 79(18), 65(20); FTIR (v_{max}/cm^{-1}): 3427, 2924, 2848, 1946, 1661, 1462, 1358, 1110, 1025, 977, 740, 683.

2ha: ¹H NMR (400 MHz ,C₆D₆) δ : 6.40 (dd, J = 1.6, 16.0 Hz, 1H), 5.77 (dd, J = 5.9, 16.0 Hz, 1H), 4.39 - 4.30 (m, 1H), 3.20 - 3.09 (m, 2H), 2.99 (s, 3H), 2.22 - 2.12 (m, 2H), 1.98 - 1.90 (m, 2H), 1.78 - 1.71 (m, 2H), 1.69 (s, 3H), 1.63 - 1.59 (m, 1H), 1.50 - 1.40 (m, 2H), 1.37 - 1.14 (m, 8H), 0.91 - 0.84 (m, 3H); ¹³C NMR (101 MHz , C₆D₆) δ : 202.9, 129.9, 125.8 (Minor), 125.7, 109.9, 101.5, 76.9, 71.3 (Minor), 71.2, 58.2, 37.8, 34.0, 33.2 (Minor), 33.2 (Major), 33.1, 31.6, 29.9, 26.7 (Minor), 26.6 (Major), 26.5, 22.7 (Minor), 22.5 (Major), 19.0, 13.9 (Minor), 13.8 (Major); MS (EI, m/z): 292 (<1, M⁺), 217(10), 175(10), 147(5), 105(15), 83(25), 54(15), 45(100) ; FTIR (ν_{max}/cm^{-1}): 3440, 2918, 2860, 1450, 1193, 1127, 969, 894.

2ia: ¹H NMR (400 MHz,C₆D₆) δ : 6.57 (dd, J = 1.2, 15.7 Hz, 1H) (Major), 6.55 (dd, J = 1.2, 15.7 Hz, 1H) (Minor), 5.57 (dd, J = 5.9, 15.7 Hz, 1H), 4.30 – 4.24 (m, 1H), 3.54 (dd, $J_{AB} = 10.0$ Hz, $J_{AX} = 7.3$ Hz, 1H), 3.44 (dd, $J_{AB} = 10.0$ Hz, $J_{BX} = 4.1$ Hz, 1H), 1.87 (s, 3H) (Minor), 1.84 (s, 3H) (Major), 1.67 (s, 3H) (Major), 1.66 (s, 3H) (Minor), 1.05 (s, 6H), 0.91 (s, 9H), -0.01 (s, 9H); ¹³C NMR (101 MHz, C₆D₆) δ : 203.9, 131.7, 126.2, 107.6, 99.2, 72.8, 67.6, 34.0, 30.9, 28.9, 25.7, 15.8, 14.6, -5.6 (Minor), -5.7 (Major); MS (EI, m/z): 306(2), 281(15), 248(15), 207(25), 178(10), 118(30), 74(60), 59(100); FTIR (v_{max}/cm^{-1}): 3440, 2951, 2910, 2852, 1467, 1359, 1251, 1112, 961, 836, 787.

2ja: ¹H NMR (400 MHz, C₆D₆) δ : 6.54 (td, J = 1.2, 15.7 Hz, 1H), 5.56 (ddd, J = 1.4, 6.0, 15.7 Hz, 1H), 5.16 – 5.05 (m, 1H), 4.31 – 4.18 (m, 1H), 3.52 (dd, $J_{AB} = 9.9$ Hz, $J_{AX} = 7.3$ Hz, 1H), 3.41 (dd, $J_{AB} = 9.9$ Hz, $J_{BX} = 4.1$ Hz, 1H), 1.80 (d, J = 2.7 Hz, 3H), 1.52 (d, J = 7.0 Hz, 3H) (Major), 1.52 (d, J = 7.0 Hz, 3H) (Minor), 0.90 (s, 9H), -0.01 (s, 6H); ¹³C NMR (101 MHz, C₆D₆) δ : 207.9, 130.7, 126.9, 99.0, 85.0, 72.7, 67.5, 25.7, 18.1, 15.3, 14.1, -5.6 (Minor), -5.7 (Major); MS (EI, m/z): 268 (<1, M⁺), 211(10), 193(5), 119(40), 105(30), 91(20), 75(100), 43(15); FTIR (ν_{max}/cm^{-1}): 3424, 2934, 2852, 1707, 1467, 1375, 1256, 1110, 824, 762, 670.

2jg: ¹H NMR (400 MHz, C₆D₆) δ : 7.26 – 7.22 (m, 2H), 7.12 (s, 2H), 7.04 – 6.98 (m, 1H), 6.53 (td, *J* = 1.4, 15.7 Hz, 1H) (Minor), 6.52 (td, *J* = 1.4, 15.7 Hz, 1H) (Major), 6.24 – 6.18 (m, 1H), 5.66 (qdd, *J* = 1.2, 5.9, 15.7 Hz, 1H), 4.26 – 4.19 (m, 1H), 3.51 (dd, *J*_{AB} = 9.9 Hz, *J*_{AX} = 7.5 Hz, 1H), 3.41 (dd, *J*_{AB} = 9.9 Hz, *J*_{BX} = 4.3 Hz, 1H), 2.35 – 2.26 (br. s, 1H), 1.84 (d, *J* = 2.7 Hz, 3H) (Minor), 1.83 (d, *J* = 2.7 Hz, 3H) (Major), 0.91 (s, 9H), 0.00 (s, 6H); ¹³C NMR (101 MHz, C₆D₆) δ : 209.3, 134.6, 128.6 (Minor), 128.6 (Major), 127.0, 126.9, 103.4, 94.5, 81.6, 72.6, 67.4, 25.6, 18.1, 15.0, -5.6 (Minor), -5.7 (Major) ; MS (EI, *m*/*z*): 330 (<1, M⁺), 312(5), 273(10), 181(50), 156(65), 141(55), 105(35), 75(100), 59(15); FTIR (v_{max}/cm⁻¹): 3523, 2926, 2835, 2735, 1682, 1599, 1583, 1516, 1317, 1251, 1151, 1010, 836, 621.

2la: ¹H NMR (400 MHz, C₆D₆) δ : 6.49 (d, *J* = 16.0 Hz, 1H), 5.70 (dd, *J* = 7.0, 11.7 Hz, 1H), 5.24 - 5.13 (m, 1H), 4.77 - 4.74 (m, 1H) (Minor), 4.31 - 4.21 (m, 1H) (Major), 3.50 (dd, *J*_{AB} = 10.0 Hz, *J*_{AX} = 7.5 Hz, 1H), 3.40 (dd, *J*_{AB} = 10.0 Hz, *J*_{BX} = 4.7 Hz, 1H), 2.16 (dd, *J* = 3.5, 7.8 Hz, 2H), 1.55 (d, *J* = 7.0 Hz, 3H), 1.54 (quin, *J* = 6,7 Hz, 2H), 1.35 (sxt, *J* = 7.2 Hz, 2H), 0.96 - 0.84 (m, 12H), 0.00 (s, 6H); ¹³C NMR (100 MHz, C₆D₆) δ : 207.3, 130.2, 126.6, 104.0, 86.5, 72.9, 67.6, 29.8, 28.4, 25.7, 22.5, 14.1, 13.8, -5.6 (Major), -5.7 (Minor); MS (EI, m/z): 253(5), 161(10), 119(20), 105(40), 91(25), 75(100), 57(50); FTIR (ν_{max}/cm^{-1}): 3432, 2951, 2934, 2860, 1707, 1475, 1359, 1251, 1102, 836, 770.

2ma: ¹H NMR (400 MHz, C₆D₆) δ : 6.58 (ddd, J = 1.2, 3.1, 16.0 Hz, 1H), 5.57 (ddd, J = 0.8, 5.9, 15.7 Hz, 1H), 4.34 – 4.23 (m, 1H), 3.54 (dd, J_{AB} = 8.7 Hz, J_{AX} = 5.4 Hz, 1H), 3.45 (dd, JAB = 8.7 Hz, J_{BX} = 0.5 Hz, 1H), 2.35 (dd, J = 2.0, 12.5 Hz, 1H), 1.86 (d, J = 0.8 Hz, 2H), 1.85 – 1.77 (m, 2H), 1.75 – 1.62 (m, 5H), 1.61 – 1.51 (m, 1H), 1.27 – 1.04 (m, 5H), 0.95 – 0.86 (m, 9H), -0.01 (s, 6H); ¹³C NMR (101 MHz, C₆D₆) δ : 204.4, 131.8 (Major), 131.7 (Minor), 126.3, 104.0, 99.7, 72.9 (Minor), 72.8 (Major), 67.6, 42.1 (Major), 42.1 (Minor), 32.1 (Major), 32.1 (Minor), 26.4 (Minor), 26.4 (Major), 26.3 (Major), 25.7, 18.1, 17.2, -5.6 (Minor), -5.7 (Major) ; MS (EI, *m/z*): 350 (<1M⁺), 275(5), 201(20), 187(15), 159(20), 145(25), 119(65), 105(55), 75(100), 67(40), 55(50); FTIR (ν_{max}/cm^{-1}): 3424, 2943, 2860, 1450, 1384, 1259, 1118, 977, 845, 787, 670.

2na: ¹H NMR (400 MHz, C₆D₆) δ : 6.40 (ddd, J = 1.2, 10.6, 15.3 Hz, 1H), 5.88 (qd, J = 2.7, 10.6 Hz, 1H), 5.56 (dd, J = 5.9, 15.3 Hz, 1H), 4.24 – 4.14 (m, 1H), 3.48 (dd, J_{AB} = 9.8 Hz, J_{AX} = 7.5 Hz, 1H), 3.38 (dd, J_{AB} = 9.8 Hz, J_{BX} = 3.9 Hz, 1H), 2.35 – 2.26 (br, s, 1H), 1.88 (s, 2H), 1.68 – 1.56 (m, 3H), 1.45 – 1.34 (m, 2H), 1.33 – 1.21 (m, 2H), 0.90 (s, 9H), 0.86 (t, J = 8 Hz, 3H) (Major), 0.86 (t, J = 8 Hz, 3H) (Minor), -0.02 (s, 6H); ¹³C NMR (100 MHz, C₆D₆) δ : 205.0 (Major), 205.0 (Minor), 129.3 (Major), 129.3 (Minor), 128.6 (Minor) 100.7, 93.3, 72.4, 67.4, 33.6, 29.6, 25.7, 22.3, 18.7, 18.1, 13.8, -5.7 (Minor), -5.7 (Major) ; MS (EI, *m*/z): 310 (<1, M⁺), 253 (5), 211(5), 161(20), 119(35), 105(70), 91(40), 75(100), 55(35); FTIR (v_{max}/cm⁻¹): 3433, 2958, 2929, 2861, 1454, 1357, 1260, 1124, 959, 833, 765.

20a: ¹H NMR (400 MHz, C₆D₆) δ : ppm 6.59 (dd, *J*=15.8, 1.4 Hz, 1H), 5.57 (dd, *J*=15.8, 6.1 Hz, 1H), 4.31 – 4.24 (m, 1H), 3.54 (dd, *J*_{AB} = 9.8 Hz, *J*_{AX} = 7.5 Hz, 1H), 3.43 (dd, *J*_{AB} = 9.8 Hz, *J*_{BX} = 3.9 Hz, 1H), 1.95 – 1.88 (m, 2H), 1.86 (s, 3H), 1.65 (s, 3H) (Major), 1.65 (s, 3H) (Minor), 1.46 – 1.23 (m, 4H), 0.91 (s, 12H), 0.86 (t, *J*=7.4 Hz, 3H), -0.01 (s, 6H); ¹³C NMR (101 MHz, C₆D₆) δ : 204.7, 131.6, 126.3, 98.9, 98.7, 72.8 (Minor), 72.8 (Major), 67.6, 65.5, 33.9, 29.8, 29.7, 25.7, 22.7 (Major), 22.3 (Minor), 18.8, 18.1, 15.7(Major), 15.2 (Minor), 14.0 (Minor), 13.8 (Major), -5.6 (Minor), -5.7 (Major); MS (EI, *m*/*z*): 324 (<1, M⁺), 267(10), 225(5), 175(35), 133(55), 119(65), 105(65), 75(100), 55(70); FTIR (v_{max}/cm⁻¹): 3430, 2942, 2854, 1454, 1366, 1246, 1103, 972, 863, 786.

