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İZMİR



We approve the thesis of Kemal Cem YILMAZ

Examining Committee Members:

Prof. Dr. Gamze TANOĞLU
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ABSTRACT

FINITE ELEMENT BASED STABILIZED METHODS FOR TIME
DEPENDENT CONVECTION–DIFFUSION EQUATION AND THEIR

ANALYSIS

This study is focused on a Fourier stability and accuracy analysis of the time in-

tegration algorithms using generalized trapezioidal family of methods of scalar unsteady

convection–diffusion equation with periodic boundary conditions. The discretization in

space dimension is performed by standard Galerkin finite element formulation for low

Peclet numbers and stabilized finite element formulation for large Peclet numbers. The

stability analysis is performed namely by von-Neumann stability analysis. Accuracy is

measured in terms of damping errors and phase speed errors. The behaviour of these tem-

poral errors of the particular time stepping algorithms, i.e. forward Euler, Crank-Nicolson

and backward Euler methods are compared with each other. Particular attention is given

to the stabilized finite element formulation, that is the case where we consider high Peclet

numbers. For this case, it is concluded that the Crank-Nicolson time stepping represents a

better approximate solution compared to the other time integrators on transport process of

an initial wave profile. Finally, at the end of the study, we derive a stabilization parameter

under a particular condition on Courant number, which provides the relative phase speed

error being almost equivalent to its optimal level, that is, the waves with different Fourier

modes propagate almost in the same speed. Theoretical results are confirmed by a number

of numerical experiments.
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ÖZET

ZAMANA BAĞLI KONVEKSİYON–DİFÜZYON DENKLEMİ İÇİN
SONLU ELEMANLAR TABANLI KARARLI YÖNTEMLER VE

BUNLARIN ANALİZİ

Bu çalışma, durağan olmayan konveksiyon–difüzyon denkleminin uzaysal ayrık-

laştırmada sonlu elemanlar, zamansal ayrıklaştırmada θ-yöntemi kullanılarak elde edilen

sayısal çözümlerinin Fourier kararlılık ve kesinlik analizi üzerinedir. Peclet sayısının

küçük olduğu durumlarda uzaysal ayrıklaştırma için standart Galerkin, büyük olduğu du-

rumlarda ise uzaysal ayrıklaştırma için dengelenmiş sonlu elemanlar yöntemi uygulandı.

Kararlılık analizi von-Neumann yöntemi kullanılarak gerçekleştirildi. Kesinlik analizi,

zamansal olarak, anlık sönüm hatası ve anlık faz hızı hatası türünden ölçüldü. Bu hatalar,

θ-yönteminin özel halleri olan ileri fark, merkezi fark ve geri fark yöntemleri için ayrı ayrı

elde edilip, birbirleriyle karşılaştırıldı. Özel olarak, kararlı sonlu elemanlar yönteminin

kullanıldığı Pe > 1 durumu için, merkezi fark yönteminin, başlangıç koşulu dalga profili

olan taşınım problemlerinde diğer yöntemlerden daha iyi yaklaşık çözüm ürettiği sonu-

cuna varıldı. Son olarak, Courant sayısının özel bir seçimi altında, göreli faz hızı hatasını

hemen hemen ideal kılan, diğer bir ifade ile farklı dalga numaralarına sahip dalgaların

hemen hemen aynı hız ile yayılımını sağlayan bir parametre elde edildi ve bu parametre

seçime yönelik yapılan analizler, sayısal örnekler ile desteklendi.
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CHAPTER 1

INTRODUCTION

1.1. Introduction

The convection–diffusion equation generally models a change in substance in a

medium occurs by the convective and diffusive process. There are numerous examples of

the applications of this model in science and engineering. To exemplify pollutant disper-

sal in a river estuary, vorticity transport in the incompressible Navier–Stokes equations,

groundwater flow and solute transport, Black-Scholes model for option pricing, modeling

of the various stages of tumour development and so on [27]. The common crux of these

models is that, they contain a small parameter so that, if we consider the limiting case

of this parameter, the behaviour of the solution will totally be different compared to the

solutions obtained by finite quantities of the parameter, so called singularly perturbation

problem, first used by Friedrich and Wasow in their study [15].

1.1.1. A Brief Background of Stabilization Techniques on the

Numerical Solution of Elliptic Problems

For elliptic problems, where the coefficient of the second order term is not close to

zero, diffusive process plays the leading role compared to the convective process, whereas

if the coefficient of second order term is smaller than the coefficient of first order term as

we described in the above part, i.e.

|Coefficient of Convection|
|Coefficient of Diffusion|

� 1,

then the convective process starts capturing the dominance of the problem. Such a differ-

ential operator, despite satisfying the ellipticity condition, is living dangerously by flirting

with the non-elliptic world, Professor Martin Stynes describes [36]. In fact while con-

1



vective dominated convection–diffusion problems exhibits a solution with a convective

nature, some abrupt changes on the solution and its derivative occur due to the boundary

conditions, except some trivial cases. This type of behaviour is expressed as the solution

has a boundary layer. For the numerical point of view, applying standard Galerkin fi-

nite element method (SGFEM) with an inadequate discretization to resolve these regions

that includes the layers yields an incapable numerical solution that exhibits large numeri-

cal oscillations spreading all the domain. Background of this situation may become more

visible and apprehensible by obtaining the discrete solution of the following simple model

−κu′′ + βu′ = 0, in (0, 1)

where κ > 0 and without loss of generality β > 0. Approximating to this model by

using SGFEM with a uniform discretization so that each element has a size of ∆x with

N elements, one can show that such discretization is equivalent to apply finite difference

method using a central difference operator as

−κui+1 − 2ui + ui−1

∆x2
+ β

ui+1 − ui−1

2∆x
= 0, i = 1, . . . , N − 1.

Solution of this linear difference equation is given by

ui = c1 + c2

(
1 + Pe

1− Pe

)i
, c1, c2 ∈ R

where Pe = β∆x
2κ

is the dimensionless Peclet number. 1. From the above form, one

can immediatelly observe that choice of Pe > 1 causes to appear a negative base and

therefore yields a node-to-node oscillatory solution. In other words, to obtain a reasonable

approximate solution, the Peclet number must be chosen as Pe < 1 or equivalently the

discretization is required to be done such that, the element size ∆x must be of the same

size as the ratio between the coefficient of diffusion and convection terms. In convective

1We note that Pe = 1 is not the case for the solution given above as this choice simplifies the difference
equation to ui − ui−1 = 0.

2



dominated problems, i.e. 0 < κ � 1, this choice will cause a computational cost, make

the method impractical and therefore it becomes essential to derive cheap, practical, yet

efficient numerical method.

In order to cure this instability, a number of approaches, commonly known as sta-

bilized finite element methods have been developed which enhance the stability without

compromising the consistency. One common way is achieved by adding residual of the

differential operator to the basic Galerkin formulation weighted by a parameter, called sta-

bilization parameter. There are several methods based on this idea, starting with Hughes

and Brooks [8, 26], called streamline upwind/Petrov–Galerkin (SUPG) method. The idea

rises by considering the physical role of the first order term, which is proceeded by adjust-

ing the finite element basis functions by considering the convective velocity field. This

modification shows itself as an additional term in the variational form added to the dif-

fusion coefficient, called artificial diffusion. This additional dissipation occured in the

formulation is responsible to damp the spurious oscillations caused by the space dis-

cretization while consistency is preserved. Many variations of this idea are proposed in

the literature also for convection–diffusion–reaction equation and two of them are refered

as Galerkin/least squares (GLS) method [24], unusual stabilized finite element method

(USFEM) [14]. As we briefly introduce in Appendix A by skipping the technical de-

tails, if we exclude the reaction term, these two approximations become equivalent with

the SUPG method. On the other hand, another well-known way to obtain a stabilized

method is based on enriching the finite element space. An example to this kind of stabi-

lized method is Residual–Free Bubble (RFB) method where the idea is to represent the

numerical solution not only by the linear combination of standard finite element basis

functions, but also the linear combination of bubble type functions, that are zero along

the element boundary [5, 7]. Again in the same studies, if we consider the convective–

diffusive problem, then bubble type modification of SGFEM can be expressed as in the

same structure as the SUPG method, i.e. addition of a stabilization term of streamline

diffusion type finite element method. In other words, the underlying principle and the

mathematical structure for all these methods are same for convection–diffusion problems.

Therefore, from now on, we will address them all by streamline diffusion finite element

method (SDFEM).

3



1.1.2. Extension to Transient Problems

The stabiliation techniques proposed for steady problems could appropriately be

applied for parabolic problems by combining them with time stepping methods. This

can be defined through a process by seperating spatial and temporal discretizations. In-

deed the model problem we will consider has two kind of differentiation: the spatial

convection–diffusion operator and the first order time derivative which is the evolution of

convection–diffusion process in time. Therefore one shall start discretizing first in space

than in time or first in time than in space. The first technique, which we will prefer using

in our study, is known as method of lines [31]. The computational part is then simple:

once we obtain a semi-discrete form, i.e. our equation is discretized in space but still

continuous in time, then the probleem is reduced to a system of coupled ordinary dif-

ferential equation in time that can be solved by a number of time-marching schemes. In

other words, a steady-state problem is required to be solved in each time step. For that

reason, as we face while solving the elliptic problems numerically, standard numerical

approaches like SGFEM will fail to solve unsteady problems when either the diffusion

coefficient becomes small compared to convection coefficient or small time steps are em-

ployed in time discretizations [17, 18]. As a concequence, it is indispensable to apply a

spatially stabilized numerical method for the space discretization.

One way to overcome this trouble is to extend the spatial stabilization techniques

for unsteady models. This can be done by combining spatially stabilized discretization

with a time discretization scheme. There are several studies dealed with this combination

to obtain effective approximate solutions while providing their stability and convergence.

For further details, see [1, 3, 4, 9, 12, 29] and references therein.