2ra: ¹H NMR (400 MHz, C₆D₆) δ : 6.52 (dd, J = 1.2, 15.7 Hz, 1H), 5.69 (dd, J = 6.3, 16.0 Hz, 1H), 4.32 – 4.23 (m, 1H), 3.56 (dd, $J_{AB} = 9.8$ Hz, $J_{AX} = 7.5$ Hz, 1H), 3.46 (dd, $J_{AB} = 9.8$ Hz, $J_{BX} = 4.3$ Hz, 1H), 2.22 (t, J = 7.4 Hz, 2H), 1.94 (t, J = 6.7 Hz, 2H), 1.68(s, 3H) (Major) – 1.67 (s, 3H) (Minor), 1.58 (quin, J = 7.4 Hz, 2H), 1.48 – 1.24 (m, 6 H), 0.99 – 0.82 (m, 15H), 0.03 - 0.05 (m, 6H); ¹³C NMR (101 MHz , C₆D₆) δ : 204.0, 131.1 (Major), 131.1 (Minor) 125.9, 103.8, 100.2, 73.0 (Minor), 73.0 (Major), 67.6, 33.9, 30.1, 29.8, 28.9, 25.7, 22.6, 22.4, 18.8, 18.1, 13.9, 13.8, -5.6 (Minor), -5.7 (Major); MS (EI, m/z): 366 (<1, M⁺), 348(2), 309(5), 267(5), 217(15), 175(10), 161(15), 119(30), 105(40), 91(30), 75(100), 57(45) ; FTIR (ν_{max}/cm^{-1}): 3432, 2960, 2934, 2851, 1467, 1367, 1259, 1110, 969, 836, 787, 679

2sa: ¹H NMR (400 MHz, C₆D₆) δ : 6.58 (d, J=15.6 Hz, 1H), 5.68 (dd, J = 6.7, 15.7 Hz, 1H) (Minor), 5.67 (dd, J = 6.7, 15.7 Hz, 1H) (Major), 4.08 (d, J= 6.8 Hz, 1H), 2.91 (s, 3H), 2.51-2.49 (m, 1H), 1.94-1.89 (m, 2H), 1.86 (s, 3H), 1.65 (s, 3 H)(Major), 1.63 (s, 3H) (Minor), 1.40 (quint, J=7.2 Hz, 2H), 1.29(quint, J=7.2 Hz, 2H), 1.04-1.03 (m, 3H), 0.97 (s, 3H), 0.87 (t, J = 7.4 Hz, 3H) (Minor), 0.85 (t, J = 7.4 Hz, 3H) (Major); ¹³C NMR (101 MHz, C₆D₆) δ : 205.0, 132.5 (Minor), 132.4 (Major), 126.5 (Minor), 126.4 (Major), 99.3, 98.9 (Minor), 98.9 (Major), 78.4 (Minor), 78.3 (Major), 77.6 (Major), 77.6 (Minor), 49.0, 34.3 (Minor), 34.2 (Major), 30.0, 22.6 (Minor), 22.6 (Major), 20.8, 19.4 (Major), 19.4 (Minor), 19.1, 16.1 (Minor), 16.1 (Major), 14.1; MS (EI, m/z): 252 (<1, M⁺), 220(5), 180(10), 73(100), 43(10); FTIR (v_{max}/cm⁻¹): 3449, 2960, 2926, 2868, 1475, 1367, 1151, 1068, 961, 737, 621.

2ta: ¹H NMR (400 MHz, C₆D₆) δ : 5.79 (d, J=8.0 Hz, 1H), 4.67 (q, J= 6.0 Hz, 1H), 3.20-3.17 (m, 2H), 3.03 (s, 3H)(Major), 3.02 (s, 3H)(Minor), 2.37-2.28 (m, 4H), 2.22-2.16 (m, 1H), 2.02-1.85 (m, 2H), 1.69 (s, 3H) (Major), 1.68 (s, 3H) (Minor), 1.57-1.40 (m, 6H), 1.32 (sextet, J=7.2 Hz, 2H), 0.90 (t, J= 7.2 Hz, 3H) (Major), 0.89 (t, J= 7.2 Hz, 3H) (Minor); ¹³C NMR (101 MHz, C₆D₆) δ : 198.0, 140.0, 124.1, 105.2, 98.9, 77.0, 67.4, 58.6, 34.4, 32.2, 30.2, 29.1, 26.5, 26.1, 22.7, 19.6, 14.2; MS (EI, m/z): 264 (20, M⁺), 219(20), 189(25), 147(50), 105(80), 91(75), 55(65), 45(100); FTIR (v_{max}/cm⁻¹): 3440, 2926, 2843, 1748, 1657, 1442, 1209, 1127, 1077, 969, 903, 621.

2ua: ¹H NMR (400 MHz, C₆D₆) δ : 6.31 (dd, J = 1.6, 15.7 Hz, 1H) (Major), 6.31 (dd, J = 1.6, 15.7 Hz, 1H) (Minor), 5.52 (dd, J = 6.3, 15.7 Hz, 1H) (Major), 5.52 (dd, J = 6.3, 15.7 Hz, 1H) (Minor), 4.14 (dquin, J = 1.0, 6.3 Hz, 1H), 1.97 – 1.88 (m, 2H), 1.82 (s, 3H), 1.67 (s, 3H) (Major), 1.67 (s, 3H) (Minor), 1.47 – 1.37 (m, 2H), 1.36 – 1.24 (m, 2H), 1.15 (d, J = 6,7 Hz, 3H) (Minor), 1.14 (d, J = 6.7 Hz, 3H) (Major), 0.87 (t, J = 7.2 Hz, 3H) (Minor), 0.86 (t, J = 7.2 Hz, 3H) (Major); ¹³C NMR (101 MHz, C₆D₆) δ : 204.5, 132.0 (Major), 132.0 (Minor), 129.2 (Major), 129.2 (Minor), 98.8, 98.6, 68.4, 33.9 (Major), 33.9 (Minor), 29.7, 23.4, 22.3, 18.8, 15.8, 13.8 (Major), 13.8 (Minor); MS (EI, m/z): 194 (<1, M⁺), 152(5), 107(60), 91(25), 79(20), 67(20), 43(100); FTIR (v_{max}/cm⁻¹): 3500, 2951, 2872, 1695, 1597, 1519, 1264, 1166, 1029, 832, 774, 607.

2va: ¹H NMR (400MHz, C₆D₆) δ : 6.30 (d, J=16.0 Hz, 1H), 5.53 (dt, J=16.0, 5.6 Hz, 1H), 3.92 (d, J=5.2 Hz, 2H), 1.92 (t, J=7.2 Hz, 2H), 1.81 (s, 3H), 1.66 (s, 3H), 1.41 (sextet, J=7.2 Hz, 2H), 1.30 (sextet, J=7.2 Hz, 2H), 0.87 (t, J=7.2 Hz, 3H), 0.72 (s, 1H); ¹³C NMR (101MHz, C₆D₆) δ : 204.8, 131.2, 127.3, 99.2, 99.0, 63.6, 34.2, 30.1, 22.6, 19.2, 16.1, 14.1; MS (EI, m/z): 180 (<1, M⁺), 149(5), 138(10), 107(100), 91(35), 79(30), 55(30), 41(70); FTIR (ν_{max}/cm^{-1}): 3324, 2960, 2934, 2876, 1442, 1359, 1094, 1002, 969.

CHAPTER 4

RESULTS AND DISCUSSION

Figure 4.1. 1,5-(SN₂") reaction of Z-1a reagent with iron-catalyzed Grignard reagent

The reaction of Z-configured enyne oxirane (**Z**)-1a compound with 1.2 equivalent EtMgBr in the presence of 0.2 equivalent $Fe(acac)_3$ was performed in 3 mL toluene, at - 50 °C. Th desired ethyl bonded vinylallene **2ab** product was obtained in 65% isolated yield. Afterwards, the optimization studies were conducted using (**Z**)-1b compound in order to be able to track diasteremeric selectivity of the method.

Table 4.1. Iron-catalysed 1,5-(S_N2'') reaction of enyne oxirane (Z)-1b reagent with Grignard reagent: optimization study

No	% Fe(acac)3 (Eq.)	Solvent (3 mL)	Type of Addition (Duration)	Temperature (°C)	dr ^c	Yield ^a (%)
1	0.2	toluene	Syringe pump (15 min.)	-50	-	0
2	0.2	toluene	Syringe pump (15 min.)	-50	-	0
3	1.0	toluene	Syringe pump (15 min.)	-50	-	0
4	1.0	THF	direct	-50	1:1	55
5	1.0	DCM	direct	-50	1.2:1	54
6	1.0	Et ₂ O	direct	-50	1.5:1	78 ^b
7	0.2	Et ₂ O	direct	-50	1.6:1	70
8	1.0	Et ₂ O	Syringe pump (15 min.)	-50	1.5:1	67
9	1.0	Et ₂ O	Syringe pump (15 min.)	-50	1.5:1	64
10	1.0	Et ₂ O	direct	-80	2.2:1	70
11	0.2	Et ₂ O	direct	-80	not detected	39
12	0.2	Et ₂ O	Syringe pump (15 min.)	-80	not detected	40
13	1.0	Et ₂ O	direct	-20	1:1	48
14	-	Et ₂ O	direct	-50	-	-

^a It is detected by using ¹H-NMR method and benzaldehyde internal standard compound.

^b Isolated yield.

^c Diastereoselectivity ratio was determined by ¹H NMR.

Instead of the formation of vinylallene after the reaction performed with (Z)-1b, a complex mixture was observed to form under the reaction conditions that is executed with (Z)-1a. Even increasing the iron complex loading from 0.2 equivalent to 1.0 and

adding the Grignard reagent slowly within the test reaction medium by syringe pump at different durations did not change the results (Table, 4.1, No: 1-3). However, the desired vinylallene product **2bb** was obtained in 55% yield but with low diastereomeric ratio (dr) when iron complex was 1.0 equivalent and THF was used as solvent in place of toluene (No:4). Using DCM as solvent did not improve the reaction; therefore, a similar yield and dr were obtained. On the other hand, when diethyl ether was used as solvent, the vinylallene product was obtained in 78% isolated yield and 1.5:1 dr (No:6) on contrary to the experiments conducted using DCM and THF. Even though slow addition of Grignard reagent or decreasing iron complex to 0.2 equivalents did not affect stereo-selectivity significantly, a slightly lower yield was obtained.

The reaction of (Z)-**1b** compound with EtMgBr was performed at -80 °C. The yield of this reaction where iron complex was 1.0 equivalent was comparable to that performed at -50 °C; however, a slight increase of dr (2.2:1) was observed (No: 10). Since decreasing iron loading to 0.2 equivalent and slow addition of Grignard reagent led to complex, the vinylallene formation was observed in a significantly low yield (No:11-12). At a more moderate reaction temperature (-20 °C), a rather low yield and selectivity were observed (No: 13). Only $S_N 2$ type reaction (No:14) in the absence of iron.

The effect of different iron complexes on product yield and diastereoselectivity was also studied after determination of optimum temperature.

Bu	Me + OMe	EtMgBr 1,2 eq. solvent (3mL) -50°C	q.) Bu → Ξ	Me OMe HO
No	Fe complex (1 equivalent)	Solvent (3 mL)	dr ^b	Yield ^a (%)
1	FeCl ₂	Et ₂ O	-	0
2	FeCl ₂	THF	1:1	81
3	FeBr ₂	Et ₂ O	not detected	15
4	FeBr ₂	THF	1:1	44
5	FeCl ₃	THF	-	0
6	Fe(OTf) ₃	Et ₂ O	-	0
7°	FeCl ₂	THF	1:1	20

Table 4.2. Effect of different iron catalysts on S_N2 '' reaction of (Z)-1b reagent with Grignard reagent

^a Detected by using ¹H-NMR method and benzaldehyde internal standard compound.

^b Diastereoselectivity ratio was determined by ¹H NMR.

^c Performed at -80 °C.

A complex product mixture was formed, and the corresponding vinylallene product could not be detected at the reaction of Z-1b compound in the presence of 1 equivalent of FeCl₂ in Et₂O (No:1). This may be due to insufficient solubility of FeCl₂ in Et₂O. FeCl₂ compound is well soluble in THF and thus the vinylallenes were usually obtained in high yields, however, the stereo-selectivity of the process was not so satisfactory (No: 2). Reducing the temperature to -80 °C did not affect the steeo-selectivity but decreased the yield significantly (No: 7). The vinylallene product was observed in very low yields or not detected at all even though (Z)-1b reagent was fully consumed with the presence of other iron resources used (No: 5-6).

The effect of a number of ligands was also studied on the reaction.

	Me + EtMg 1,2 eq. 0,1 mmol (Z)-1b	Br → THF (3 mL) -50 °C	Bu Et HO (Z)-2bb	OMe
No	Iron complex (Eq.)	Ligand (Eq.) ^c	dr ^b	Yield ^a (%)
1	FeCl _{2 (} 1.0)	Dppe (4.0)	1.6:1	49
2	$FeCl_{2}(1.0)$	Dppb (4.0)	1.5:1	47
3 ^d	$FeCl_{2}(1.0)$	Xantphos (4.0)	1:1	42
4	$Fe(acac)_3(1.0)$	triphenylphosphine (4,0)	1.6:1	68
5	$Fe(acac)_3(0.5)$	1,10- phenanthroline (2.0)	1.3:1	58
6	$Fe(acac)_3(0.5)$	2,2'-biprydine (4.0)	1.4:1	52
7	$Fe(acac)_3(0.5)$	TMEDA (4.0)	1.2:1	67

Table 4.3. Effect of ligands on the iron-catalyzed reaction of (Z)-1b with Grignard reagent

^a It is detected by using ¹H-NMR method and benzaldehyde internal standard compound.

^b Diastereoselectivity ratio was determined by ¹H NMR.

^c Equivalents were given based on iron complex.

In the reactions of (Z)-1b reagent with $FeCl_2$ or $Fe(acac)_3$, variety of iron complexes in the presence of mono- or bidentate phosphorous or nitrogen ligands in THF, there appeared a quite decrease at catalytic activity of the iron catalyst (No: 1-7).

It was determined by previous studies that the reactions of these reagents with organocopper² or Grignard⁹ compounds gave (*E*) and (*Z*) isomeric mixtures of vinylallenes. However, (*E*) configured products were only the isomeric type formed by the method developed by us.

Previously, $S_N 2$ " reactions of the enyne acetate structures with organocuprates were established. Yet, due to the negative effect of copper on biological systems, its use in stoichiometric amounts is not preferred in industrial applications, whereas, the use of iron compounds as catalysts a preferable choice because it is environmental benign and low in cost. A different mode of preparation of the reaction medium was also tried; the substrate **1b** was gently added within the reaction medium containing FeCl₂-Grignard mixture via an automatic syringe. by this approach, the enyne oxirane **1b** was converted to the corresponding vinylallene product at the yield of 81% when reacted with MeMgCl over the 1 eq of % FeCl₂ and the yields were 76% and 51%, when the Grignard Reagents are BuMgCl and *i*-PrMgCl, respectively. It must be noted that the diastereoselectivity decreased as the size of Grignard-alkyl group enlargened (Figure:4.1).