1.1.3. Time Accuracy Analysis

In transient problems, which are in our interest in the present study, the basic

issue is not merely a question of deriving a stabilized method. The analysis of the nu-

merical methods can be based on a number of metrics such as truncation error, rate of

convergence, dispersive and dissipative behaviours and so on. It is demonstrated that

Fourier analysis provides an automatic mechanism to quantify the spectral behaviour of

the discrete convective–diffusive operator by seperating itself to its symmetric and skew-

symmetric components which are responsible for dissipative and dispersive behaviours
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respectively. We say that a numerical scheme is dissipative, if it reduces the amplitude

more than as it should be, i.e. it erroneously decrease the energy and consequently causes

a change on the true solution. The error in damping can be measured by comparing the

exact diffusivity and apparent, i.e. numerical diffusivity. The phenomeon of waves of dif-

ferent frequencies traveling with different speed is called dispersion. To be more precise,

if the numerical counterparts of the waves whose linear combination forms the exact solu-

tion according to the superposition principle propagates with different speeds, then there

will be seen a distortion on the shape of the initial condition which is called as dispersion.

Contrary if the speed of the waves are all same for each wave number, i.e. the phase

speed is independent of wave number, then we say that the solution is non-dispersive. But

this is not the case for any discrete scheme except some trivial cases. For this reason,

we would like to point out that the non-dispersive behaviour of the continuous problem

does not necessary mean any discrete model of it will be non-dispersive too. Therefore

it is essential to check the wavenumber dependency of the speed of the waves in order to

charactize the error in phase speed. Similarly, this can be done by comparing the phase

speed with its numerical counterpart.

There are several sources in the literature related with the temporal errors. In

[35, 37] dispersive and dissipative properties of various finite difference approximations

to unsteady problems are given. An extensive study on the phase and damping errors

of semi-discrete and fully discrete approximations to convection–diffusion equation can

be found in [16]. In addition to these analogue studies, stability and accuracy properties

for multidimensional and non-linear problems are briefly given in [22]. See [38] for a

detailed study on phase and group velocity. Last but not least, a comprensive study of the

Fourier analysis of hyperbolic equations is presented in [39].

The use of Fourier analysis to study on the dissipative and dispersive behaviours

is not new and has been used by many researchers to make an investigation on the related

errors of numerical methods. In [34] Shakib and Hughes presented Fourier analysis of

a space-time GLS method for the solution of time dependent convective–diffusive prob-

lem, where constant-in-time and linear-in-time approximations are considered for time

stepping. Dettmer and Peric in [13] combined the same spatial stabilization technique

with several time stepping methods on unsteady convection–diffusion equation in order

to make a comparison between them. In the light of the conclusions, they extend the

time integration schemes for incompressible Navier–Stokes equations. In [23], Huerta

and Donea considered spatially stabilized methods SUPG, GLS, sub-grid scale stabiliza-

tion (SGS) and least-squares stabilization (LS) for time dependent convection–diffusion–

reaction model and presented the time accuracy properties corresponding to each method.
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Christon and his co-workers in [10] concerned with the spatial errors associated with

standard and stabilized methods of finite difference, finite element and finite volume semi-

discretizations of scalar convection–diffusion equation. In addition, they probe the group

velocity errors and effect of the artificial diffusivity occured via the stabilized methods.

In [40] they extend their study to two dimensional domains by also considering the wave

propagation direction. In a series of studies [19, 20, 21] Hauke and Doweidar presented

a Fourier analysis for unsteady convection–diffusion–reaction equation using SGFEM,

SUPG, SGS and subgrid scale/gradient subgrid scale (SGS/GSGS) methods as well as

predictor multi-corrector algorithms with various time integrators such as trapezoidal rule,

constand-in-time and linear-in-time approximations.

1.2. Preliminaries and Notation

Let Ω = (0, 1) be the spatial domain and define Ωt := Ω × {t > 0}. Our model

problem is a linear, constant coefficient, parabolic initial–boundary value problem in one

space dimension given as

ut + Lu = f, in Ωt

u(x, 0) = u0(x), in Ω× {t = 0}

with periodic boundary conditions

u(0, t) = u(1, t), ux(0, t) = ux(1, t), t > 0

where L is a linear and elliptic differential operator consists of first and second order dif-

ferential operators which corresponds to convective and diffusive processes respectively.

Coefficient of convective term will be β which is without loss of generality taken as a non-

negative real quantitiy and coefficient of diffusive term is κ where κ > 0 must be held

due to the well-posedness of the problem in the Hadamard sense. Particular to the Chapter

5, where we consider the convective dominated case, it is set to be a small number, i.e.

0 < κ� 1.

The initial condition u0, which is assumed to be periodic, belongs to the space of
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square integrable functions on Ω, that is

L2(Ω) :=

{
v : Ω→ R | v is Lebesgue measurable and

∫
Ω

|v|2dx is finite
}
.

We denote (·, ·) as the inner product and ‖·‖L2(Ω) as the associated norm inL2(Ω). Further,

we consider the Sobolev space,H1(Ω), of square integrable functions with derivatives up

to the order 1, that is,

H1(Ω) =

{
v ∈ L2(Ω) :

∂v

∂x
∈ L2(Ω)

}

and in addition, functions that exhibit periodicity on Ω as

H1
per(Ω) :=

{
v ∈ H1(Ω) : v(0, ·) = v(1, ·)

}
.

The norm that is admitted by the space H1(Ω) is denoted by ‖ · ‖H1(Ω) Now consider a

functiov v = v(x, t) not as a function of x and t, but as a mapping of v of t into the space

H1
per(Ω). Then the space L2(0, T,H1

per(Ω)) denotes the set of all measurable functions

v : [0, T ]→ H1
per(Ω) with

∫ T

0

‖v(t)‖2
H1

per(Ω)dt <∞.

By `2, we denote the space of infinite dimensional sequences on R that are square

summable with norm

‖u‖`2 =

(
∞∑

m=−∞

|um|2
)1/2

and with the energy norm

‖u‖`2,∆x =

(
∆x

∞∑
m=−∞

|um|2
)1/2

.
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The discretization shall be begun by observing that our model problem has two

kind of differentiation: a spatial differential operator and evolution of this spatial operator.

As we stated previously, we prefer using method of lines, i.e spatial discretization is

considered to be first. For this purpose, we consider a uniform partition T h of Ω and

Ωe ∈ T h, e = 1, . . . , N be an arbitrary element out of N elements of this partition. The

length of each element is measured by ∆x. Vh denotes a finite dimensional subspace of

Ω that consists of space of functions v ∈ H1(Ω), whose restriction into an element Ωe

belong to the space of polynomials up to the degree 1 and periodic on Ω, that is,

Vh =
{
vh ∈ H1

0(Ω) : vh|Ωe ∈ P1(Ωe),∀Ωe ∈ Th, vh(x0, ·) = vh(xN , ·)
}
.

The basis functions of this space are defined as follows: For any node xi, where i =

0, . . . , N

ϕi(x) =


1, x = xi

0, x 6= xi

linear, x ∈ Ω

provided that ϕ0(x) = ϕN(x) as x0 = xN . See Figure 1.1 for the sketch of basis func-

tions. For the time discretization, generalized trapezoidal family of methods, which is

Figure 1.1. Basis functions for the piecewise linear finite element space.

also known as θ-method where θ ∈ [0, 1], is going to be applied. In particular, we will

be interested in three specific choices of θ values which are θ = 0, θ = 1
2

and θ = 1 that

yield forward Euler, Crank-Nicolson and backward Euler operators respectively.

The dimensionless numbers that characterize the numerical solution are the Courant

number C = β∆t
∆x

, the diffusion number µ = κ∆t
∆x2 and the Peclet number Pe = β∆x

2κ
.
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Lastly, as we mentioned above, using SGFEM with piecewise linear basis func-

tions to solve an elliptic boundary value problem yields incapable approximate solution if

the Peclet number is chosen as Pe > 1. Therefore a stabilization is required which brings

out stabilized methods and whenever we mention about stabilized method, we are point-

ing out a spatial stabilization that occurs due to the spatial discretization. On the other

hand, we note that subsections related with stability analysis is devoted for time stability

that occurs due to the time discretization operators.

1.3. Thesis Layout

This study consists of six chapters including introduction and conclusion as the

first chapter and the last chapter. The layout of the rest of the thesis is as follows.

In Chapter 2, we start with the statement of our model problem. Then, we begin

to discretize our problem by performing SDFEM in space, where note that choosing the

stabilization term as zero allows us to recover the standard Galerkin finite element formu-

lation. For the fully discretized form, we proceed with θ-method. To introduce and study

the idea that we want to focus on the further parts, we re-express the fully discretized

form by its finite difference counterpart.

In Chapter 3, we present some preliminary information related with Fourier anal-

ysis. We first introduce two important tools; discrete Fourier transform and Parseval’s

identity, in order to define the stability in transform space and derive a stability condition

based on the numerical amplification, namely von-Neumann stability condition. Then,

using the same tools, we define temporal behaviours, i.e. the numerical temporal damp-

ing and numerical temporal frequency. Finally, we make a comparison of them with their

exact counterparts to define the relative damping error and relative phase speed error.

In Chapter 4, in order to derive the standard Galerkin finite element discretization

in space, we set the stabilization parameter to zero on the discrete scheme we derived on

Chapter 2. Using the results related with stability and accuracy that we presented on the

previous chapter, we study the stability and temporal behaviours of numerical solutions

of each time integrator. We compare the errors in damping and in phase speed that we

derived for different choice of Courant numbers and for particular time integrators that

are forward Euler, Crank-Nicolson and backward Euler methods. Note that due to the

spatial instability, we consider only Pe ≤ 1 case.

In Chater 5, we consider the same problem except that now the the diffusion term

is set to be a small quantity, that is, now convective process plays the major role in our
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model problem. Therefore, spatial discretization is now performed by using SDFEM that

we briefly introduce in Appendix A. We perform the same work, now for Pe > 1 case, to

examine the stability and temporal accuracy properties, i.e. phase and damping responses

to observe possible changes and make a comparison between the time integrators. At the

end of the chapter, we derive a stabilization parameter under a particular condition on

Courant number that brings the phase error nearly to its optimal level. We corroborate

this result by giving some numerical experiments and conclude our work.
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CHAPTER 2

STABILIZED METHOD FOR UNSTEADY

CONVECTION–DIFFUSION EQUATION

In this section we present our model problem, scalar time dependent convection–

diffusion equation with periodic boundary conditions. As we have mentioned previously,

we start discretizing our model problem by considering the method of lines technique. Af-

ter deriving the fully discrete form, we convert our discrete problem to a finite difference

scheme, to make it ready to perform Fourier analysis.