BuMgCl; d, MeMgCl; a, *i*-PrMgCl; c, EtMgCl; b, PhMgCl; h

Figure.4.2 Reaction of (Z)-1b with different Grignard reagent

With the presence of a cyclohexyl group on the alkenyl carbon which is proximal to the alkynyl moiety (**1h**), the reaction partially slowed down and hence just 46% of the vinylallene product could be isolated. (Figure:4.2)

Figure.4.3 Presence of a cyclohexyl group on the alkenyl carbon reaction with BuMgCl

Activity of enyne oxirane (**1b**) with various Grignard reagents in the presence of a catalytic amount of FeCl₂(20%) was investigated (Table 4.4). The substitution reactions of Grignard reagents with a primer alkyl group was completed in relatively short times, typically within 30 min., then provided (No 1-4) the vinylallene products containing a hydroxyl group positioned on the allylic carbon in usually high yields (**2b**). With PhMgCl the enyne oxirane **1b** formed in a low yield and it took relatively longer reaction period to achieve the complete conversion of the enyne substrate (No 5). The iron-catalyzed reactions allyl- and benzyl magnesium chlorides (BnMgCl) (No 6-8), S_N2 products were the only structures that recovered at the end of the reactions. It is thought that S_N2 reactions occurred no-catalytically since the product **3b** can also be produced in the absence of the iron compound (No 7).

Bu H 1b 0,1 mmol	H + RMgX - —OMe 0,3 mmol	FeCl ₂ 20 % → Bu → THF,3 mL, -50 °C R	Me OMe + HO Bu 2b	Me OH R OMe 3b
No	RMg	%2b (d.r.) ^a	%3b	Time
1	MeMgl	82 (1.7: 1)	-	55min.
2	EtMgCl	75 (1: 1)	-	65min.
3	n-C5H11MgCl	83 (1.8: 1) ^b	-	120min.
4	n-C ₈ H ₁₇ MgCl	92 (1.2: 1) ^b	-	130min.
5	PhMgCl	35 (2.2: 1)	-	105min.
6	AllylMgCl	-	87	100min.
7°	AllylMgCl	-	80	110min.
8	BnMgCl	-	53	120min.

Table 4.4. The reactions of enyne oxirane (Z)-1b with various Grignard Reagents.

^ad.r.: diastereomerical ratio. ^b.d r: determined by HPLC. ^cC: Catalyst-free

It was also found that the (*E*)-configured enyne oxiranes are not so suitable substrates for the method because the reaction of (*E*)-**1b** with EtMgCl did not proceed so cleanly and therefore yielded the vinylallene (*E*)-**2bb** in a low yield (43%) owing to the formation of accompanying unidentified by-products. (Figure: 4.3).

Figure.4.4 The reactions of enyn oxirane (E)-1b with EtMgCl

It was realized that the enyne oxirane can also successfully be used with a pendant hydroxyl group as benzyl or silyl protected forms. These reagents reacted with MeMgCl to give rise 72% and 74% corresponding vinylallene yields, respectively. (Table 4.5, No 1,2).

The Enyne oxirane having a methyl group in the R_3 instead of a protected carbinol group could transform into the product **2ua** with a 3.1:1 dr vinylallene structure in high yield (No 3). When dimethyl-bearing epoxide ring was examined, vinylallen product was obtained in good yield of 83%. (No 20). Furthermore, epoxide ring was unsubstituted, reaction realized in moderately good yield 67%. (No 21)

2dd methyl group in \mathbb{R}^1 position reaction result as similar as butyl group in \mathbb{R}^1 position. (No 19). The reaction with the enyne oxirane containing a phenyl group on the alkynyl carbon was sluggish and required a level of catalyst loading, typically 60%, to afford a modest yield of the vinylallene product, which is also accompanied by intricate mixture of unidentified by-products. (No 4).

The method was able to tolerate the bulkier cyclohexyl group in \mathbb{R}^1 position and thus the vinylallene compound (**2ma**) could be obtained at the yield of 81% (No 5).

Increasing the size of \mathbb{R}^1 to highly bulky *t*-butyl group was highly inferior to the reactivity of the substrate (**1i**) toward 1,5-nucleophilic substitution reaction. With the presence of 0.5 eq. of the corresponding product was obtained only in 30% yield and a further increase of the catalyst loading to 1 eq increased the yield only to 42% (No 6 and 7).

Although It is well known that terminal alkynes are actively susceptible to deprotonation in by Grignard reagents We have found that S_N ''-type reaction can also successfully carried out with the enyne oxirane having a terminal alkynyl group (**1j**). Moreover, the good dr (5.7:1) was afforded by this reagent when reacted with MeMgCl contained medium. However, this substrate having a smallest substituent on the distal alkynyl carbon (H) could not be beneficiated by the reactions with (CH₃)₂CHMgCl and PhMgCl, low yields being obtained with these reactions.

The method was also successfully applicable for those enyne oxiranes containing only disubstituted alkenyl group (**1n**) or for that when R_2 is butyl (**1r** and **1l**). (No: 12-14). On the other hand, when R^2 group was cyclohexyl, reaction yield obtained in a low level 55%. (No 16). Reaction conditions effected negatively when R^2 group was bulky.
The presence of the bulky Me_3Si on the alkynyl carbon made the substrate completely inert to the made. With this substrate, no product formation was observed and the substrate was recovered completely unreacted (No 15).

When substrate 1t having endocyclic double bond gave good yield was 81%. Moreover, excellent dr was afforded by this reagent. (dr:20,3/1) (No 17)

Table 4.5. Fe-catlysed Reactions of enyne oxirane with Grignard Reagents.

(cont. on next page)

(cont. on next page)

(cont. on next page)

^a dr.: diastereomeric ratio. ^b N.D.: not determined.^c determined by HPLC

Reactions probably begin with the formation of the organoiron structure by transmetallation of the Grignard reagent with iron (Figure 4.4). The epoxidation oxidative association of this reactive organometalline can form the π -allyliron (B) intermediate structure. The coordination of the organoiron's substrate with the triple bond (A) may have activated this step. (E) -conjugate enine oxirane is not possible in this way. (E) -1a can result from this difference in product yield at lower yields. In the next step, the migration of iron to distant alkynyl carbon and the rearrangement of π electrons will form the vinylallenyl iron structure (C). The fact that the R1 and R2 groups are too large in size will limit this migration and the metallicity of the alkynyl carbon which is compatible with the experimental data. The reaction is terminated by a reductive addition step to give

the vinylated product having a hydroxyl group in the allylic group and the iron catalyst will be converted to the re-active form and will participate in the next reaction cycle. It is yet to bring an explanation of the stereo chemistry of the reaction. For this, the main stereochemical structure of the products needs to be determined.

Figure.4.5 Presence of a cyclohexyl group on the alkenyl carbon reaction with BuMgCl

CHAPTER 5

CONCLUSION

In this study 1, 5-($S_N 2$ '') substitution reactions were realized with 2,4-enyn oxirane compounds synthesized in laboratory and Grignard reagents over an iron-catalyst.

The occurrence of other potential 1,1- substitution (S_N2) and 1,3 – substitution (S_N2^2) reactions pathways has been minimized over an iron-catalyst. At the end of this reaction; (*i*)- a new carbon-carbon bond formed; (*ii*)-led to form a conjugate vinylallene structure because of the rearrangement of π -electrons; and (*iii*)-opening of the epoxide ring led the formation of a hydroxyl group on the allylic positioned.

In summary within the scope of this project, the first detailed iron-catalyzed reactions of enyne compounds that have an epoxide group with Grignard reagents has been presented

REFERENCES

- AKPINAR, G. E., KUŞ, M., ÜÇÜNCÜ, M., KARAKUŞ, E., ARTOK, L., Palladium-Catalyzed Alkoxycarbonylation of (*Z*)-2-En-4-yn Carbonates Leading to 2,3,5-Trienoates, Org. Lett.,13, 748-51, (2011).
- ALEXAKIS, A., Stereochemical aspects on the formation of chiral allenes from propargylic ethers and epoxides., Pure Appl. Chem., 64, 387-92, (1992).
- ALEXAKIS, A., MAREK, I., MANGANEY, P., NORMANT, J. F., Diastereoselective Synthesis of α-Allenic Alcohols from Propargylic Epoxides., Tetrahedron Lett., 30, 2387–90, (1989).
- ALEXAKIS, A., MAREK, I., MANGANEY, P., NORMANT, J. F., Diastereoselective Syn or Anti Opening of Propargylic Epoxides. Synthesis of α-Allenic Alcohols., Tetrahedron, 47, 1677-96, (1991).
- BOND, D., An ab Initio Study of Vinylallene Conformations, J. Org. Chem., 55, 661-5, (1990).
- DULCERE, J. P., GORÉ, J., ROUMESTANT, M. L. Bull. Soc. Chim. Fr., 1119, (1974)
- DULCERE, J. P., GRIMALDI, J., SANTELLI, M., Synthesis of Silyl-Substituted Vinylallenes, Tetrahedron Lett., 22, 3179-80, (1981).
- FALCIOLA, C. A., ALEXAKIS, F. A., Copper-Catalyzed Asymmetric Allylic Alkylation, Eur. J. Org. Chem., 3765–80, (2008).
- FRANCK-NEUMANN, M., MARTINA, D. NEFF, D., Amplification of chirality by transition metal coordination: synthesis of chiral allenes and allene manganese complexes of high enantiomeric purity. Synthesis of methyl (R, E) -(-) -(2,4,5-tetradecatrienoate (pheromone of *Acanthoscelides obtectus* (say)), Tetrahedron: Asymmetry, 9, 697–708, (1998).
- FÜRSTNER, A., MÉNDEZ, M., Iron-Catalyzed Cross-Coupling Reactions: Efficient Synthesis of 2,3-Allenol Derivatives, Angew. Chem. Int. Ed., 42, 5355 –7, (2003).

- GANDON, V., LEMIÈRE, G., HOURS, A., FENSTERBANK, L., MALACRIA, M., The Role of Bent Acyclic Allene Gold Complexes in Axis-to-Center Chirality Transfers, Angew. Chem. Int. Ed., 47, 7534–8, (2008).
- GIBBS, R. A., BARTELS, K., LEE, R. W. K. Lee, OKAMURA, W. H., An Enantioselective Central-Axial-Central Chiral Element Transfer Process Leading to a Concise Synthesis of (+)-Sterpurene: Intramolecular Diels-Alder Reactions of Vinylallene Sulfoxides., J. Am. Chem. Soc., 111, 3717-25, (1989).
- GORÉ, J., DULCERE, J. P., New Synthesis of Vinylallenes., J. Chem. Soc., Chem. Commun. 866-7, (1972).
- HOFFMANN-RÖDER A., KRAUSE N., Synthesis and Properties of Allenic Natural Products and Pharmaceuticals., Angew. Chem. Int. Ed., 43, 1196-216, (2004).
- HYOUNG, C. K., SUNG, H. K.; YOUN, J.-H., Synthesis of L-cladinose using enantioselective desymmetrization., Synlett, 2526–8, (2008).
- KOOP, U., HANDKE, G., KRAUSE N., Synthesis of Vinylallenes by Conjugate 1,6-, 1,S-, 1,IO- and IJ2-AdditionReactions of Organocuprates with Acetylenic Michael Acceptors and Their Use as Dienes in Intermolecular Diels-Alder Reactions, Liebigs Ann.,1487- 99, (1996).
- KRAUSE, N., Synthesis of (±)-Sterpurene and Hydroxylated Derivatives by 1,6-Addition of Organocuprates to Acceptor-Substituted Enynes., Liebigs Ann. Chem., 521-5, (1993).
- KRAUSE N., HOFFMANN-RÖDER A., Synthesis of allenes with organometallic reagents., Tetrahedron, 60, 11671–11694, (2004a).

KRAUSE N., HOFFMANN-RÖDER A., Modern Allene Chemistry; Krause N.; Hashmi, A. S. K., Eds., Wiley-VCH: Weinheim, 2004b; V. 2, p. 997.

KRAUSE, N., PURPURA, M., "Remote Stereocontrol" in Organocopper Chemistry: Highly Enantioselective Synthesis of Vinylallenes by 1,5-Substitution of Enyne Acetates., Angew. Chem. Int. Ed., 39, 4355-6, (2000).

KUŞ, M., ARTOK, L., çalışma devam etmektedir, (2013a).

KUŞ, M., ARTOK, L., makale hazırlık aşamasındadır, (2013b).

- LEE, J. H., TOSTE, F.D., Gold(I)-Catalyzed Synthesis of Functionalized Cyclopentadienes, Angew. Chem. Int. Ed., 46, 912-4, (2007).
- LEMIÈRE, G., GANDON, V., CARIOU, K., HOURS, A., FUKUYAMA, T., DHIMANE, A.-L., FENSTERBANK, L., MALACRIA, M., Generation and Trapping of Cyclopentenylidene Gold Species: Four Pathways to Polycyclic Compounds., J. Am. Chem. Soc., 131, 2993–3006, (2009).
- LI, H., ALEXAKIS, A., Envne Chlorides: Substrates for Copper-Catalyzed Asymmetric Allylic Alkylation., Angew. Chem. Int. Ed., 51, 1055–8, (2012).
- MA, S., Pd-Catalyzed Coupling Reactions Involving Propargylic/Allenylic Species., Eur. J. Org. Chem., 1175-83, (2004).
- MILLET, R., ALEXAKIS, A., Copper-Catalyzed Kinetic Resolution of 1,3-Cyclohexadiene Monoepoxide with Grignard Reagents, Synlett, 435–8, (2007).
- de MONTELLANO, P. R. O., Synthesis of Allenic Alcohols, J.C.S. Chem. Commun., 709-10, (1973).
- MIURA, T., SHIMADA, M., KU, S.-Y., TAMAI, T., MURAKAMI, M., Stereoselective Synthesis of α-Allenols by Rhodium-Catalyzed Reaction of Alkynyl Oxiranes with Arylboronic Acids., Angew. Chem. Int. Ed., 46, 7101–3, (2007).
- MURAKAMI, M., UBUKATA, M., ITAMI, K., ITO, Y., Rhodium-Catalyzed Intermolecular [4+2] Cycloaddition of Unactivated Substrates., Angew. Chem. Int. Ed., *37*, 2248-50, (1998).
- MURAKAMI, M., ITAMI, K., ITO, Y., Coordination Modes and Catalytic Carbonylative [4 + 1] Cycloaddition of Vinylallenes, Organometallics, 18, 1326-36, (1999a).
- MURAKAMI, M., ITAMI, K., ITO, Y., Catalytic Asymmetric [4 + 1] Cycloaddition of Vinylallenes with Carbon Monoxide: Reversal of the Induced Chirality by the Choice of Metal., J. Am. Chem. Soc., 121, 4130-5, (1999b).