2.1. Problem Statement

Define Ω := (0, 1) and Ωt := Ω × (0, T ] where T is a finite quantity. Our scalar

model problem consists of finding u(x, t) such that

ut + Lu = f, in Ωt (2.1)

u(0, t) = u(1, t), on ∂Ω× (0, T ] (2.2)

ux(0, t) = ux(1, t), on ∂Ω× (0, T ] (2.3)

u(x, 0) = u0(x), in Ω× {t = 0} (2.4)

where f is a given source, assumed to be a piecewise constant function, u0 is an initial

condition that belongs to L2(Ω) which can be represented as a series

u0(x) =
∞∑
j=0

bje
ikjx, kj = 2πj, (2.5)

and L is a linear, elliptic differential operator defined as

Lu := −κuxx + βux.
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Here κ > 0 represents the diffusivity and without loss of generality β, stands for the scalar

velocity field, is chosen to be a non-negative constant.

Now let v ∈ H1
per(Ω) be a test function. Then the variational form of the above

model reads: Find u ∈ L2(0, T ;H1
per(Ω)) such that

(ut, v) +A0(u, v) = (f, v), ∀v ∈ H1
per(Ω) (2.6)

u(0) = u0(x) (2.7)

where A0(·, ·) is a coercive and bounded bilinear operator onH1
per(Ω) defined as

A0(u, v) := κ(ux, vx) + (βux, v). (2.8)

2.2. Fully Discretized Model by SDFEM/θ-Method

As we have mentioned in Section 1.1.2, the discretization will be carried out first

in space dimension, then in time dimension. The semi-discrete form, i.e. the case where

the problem is still continuous in time, is obtained by performing SDFEM. To derive a

fully discrete expression, we go on with θ-method for time stepping.

2.2.1. Discretization in Space Dimension Using SDFEM

We start by forming the finite element space. Let us consider a uniform partition

T h of Ω into N elements, where Ωe ∈ T h stands for an arbitrary element, that has a size

of ∆x = 1
N

. Further, let us consider a finite dimensional subspace Vh that is spanned by

Vh = span {ϕi}Ni=0
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with ϕ0(x) = ϕN(x). Then, the spatial finite element discretization of the variational

form in Vh using SDFEM consists of finding uh(t) : (0, T ]→ Vh such that,

(∂tu
h, vh) +Aτ (uh, vh) = (f, vh), ∀vh ∈ Vh (2.9)

together with

Aτ (uh, vh) = A0(uh, vh) +
∑

Ωe∈T h

(
(∂t + L)uh − f, τβvhx

)
Ωe

where uh(0) is chosen as a suitable approximation of u0(x).

Before going further with the time discretization, we first need to represent the

semi-discrete formulation (2.9) in matrix form. This requires to express uh in terms of the

global finite element shape functions, {ϕi(x)}Ni=0 of Vh and is given by

uh(x, t) =
N∑
i=0

di(t)ϕi(x). (2.10)

Here we find it necessary to mention that time dependency is carried by the nodal values

only. Now substituting (2.10) into the semi-discrete form given by (2.9) and considering

the problem in element wise, we deduce the following local matrices

me
τ = me

0 +
τβ

2

[
1 −1

1 −1

]

keτ = ke0 +
τβ2

∆x

[
1 −1

−1 1

]

f eτ = f e0 +
τβ

∆x

[
−1

1

]

where the matrices on the right hand sides are obtained through the standard Galerkin
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finite element discretization and are given by

me
0 =

1

6

[
2 1

1 2

]

ke0 =
κ

∆x

[
1 −1

−1 1

]
+
β

2

[
−1 1

−1 1

]

f e0 =
∆x

2

[
1

1

]
.

We leave the details of this process and refer to [25]. Assembling these matrices as carried

out again in same reference, we conclude with the following matrix problem: Given Fτ ∈
Rneq , find d : (0, T ]→ Rneq such that

Mτ ḋ + Kτd = Fτ (2.11)

d(0) = d0

where Mτ and Kτ are named as global mass matrix and global stiffness matrix respec-

tively, and Fτ is called global load vector.

2.2.2. Discretization in Time Dimension Using θ-Method

Let 0 ≤ n ≤ T be the time index so that tn = n∆t and θ ∈ [0, 1] be a parameter.

Applying θ-method on (2.11), we derive the fully discretized matrix problem: For a given

dn ∈ Rneq , find dn+1 ∈ Rneq such that

Mτ
dn+1 − dn

∆t
+ Kτd

n+θ = Fn+θ
τ , n = 0, 1, 2, . . .

dn+θ = θdn+1 + (1− θ)dn,

Fn+θ
τ = θFn+1

τ + (1− θ)Fn
τ .
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Above equations can be expressed in one equation as

(Mτ + θ∆tKτ )d
n+1 = (Mτ − (1− θ)∆tKτ )d

n + ∆t
(
θFn+1

τ + (1− θ)Fn
τ

)
. (2.12)

2.3. Finite Difference Counterpart of Fully Discrete Form

Now we are ready to transform our numerical scheme to its finite difference coun-

terpart, as our interest is to study the stability and accuracy properties related with Fourier

techniques. So from now on, we shall ignore the nonhomogeneous part of our model

problem, i.e. we take f ≡ 0. Define

Aτ := Mτ + θ∆tKτ

Bτ := Mτ − (1− θ)∆tKτ .

Then the homogeneous part of the fully discretized matrix form (2.12) can be expressed

as

Aτd
n+1 = Bτd

n.

Corresponding local matrices of Aτ and Bτ are given as

aeτ = ae0 +
τβ

2

[
1 −1

1 −1

]
+ θ∆t

τβ2

∆x

[
1 −1

−1 1

]

and

beτ = be0 +
τβ

2

[
1 −1

1 −1

]
− (1− θ)∆tτβ

2

∆x

[
1 −1

−1 1

]
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respectively, where

ae0 =
1

6

[
2 1

1 2

]
+ θ∆t

(
κ

∆x

[
1 −1

−1 1

]
+
β

2

[
−1 1

−1 1

])

and

be0 =
1

6

[
2 1

1 2

]
− (1− θ)∆t

(
κ

∆x

[
1 −1

−1 1

]
+
β

2

[
−1 1

−1 1

])
.

Now considering the m-th row of the homogeneous fully discretized matrix equation

where 1 < m < neq, we therefore deduce the finite difference scheme restricted to the

space index m and with time index n as

1∑
j=−1

Aτ,m+jd
n+1
m+j =

1∑
j=−1

Bτ,m+jd
n
m+j. (2.13)

where

Aτ,m−1 =

∆x

6
+
τβ

2
+ θ∆t

−κ+ τβ2

∆x
−
β

2

 (2.14a)

Aτ,m =

[
2∆x

3
+ θ∆t

2(κ+ τβ2)

∆x

]
(2.14b)

Aτ,m+1 =

[
∆x

6
− τβ

2
+ θ∆t

(
−κ+ τβ2

∆x
+
β

2

)]
(2.14c)

and

Bτ,m−1 =

[
∆x

6
+
τβ

2
− (1− θ)∆t

(
−κ+ τβ2

∆x
− β

2

)]
(2.15a)

Bτ,m =

[
2∆x

3
− (1− θ)∆t2(κ+ τβ2)

∆x

]
(2.15b)

Bτ,m+1 =

[
∆x

6
− τβ

2
− (1− θ)∆t

(
−κ+ τβ2

∆x
+
β

2

)]
. (2.15c)
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Lastly, as might be expected, we note to echo that setting τ = 0 on the local ma-

trices or equivalently on the finite difference scheme will allow us to recover the standard

Galerkin finite element formulation.
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CHAPTER 3

PRELIMINARIES ON FOURIER ANALYSIS

Applying Fourier transform to a parabolic initial value problem results in a first

order ordinary differential equation in the space of transformed functions. Also it is well-

known that, the temporal behaviour of the solutions derived by the original problem and

derived by the transformed problem are equivalent by dint of the equivalence of the norms

of the functions in their respective spaces in L2 sense. Consequently, one may switch to

the space of transformed functions, study at that space and moreover, do not require to

apply a back transformation. To be more precise, let us consider the following initial

value problem

ut − κuxx + βux = 0, in R× {t > 0} (3.1)

u(x, 0) = u0(x), on R× {t = 0} (3.2)

where all of the parameters are set to be same as in our model problem (2.1)-(2.4) and let

us start by giving the following definition.

Definition 3.1 The Fourier transform of an integrable function u is defined by

û(k) =
1√
2π

∫ ∞
−∞

u(x)e−ikxdx, k ∈ R.

Assume that u and ux are sufficiently nice and vanishing as x → ∓∞. Applying

Fourier transform to the problem (3.1)-(3.2), one can derive

ût + (κk2 + iβk)û = 0, t > 0

û(k, 0) = û0(k)
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which has a solution of

û(k, t) = û0(k)eνt, ν = −κk2 − iβk. (3.3)

Here, ν stands for the temporal behaviour of the solution that shows, a Fourier mode with

a wavenumber k is decaying monotonically an moving in the flow direction in time.

In order to study on the temporal behaviours of the approximate solution, an anal-

ogous work may be carried out for the discrete case. For this purpose, let us begin by

giving the definition of the discrete analogue of Fourier transform that is the first funda-

mental tool for our study.

Definition 3.2 The discrete Fourier transform of uh ∈ `2 is the function ûh ∈ L2

([
− π

∆x
, π

∆x

])
and defined by

ûh(k) =
∆x√

2π

∞∑
m=−∞

ume
−imk∆x, k ∈

[
− π

∆x
,
π

∆x

]
.