- OEHLSCHLAGER, A. C., CZYWSKA, E., Chiral Epoxides as Precursors of Chiral Allenes., Tetrahedron Lett., 24, 5587-90, (1983).
- OGASAWARA, M., NAGANO, T., HAYASHI, T., A New Route to Methyl (*R*,*E*)-(-)-Tetradeca-2,4,5-trienoate (Pheromone of Acanthoscelides obtectus) Utilizing a Palladium-Catalyzed Asymmetric Allene Formation Reaction., J. Org. Chem., 70, 5764-67, (2005).
- REICH, H. C., EISENHART, E. K., WHIPPLE, W. L., KELLY, M. J., Stereochemistry of Vinylallene Cycloadditions., J. Am. Chem. Soc., 110, 6432-42, (1988).
- RONA, P., CRABBÉ, P., A Novel Allene Synthesis., J. Am. Chem. Soc., 90, 4733–4, (1968).
- RONA, P., CRABBÉ, P., A Novel Synthesis of Substituted Allenes., J. Am. Chem. Soc., 91, 3289–92, (1969).
- PURPURA, M., KRAUSE, N., Regio- and Stereoselective Synthesis of Vinylallenes by 1,5-(SN'')-Substitution of Enyne Acetates and Oxiranes with Organocuprates., Eur. J. Org. Chem., 267-75, (1999).
- SATOH, T., HANAKI, N., KURAMOCHI, Y., INOUE, Y., HOSOYA, K., SAKAI, K., A new Method for Synthesis of Allenes, Including an Optically Active Form, from Aldehydes and Alkenyl Aryl Sulfoxides by Sulfoxide-Metal Exchange as the Key Reaction and an Application to a Total Synthesis of Male Bean Weevil Sex Attractant., Tetrahedron, 58, 2533–49, (2002).
- SCHREIBER, S. L., KIESSLING, L. L., Synthesis of the Bicyclic Core of the Esperamicin/Calichemicin Class of Antitumor Agents., J. Am. Chem. Soc., 110, 631-3, (1988).
- ÜÇÜNCÜ, M., KARAKUŞ, E., KUŞ, M., AKPINAR, G. E., AKSIN-ARTOK, Ö., KRAUSE, N., ARTOK, L., Rhodium- and Palladium-Catalyzed 1,5-Substitution Reactions of 2-En-4-yne Acetates and Carbonates with Organoboronic Acids., J. Org. Chem., 76, 5959-71, (2011).
- AKPINAR, G. E., KUŞ, M., ÜÇÜNCÜ, M., KARAKUŞ, E., ARTOK, L., Palladium-Catalyzed Alkoxycarbonylation of (*Z*)-2-En-4-yn Carbonates Leading to 2,3,5-Trienoates, Org. Lett.,13, 748-51, (2011).

- BEKELE, T., BRUNETTE, S. R., LIPTON, M. A., Synthesis and Cycloaromatization of a Cyclic Enyne–Allene Prodrug., J. Org. Chem., 68, 8471-9, (2003).
- BOUDA, H., BORREDON, M. E., DELMAS, M., GASET, A., Aldehydes and Ketones Epoxidation with Trimethylsulfonium Bromide in a Slightly Hydrated Solid-Liquid Medium., Synthetic Comm., 17, 503-13, (1987).
- FANG, Z., LIAO, P. C., YANG Y. L., YANG, F. L., CHEN, Y. L., LAM, Y., HUA, Y. F., WU, S. H., Synthesis and Biological Evaluation of Polyenylpyrrole Derivatives as Anticancer Agents Acting through Caspases-Dependent Apoptosis, J. Med. Chem., 53, 7967–78, (2010)
- KATSUKI, T., SHARPLESS, K. B., First Practical Method for Asymmetric Epoxidation, J. Am. Chem. Soc., 102, 5974-6, (1980)
- KROPP, P. J., MCNEELY, S. A., DAVIS, R. D., Photochemistry of Alkyl Halides. 10. Vinyl Halides and Vinylidene Dihalides, J. Am. Chem. Soc., 10, 6907-15, (1983).
- ORFANOPOULOS, M., SMONOU, I., FOOTE, C. S., Intermediates in the Ene Reactions of Singlet Oxygen and *N*-Phenyl-1,2,4-triazoline-3,5-dione with Olefins, J. Am. Chem. Soc., 112, 3607-14, (1990).
- PURPURA, M., KRAUSE, N., Regio- and Stereoselective Synthesis of Vinylallenes by 1,5-(SN'')-Substitution of Enyne Acetates and Oxiranes with Organocuprates, Eur. J. Org. Chem., 267-75, (1999).
- SCHMITTEL, M., STEFFEN, J.-P., MAYWALD, M., ENGELS, B., HELTEN, H., MUSCH, P., Ring size effects in the C²–C⁶ biradical cyclisation of enyne– allenes and the relevance for neocarzinostatin, J. Chem. Soc., Perkin Trans. 2, 1331-9, (2001)
- URABE, H., SUZUKI, K., SATO, F., Intramolecular Cyclization of 2,7- or 2,8-Bisunsaturated Esters Mediated by (η2-Propene) Ti(O-*i*-Pr)₂. Facile Construction of Mono- and Bicyclic Skeletons with Stereoselective Introduction of a Side Chain. A Synthesis of *d*-Sabinene., J. Am. Chem. Soc., 119, 10014-27, (1997).

- ÜÇÜNCÜ, M., KARAKUŞ, E., KUŞ, M., AKPINAR, G. E., AKSIN-ARTOK, Ö., KRAUSE, N., ARTOK, L., Rhodium- and Palladium-Catalyzed 1,5-Substitution Reactions of 2-En-4-yne Acetates and Carbonates with Organoboronic Acids, J. Org. Chem., 76, 5959-71, (2011).
- WADDELL, M. K., BEKELE, T., LIPTON, M. A., Ring Size and Substituent Effects in Oxyanion-Promoted Cyclizations of Enyne-allenes: Observation of a Myers–Saito Cycloaromatization at Cryogenic Temperature, J. Org. Chem., 71, 8372-7, (2006).
- WANG, C., TOBRMAN, T., XU, Z., Negishi, E., Highly Regio- and Stereoselective Synthesis of (Z)-Trisubstituted Alkenes via Propyne Bromoboration and Tandem Pd-Catalyzed Cross-Coupling, Org. Lett., 11, 4092–5, (2009)

APPENDIX A

¹H AND ¹³C SPECTRUM OF REACTANTS

MK-18120ME

MK-OTBS-REACT

BĽ

MX-19

																	الع المالية المالية المالية. الموالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالي		8
G								_			9.61-	ı	61					-	9
nmrpro							0	<i>a</i>			8.63								24
s.com/	9							8.06-									Line of the second		8
acdlat	un 22 201	00.57	X2768		5.000														4
WWW 0		-	0		ree C) 2				Ľ	87				2.08			₹	<u> </u>	4
on go t	đu	cy (MHz)	DUN		ture (deg														8
formati	Date Sta	Frequenc	Points C	5	Tempera												li de sol de su	-	3
nore int	2016			OFORMH		2'927												-	12
n. For n	Jun 22		32768	CHLOR	25000.0	£.77- <u>у</u> _	_								7.87-			-	mt (ppm)
Editio		NFID	Count		(Hz)													-	themical (
ademic		N 01.FD	tay Points	Mt ²	y Width (Z.8	6——			-	8
sor Ac	Date	1\CARBO	Onigi	Salve	Swae													-	104
Proces	X255	160622_0		0	NDARD													-	112
D/NMR	FZ-F	X255_20	s 256	30.0	STA														5
I by AC		RUMFZ-F	Transion	ain)/pe	ctor = 1									9	-—158		-	128
created	numeral	R SPECTI	umber of	eceiver G	oectrum 7	ScaleFa							9751					-	13
rt was	U	ANT NME	N	æ	1 5	/ertical(_	32									1
iis repo	.3107	D:REACT	8	2pul	11061.537	-		Me	-{)-1d									152
F	(200)	-	-	-	(Hz)	101			\parallel	, Z								-	160
	Non Time	90		equence	m Offset	CARBON				ഫ്							1	-	168
	Acquision	File Nat	Nucleus	Pulse S	Spectru	10		6.0	8.0	0.7	90	Vienetn		6.9	0.2		•	ę	

mk-monometilread

			26																	00'0-							
	ŧ	60.0	6410																								50
com/nmrproc/	Nucleus	Receiver Gain	Sweep Width (Hz)																					_			10
www.acdlabs. Jun 12016	399.92	s2pul	STANDARD									007	;		78	<u>1_4</u>	8.17	 								303.1	20
Information go to	Frequency (MHz)	Puise Sequence	Spectrum Type																							5 2	3.0 2.5
on. For more Jun 12016		16384	2399.5020		14.6	_												19.	67		12 927	8 5 9 2 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 5 7			10 10 11	0 3.5 Shift (ppm)
Sor Academic Edition	TPROTON 01. FID/FID	Points Count	Spectrum Offset (Hz)																								5.0 4.5 4.5 4
0/NMK Proces	X-251 20160601 0	16384																						<u>_</u>		1	2°2
commont	NMR SPECTRUMFZ-F	Original Points Count	P-0		calScaleFactor = 1					Ŧ	OMe																6.5 6.0
2.6669	D:/REACTANT	8	CHLOROFORM	9 25.000	Verti	Me	~		Ķ	=	(Z)-1i									987							1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
torvisition Time (sec)	Tile Name	Vumber of Transients	Solvent	Temperature (degree C	PROTON 01	1.00	0.95	06:0	0.85 Me	0.80	0.75	0.70	0.65					02.0 1011	0.30 Hulu	0.25	0.20 mm	0.15	0.10	0.05	-		8.0

Jun 22016 100.67	32768	CJ 25.000		
Date Stamp Frequency (MHz)	Points Count	Temperature (degree		1.18
Jun 22016	32768 CHLOROFORM-	25000.00	C 85	
DVFID	s Count	(HZ)	0.17-7.1.05-2	-126
Date CARBON 01.F	Original Point. Solvent	Sweep Width	ε 11 ²	
251 20160601 01V	512 30.00	STANDARD		¢16
Comment MR SPECTRUM/FZ-FX-	Number of Transients Receiver Gain	Spectrum Type		
1.3107 D:/REACTANT N	13C	11061.5371	Me H H (Z)-1i	
koguisilion Time (sec) Ne Name	lucieus Vuise Secuence	pectrum Offset (Hz)	CARBON_01 0.9500000000000000000000000000000000000	

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nm

P1 20 2012		16384	CHLOROFORM-d		500.2-)		303	2.0 1.5 1.0
Orth Control	01/PROTON 01.FIDIFID	Original Points Count	Solvert	I emperature (oegree C)	£—	21,52 21,55 21,55 21,55 21,65 21,65 21,26 21,28 21,28 21,28	422 1.00	3.5 3.0 2.5
010000	28070ME_20130730	8	60.00	0410.20		3.848 2.626 2.722 2.722 2.722 2.722 2.722	-112 -112 -112	4.0
	NMR FIDS/MELIHMK	Number of Transient	Receiver Gain	Sweep waan (Hz)				5.0 4.5
Condinat Chimming	T082-FINAL RAPORUN	÷	s2pul crave and	SIANUARU		99629 02629 68629 88629	ŝ	0 5.5
Connent	DESKTOPLEPOXIDE/2101	Nucleus	Pulse Sequence	ScaleFactor = 1	OMe			6.5
O ERED	C:USERSIFIRATI	399.92	16384 2000 E020	ZSBB.DUZU Vertical	H H (z)-1j	944 7 944 7 765.7 765.7 775.7 72	2.143.25	7.5 7.0
Acceletion Tons (card	File Name	Frequency (MHz)	Points Count	Spectrum Officer (HZ)	Vitenasi i lasilemio 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 25 0 55 0 20 0 5 0 20 0 5 0 0 0 0		8.0

																80.0 80	<u>°\</u>			000	Ĭ	8 <mark>5</mark> ⊐	2 0 S
mubion					060										 					680	<u>}</u>	8⊐	1.0
UIRDS.COUNT	2016																			10053		2,4 3,6 3.7	1.5
D WWW.9C	Apr 25	78,985	10001	ee C) 25.000														2814 28	8.17	0	8.1-	~ <u>8</u> ⊒	20
a ug nome	Stamp	OUCY (MITZ)	COUNT	erature (degn																	Ň	1	2.5
	5 Date 2	Product	ORM-d	Temp																8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		‡⊐	30
	Apr 25 201	10001	CHLOROF	6410.26																62 92 24 64	2000	22 22 22 22	3.5 Shift (ppm)
במותכ		UT-FIDVEID	DUMS COMIT	(cth (Hz)																96 96	6-	- i - i	Chemical
INPOL HORI	Date	NULOHAIO	Solvent	Sweep W																			5.0
SADUL VININ	FZ-FX-218	218 20160425 (8800	STANDARD																14 15 15	9	20	5.5 5.5
in nà woni		LINUMPERATION	Gain	Type	actor = 1							SINIC											0.0
VdS CIEdle	Comment	NMHSPEC	Receiver o	Spectrum	icalScaleF				,	o Ţ	: 5 	5											6.5
110day silli	2.5559	DIVERACIAN	Soul	2399.5020	Vert		Me		\langle	Ł	11-12	NT_(7)								927			07 27
	in Time (sec)		2010/00/00	Offset (Hz)	ROTON				//	CV													8.0
	Acquisitio	rite Nam	Pulse Sec	Spectrum	<u>a</u>	1.00	0.95 10010	06:0	0.85 Multi	0.00	0.70	0.65	4 99 99 4	iisnetn 25 20	MA 45	0.35	0.30	020	0.15	0.10	0.0 100	0	L

report was created by ACD/NMR Processor Academic Edition. For more information to to www.acdlabs.com/n