Definition 3.3 Let uh ∈ `2 be a discrete function defined for all integers m and ûh(k) ∈
L2

([
− π

∆x
, π

∆x

])
be the discrete Fourier transform of uh. Then, the inverse discrete

Fourier transform of ûh(k) is given by

um =
∆x√

2π

∫ π
∆x

− π
∆x

û(k)eimk∆xdk.

The second fundamental tool for our analysis is the equivalence of the norms of

uh and its discrete Fourier transform ûh in their respective spaces. The identity, namely

Parseval’s identity, is given by the following proposition.

Proposition 3.1 (Parseval’s Identity) If u ∈ `2 and û is the discrete Fourier transform

of u, then

‖û‖L2 = ‖u‖`2

where the first norm is defined on
[
− π

∆x
, π

∆x

]
.
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Proof Starting with L2 norm of ûh on
[
− π

∆x
, π

∆x

]
and seperating the modulus to its

complex conjugates, we have

‖û‖2
L2

=

∫ π
∆x

− π
∆x

|û(k)|2dk

=

∫ π
∆x

− π
∆x

û(k)û(k)

=

∫ π
∆x

− π
∆x

û(k)

(
∆x√

2π

∞∑
m=−∞

ume
−imk∆x

)
dk

=
∞∑

m=−∞

um
∆x√

2π

∫ π
∆x

− π
∆x

û(k)e−imk∆xdk

=
∞∑

m=−∞

um
∆x√

2π

∫ π
∆x

− π
∆x

û(k)eimk∆xdk

=
∞∑

m=−∞

umum

= ‖u‖2
`2

where we applied discrete Fourier transform and inverse discrete Fourier transform on the

third and fifth lines respectively. �

The reason why the Parseval’s identity is fundamental for our analysis is because,

the approximate solution and its discrete Fourier transform are reciprocally uniformly

bounded in the sense of the associated norms. This situation allows us to study the stability

properties in the space of transform functions instead of in our original finite dimensional

domain.

3.1. On the Stability Analysis

Definition 3.4 A two level difference scheme, Aτd
n+1 = Bτd

n, is said to be stable with

respect to a norm ‖ · ‖, if there exist non-negative constants K and α so that

‖dn‖ ≤ Keαt‖d0‖, t = n∆t, n = 0, 1, . . . ,

holds true for sufficiently small ∆x and ∆t.
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Combining the Parseval’s identity with the Definition 3.4, we give the following

proposition as a summary.

Proposition 3.2 The sequence {dn} is stable in `2,∆x if and only if the sequence {d̂n} is

stable in L2

([
− π

∆x
, π

∆x

])
.

Proof Using the Parseval’s identity and definition of `2,∆x norm, we have

‖dn‖`2,∆x = ∆x‖dn‖`2 = ∆x‖d̂n‖L2 .

On the other hand, assuming that K and α are non-negative constants and considering the

above identity, we derive

‖dn‖`2,∆x ≤ Keαtn‖d0‖`2,∆x ⇔ ‖d̂n‖L2 ≤ ∆xKeαtn‖d̂0‖L2 ,

for n = 0, 1, . . . and tn = n∆t. Thus, we provide the equivalence of the stability in our

original domain and in the transform domain in the sense of associated norms. �

An important consequence of this proposition is given by the following remark.

Remark 3.1 As a result of Proposition 3.2, once we guarantee the stability in transform

space, we do not require to apply an inverse transformation to return back to our original

equation.

Before proceeding with transforming our finite difference scheme (2.13), we in-

troduce two useful properties related with discrete Fourier transform, which makes our

work easier. Let Fh : `2 → L2

([
− π

∆x
, π

∆x

])
be the discrete Fourier transform operator

and u,v ∈ `2.

i. Linearity. For arbitrary scalars α and β,

Fh(αu + βv) = αFh(u) + βFh(v).

ii. Shifting Property. Define the shifting operator S∓u = {vm}, where vm = um∓1,

m = 0,∓1,∓2, . . . . Then,

Fh (S∓u) = e∓ikFh(u).
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Lastly, we find it necessary to state that, eventhough we consider the initial value

problem (3.1)-(3.2) for a moment, our finite difference scheme (2.13), which is derived

by considering initial–boundary value problem (2.1)-(2.4), still remains same except that

the space index m now takes all integers. After we derive the necessary and sufficient

stability condition for the initial value problem, then we will take into account the bound-

ary conditions as well, in order to derive a stability condition for initial–boundary value

problem.

Now we are ready to transform our original discrete equation. So going on from

(2.13) and applying discrete Fourier transform yields

Fh
(

1∑
j=−1

Aτ,m+jd
n+1
m+j

)
= Fh

(
1∑

j=−1

Bτ,m+jd
n
m+j

)
.

It follows from using linearty and shifting properties of Fh, we derive

Fh(dn+1)
1∑

j=−1

Aτ,m+je
jik∆x = Fh(dn)

1∑
j=−1

Bτ,m+je
jik∆x

or equivalently

d̂n+1 =

(
Bτ,m−1e

−ik∆x +Bτ,m +Bτ,m+1e
ik∆x

Aτ,m−1e−ik∆x + Aτ,m + Aτ,m+1eik∆x

)
d̂n.

Define

g(k) :=
Bτ,m−1e

−ik∆x +Bτ,m +Bτ,m+1e
ik∆x

Aτ,m−1e−ik∆x + Aτ,m + Aτ,m+1eik∆x
.

that is a continuous function of k. Then our discrete problem in the transform space reads:

For a given d̂n, find d̂n+1 such that

d̂n+1 = gd̂n, n = 0, 1, . . . .
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Note that just how the continuous problem (3.1)-(3.2) is transformed to an ordinary differ-

ential equation with time derivative, corresponding discrete equation (2.13) is transformed

to a discrete problem in time index. Solution of the above requrrence relation at the n-th

time level is given by

d̂n = gnd̂0 (3.4)

where the superscript on g is a multiplicative exponent. Observe that the discrete solution

is represented by in terms of the transform of the initial data and g = g(k,∆x,∆t).

Comparing the continous solution (3.3) and the discrete solution (3.4), we deduce that

the quantity gn is the discrete analogue of eνt so that, it gives us an information about

the amplification of the approximate solution. Now we are ready to give the following

definition.

Definition 3.5 Let νh ∈ C be the discrete counterpart of ν. Then,

g(k,∆x,∆t) := eν
h∆t =

GBτ

GAτ

(3.5)

is called as the amplification factor of the finite difference equation (2.13), where

GAτ = Aτ,m−1e
−ik∆x + Aτ,m + Aτ,m+1e

ik∆x (3.6)

and

GBτ = Bτ,m−1e
−ik∆x +Bτ,m +Bτ,m+1e

ik∆x. (3.7)

As the name describes its own role, the amplification factor presents an informa-

tion about the growth of the approximate solution in transform space. Pursuing the idea

that we stated on Proposition 3.2, we give the following proposition.

Proposition 3.3 A two level difference scheme, Aτd
n+1 = Bτd

n, is said to be stable

with respect to `2,∆x norm if and only if there exist non-negative constants K and α so
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that

|g(k)|n ≤ Keαn∆t, ∀k ∈
[
− π

∆x
,
π

∆x

]
(3.8)

holds true for sufficiently small ∆x and ∆t.

Proof

⇒ Arguing with contradiction, assume that for each K and α, there exists an interval

IK,α ⊂
[
− π

∆x
, π

∆x

]
such that

|g(k)|n > Keαn∆t, ∀k ∈ IK,α. (3.9)

Indeed such interval exists as g is a continuous function of k. Now choose a function

û0 which is equivalently zero outside of the interval IK,α. Multiplying this with the

above inequality, taking square of both sides and then integrating over
[
− π

∆x
, π

∆x

]
yields

∫ π
∆x

− π
∆x

|gnû0|2dk >
(
Keαn∆t

)2
∫ π

∆x

− π
∆x

|û0|2dk

or

‖gnû0‖2
L2
>
(
Keαn∆t

)2 ‖û0‖2
L2
. (3.10)

As (3.10) holds true for all non-negative K and α, this contradicts with Proposition

3.2. Therefore. our assumption (3.6) can not be valid.

⇐ Multiplying (3.8) with û0, taking square of both sides and integrating over
[
− π

∆x
, π

∆x

]
,

we derive

‖gnû0‖2
L2
≤
(
Keαn∆t

)2 ‖û0‖2
L2
. (3.11)

Thus, we gain the stability at the transform space which, by Proposition 3.2, pro-
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vides the stability at our original domain as well.

�

Theorem 3.1 (von Neumann) A two level difference scheme, Aτd
n+1 = Bτd

n, is said

to be stable with respect to `2,∆x norm if and only if there exists a non-negative K that is

independent of k, ∆x and ∆t so that

|g(k)| ≤ 1 +K∆t, ∀k ∈
[
− π

∆x
,
π

∆x

]
(3.12)

holds true for sufficiently small ∆x and ∆t.

Proof

⇒ Let us assume the opposite, that is, for all ∆x, ∆t and K, there exists a kC ∈[
− π

∆x
, π

∆x

]
such that

|g(kC)|n > 1 +K∆t. (3.13)

Consider a sequence {Ki}, such that Ki →∞ as i→∞. Then we get a sequence

{ki} for each {Ki} and according to our assumption (3.13), we have

|g(ki)|n →∞, as k →∞,

which means |g(k)|n is not bounded and this contradicts with Proposition (3.3).

⇐ Following from |g(k)| ≤ 1+K∆t ≤ eK∆t or |g(k)|n ≤ eKn∆t and then Proposition

(3.3), we end up with gaining the stability with respect to `2,∆x norm.

�

Recall that the problem we consider is still an initial value problem and the dif-

ference between the finite difference schemes approximated to an initial value problem

and an initial–boundary value problem is, the latter case, in addition to the partial dif-

ferential equation, consists of a suitable approximation through the boundaries. We may

interpret the relation of the stability between initial value problems and initial–boundary

value problems as, if a finite difference scheme approximated to an initial value prob-

lem is stable, then that finite difference scheme will also be stable in particular for some
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squence of nodes that belong to an open interval, i.e. finite difference scheme approxi-

mated to an initial–boundary value problem remains stable only for the interior points.