	ТТ		٦ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	F
				Ę
			{	
				÷
16			0.61	
or 22 2 0.57	8	8		2
₹¥	8	с) 5		8
(<i>z</i> + <i>t</i>)		(degret		Ē
Stamp ancy (A		oraturo		14
Date S Freque	- Invite	Tempu		8
9	FORM-			E.
r 22 20	LORO	00000		19 (WO
4 8	30	8	679	
FID/FIC		(H2)		2 Shemics
ON 01		Wath o	2 ¹⁹²	
Date IVCARB	Solver	Swool	۶۲۲ ₇ ۵۴۴–––––	8
42 0		e	ži od statisticka stat	8
C-R1CM	8	ANDAF	- D D	
A Street	8	S		8
MJFZ-R	in the second	8		털
ent ECTRU	ver Gal	rum Ty		-
Comm MR SP	Recei	Spect	alScal	Ē
TANT N		5	C C	120
3107 VREAC	a a	061.53		5
() 1	- 28	1	т. <i>Г</i> ієі	E ²²
ime (se	100	(H) set (H)		136
isition T Iame	Seguer	hum Of		munuf
Acqui File N	Pulse	Spect		Ģ

is report was created by ACDNMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrpro

																							- <mark>2</mark>
																8	0.0	00	0-0			87	9
om/nmrproc/					06'0					 						 			ŀ	<u>68.07</u>		22	1.0
ww.acdlabs.co Dec 28 2015	399.92	16384		3) 25.000														26.1-				20	2.0 1.5
'e Stamp	guency (MHz)	ints Count		mperature (degree C																3.04	3		2.5
Dec 28 2015 Day	Fre	16384 Poi	CHLOROFORM-d	5410.26 Tex															6	306 306 307 306 307 30 306 306 306 306 306 306 306 306 306	}. 	12	3.5 3.0 Mit (nom)
ademic Edition	ON 01.FID/FID	nel Points Count	and	(ZH) HIDIM di																68°6 28°6 48°6 48°6 48°6	ſ	723	4.5 4.0 Chemical St
FZ-FX171 Date	20151228 01/PROT	0 nigi	50.00 Salvi	STANDARD Swer																240 240 240	}-	23	5.5 5.0
created by ACU/N	SPECTRUMFZ-FX171	mber of Transients	ceiver Gain	ectrum Type	<pre>caleFactor = 1</pre>						SMDB.												6.5 6.0
2.5559 Co	D.VREACTANT NMR	1H Nu	s2pul Re	2399.5020 Sp	VerticalS		Me		ſ	≖ Ĵ	z)-1m ^{/_} 0T								92"2-				074 S.
caulstion Time (sec)	Ne Name	lucieus	luise Sequence	pectrum Offset (Hz)	PROTON_D1	1.00	0.95	1 00500	0.85		0.704 0.654	0.60	0.55	E-05.0	0.45	0.30	0.25	0.20		0.10	minut		8.0

Ę 4 4 ú ć ACD/NMR 1 ť

																		1	-93	6.81-	-93		16 8 0 -8
					6 92															2	-53		2
	100 5	32766		<i>e C)</i> 25.00																			4
CO DR HONDING	Date Stamp Freemancy (MHz)	Points Count	P	Temperature (degree															1.08		0740		11111111111111111111111111111111111111
	Dec 28.2015	32768	CHLOROFORM-	25000.00		0	2.9	<u>4</u>												930			72 64
	LIGHT OF FILMEID	Orioine/ Points Count	Salvent	(ZH) 4005M dooms			£77	_												2	21	®\	08 88 96
	171 20151228 010	1000	30.00	STANDARD																			112 104
	Comment MR SPECTRI IME7-EX	Number of Transients	Receiver Gain	Spectrum Type	alScaleFactor = 1							TBDMS								P.90	97 	153	136 128 120
	D-REACTANT N	130	s2pul	11061.5371	Vertic			Me	(ſ		z)-1m [0											152 144
	File Name	Nucleus	Pulse Seguence	Spectrum Offset (Hz)	CARBON_01	1.00	0.95 L	1 106:0	0.85	DB0	0.75	0.65	Alisu Alisu	etril etri	A beol	0.40	0.35		0.25	0.20	0.15	0.10	ammunum 160

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrprod/

					020													6	-0.00 00	۱	0.10	100	
3																					60-		0 12
									0	06'0-					 				06	26 26	80 <u>-</u> 0 1617	^{12,8}	9
acuiates.com	16 2016	8	5	8																	65.1- 96.1- 96.1- 06.1-	2.6 2.5	1.
	- Fet	1631		pree C) 25.																	512 515 515 515	25	2.0
of increases	No Stamp	inquency (minu)		mperature (deg																	2.16		25
	016 D	č d	DFORM-d	Te																	2016 2016 3103	얻그	8
	Feb 16 2	16384	CHLORO	6410.26																	92'6 22'6 62'6	_⁄≌⊐	3.5 3.5 Shift (ppm)
Programme Fully	Date	Original Pointe Count	Solvent	Sweep Width (Hz)																	68.6 28.6 28.6 28.6	727	4.5 4.0 Chemical
ALL LOCESSO	FZ-FX194 1	8	60.00	STANDARD &																	16'9-7-4	23	2.0
a vicated by Avenue	Commant up spectro unity ever	With Sheld Information in Mumber of Transiante	Receiver Gain	Spectrum Type	alScaleFactor = 1					0	Ţ	OTBDMS									55 F		6.0 5.5
IIII I ChOIL WA	2.5559 PUDEACTANT NI	HH HH	s2pul	2399.5020	Vertica			Bu	Ą	<u> </u>	Ŧ	(Z)-1n											7.0 6.5
-	tion Time (sec)		equence	vm Offset (Hz)	PROTON 01					TMC									97.	<u> </u>			15
	Acquist	Ninchese	Puise S	Spectra		1.00	0.95	06.0	0.85	0.80	0.75	0.70	990	isnetr 25	oad A 55	0.35	0.30	0.25	0.15	0.10	0.05	2	

This report was created by ACD/NMR Processor Academic Edition. For more information to to www.acdlabs.com/nmrr

														φ
								1.0						
													ما الله ما ا	
												8.61	يريد واللي	9
										6	.81	612		•
16 2016 8	8					6'97-				LIDE			1	
Feb 1 100.5 3276	c) 25.00									100				3
(2)	degree (8.86-	اعدهاه	9
ttamp mcy (Mi Count	vative (1
Points	Tempe											r.		9
2016	0 OF CHAM											£.00		5
Feb 16.2 32768	25000.0											6.29		2
Anux														2
1. FID/FII	Sidth (Hz	1.07 7.05	ε.π.,											8
ate BON 0 higher F	weep M													
01/CAF	000													
PX194												2001		8
x194.2	ST				S								-	101
JMFZ-F	ad	tor = 1			BDM									112
PECTRI ber of 7	arvar Ga	aleFac			ŦĘ									
Num S Num S	Spec	icalSci		$\hat{\lambda}$	تسل								والتحديد	12
ACTANT	5371	Vert	<u>ы</u> —	$\langle \rangle$	- f							-155'6		128
1.310) D:/RE	11061.			11	-(Z)							8.65		136
(sec)	(JHZ)	N DI		MS										14
ion Time	m Offsel	CARBO		F									1	
Acquisit File Nen Nucleue	Spectrul	00.1	56:0 56:0	0.85	0.75	0.65	09:0 09:0 09:0 09:0 09:0 09:0 0 09:0 0 09:0 0 0 0	0.55 1.01000	0.45	0.35	0.25	0.20	0.10 20.0 20.0	2 Imiliaile

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrp

							60.0 00.0	00 0	010-	93⊐	0.5
labs.com/nmrproc/	2				160)		<mark>30,</mark> 94 ~035	0 19 19 19 19 19 19 19 19 19 19 19 19 19	425 124	1.5 1.0 0.5
Station go to www.acd	uancy (MH4z) 399.92	\$ Count 16384		perature (degree C) 25.000				w 1	78.5 86.5 86.5 86.5 86.5 78.1 78.1	-9- 23	2.5 2.0
DN. For more inform	Fredu	16384 Point	CHLOROFORM-d	6410.26 Temp					908 87.8 208 208 208 208 208 208 208 208	23 23	3.5 3.0 Shift (ppm)
or Academic Editio	PROTON 01.FID/FID	Original Points Count	Solvent	Sweep Width (Hz)					28°5- 86°6- 86°6- 86°6- 86°6- 86°6- 86°6- 86°6-	~ <u>°</u> ⊐	4.5 4.0 Chemical
ACD/NMR Process	VFZ-FX-215 20160316 01	sients 8	60.00	STANDARD	=	S			57.5 57.6 57.6 57.6 5.45 5.45 5.45 5.45 5.45	23 23	5.5 5.0
rt was created by	ANT NMR SPECTRUM	Number of Tran	Receiver Gain	Spectrum Type	/erticalScaleFactor	H OTBD			57.5-1		6.5 6.0
This repo	DUREACT	Ħ	sce s2pul	fset (Hz) 2399.5020		H B M B	972-				7.0 7.0
Accusement T	File Name	Nucleus	Pulse Seguer	Spectrum Of	PRO	ytiametral exulosed A 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0.30	0.20 0.15	0.10 0.05		£

					6.8	8° 1
nmrproc					-130	9
bs.com/i						24
w.acdla Mar 16.2	100.57	32768	25.000		2'00	8
o to ww	(Hz)		(degree C)		I	9
nation g	quency (N	ints Count	apperature			-84
16 De	Fre	Pa	Ten Ten		1.00	8
Nar 16 201		32768	25000.00		-028	iff (ppm)
Edition.	VFID	Count	Hz)	2 92	192~	72 Nemical Sh
ademic	ON 01.FID	ine/ Points	enr ap Wildeh (ε <i>μ</i> . ⁷		80
SSOL AC	01\CARB(Origi	Swa			8
R Proce Z-FX-215	20160316	12	TANDARD			8
	Z-FX-215	ients 5	5 00	SMO		10
ated by	ECTRUM	or of Trans	rum Type	-OTBL	0911	112
Was cre	T NMR SP	Numb	Spect	T T		8 12
107	REACTAN	0	061.5371	7		12
Inis (13	No.	13	110		9761-	13
on Time (s	90		m Offset ()	CAREON CAREON		14
Acouisiti	File Nan	Nucleus	Spectrul	Visnetri ettiloodA 	0.05 0.15 0.15 0.05 0.05 0.05 0.05	nd

Π	Τ	Τ	Π					Ē
						00'0	8⊐	
				16'0-		-018-01990190 -0194 -0195 	_ ŝ⊐	1.0 0.5
2016						27'L === 87'L 09'H	6426	115
Feb 18	399.92	10304	gree C) 25.000			-1125 -1126 -516 -515 -515 -515 -515	: X] X]	20
Date Stamp	requency (MHz	ants count	emperature (de			-302 -302 -302	2 2	3.0 2.5
Feb 18 2016 /	10007	CHLOROFORM-d	6410.26 7			1-3 03 		3.5
ate	OTON 01.FID/FID	ngman rounts count alvent	veep Width (Hz)			-387 -388 -388 -388 -389 -381 -381 -381 -381 -381 -381 -381 -381	- 423	4.5 4.0
-Z-FX199 DA	20160218 01VPR	80.00	STANDARD SI				연그	5.5 5.0 5.0
Comment	MR SPECTRUMFZ-FX199	Receiver Gain	Spectrum Type 5	alScaleFactor = 1	OTBDMS			6.5 6.0
2.5559	D. REACTANT N	200	2399.5020	Vertic		972		7.5 7.0
Acquisition Time (sec)	File Name	Nucreus Puise Sequence	Spectrum Offset (Hz)	PROTON_D1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- Ann	8.0

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nn

														3	ç				يعنا فأطيسه	والمتعد أن الالتقاد أرد	Ŷ
5																			تماسر والطريا وسيب	والمتحدث والمتحدث	8
m/nmrpro									3'8 	3.9	~				18.3	~			يه حما لي من ال	and a star of the line of the	19
eb 25 2016	00.57	2768		0	-57(83	5						55	×1					ساله مطوعه ما	للا يعاد المراجع	34
O TO WWW.	(Hz) 1	3	Common P1 0	(nañao) <							e:2e—		8.00-						ليعدد فليقيد	فحالت حادثا	32
Date Stamp	Frequency (A	Points Count	Townsendores	r evripeverture															بريطيلها يقمينه	ومعروبا والمرار	48 84
For more int Feb 25 2016		32768	CHLOROFORM-	000000									2	09	E. N B			_	بليه حادينا يطحو	a, pana, dave dad	64 56 1 (ppm)
Patemic Edition.	ARBON 01.FID/FID	Original Points Count	Solvent	(JUL) LIDIA COOMO								219 012	<u>27</u>	0.8	2		_		14.000 March 19.000	وبعالمة والأورجا فالرجادة فتلع	0 Chemical Shi
FZ-FX199-13C	3C 20160225 01/C	32	30.00	CHANNER IS									2.8	6——					لياعديا بالمركم أعداده	والمراجعة والمراجع والمردي	96 11
Comment	DATA/FIRATVEZ-FX199-1	Number of Transients	Receiver Gain	add i unasade	alScaleFactor = 1				-	-OTBDMS									ممارية الحلال وتقيم معاجلة		120 112 104
1.3107 1.3107	D:/FIRAT HOCA	13C	S2pul	1/001/0011	Vertic		-B		°. -{	z)-1p			2	161—-			¥'001	~	ادسروا تعميدهم أأسمنه	وحاوا بعراقه وتقارع	128
on Time (sec)	90		equence	T (120) (120)	CARBON_01			1	B	Ŭ									والمتعالمة والمتحدث	land a la shahada sa	144 136
Acouisiti	File Nan	Nucleus	Pulse St	viabade		2	6: 6:	tu	80 80 80		9.0	Alismetini S	eviload	∀ 		0.2		3	c	, <u>é</u>	

T

MIL-CHOME

_		_	•														
																	50-
																	0
											08	8.02	29 59 17281	80 80 05)		0.5
		2							+0.908 1⊄	60 <u>/</u>	<u>96</u> 2	26 0- 166 0-	628	ida lla	5	, ĝ⊐	q.
5 2013	_	<u>JRUFUHW</u>									970-11 9 0	¹¹ دا 190 را 1959	38 <u>3</u> -1 40	343		. 8]	1.5
0043	rt 1638												11911 236 —~5°10	802 1-	3	~ ² 2]	2.0
01.FID/FI	ints Cour	re foleares										28818-	320	5-183-5	\geq	2,152	2.5
PROTON	riqinal Po	olvent emperatur											88 902 92	81.5 5 20 90 91 90 91 98	18	.8-	30
1025 011		5 10	801/3										080 	55073 94 -3110	**	, ⁶ 161	3.5
101 2013		50.00 6410.28										83	2128 9972 668	₂ 57 792 1	7	 100 100 100 	4.0 hift (ppm)
1.1HWK-2	nsients	PH PH															4.5 herrical S
KTOPWAE	ber of Tra	<u>werGain</u> o Wolth (0.5
RATIOES	Num	280 290 200 200 200															5.5
idient Shin USERSYFI		ANDARD															6.0
පිටි	티	22	-														6.5
<u>ب</u> ه		ouence n Type	actor =														2.0
Commen File Nam	Nucleus	Pulse Se Spectrur	alScaleF		Me									697.7-			2.5
2013		020	Vertic		$\langle \rangle$		Bu										08 08
0 25559 0 4 25	399.92	15384 2389.51			\mathbf{k}		- 11										58
Time (seo	(ZHW)	rt ff:set(Hz)	DTON_01				N)										08
puisition a Samo	overncy (nts Court otrum O	PRC	8, 2	8 8 3	8 8	8 8	8 1	8. 5	8 8 1	<u>8</u> . 9	8 8	8 8 11	j 55	5.8		ŧ
9 2 8 0	r S	ĩ 8				- 0	0 0	0	Vitis net O	hi besile P	2 CON	0 0	00	, 0	0 0		

U/ U8 2014 1406.53

1		Т	Т										F
													-0.5
										6010- 8010- 0010-		3 ⊐	
vnmrproc					060						96.0 88.0- 0.00	□22	0.5
S.COM											16.1	-	7
Cliab	52016			0							61/1- 61/1- 61/1-	21	E <u>9</u>
ww.ac	Feb 2	16064		25.00							19.1- 18.1-		
				gree C)							2.14 -2.14	8-	2
oBuo	8	arrest 1	100	ure (de							518	61-1	Ē
Dem	No Star	nguenco		mparat							50°C-		5
e	d I	ξă	RM-d	Te							3.05	53	2
	25 2016		OROFC	8							61°C	ŝ=	
0U. T	Feb	1638	33	6410							62.6 47.6	ר⊈ע	3.5
	(Count	1	(23)							58.5- 18.6- 18.6-1	_5⊐ √6⊐	
lemic		Pointe	- mute	NGCH ()							-3'98 -3'98 -3'98		
Acad	Jate	Drininal	owert	Sweep I									45
iesso:	-		,	0									
Ŭ L I	F/202		8	NDAR									3
MN/	Ľ	a alla	909	ST							₹ 2 39 2 41	엳크	55
y AL		melante			r=1								Ē
o Date	ant		er Gain	nu Typ	eFacto			SMC					8
s cre	Comme	Minmhan	Receiv	Spectr	alScal			DTBI					5
			T		Vertica		0.	Ţ,					ľ
s repo	555	2	3	99.5020		ŋ	Æ						2
	21	5 ₹	1	3	-	Ш				92.7			Ē
	ime (set		60	sot (Hz	TON		///						12
	stion Ti	auna a	Seguer	Tum Off		անուն	ujununininin	nhuilinnhuilin	dentingententingententingententingententi	untulinduilindu		mq	Ē
	Acqui	Vincin V	Puise	Spect	1.00	0.90	0.80	0.70	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.20	0.10	•	

Enclored Address 100 57 2016	Points Count 32768	RM-d	Temperature (degree C) 25.000										c	 300	6.8 	296.7 0.0	¥9	and the second second second second second second second second second second second second second second second
Feb 25 2016	32768	CHLOROFOF	25000.00												3 0 T	00 0		and the second sec
CARBON OF FIDED	Original Points Count	Solvent	Sweep Wath (Hz)	е.77 <u>-</u>	27947 724-7	 						 				L	-92 1.18	
PC-FAZUZ	ts 512	30.00	STANDARD															
VMR SPECTRUMEZ-1	Number of Transien	Receiver Gain	Spectrum Type	calScaleFactor = 1				TBDMS										ويعتبر ومتعالم المحال العالم والمحال
D-REACTANT N	13C	s2pul	11061.5371	Vertic	-	¢	Ţ	-1 v [-0]								8.4	er—-	diama and an
coursion time (sec) 1.3107 the Meme	Vucleus 13C	Pulse Sequence s2pul	Spectrum Offset (Hz) 11061.5371	CARBON_01 Vert	1.00-1 0.05 BU		H H H	^{0.75} (Z)-1y (-0	0.65	0.0	0.55	0.40	0.35	0.30	0.20	0.15	13 13	

FZ-FX077

APPENDIX B

¹H AND ¹³C SPECTRUM OF PRODUCTS

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

	Acquismon Time (sec) Tile Name Trequency (MHz)) 1.3107 C.USERSYFIRATI/ 100.57	Comment GOOGLE DRIVE/ISLER G Nucleus	AA-AY-0454 UQLER/EPOXIDEIYER 13C	Date EE GOK CUTARINODIARINC Number of Transients	Jun 30 2016 2 DATAVARINCVAA-A) 2000	Date Stamp -0454 20160630 01/CAR Original Points Count	Jun 30 2016 RBON 03.FID/FID v 32768
	omis Count Dectrum Offset (Hz)	32768 11097.1709	Pulse Sequence Spectrum Type	52pul STANDARD	Receiver Gain Sweep Width (Hz)	30.00 25000.00	Sofwent Temperature (degree	BENZENE-06 C) 25.000
	ay045-13.esp	Vertical	IScaleFactor = 1	138.24	91 ⁻¹²¹ -7			
-204.87 204.87 204.87 	BC BC	2aa 2aa	Ae Me OH					
	Si 0 0	204.87		CO 9C I	87.92 H	20.04	8+0/	

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

	1.3107	Comment	UNN-U/U0-1-1 NM-U	Dare	AUG 13 2013	Date Stamp	Aug 13 2015
ame	C:USERS/FIRATIGOO	NGLE DRIVENSLER GUCL	ERIEPOXIDEIYER FE G0	IK CUARINOCARING DA	VIAIDEMIR ESKILER/MEL	JH/MK-0708-1-TKR-C	20150813 01/CARBON 01.FID/
(BINCY (MHZ)	100.57	Nucleus	13C	Number of Transients	5 512	Original Points Cou	JIII 32768
s Count	32768	Pulse Sequence	s2pul	Receiver Gain	30.00	Solvent	BENZENE-d6
rum Offset (Hz)	11061.4873	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degre	ee C) 25.000
CARBON_01	VerticalSca	aleFactor = 1	1972 8872 12	65 /71-			
tuniiuut	Me						
unimim B							
ոսրույս	Me	OMe					
ղողու	2ba ^C	H					
րույթույթո <mark>ւթ</mark> ությությութութութութութութութութութութութութութո							90 91
			31 45 31 45	90 ⁰⁰	60 2016		
ni ini ni ni ni	69 10 2——				8604 <u>7</u>		
	ولليوسط يعليهما وأسطعه	ومرأحدا والمعرقة والمحوقة والو	والمرمانينية القانية	فتعطيه للترأية أيتأبه فاستحدده فأنك	منفق بالمقالسة لأتأولنك	فالبار فتنقلهما مناميها والأفقاف	متنازلات معماديك بأعله زلانا ولاسابي بفر

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

D/MMD D

v (MH2) 100.57 unr 32768 0075er (H2) 11061.4873 mk0609-130.66p v erticalSo Bu de Et 2bb	Mucleus Putse Sequence Spectrum Type caleFactor = 1 OMe OH	13C SZPWI STANDARD STANDARD	Number of Transient			0150526 01/CARBON 0
001 32768 00569-130.660 verticalSo Bu de Et 2bb	OMe OMe OMe	STANDARD STANDARD		s 512	Original Points Count	r 32768
Bu VerticalSo Et 2bb	oH OMe	68.7217 -	Receiver Gain Sweep Width (Hz)	30.00 25000.00	Solvent Temperature (degree	BENZENE-d6 CI 25.000
Bu Ae	OMe		07.121			
Bu Et 2bb	OMe					
	5					
					71.68-	68.62
P			6 29-90 i-	ः 96		6 6. 22 3 96
		31-42	0.101	80 % 4 8 194		225
والديد ومطرباته والمرام ومطرا مشع أبات	يلويه ووليتماري المحط	and the state of t		and the second second	والمستلد والمستلمات	من من المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية ا

Aug 13 2015 Date Stamp Aug 13 2015	DATAIDEMIR ESKILERIMELIHIMK-0708-2-TKR 20150813 01/PROTO re 8 Original Doume Count 15384	SA DD CANADAT FORMS COURT 10000	5410.26 Temperature (degree C) 25.000	10.6-	981	960 960 960 971 960 971 971 960 971 971 960 971 971 971 971 971 971 971 971
Date	Mumber of Translame	Denetiver Cain	Sweep Width (Hz)			
MK-0708-2-TKR	LERIEPOXIDEIYER FE G	chuit	STANDARD			828-1-1 81 828-1-1 81 828-1-1 81 828-1-1 81 828-1-1 81 828-1-1 81 828-1-1 81 828-1-1 81 828-1-1 81 828-1-1 81 828-1 181 827-1 181 827-10
Comment	DOGLE DRIVENSLER GO	Didea Caritanoa	Spectrum Type	caleFactor = 1	OMe	91.7
2.5559	CIUSERSIFIRATIG	1638.4	2416.7092	VerticalS	2be	
Acquinition municipal	File Name Frammer MHT	Dointe Count	Spectrum Offset (Hz)	PROTON_02	Vanakı 2. 2	1 besilemov 8 2 2 8 8 8 8 8 8 8 8 8 8 Junimitadaaladadadadadadadadadadadadadadadadad

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

10.000 0	RBON 02. FIDIFID	9				and the second second second second second second second second second second second second second second second
Aug 13 2015	0813 01/CA	BENZENE-d	25.000		53.40	
	2-TKR-C 2015		re (degree C)		57 18 18	-53 89
mers aren	Orininal Pro	Solvent	Temperatu		Z185	
2010	R ESKILERIME		00		68' 92-	2012
AUG 1st	DATADEMI	30.00	25000			
618	UNARINGCIARING	Scelver Gam	veep Width (Hz)		191	90 00
2	FE GOK CI	Re.	SV	60° 121 199 121 88° 121		91.96.15
MN1-2-00/0-NM	ERVEPOXIDE/YER	s2pul	STANDARD			
comment	DOGLE DRIVENSLER GOOL	Pulse Sequence	Spectrum Type	caleFactor = 1	H NOME	العام المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية ومن المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية الم ومن المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية المالية الم
1.310/	C:USERS/FIRAT/GC 100.57	32768	11061.4873	esp VerticalS	2be	-204.43
puismon nime (sec)	Name manev MH71	TIS COUNT	curum Offset (Hz)	mk0708-2-13c.	16 15 19 10 10 10 10 10 10 10 10 10 10 10 10 10	

100 adelhae This report was created by ACD/NMR Processor Academic Edition. For more information go to

115 ARBON_01.FIDIFID -d6	08 61-5
Aug 12 20 815, 0116, 011	25 20 20 40 +22 41 +22 41
Date Stamp HHMK-D05-2-TKR_20150 Ordinal Points Count Solvent Temperature (degree C)	-21946369 -21945 -2194 -
115 SIXILERIME	H0 1/
Aug 12.20 ATANDEMIR 8 5.10 25000.00 25000.00	
NIXXARINC D of Transients Moth (HZ) Moth (HZ)	
NACE OF CONTRACTOR OF CONTRACT	P1921~
Alternoss-14kr MK-1008-2-14kr 1210 STANDARD STANDARD STANDARD	
OCALE DRIVENSI, ER CI OCALE DRIVENSI, ER CI Spectrum Type ScaleFactor = 1 OH OH	
13107 10057 10057 10057 1061.4873 Verticall Verticall Net 0.0 C8H17 2Df	-504 42
UKANDON TIMPA (Sect) Warme Its Count CARBON_01 CARBON_01 00-	

|--|

quisition Time (sec) 1.3107 Comment FZ-FW186-SAF Date Jul 7 2015 Date Stamp Jul 7 2015	Mame CUUSERSIFIRATIGOOGLE DRIVENSLER GUGLEREPOXIDELEPOX SPECTRA&CHROMATOGRAMSINMRIFIZ-FW186-SAF_20150707_01ICARBON_01.FIDIFID	quency (MHz) 100.57 Nucleus 13C Number of Transients 512 Original Points Count 32768	nis Count 32768 Pulse Sequence sizou Receiver Gain 30.00 Sofwert BENZENE-05		$ \begin{array}{c} \begin{array}{c} & \text{writes-130.ESP} \\ & \text{verticalSoaleFractor} = 1 \\ & & \text{verticalSoaleFractor} = 1 \\ & & \text{verticalSoaleFractor} = 1 \\ & & & & \text{verticalSoaleFractor} = 1 \\ & & & & \text{verticalSoaleFractor} = 1 \\ & & & & \text{verticalSoaleFractor} = 1 \\ & & & & & \text{verticalSoaleFractor} = 1 \\ & & & & & & \text{verticalSoaleFractor} = 1 \\ & & & & & & & \text{verticalSoaleFractor} = 1 \\ & & & & & & & & & & & & & & & & & &$	-15.16 -15.16
--	---	--	---	--	---	--