On the other hand, the discrete Fourier transform does not take into account the boundary

points. Thereefore if the boundary conditions cause an instability then the scheme will

be unstable as well. As a conclusion, a two level difference scheme, Aτd
n+1 = Bτd

n,

approximated for an initial–boundary value problem is necessarily stable, if it is stable for

an initial value problem. Hence, we give the following result.

Remark 3.2 The von Neumann stability analysis for a two level finite difference scheme,

Aτd
n+1 = Bτd

n, considered as an initial value problem yields a necessary stability

condition for the difference scheme considered as an initial–boundary value problem.

To recover the sufficiency on the stability condition, we require to ensure that the

boundary conditions do not cause an instability. Recall that our model problem (2.1)-(2.4)

consists of a periodic boundary conditions with an appropriate initial condition (2.5) and

so the solution of the problem is therefore a periodic soution with a period of Ω. Thus, if

our approximate solution is stable on the whole real line, then it will be stable in particular

in one period. In other words, the von Neumann condition provides also the sufficiency

on the stability of the approximate solution for our model problem by dint of the initial

and boundary conditions.

Lastly we note that, the second term of the von Neumann estimate (3.12) is to

control the exponential growth but the analytical solution of our problem does not have a

such behavior with increasing time. Therefore the stability condition shall be replaced by

|g(k)| ≤ 1 (3.14)

to provide the sufficiency [33].

3.2. On the Accuracy Analysis

It is well-known that according to the superposition principle, the analytical solu-

tion of our model problem is infinite combination of trigonometric functions. By decom-

posing this infinite sum in orthogonal Fourier modes, exact solution may also be assumed
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to be one of these combinations, where each of them has the form of

u(x, t) = eνt+ikx. (3.15)

Indeed, the periodic boundary conditions (2.2)-(2.3) and the initial condition that has the

form (2.5) enable us to express the solution as (3.15). Here k ∈ R is the wavenumber, i

is the imaginary unit and ν ∈ C determines the temporal behaviour that can be written in

the form ν := −ξ + iω. Definition of the real and imaginary parts are as following.

Definition 3.6 In the previous expression, ξ and ω are called as exact temporal damping

and exact temporal frequency respectively.

Employing (3.15) into our target equation (2.1) yields

ν = −κk2 − iβk

and so exact temporal damping and exact temporal frequency are given by

ξ = κk2 (3.16)

ω = −βk (3.17)

respectively.

Now we repeat the analogous process for the discrete case. For this purpose,

consider the discrete counterpart of (3.15) as a solution of our finite difference equation

(2.13) at n-th time level and m-th space level

unm = eν
htn+ikxm =

(
eν

h∆t
)n
eikm∆x. (3.18)

Recall that the first factor on the last expression is nothing but the amplification factor.

Now define νh := −ξh + iωh as in terms of numerical counterparts of exact temporal

damping and exact temporal frequency. We first give the following definition.

Definition 3.7 ξh and ωh are called as numerical temporal damping and numerical tem-

poral frequency respectively.
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Following from (3.18) and leaving νh alone, we therefore have

νh =
1

∆t
[ln |g|+ i arg(g)] .

Considering the real and imaginary parts, numerical temporal damping and numerical

temporal frequency are given by

ξh = − 1

∆t
ln |g| (3.19)

and

ωh =
1

∆t
arg(g) (3.20)

respectively. Now a comparison between between the exact temporal damping and the

exact temporal frequency with their numerical counterparts will allow us to investigate

how good or how bad the character of damping and frequency of our numerical scheme

is. In consideration of (3.16) and (3.19), we give the following definition.

Definition 3.8 The error in decay, called relative damping error, is defined by the ratio

of computed damping and the exact damping which is given by

εD :=
ξh

ξ
= − ln |g|

κk2∆t
. (3.21)

Remark 3.3 It could be interpreted by looking at (3.21) that 0 < εD < 1 leads an

underdamped numerical solution and εD > 1 leads an overdamped one. The aim is

εD = 1.

Remark 3.4 As ξ is a positive quantity, εD < 0 implies ξh < 0 that is the numerical

method behaves like anti-diffusive. Thus, in the case of εD < 0, one can conclude that the

numerical solution is unstable.

Next, comparing (3.17) with (3.20), we give the following definition.
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Definition 3.9 The error in speed, called relative phase speed error, is defined by the

ratio of computed frequency and the exact frequency that is given by

εS :=
ωh

ω
= − 1

kβ∆t
arg(g). (3.22)

Remark 3.5 One can observe from (3.22) that εS < 1 causes a lagging error and εS > 1

causes leading error. The aim is ofcourse εS = 1.
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CHAPTER 4

STABILITY AND ACCURACY ANALYSIS OF

SGFEM/θ-METHOD

This chapter is devoted to the stability and accuracy properties of the numerical

solution by using the conclusions we derived on Chapter 3. The numerical solution is

obtained by using SGFEM in space, i.e. the stabilization parameter is set to be zero,

and θ-method in time. Due to the spatial instability troubles of standard Galerkin finite

element formulation as we emphasised on Chapter 1, the study we perform here is for

the cases Pe ≤ 1. In particular, in order to observe the effect of increment of the Peclet

number on the relative damping error, we also consider the Pe = 0, i.e. β = 0, case

which corresponds to the pure heat equation. For the time discretization, we concern with

there particular time marching methods that belongs to the family of θ-methods obtained

by choosing θ = 0, θ = 1
2

and θ = 1 which are namely forward Euler method, Crank-

Nicolson method and backward Euler method respectively.

4.1. Stability Analysis

Recall from the Definition 3.5 that, the amplification factor for our approximate

solution is given by (3.5). So proceeding with definition, together with (3.6)-(3.7) where

the corresponding elements of the global matrices are given by the equations (2.14) and

(2.15), one can derive

GA0 = (A0,m−1e
−iφ + A0,m + A0,m+1e

iφ)

=
∆x

6

(
e−iφ + 4 + eiφ

)
+ θ∆t

[
−κ
∆x

(
e−iφ − 2 + eiφ

)
− β

2

(
−e−iφ + eiφ

)]
=

∆x

3
(2 + cosφ) + θ∆t

[
2κ

∆x
(1− cosφ) + iβ sinφ

]

30



and

GB0 = (B0,m−1e
−iφ +B0,m +B0,m+1e

iφ)

=
∆x

6

(
e−iφ + 4 + eiφ

)
− (1− θ)∆t

[
−κ
∆x

(
e−iφ − 2 + eiφ

)
− β

2

(
−e−iφ + eiφ

)]
=

∆x

3
(2 + cosφ)− (1− θ)∆t

[
2κ

∆x
(1− cosφ) + iβ sinφ

]
.

Here φ is called as phase angle and is given by φ = k∆x. Hence, the amplification factor

g =
GB0

GA0
is expressed as

g =
1− (1− θ)∆tλ

1 + θ∆tλ
(4.1)

together with

λ =

2κ

∆x
(1− cosφ) + iβ sinφ

∆x

3
(2 + cosφ)

. (4.2)

To make a clearer observation through the amplification factor on our further study, let

us state ∆tλ, so the amplification factor, in terms of Peclet number and Courant number

which will lead a more useful representation

∆tλ = 3C

1

Pe
(1− cosφ) + i sinφ

cosφ+ 2
. (4.3)

Now the amplification factor (4.1) together with (4.3) is expressed in the desired

form. Thus, we can continue to our work with the particular cases of the θ-method.
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Forward Euler Case Employing θ = 0 on the amplification factor (4.1) with (4.3)

yields,

g = 1− 3C

1

Pe
(1− cosφ) + i sinφ

2 + cosφ
.

The magnitude of this expression is

|g|2 =

(
1− 3C(1− cosφ)

Pe(2 + cosφ)

)2

+

(
3C sinφ

2 + cosφ

)2

.

In order for requiring the von Neumann stability condition, we let |g|2 ≤ 1 and this leads

−6CPe(1− cosφ)(2 + cosφ) + 9C2(1− cosφ)2 + 9C2Pe2(1− cos2 φ) ≤ 0.

For φ = 0, observe that |g| = 1. So considering φ 6= 0 and leaving Courant number on

the left hand side, we therefore have

C ≤ 2Pe

3

2 + cosφ

(1− cosφ) + Pe(1 + cosφ)
:= f(Pe, φ).

To obtain a stability estimate, it follows from minimizing f(Pe, φ) with respect to φ that

∂f

∂φ
= −2Pe

3

sinφ
[
1− cosφ+ Pe2(1 + cosφ) + (2 + cosφ)(1− Pe2)

]
(1− cosφ+ Pe2(1 + cosφ))2

= −2Pe

3

sinφ(3− Pe2)

(1− cosφ+ Pe2(1 + cosφ))2
.

Now observe that f(Pe, φ) is constant along Pe =
√

3. So this choice is the critical level

to minimize f(Pe, φ).

Case 1. For any fix Pe <
√

3, f is decreasing and so it attains the minimum at
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φ = π. Consequently

C ≤ f(Pe, π) =
Pe

3
(4.4)

or

∆t ≤ ∆x2

6κ
(4.5)

which is the stability result for this case.

Case 2. For any fix Pe >
√

3, f is increasing. So to minimize f(Pe, φ), we let

φ→ 0 and conclude that

C ≤ f(Pe, φ) =
1

Pe
(4.6)

or equivalently

∆t ≤ 2κ

β2
. (4.7)

Note that for Pe =
√

3, the estimates (4.5) and (4.7) are identical.

Finally, stability region for both cases with respect to the Courant number and

Peclet number are given in the Figure 4.1. Blue and red regions stand for the conditions

(4.4) and (4.6) respectively.

Figure 4.1. Stability region using SGFEM in space and forward Euler method in time.