									980-		96 0-98 9 8 4	-0 89 -1 58	H	2.4 1
0.6				001			99	ı			*9°1~	05.1-1 SE.1-1 05.1-1		172 bi 428
0107.07 Inc	OTON D1.FID/F	1 10304	C) 25.000									16 1-7 -1 83	T	2 133.
duipic Albo	Y-047 20160720 010PR	Ciriqinal Points Coun	Temperature (degree									345 341 341 341 341 341 341 341 341 341 341		
2112 02 102	C DATAIARINCIAA-A)	cu uu	6410.26									-3 44 -3 42 4 08 4 06		<u>s</u>]
AIPI	E GOK CUTARINOCARIN	Number of Iransients	Sweep Width (Hz)									15.40 15.40		ā,
AA-AT-US/	OGLERVEPOXIDE/YER F	II	STANDARD			Ŧ						645 645 646 646	1	9 <u></u>]
COMMENT	SOOGLE DRIVENSLER G	Purcheus	Spectrum Type	ScaleFactor = 1	-Me		5		91 2— —					
50007	CUISERS/FIRATM	75,555	2417.9502	Vertical	_	Bu Me								
dedniamon mine lagel	File Name	Trequency (MHZ)	Spectrum Offset (Hz)	ay047-1h.esp	1.00 195 10.95 10.90	0.80 0.75 0.75 0.75			0.40	0.35ml 0.30ml 0.30ml	0.25	0.15	0.05	

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0101	Comment	AA-AY-047	Date	Jul 21 2016	Date Stamp	01.02.12 INC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	CUISERSIFIRATIGO	DOGLE DRIVENSLER G	OCLERVEPOXIDE/YER FE	GOK CUARINGOARING	DATAVARINCIAA-AY-0	47 20160721 02/CARBON	N D4.FID/FID	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	tuency (MHZ)	100.57	Nucleus	13C	Number of Transients	10000	Original Points Count	32768	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TIS COUNT	32768	Pulse Sequence	52pul	Receiver Gain	30.00	Solvent	BENZENE-d6	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ $ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$	ctrum Offser (Hz)	11061.4873	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C)	25.000	
$= \frac{-1329}{100}$ $= \frac{-1329}{100}$ $= \frac{-1329}{100}$ $= \frac{-2382}{100}$ $= \frac{-2382}{100}$ $= \frac{-2382}{100}$ $= \frac{-2382}{100}$ $= \frac{-2382}{100}$ $= \frac{-2382}{100}$ $= \frac{-2382}{100}$	ay047-13c.esp	VerticalS	caleFactor = 1	99 IZH 99 IZH	07 1Z 17				
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}$		Me Me							
	Bu								
9/19/29 9/29/29 9/29/29 		Me 2ca	НО						
		-	5						
	· <u>[</u>							92	
99 99 60 62					89		6861		
	- <u></u>	9		68	62-96 62-9 21	60	99.9		
				161	6.] 		-		

e Name equency (MHz) mis Count	2.5559	Comment	MK-1108-1-1	Date	Aug 11 2015	Date Stamp	Aug 11 2015	
equency (MHz) Ints Count	CIUSERSIFIRATIGO	OGLE DRIVENSLER GO	IGLERVEPOXIDE/YER FE	GOK CUTARINODARING	DATADEMIR ESKILERVI	JELIHIMK-1108-1-1_2	DISOBIL DIVEROTON DI	FID/FID
mis Count	399.92	Nucleus	Ħ	Number of Translenz	5 32	Original Points Cou	um 16384	
	16384	Pulse Sequence	s2pul	Receiver Gam	58.00	Solvent	BENZENE-d6	
ectrum Offset (Hz)	2416.7092	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26	Temperature (degre	ee C) 25.000	
mk1108-1-1h.es	P VerticalSc	caleFactor = 1				15 2		
8.						<u> </u>		
	Me							
1.85	-(
	Bn	НО						
0.70	3bh	OMe						
109.0								
ndada da						-	28 1-	
1.45							95 92	
.).35 Juli		91.2—					86.1	
0.25						61		
1.2011 1.2011					8 06.6-	- <u>4</u>	96 95 96 96 97	
		2527 25	90 20 20 20 20 20 20 20 20 20 20 20 20 20		-335 -335 -335 -335 -335 -335 -335 -335	-5 54-5 50 -5 54-5 50 -5 58 -5 58 -5 58 -5 58 -2 10-2	141 141 141 141 141 141 141 141	
		2087.1261 1021.7808	2 00 I		101 111 122 111 122 111 122	267109 202	282 377 2291	

Bu Bu Carton Carton A Carton Bu Carton Carto	lucieus vulse Sequence pectrum Type Factor = 1 DH	130	E GOK CUTARINOCARINC	DATADEMIR ESKILE	RIMELIHIMK-0811-1-1 20	150812
Bu Bu Carlo 22765 Bu CerticalScale Bu Bu CerticalScale VerticalScale CerticalScale Bu Bu CerticalScale CerticalSca	utes Sequence ipecrrum Type eFactor = 1 OH		Number of Transient	s 512	Original Points Co	um 327
Bu Me Control Scale VerticalScale Bu Bu Control Bu Bu Control Bu C	pecrum Type eFactor = 1 DH	s2pul	Receiver Gain	30.00	Solvent	BEN
Bu Me albu Callscale	Factor = 1 DH	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degr	00 C) 25.00
Bu Bu C	Н	88 121	07 1217			
Bu Bu C	н					
Bu Bu Bu C	H					
3bh						
	DMe					
		61	01.07			
		est 1	98 97			98.12-
		06	2 -	1	01	96.0
		071-		18. 24. 24. 81.18 24. 18	14	96 3(
			86.61	02		62
			· I			
					2	2
الشيع فالصنغ فلي مالك بالصالحا في في فأطالك مانه على بعد	يعليها ستالعظما كطب	لطيبيا يعتبك المرياطية والمراجل	معتلجا المتعكمة معتارين وتقاربها	حدث والنقاء فالقالم	بالمعايلة تحديد فيأتياه بعيقان	ALC: NO DE LA COLOR

1 . -

equisition Time (sec	3 2.5559	Comment	MK-1008-1ALLY	Date	Aug 10 201	5	Date Stamp	Aug 10 2015	
e Name Withoncy MH71	CIUSERSIFIRATIGO 309 97	DOGLE DRIVENSLER GO Minchaus	LERIEPOXIDEIYER FE (30K CUTARINODARINC Number of Translen	TA ADEMIR	SKILERIME	Original Points Court	20150810_01/PROTON	DIFID
ints Count	16384	Pulse Sequence	s2pul	Receiver Gain	54.00		Solvent	BENZENE-d6	
ectrum Offset (Hz)	2417.4919	Spectrum Type	STANDARD	Sweep Width (Hz)	6410.26		Temperature (degree	e C) 25.000	
mk1008-1-1h.	pdf.esp VerticalSc	caleFactor = 1				90 8			
1.00 1.00 1.00 1.00	-Me								
106'C									
0.85	Bu	НО≻							
0.75	_//	OMO							
0.70	3bi								
0.60									
the second second second second second second second second second second second second second second second se							98.1-		
							8.17		
0.30						¥66-		08.0	
0.25		91				-	212	85	
0.15		Ŀ				25.5-	91.2	20 99 138 138	
0.10 1.05			2 80 -2 81 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 83 -2 84 -2 83 -2 84 -	40 9 -2 39 -2 09 -2 13 -2 1 -2 13 -2 11 -2 11 -2 11 -2 11 -2 11 -2 11 -2 11 -2 11 -2 11 -2	962 3 86 - 3 84 - 3 84 - 3 84 - 3 84	1,30	2336 2536 2540 2540 2540 2540 2540 2540	1071- 1071-	670-
					10 ¹	1197 3.911	151.100.942.072.98	4.03 2.85	1

 MK-1008-1ALLY Date LERIEPOXIDEIVER FE GOK CUARINOSIAB 130	13C Receiver Gain S2pul Receiver Gain STANDARD Sweep Width (r	60 221 90 201 90 200	
Date Date Aug 10 2015 FE GOK CULARINGOARING DATAUEMIR ESKILERMI Munther of Translants 512	Number or remarkina 312 Receiver Gain 30.00 Sweep Width (Hz) 25000.00	29 12- 90 92- 19 00- 19 00- 19 00- 01 02 1- 01 02 1- 01 02 1-	

convenion nime (sec	9 2.5559	Comment	AA-AY-043	Date	Jun 8 2016	Date Stamp	Jun 8 2016	
e Name	CUSERSIFIRATIG	OOGLE DRIVENSLER C	SOCLERIEPOXIDEN	ER FE GOK CUIARINODIAR	RINC DATAVARINCIAA	AY-043 20160608 01/F	ROTON D1.FID/FID	
equency (MHz)	399.92	Nucleus	Ħ	Number of Transien	115 8	Original Points Co.	unr 16384	
NINES COUNT	16384	Pulse Sequence	s2pul	Receiver Gain	60.00	Solvent	BENZENE-d6	
ectrum Offset (Hz)	2416.7764	Spectrum Type	STANDARD	Sweep Wildth (Hz)	6410.26	Temperature (degr	ee C) 25.000	
ay043-1h.esp	VerticalS	ScaleFactor = 1					681-	
0.85								
0.80	Me							
0.75 M.C						106-		
	< /							
o.65 Bu	/ }	OMe						
0.60	2dd OH					00		
0.55 H						67	19	
0.50							' -	
0.45								
0,40		91					¥9.1	
0.35		· L					7	98.0
								9
0.25								8.0-2
						61.13		82
0.15				ŝ		911	1 6 1 181	18
0.10		69	99 99 99 99 99	299- 299- 299- 299- 299- 299- 299- 299-	60 30	9	214 624 264 264 265 265 265	<u>م</u>
0.05		<u>ل</u> و	2	}—	435 435	123		<u> </u>
-			1.01	100	1.00	1.99286 0.	95 1.90 2.842.88 2.20 2.26	3.12
Constant of the second second			ב					

						21.912
0 8 2010	02.FID/FID	768	NZENE-d6	200		-13 13
3	CARBON	Dum 32	BE LO SE DE	07 /n aaih		
are stamp	20160608 01%	riginal Points C	olvent amonorania	מנווליםו פוחונים (המ		69°85
D	A4-AY-043	0	GF			15.17- <u>26.17</u> -
Jun 8 2016	C DATAVARINCV	2000	30.00	0000027		26 B6
818	OK CUNARINGCIARIN	umber of Transients	BCBIVBI Gall	9/-12 h		00071-
n	ER FE G	MI	č č	128 24		22'101-
AA-AY-043	DELERIEPOXIDEN	13C	S2pul etannaen			
Comment	OGLE DRIVENSLER G	Nucleus	Pulse Sequence	caleFactor = 1	OMe	
1.3107	C:USERS/FIRAT/GC	100.57	32768 ++no7 +7no	VerticalS	Bu 2dd	
UISTOON TIME (Sec)	Name	ruency (MHz)	TIS COUNT	ay043-130.esp	Revenue a construction of the second	

Jan 7 2016	OTON D1.FID/FID	16384	BENZENE-d6	1 25.000		E8	5							ΕĄ _	ل
Date Stamp	119-TS 20160107 01/PR	Original Points Count	Solvent	Temperature (degree C	10.6-	<u>.</u>			66			3 15	01.07	- HIG	
Jan 7 2016	C DATAVARINCIAA-AY-C	8	58.00	6410.26										919 919 19 19 19 19 19 19	
Date	GOK CUTARINOCIARING	Number of Transients	Receiver Gain	Sweep Width (Hz)										135 33 7-2 90	22
AA-AY-D19-IS	LERIEPOXIDEIYER FE	1H	s2pul	STANDARD										459 459 459 459 459 459 459 459 459 459	
Comment	OGLE DRIVENSLER GUG	Nucleus	Pulse Sequence	Spectrum Type	aleFactor = 1			H OMe				91-7—-	-21	90 2- 91 2- 91 2- 91 2- 85 2- 85 2- 85 2- 96 2- 19 2-	L M
2.5559	C:USERS/FIRATIGO(399.92	16384	2416.7092	VerticalSo	ЧW		Me 2ea							
Acquisition Time (sec)	File Name	Frequency (MHz)	Points Count	Spectrum Offset (Hz)	ay019-1h.esp	1.00-1	0.904	0.00 0.75 0.70		S. O S. O S. O S. O	6000N 54.0 64.0	0.35 - 0.30 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.20	0.15 0.10	0.05

Mistrion Time (sec)	1.3107	Comment	AA-AY-019-TS	Date	Jan 7 2016	Date Stamp	Jan 7 2016	
Name	C:USERS/FIRATIGO	OGLE DRIVENSLER GUCI	ERIEPOXIDELYER FE	GOK CULARINOCIARING I Mumber of Translams	DATAVARINCIAA-AY-01	9-TS 20160107 02/CAR	BON 01.FID/FID	
TIS COUNT	32768	Pulse Sequence	s2out	Receiver Gain	30.00	Solvent	BENZENE-06	
ctrum Offset (Hz)	11061.4873	Spectrum Type	STANDARD	Sweep Width (Hz)	25000.00	Temperature (degree C	c) 25.000	
ay019-130.esp	VerticalSo	aleFactor = 1	06 ⁻ 121- ^J	66 92 1- 1 22 41 1 20 02				
	2ea	OMe OMe	72.821-2	1400 to 7				
			99621	65	25 0 69 9/	12 B2	8051	
			96 261—-	101~	<u>v</u>	_	9/191	
ļ								