In Figure 4.2, we give the plots of the amplification factors for various values of
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Courant numbers for Pe = 0.1 and Pe = 1 cases. For the choices lesser than C = 1
30

and C = 1
3

which are the stability limits for Pe = 0.1 case and Pe = 1 case respectively,

observe that amplification factors vary below than g = 1 level. On the other hand, choos-

ing C = 0.1 for Pe = 0.1 case and C = 1 for Pe = 1 case that are greater than the

corresponding stability limits, give rise to exceed the |g| = 1 level which ends up with an

instability.
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(a) Pe = 0.1.
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(b) Pe = 1.

Figure 4.2. Amplification factor using SGFEM in space and forward Euler method in
time for various choices of Courant numbers.

We give the following remarks.

Remark 4.1 Observe that the stability estimate (4.5) does not depend on the coefficient

of convection term. In other words, considering the case β = 0 which corresponds to the

heat equation, one shall still derive the same stability estimate, that is, µ ≤ 1
6

where µ is

the diffusion number. Therefore, up to Pe =
√

3, diffusive process plays the leading role

for the stability requirement.

Remark 4.2 As the Peclet number gets higher values, we visualise from Figure 4.1 that

the selection field of Courant number, so ∆t, gets decreased. Consequently, looking at

(4.6), the solution becomes unconditionally unstable as Pe → ∞ and this coincides the

fact that forward Euler time integration yields an unconditionally unstable numerical

solution for pure convective problem.
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Crank-Nicolson Case For θ = 1
2
, the amplification factor (4.1) together with (4.3) is

given by

g =

1−
3C

2

1

Pe
(1− cosφ) + i sinφ

cosφ+ 2

1 +
3C

2

1

Pe
(1− cosφ) + i sinφ

cosφ+ 2

. (4.8)

A careful calculation leads

|g|2 =

(
2Pe(cosφ+ 2)− 3C(1− cosφ)

)2
+ 9C2Pe2 sin2 φ(

2Pe(cosφ+ 2) + 3C(1− cosφ)
)2

+ 9C2Pe2 sin2 φ
.

One can conclude that the above expression remains bounded by 1. In other words, the

von Neumann stability condition holds true for any choice of Peclet number and Courant

number which gives the unconditional stability. This fact could be visualized by observing

the Figure 4.3 and Figure 4.4 for some choices of Courant numbers.

(a) 3D plot of the amplification factor.
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(b) Plots of the amplification factor for various
choices of Courant numbers.

Figure 4.3. Amplification factor for Pe = 0.1 using SGFEM in space and Crank-
Nicolson method in time.

In spite of the unconditional stability of the Crank-Nicolson method, choice of ∆t,

or Courant number, should not be an arbitrary process, since choosing sufficiently large

time step may cause the method has a tendency to oscillate. This situation requires an

extra attention, so we give the following remark.
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(a) 3D plot of the amplification factor.
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(b) Plots of the amplification factor for various
choices of Courant numbers.

Figure 4.4. Amplification factor for Pe = 1 using SGFEM in space and Crank-
Nicolson method in time.

Remark 4.3 Looking at the expression (4.8), observe that the complex part of the ampli-

fication factor vanishes for φ = π. In other words, this choice annihilates the effect of

the contribution of the convective process to the numerical solution, that is to say, only

diffusive process plays the role on the approximate solution for this mode. On the other

hand, looking at the plots of the amplification factors for the case C = 1
30

on Figure 4.3

and for the case C = 1
3

on Figure 4.4, we see that the amplification factor touches to zero

for φ = π, which means there is neither growth nor decay on the approximate solution

for that Fourier mode. This is indicative of potential node-to-node oscillatory behaviour

of the numerical solution [34].

Now in order to obtain the oscillating limit, it follows from employing φ = π on

the amplification factor (4.8) and forcing g(π) = 0 that

g(π) =
1−

3C

Pe

1 +
3C

Pe

= 0.

Solving this equation for C, we therefore have the oscillating limit

C =
Pe

3
.
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Corollary 4.1 Let the problem (2.1)-(2.4) be discretized by SGFEM in space and Crank-

Nicolson method in time. Then, the oscillating limit for the corresponding approximate

solution is given by

C =
Pe

3
. (4.9)

We illustrate this with the following example.

Example 4.1 Consider the unsteady convection–diffusion problem, where diffusion coef-

ficient is set to κ = 0.1 and convective field is β = 1. No external forces are acting on the

system and final time is set to T = 0.2. The initial data is defined as

u0(x) =

1 if |x− 0.5| ≤ 0.25

0 otherwise
.

In Figure 4.5 numerical solutions derived by using SGFEM in space and Crank-

Nicolson method in time for various choices of Courant numbers are represented. Peclet
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(a) C = 1/30.
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(b) C = 0.5.
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(c) C = 1.

Figure 4.5. Approximate solution of Example 4.1 for various choices of Courant num-
bers.

number is chosen as Pe = 0.1 and Courant numbers are chosen as C = 1
30

, C = 0.5 and

C = 1 respectively. Note that the first one corresponds for the oscillating limit (4.9). We

observe that the numerical solutions for the corresponding choices of Courant numbers

remain stable. However, for C = 0.5, we see from Figure 4.5(b) that small spurious

oscillations start occuring near the points x = 0.25 and x = 0.75 where the initial

condition has jump discontinuties. For C = 1, we observe from Figure 4.5(c) that the

oscillations become more visible around these points.
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Backward Euler Case For θ = 1, the amplification factor (4.1) in terms of Peclet

number and Courant number is given by

g =

1 + 3C

1

Pe
(1− cosφ) + i sinφ

cosφ+ 2


−1

.

Following from the above expression, we have

|g|2 =
Pe2(2 + cosφ)2(

Pe(2 + cosφ) + 3C(1− cosφ)
)2

+ 9C2Pe2 sin2 φ

and this remains bounded by 1 for all choices of Peclet number and Courant number.

Consequently, backward Euler method yields an unconditionally stable method similar to

the Crank-Nicolson case. This conclusion can also be observed by looking to the figures

4.6 and 4.7.

(a) 3D plot of the amplification factor.
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(b) Plots of the amplification factor for various
choices of Courant numbers.

Figure 4.6. Amplification factor for Pe = 0.1 using SGFEM in space and backward
Euler method in time.
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(a) 3D plot of the amplification factor.
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(b) Plots of the amplification factor for various
choices of Courant numbers.

Figure 4.7. Amplification factor for Pe = 1 using SGFEM in space and backward
Euler method in time.

The summary of the stability conclusions given in the following.

Corollary 4.2 Consider the fully discretized form of the model problem (3.1)-(3.3) ob-

tained by using SGFEM in space and generalized trapezoidal rule in time.

i. Let θ = 0 and assume that Pe ≤
√

3 holds true. Then the time stability requirement

is given by

C <
Pe

3
.

ii. Let θ = 0 and assume that Pe >
√

3 holds true. Then the time stability requirement

is given by

C <
1

Pe
.

iii. Let θ = 1
2

or θ = 1. Then the numerical solution is stable independent of choosing

Courant number and Peclet number, i.e. space and time mesh sizes.
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4.2. Accuracy Analysis

In this section, using the formulations we derived on Section 3.2, we express the

asymptotic expansions of numerical temporal damping and numerical temporal frequency

in order to derive the accuracy in damping and accuracy in frequency with respect to

space and time mesh. Then we plot the errors in damping and in phase speed, to visualise

whether the computed temporal errors are more than enough or less than enough. As we

stated at the begining of the chapter, we consider only the cases Pe ≤ 1 and in addition,

Pe = 0 case for relative damping error. For the latter case, note that, the Courant number

is zero and therefore, the parameter we are going to use for the mesh ratio is the diffusion

number, µ.

4.2.1. Relative Damping Error

Recall that the formulation of relative damping error is given in Definition 3.8. As

we did for the amplification factor, we find it necessary to re-express the formulation in

terms of Courant number and Peclet number as

εD = − 2Pe

Cφ2
ln |g| (4.10)

for our further analysis. We give the related results using forward Euler, Crank-Nicolson

and backward Euler methods in the following.

Forward Euler Case Let θ = 0. Using (3.19), series expansion of numerical damping

factor in terms of φ is

ξh = ξ − β2∆t

2∆x2
φ2 +

1

12∆x4

(
6κ2∆t− 12κβ2∆t2 + κ∆x2 + 3β4∆t3

)
φ4 +O(φ6).

In Figure 4.8, plots of the relative damping error for Pe = 0, Pe = 0.1 and Pe = 1 cases

are shown. As we stated in Remark 3.4, εD < 0 is interpreted as an unstable solution. In

fact, observing from the figures that, choice of diffusion number above from 1
6

for pure

diffusive case, Courant numbers above from 1
30

for Pe = 0.1 case and above from 1
3

for

Pe = 1 case, which are the corresponding stability limits, causes the error to drop to the
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negative part. Another point of view which is an important and significant observation for

Pe > 0 cases is the underdamped behaviour in the low frequency range, i.e. in the range

of φ→ 0, that is indication of possible unstable behaviour of the approximate solution. It

becomes more visible as we increase the Peclet number.
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Figure 4.8. Relative damping error for various values of diffusion numbers (Pe = 0)
and Courant numbers (Pe 6= 0) using SGFEM in space and forward Euler
method in time.

Crank-Nicolson Case For θ = 1
2
, series expansion of the numerical damping factor in

terms of φ is

ξh = ξ − 1

12∆x4

(
−3κβ2∆t2 + κ∆x2

)
φ4

+
1

720∆x6

(
60κ3∆t2 + 45κβ4∆t4 + 2κ∆x4 − 15κβ2∆x2∆t2

)
φ6 +O(φ8).

We first give the following remarks.

Remark 4.4 Choosing the Courant number as C = 1√
3

results that the coefficient of the

forth order term on the above expansion becomes zero. Consequently such choice will

increase the accuracy of the damping of the method in space dimension to O(∆x4).

Remark 4.5 Considering Pe → ∞, i.e. κ → 0, we obtain ξ = ξh which coincides the

fact that Crank-Nicolson method is non-dissipative for pure convective problem.