1 32768	BENZENE-46 C) 25.000							69'91 <u></u> L	—13 5558 ——586 198	
-014Y 20160223 01ICAF Original Points Coun	Solivent Temperature (degree									
DATAVARINCIAA-AX 5000	30.00 25000.00							69 27	(
GOK CUIARINOCIARINC Number of Transients	Receiver Gain Sweep Width (Hz)	18,721							9191 85 5913	6-J- 96-J
IGLERIEPOXIDEIYER FE	STANDARD	õe iz i				2	2.021		24161-	
OOGLE DRIVENSLER GU Nucleus	Pulse Sequence Spectrum Type	ScaleFactor = 1		OBn						
C:USERS/FIRATIG 100.57	32768 11061.4873	Verticals	e ₩ ↓	Me 2fa					12700-	
e Name quency (MHz)	mts Count ectrum Offser (Hz)	ax001-130.esp	D. B. B. B. B. B. B. B. B. B. B. B. B. B.	2.48 1.35 1.35 1.35	цица:	1.251		0.15 11 11	10 11 11 11	

3 odelhos \$ lation do more info Edition For This report was created by ACD/NMR Processor Ac

		A. C.			ð	r 0	089 6807	06 0/ 26 0/ 28 0/	320
01 D1/PROTON 01.FID/FID	nts Count 16384 BENZENE-d6 Monros C1 25 MM	e laegree ci zo.uuu				69' I	891-	-12,139 -12,139 -139 -139 -139 -139 -130 -130 -130 -130 -130 -130 -130 -130	1.533.304.14 2.056.45
A-AY-0445 201600	Original Pol Solvent			667——		6	v3 00	815 615318 6162	1.812.72
JUL 1 2016 INC DATAVARINCIA	00.00 60.00	0770						- - - - - - - - - - - - - - - - - - -	197 197
Date E GOK CUIARINOCIAR	Number of Transien Receiver Gain	(JU) LIINUM DAANS						8/9 9/9 9/9	
AA-AY-044S LERIEPOXIDEIYER FE	1H s2pui ctannaph							625-1 632 632 632 634 634 634 635 636 636 636 636 636 636 636 636 636	61 61 101
COMMENT OGLE DRIVENSLER GUO	Nucleus Pulse Sequence	aleFactor = 16 		OMe H					
2.5559 CJUSERSIFIRATIGO	399.92 16384 2417 5501	VerticalSo	ð-	Me 2ha C					
cquismon Time (sec) te Name	requency (MHz) oimts Count	ay044-1h.esp	0.8544 BU			0.25	0.20 0.15 0.15		

101 % 1
-101.46 -101.46 -101.46 -101.6
-101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46 -101.46
-13.94 -13.94 -13.05 -25.49 -25.49 -25.69 -25.69 -25.69 -25.69 -25.69 -25.69 -25.69 -25.69 -26.1805 -26.09 -27.13 -26.09 -27.89 -27.99 -27.99 -27.99 -27.99 -27.99 -27.99 -27.99 -27.99 -27.99 -27.99

28.07.2016 14:39:34

wistion Time (sec) Name	1.3107 CHUSERSVEIRATIG	COMMENT GOOGLE DRIVENSLER G	AA-AY-026CA	E GOK CUNARINOOMRINC	Feb 8 2016 DATAIARINCIAA-AV	Date Stamp 026CA 20160208 01/CAF	RBON 02 FID/FID	
wency (MHz)	100.57	Nucleus	130	Number of Transients	10000	Original Points Count	r 32768	
tts Count ctrum Offset (Hz)	32768 11061.4873	Pulse Sequence Spectrum Type	STANDARD	Receiver Gain Sweep Width (Hz)	30.00 25000.00	Sofvent Temperature (degree	BENZENE-d6 C) 25.000	
16-14 15-14 15-14 14-14 13-14 10-14-14			S					
որակումուրությունությունություն Արախությունությունությունություն Արախությունությունությունություն Արախությունությունությունություն Արախությունությունությունությունություն Արախությունությունությունություն Արախությունությունությունություն Արախությունությունություն Արախությունությունություն Արախությունություն Արախությունություն Արախությունություն Արախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախությու Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Ասախություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություս Աստություն Աստություս Աստություս Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստություն Աստությությություն Աստությությությությությությությությությությ			29161-	02 66	68.27	2929-	-1462 	29 9·

-

					99.9	and the second se
ON DI FIDAFID	32768	BENZENE-d6) 25.000	999Z	96'71 60'81	and the second se
APTC 20160202 011CARE	Original Points Count	Solvent	Temperature (degree C			667.29
C DATAVARINCIAA.AV-	512	30.00	25000.00		19 27	81.16-
GAK CLIARINGARING	Number of Transients	Receiver Gain	Sweep Width (Hz)	29/221-1 10/221-1		a bit a bit of the second second second second second second second second second second second second second s
ICI FRIEDOXIDEIVER FE	130	s2pul	STANDARD	99 62 1-2	193464 	129.01/129
COGI E DRIVENSI ER GI	Nucleus	Pulse Sequence	Spectrum Type	GcaleFactor = 1		فاللديانية بالمريسية فالأعاف
CHISPREIFIRATIO	100.57	32768	11061.4873	2jg O		LZ 602-
Mama	quency (MHz)	nts Count	Actrum Offiser (Hz)	under and and and and and and and and and and	nahadaadaadaadaadaadaadaadaadaadaadaadaad	

						-204
	FID/FID		ENE-d6			61.25
	REON 01.F	unt 32768	BENZE	99 C) 25.000	2565	
	DT 20160226 01VCA	Onginal Points Cou	Solvent	Temperature (degr		
	A-AY-03					
	DATAVARINCV	1000	30.00	25000.00		1908
	CUARINC I	BINS IBUIS		(HZ)		-104.00
and a state of the	OK CUNARING	Number of Tra	Receiver Gain	Width		97.82
	YER FE C	-	-		12 12 19 12 13 16 12 13	5Z 001
	CLERVEPOXIDEV	13C	s2pul	STANDARD	ഗ	
	OGLE DRIVENSLER GO	Nucleus	Pulse Sequence	Spectrum Type	aleFactor = 1	–H
	CUSERS/FIRATIGO	100.57	32768	11061.4873		2Ia 207.30
	ame	ency (MHz) 1	S Count	rum Offset (Hz)	ay0300-1-30.660 Jamin minimum Jamin and and and and and and and and and an	nankantantantantantantantantantantantantanta

	100-	-	1	
	06'0-	1 <u>1</u>	1	
Mar 31 2016 IVPROTON 02 FID/FID Count 16384 BENZENE-d6 gree C/ 25.000		981- <u>291</u> -		
AY-033T_20160331_0 AY-033T_20160331_0 Original Points (Solvent Temperature (de			94	
Mar 51 2015 VIC DATAVARINCIAA 5 8 54.00 6410.26			5 6 7 54 1	
Date Date R FE GOK CUARINOQUARIN Number of Transvent Receiver Gain Sweep Width (Hz)				
AA-AY-0331 GUQLERLEPOXIDE/YE 1H \$2001 STANDARD		SWD		09 9 95 9 95 9 95 9 95 9 96 9 96 9 97 9 97 9 97 9 97 9 97 9 97
Comment SOOGLE DRIVENSLER Nucleus Pulse Sequence Spectrum Type	ScaleFactor = 1	e OH OTB	912	
1 2.5559 C:UISERS/FIRATIV 399.92 16384 2416.7764	o Vertical	gi ge GC CC CC		
counsition nume (sec Ne Name requency (MHz) onnis Count pectrum Offset (Hz)	AY033-1H.ESF	0.3 0.3 1.15		

API 22 2016 01/CARBON_01.FID/FID	s Count 32768	BENZENE-d6 Jegrae C) 25.000					-12 16 75632 	
X-033C_20160422_0	Original Points	Solvent Temperature (c						697.0
Apr 22 2016 2 DATAVARINCIAA-4	512	30.00 25000.00						AP Vic.
Dare GOK CUTARINQDARING	Number of Transients	Receiver Gain Sweep Width (Hz)	66° 1/2 1-7					
AA-AY-033C GLERIEPOXIDEIYER FE	13C	STANDARD	88 1Z L-					92'161
COMMENT DOGLE DRIVENSLER GU	Nucleus	Spectrum Type	caleFactor = 1	SMOATO	HO HO			
1.3107 CIUSERSIFIRATIGO	100.57	32768 11061.4873	VerticalS		2ma		19 902	
Acquismon time (sec)	Frequency (MHz)	Spectrum Offset (Hz)	ay033-13c.esp	Cy Cy		 γ γ ci ezi@uuoN	۰ ۹	500

AA-AY-031 Date Date Mar 18 2016 Date Stat	GIGLERIEPOXIDEIVER FE GOK CUARINOGARINC DATAARINCIAA-AY-031_20160318	s20ul Receiver Gain 30.00 Solvent	STANDARD Sweep Width (Hz) 25000.00 Temperature (c	17 121 99 121 66 121	Ø	38 5 42 	62 671-	
Comment	SIFIRATIGOOGLE DRIVENSLER	Pulse Sequence	73 Spectrum Type	VerticalScaleFactor = 1	na OH			

				895	-
DIFID	NE-d6			-13.87 -13.80 -13.87	
N D2.FI	32768 BENZE) 25.000		99 9 <i>2</i>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7
29_20160219_01/CARBO	Original Points Count Solvent Temperature (degree C			10.0	
A-AY-0					4
DATAVARINCIA	2000 30.00 25000.00				
MARING	ISIANIS				=†
GOK CUNARING	Number of Trai Receiver Gain Sweep Width (1	65° /Z1-7		96971	
ICLERIEPOXIDE/YER FE	13C s2pul STANDARD	78 12 H	S	-13115	
OOGLE DRIVENSLER GO	Nucleus Pulse Sequence Spectrum Type	6caleFactor = 1	OH		
CUSERSIFIRATIO	100.57 32768 11061.4873	Vertical	Bu Me 2ra		
ame	ency (MHz) 5 Count rum Offset (Hz)	ay029-130.esp			1

me (see) <u>13555</u> Commerr AnAY-daTIKR Qare Units 2016 <u>CuidErestinanticonde Diffusione Diffusione Chinakenticonde Chinakentic</u>	
--	--

Jun 15 2016	s utranspon us.ruprus ts Count 32768	BENZENE-d6	(degree C) 25.000					113 91	61	50 91 22	
AV NATUR PRESE	Original Point	Solvent	Temperature						6682		
Jun 15 2016	5 5000	30.00	25000.00						69.7	1- <u>6287</u> -	
Date CAL CLI ADIMICALADIMO	Number of Transients	Receiver Gain	Sweep Width (Hz)						7 <u>35</u> 68.82	56- ⁷	
AA-AY-042TKR	13C	s2pul	STANDARD				29			67 261-	
Comment	Nucleus	Pulse Sequence	Spectrum Type icaleFactor = 1		Me Me	OH HO					
1.3107	100.57	32768	11097.1699 VerticalS	-Me		2sa				-50482	
Acquismon Time (sec)	Frequency (MHz)	Points Count	Spectrum Offser (Hz) ay042-130.esp	0.40	ص يع		Si Si Si Si Si Si Si Si Si Si Si Si Si S	0.15	0 0 0	0.02	-

R GIGLEREPOXIDENER FE GOK CUARINGDARING DATAARINGJA-AY-	13C Number of Transienus 512 s2pul Receiver Gain 30.00 STANDARD Sweep Width (Hz) 25000.00	82 IJ	
COMMENT SOOGLE DRIVENSLER	Nucleus Pulse Sequence Spectrum Type	OMe OMe	

E	3107 UISERSIFIRATIGE	COMMENT DOGLE DRIVENSI ER GI	AN-AY-U34-2	Date COK CLINARINOMARINC	Apr 12 2016 DATAIARINCIAA-AV-4	Date Stamp	Apr 12 2016 BON 03 FID/FID	
12) 10(0.57	Nucleus	ISC 13C	Number of Transients	1000	Original Points Count	32768	
32 Ser (Hz) 110	768 061.4873	Puise Sequence Spectrum Type	SZPUI STANDARD	Receiver Gain Sweep Width (Hz)	30.00 25000.00	Sofvent Temperature (degree (C) 25.000	
-130.esp	VerticalS	caleFactor = 1	96 IZ U	W 1217				
ä	¥-₹							
/ 5		\rangle						
	2ua	–HO						
							62	
			301	674	5765	0500	<u>دلر</u>	
			86	67.1			0262	
	99 103-		161~	82.96	99 86-			
					1		_	

8	0.0			}
JUN 24 2016 ON 03.FID/FID	32768 DENTENE AE	BENZENE-96) 25.000	-16.08 	EIFI
046-2 20160624 03/CARB	Original Points Count	Solveni Temperature (degree C		
Jun 24 2016 DATAIARINCIAA-AY-	5000	30.00		
Date G0K CUIARINOCIARINC	Number of Transients	Receiver Gain Sweep Width (Hz)	82' 22' 13 00' 82' 1-}	12 66 90 100
AA-AY-046-2 JOLERIEPOXIDEIVER FE	130	STANDARD	92 82 1- ²	21/161
COMMENT SOOGLE DRIVENSLER G	Nucleus	Puise Sequence Spectrum Type	ScaleFactor = 1	
1.3107 CJUSERSIFIRATIG	100.57	32768 11097.9336	Vertical Me	
Acquisition Time (sec) File Name	Frequency (MHz)	Points Count Spectrum Offser (Hz)	and the second s	

This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

APPENDIX C

MASS SPECTRUM OF PODUCTS