Relative damping errors of the numerical results for Pe = 0, Pe = 0.1 and Pe = 1

cases are shown in Figure 4.9. For all cases, choice of low diffusion numbers or low

Courant numbers results an overdamped numerical solution. Unlike the forward Euler

case, damping error behaves as optimal in the low frequncy range. µ = 1
6

for pure diffu-

sive case, C = 1
30

for Pe = 0.1 case and C = 1
3

for Pe = 1 case are the oscillating limits.
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It can be interpreted from each figure that, the error has a tendency to the εD = 0 level,

i.e. no damping level, for the choice of higher parameters than these oscillating limits.
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Figure 4.9. Relative damping error for various values of diffusion numbers (Pe = 0)
and Courant numbers (Pe 6= 0) using SGFEM in space and Crank-
Nicolson method in time.

Backward Euler Method Letting θ = 1, series expansion of the numerical damping in

terms of φ is

ξh = ξ +
β2∆t

2∆x2
φ2 +

1

12∆x4

(
−6κ2∆t− 12κβ2∆t2 + κ∆x2 − 3β4∆t3

)
φ4 +O(φ6).

Related plots for relative damping errors for Pe = 0, Pe = 0.1 and Pe = 1 cases

are shown in Figure 4.10. Comparing the figures, we see that the backward Euler method
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Figure 4.10. Relative damping error for various values of diffusion numbers (Pe = 0)
and Courant numbers (Pe 6= 0) using SGFEM in space and backward Euler
method in time.

has a better damping property for pure diffusive case and for low Peclet numbers. For the

Pe = 1 case, we may comment that large Courant numbers are bad at both ends since it

overdamps the long waves and underdamps the short waves. Especially the behaviour in
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the low frequency range is important on making a comparison between Crank-Nicolson

operator as it causes a serious damping even in the φ→ 0 range.

Remark 4.6 Despite being out of interest, we require it necessary to state that, for pure

diffusive case, i.e. β = 0, choice of µ = 1
6

comes out with canceling the forth order term

which increases the accuracy of damping of the method in time up to order 2.

4.2.2. Relative Phase Speed Error

The expression for relative phase speed error that we derived on Definition 3.9 can

be re-expressed in terms of Courant and Peclet numbers as

εS = − 1

Cφ
arg(g). (4.11)

Related analysis for forward Euler, Crank-Nicolson and backward Euler cases are given

in the following.

Forward Euler Case Taking θ = 0, the series expansion of numerical temporal fre-

quency in terms of φ is

ωh = ω +
1

3∆x3

(
−3κβ∆t+ β3∆t2

)
φ3

+
1

180∆x5

(
−180κ2β∆t2 − 15κβ∆t∆x2 + 180κβ3∆t3

− 36β5∆t4 + β∆x4
)

+O(φ7).

Plots of the relative phase speed error for Pe = 0.1 and Pe = 1 cases are shown

in Figure 4.11. C = 1
30

and C = 1
3

are the corresponding stability limits. Except for low

Courant numbers, all choices result with a leading error. To capture nice phase behaviour,

low Courant number is required to be chosen.
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Figure 4.11. Relative phase speed error for various values of Courant numbers, using
SGFEM in space and forward Euler method in time.

Crank-Nicolson Case For θ = 1
2
, series expansion of the numerical temporal frequency

in terms of φ is given by

ωh = ω +
β3∆t2

12∆x3
φ3 +

1

720∆x5

(
−180κ2β∆t2 − 9β5∆t4 + 4β∆x4

)
φ5 +O(φ7).

0 0.5 1 1.5 2 2.5 3
0

5

10

15

(a) Pe = 0.1.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Pe = 1.

Figure 4.12. Relative phase speed error for various values of Courant numbers, using
SGFEM in space and Crank-Nicolson method in time.

See Figure 4.12 for relative phase speed errors for Pe = 0.1 and Pe = 1 cases.

For diffusion dominated case, numerical solutions have a leading error except for the low

Courant numbers. As Pe increases, it seems that the method becomes more successful on

phase speed accuracy. However, it is observed from Figure 4.12(b) that, large choice of

Courant numbers causes a slow down on the waves. The behaviour is not monotonic so
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that neither small nor large Courany number is required to catch a nice accuracy on phase

speed.

Backward Euler Case Employing θ = 1 on (4.11) and expanding in terms of φ, we

have

ωh = ω +
1

3∆x3

(
3κβ∆t+ β3∆t2

)
φ3

+
1

180∆x5

(
−180κ2β∆t2 + 15κβ∆t∆x2 − 180κβ3∆t3

− 36β5∆t4 + β∆x4
)

+O(φ7).

Figure 4.13 shows the relative phase speed error for the backward Euler method.

It is obvious to observe that, the method causes a delay for any choice of Courant number

and small Courant numbers are required in order to obtain a reasonable accuracy.
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Figure 4.13. Relative phase speed error for various values of Courant numbers, using
SGFEM in space and backward Euler method in time.

4.2.3. Some Remarks and Conclusions

Consistency Looking through the series expansions of numerical damping and numer-

ical frequency, difference of them with their exact counterparts tends to zero as ∆t → 0

and ∆x→ 0. This provides the consistency.
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Accuracy In Table 4.1, order of the accuracies in damping and in frequency of each time

stepping methods are shown. The orders are obtained by the looking at the lowest order

terms of the corresponding series expansions. Also the orders correspond to a particular

choice of Courant number, which is stated in Remark 4.4 are shown.

Looking through the first column of the table, all of the methods are equally ac-

curate in space except the particular choice of Courant number using Crank-Nicolson

method. On the other hand, this choice does not have a contribution on the accuracy of

frequency in space dimension and all methods are fourth order accurate. For the time

accuracy, Crank-Nicolson method has a second order accuracy in time for both damping

and frequency, whereas others are first order accurate.

Time Integrator ξh ωh

Forward Euler O (∆t,∆x2) O (∆t,∆x4)
Crank-Nicolson O (∆t2,∆x2) O (∆t2,∆x4)
Crank-Nicolson with C = 1√

3
O (∆t2,∆x4) O (∆t2,∆x4)

Backward Euler O (∆t,∆x2) O (∆t,∆x4)

Table 4.1. Accuracy of the numerical damping and numerical frequency of the nu-
merical schemes using different time integrators.

Comparison of Relative Damping Error In the figures 4.14-4.15, relative damping

errors using each time stepping method are compared with eachother.
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Figure 4.14. Comparison of relative damping errors of the time integrators for pure dif-
fusive case.

As the heat equation comes up with a smooth solution, we can focus on the low

frequency range for pure diffusive case. For each choice, one can observe that backward

Euler method has a better capability on the damping property.

Observing from 4.15(a)-4.15(c), this situation remains same. However, it starts

changing in favor of Crank-Nicolson method, as we increase the Peclet number. In fact,

backward Euler causes a serious damping in the range of φ → 0, whereas the behaviour
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Figure 4.15. Comparison of relative damping errors of the time integrators for
convective–diffusive case: Pe = 0.1 on the above and Pe = 1 on the
below.

of Crank-Nicolson on damping is in the optimal range. Forward Euler method is most

uncapable one out of three. Note that, the figures which do not contain the error obtained

by forward Euler is because of the instability of the numerical solution for those choices

of Courant and Peclet numbers.

Comparison of Relative Phase Speed Error In Figure 4.16, relative phase speed errors

using each time integrator for Pe = 0.1 case on the above and Pe = 1 case on the below

are shown. An immediate observation here is, all errors are close to the optimal level in

the low frequency range. Secondly, as we increase the peclet number, we observe that

Crank-Nicolson method has a better coherence out of three on the phase speed error. We

again note that the plots that do not include the forward Euler case is due to the instable

behaviour of the numerical solution.
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Figure 4.16. Comparison of relative phase speed errors of the time integrators: Pe = 0.1
on the above and Pe = 1 on the below.
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CHAPTER 5

STABILITY AND ACCURACY ANALYSIS OF

SDFEM/θ-METHOD

As we have mentioned briefly on Section 1.1.1, SGFEM with low order piece-

wise polynomials develops spurious oscillations for Convection–Diffusion problems near

boundary layer if the problem is convection dominated, i.e.

|Coefficient of Convection|
|Coefficient of Diffusion|

� 1.

In order to avoid this undesired situation, now we set a stabilization term which we men-

tion in Appendix B. We also briefly introduce the related discrete structure in Appendix

A and express the corresponding finite difference formulation in Section 2.2. So, by con-

sidering the approximate solution for Pe > 1 case, our main objective in this chapter is

to observe and comment on the possible changes of the stability and temporal accuracy

properties of the stabilized methods and also check whether there can be found any op-

timal choice of stabilization parameter that yields a well-behaved approximate solution

with respect to the temporal errors.

5.1. Stability Analysis

Recall that the amplification factor, by Definition 3.5, is given by

g(φ,∆x,∆t) =
GBτ

GAτ
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where, together with τ 6= 0,

GAτ =
(
Aτ,m−1e

−iφ + Aτ,m + Aτ,m+1e
iφ
)

=
∆x

6

(
e−iφ + 4 + eiφ

)
+
τβ

2

(
e−iφ + eiφ

)
+ θ∆t

[
−κ+ τβ2

∆x

(
e−iφ − 2 + eiφ

)
− β

2

(
−e−iφ + eiφ

)]
=

∆x

3
(cosφ+ 2)− iτβ sinφ+ θ∆t

[
2(κ+ τβ2)

∆x
(1− cosφ) + iβ sinφ

]

and

GBτ =
(
Bτ,m−1e

−iφ +Bτ,m +Bτ,m+1e
iφ
)

=
∆x

6

(
e−iφ + 4 + eiφ

)
+
τβ

2

(
e−iφ + eiφ

)
− (1− θ)∆t

[
−κ+ τβ2

∆x

(
e−iφ − 2 + eiφ

)
− β

2

(
−e−iφ + eiφ

)]
=

∆x

3
(cosφ+ 2)− iτβ sinφ− (1− θ)∆t

[
2(κ+ τβ2)

∆x
(1− cosφ) + iβ sinφ

]
.

Proceeding with some basic operations, one may derive the amplification factor as

g =
1− (1− θ)∆tλ

1 + θ∆tλ
(5.1)

together with

∆tλ =

2(κ+ τβ2)

∆x
(1− cosφ) + iβ sinφ

∆x

3
(cosφ+ 2)− iτβ sinφ

. (5.2)
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Re-expressing ∆tλ, thus g, in terms of Peclet number and Courant number, we have

∆tλ = C

 1

Pe
+

2τβ

∆x

 (1− cosφ) + i sinφ

2 + cosφ

3
− i

τβ

∆x
sinφ

. (5.3)

In the following parts, we will continue with the stability analysis by considering the

forward Euler, Crank-Nicolson and backward Euler cases.

Forward Euler Case Let θ = 0. Then the amplification factor (5.1) with (5.3) is given

by

g = 1− C

 1

Pe
+

2τβ

∆x

 (1− cosφ) + i sinφ

2 + cosφ

3
− i

τβ

∆x
sinφ

Then,

|g|2 =

[
2+cosφ

3
− C

(
1

Pe
+ 2τβ

∆x

)
(1− cosφ)

]2
+
(
C + τβ

∆x

)2
(1− cos2 φ)(

2+cosφ
3

)2
+
(
τβ
∆x

)2
(1− cos2 φ)

. (5.4)

Numerator of the last expression can be rewritten as

(
2 + cosφ

3

)2

− 2C

(
1

Pe
+

2τβ

∆x

)
(2 + cosφ)(1− cosφ)

3

+ C2

(
1

Pe
+

2τβ

∆x

)2

(1− cosφ)2 +

(
C +

τβ

∆x

)2

(1− cos2 φ)
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or equivalently as

(
2 + cosφ

3

)2

+

(
τβ

∆x

)2

(1− cos2 φ)

+ 2C(1− cosφ)

[
−
(

1

Pe
+

2τβ

∆x

)
2 + cosφ

3
+
τβ

∆x
(1 + cosφ)

]
+ C2(1− cosφ)

[(
1

Pe
+

2τβ

∆x

)2

(1− cosφ) + (1 + cosφ)

]
.

Now dividing this with the denominator of (5.4), forcing the stability condition |g|2 < 1

and simplifying the resulting expression yields

2

[
−
(

1

Pe
+

2τβ

∆x

)
2 + cosφ

3
+

τβ

∆x
(1 + cosφ)

]
+ C

[(
1

Pe
+

2τβ

∆x

)2

(1− cosφ) + (1 + cosφ)

]
< 0.

If follows from leaving C on the left hand side of the last inequality that

C <

2

 1

Pe
+

2τβ

∆x

 2 + cosφ

3
−
τβ

∆x
(1 + cosφ)


 1

Pe
+

2τβ

∆x

2

(1− cosφ) + (1 + cosφ)

=
2

3∆xPe

2∆x+ τPeβ + (∆x− τPeβ) cosφ 1

Pe
+

2τβ

∆x

2

(1− cosφ) + (1 + cosφ)

. (5.5)

Now define

f(Pe, φ) :=
2

3∆xPe

2∆x+ τPeβ + (∆x− τPeβ) cosφ 1

Pe
+

2τβ

∆x

2

(1− cosφ) + (1 + cosφ)

. (5.6)
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We will obtain the stability requirements through the inequality C ≤ f(Pe, φ) by min-

imizing f(Pe, φ) with respect to φ. But first, our expectation from f(Pe, φ) is to be a

positive function for all values of φ in order to obtain a reasonable inequality. So we give

the following lemma.

Lemma 5.1 f , defined by (5.6), is a positive function of φ for any given positive real

parameters ∆x, β and τ , and for any choice of Peclet number.

Proof It is enough to show that

2∆x+ τPeβ + (∆x− τPeβ) cosφ > 0

or

2 +
τPeβ

∆x
+

(
1− τPeβ

∆x

)
cosφ > 0

holds true as it is straightforward to see that the denominator of (5.6) is a positive function

of φ. Define η := τPeβ
∆x

> 0.

Case 1: 0 < η ≤ 1. Then,

2 + η + (1− η) cosφ = 1 + (1 + cosφ) + η(1− cosφ) > 1.

Case 2. η > 1. Then,

2 + η + (1− η) cosφ = η(1− cosφ) + 2 + cosφ > 1.

Hence, we end up with positiveness of the numerator of f . Thus f is itself a positive

function of φ. This provides us a reasonable inequality for C ≤ f(Pe, φ), as Courant

number is supposed to be a positive quantity. �

Based on the positiveness of f , we can now minimize f(Pe, φ) with respect to

φ and take the lowest of all choices of f(Pe, φ) to obtain a stability requirement for the

forward Euler method. This is given by the following lemma.
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Lemma 5.2 Let ∆x, β and τ are given parameters. Then f , defined on (5.6), attains

its minimum at φ = π for Pe < 3τβ
∆x

+

√
3 +

(
3τβ
∆x

)2
and at φ = 0 for Pe > 3τβ

∆x
+√

3 +
(

3τβ
∆x

)2
. The minimum values are given by

f(Pe, π) =
1

3

2τβ

∆x
+

1

Pe

−1

(5.7)

and

f(Pe, 0) =
1

Pe
(5.8)

respectively.

Proof Differentiating (5.6) with respect to φ results in

∂f

∂φ
=

∆x2Pe(∆x+ 2τPeβ)
[
∆x(Pe2 − 3)− 6τPeβ

]
sinφ

3
[
∆x2(Pe2 + 1) + (∆x(Pe− 1)− 2τPeβ) (∆x(Pe + 1) + 2τPeβ) + 4τPeβ(τPeβ + 1)

]2 .
Observe that f(Pe, φ) is constant along ∆x(Pe2−3)−6τPeβ = 0. Solving this quadratic

equation for Pe yields

Pe =
3τβ

∆x
+

√
3 +

(
3τβ

∆x

)2

(5.9)

or

Pe =
3τβ

∆x
−

√
3 +

(
3τβ

∆x

)2

.

The latter is negative, so we choose (5.9) as a threshold level to minimize f(Pe, φ).
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Case 1. Let Pe < 3τβ
∆x

+

√
3 +

(
3τβ
∆x

)2
. Then ∂f

∂φ
< 0 and so, for a fix Peclet

number, f gets its minimum at φ = π. Thus, following from (5.6),

f(Pe, π) =
2

3∆xPe

2∆x+ τPeβ − (∆x− τPeβ)

2

2τβ

∆x
+

1

Pe

2

=
1

3

2τβ

∆x
+

1

Pe

−1

.

Case 2. Let Pe > 3τβ
∆x

+

√
3 +

(
3τβ
∆x

)2
. Then ∂f

∂φ
< 0, i.e. f is increasing with

respect to φ and consequently to get the minimum value, letting φ→ 0 yields

f(Pe, 0) =
2

3∆xPe

2∆x+ τPeβ + (∆x− τPeβ)

2
=

1

Pe
.

One can deduce by choosing the Peclet number as Pe = 3τβ
∆x

+

√
3 +

(
3τβ
∆x

)2
that, the

minimum values (5.7) and (5.8) become equivalent. �

Along with obtaining the minimum values of f(Pe, φ), we can now conclude with

the stability requirements. Following from (5.5), for Pe < 3τβ
∆x

+

√
3 +

(
3τβ
∆x

)2
we have

C < f(Pe, π) =
1

3

2τβ

∆x
+

1

Pe

−1

. (5.10)

Contrary for Pe > 3τβ
∆x

+

√
3 +

(
3τβ
∆x

)2
, then we have

C < f(Pe, 0) =
1

Pe

or equivalently

∆t <
2κ

β2
. (5.11)
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We give the following remarks.

Remark 5.1 When we compare the diffusion dominated stability limits obtained by stan-

dard Galerkin finite element discretization and the stabilized method which are given by

(4.4) and (5.10) respectively, we see on the latter case that there is an additional term on

the denominator of the condition which depends on the convective velocity and the ele-

ment measure. So the price of removing the boundary layer problem rises from standard

Galerkin finite element discretization is restricting the choice interval of time step. Also,

employing τ = 0, note that we recover the estimate obtained by using SGFEM.

Remark 5.2 Contrary, stability condition for the convection dominated case (5.11) is

exactly same as the one we obtained by SGFEM which is given by (4.7). Whence we may

comment that the stabilization parameter does not have a positive, nor negative effect on

choosing the time step so that, the condition still preserves its strongness especially when

0 < κ� 1.

Crank-Nicolson Case Taking θ = 1
2
, the amplification factor (5.1) together with (5.3)

is

g =

1−
C

2

 1

Pe
+

2τβ

∆x

 (1− cosφ) + i sinφ

2 + cosφ

3
− i

τβ

∆x
sinφ

1 +
C

2

 1

Pe
+

2τβ

∆x

 (1− cosφ) + i sinφ

2 + cosφ

3
− i

τβ

∆x
sinφ

(5.12)

Then,

|g|2 =

2(2 + cosφ)

3
− C

 1

Pe
+

2τβ

∆x

 (1− cosφ)

2

+

2τβ

∆x
+ C

2

sin2 φ

2(2 + cosφ)

3
+ C

 1

Pe
+

2τβ

∆x

 (1− cosφ)

2

+

2τβ

∆x
− C

2

sin2 φ
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or equivalently

|g|2 = 1−

8C

3

 1

Pe
+

2τβ

∆x

 (2 + cosφ)(1− cosφ)− 8C
τβ

∆x
sin2 φ

2(2 + cosφ)

3
+ C

 1

Pe
+

2τβ

∆x

 (1− cosφ)

2

+

2τβ

∆x
− C

2

sin2 φ

= 1−

8C(1− cosφ)

3Pe

2 +
τβPe

∆x
+

1−
τβPe

∆x

 cosφ


2(2 + cosφ)

3
+ C

 1

Pe
+

2τβ

∆x

 (1− cosφ)

2

+

2τβ

∆x
− C

2

sin2 φ

.

Numerator of the second term on the right hand side of the last expression is positive by

Lemma 5.1. Thus, the amplification factor |g| remains bounded by 1 for any parameter.

As a result, the Crank-Nicolson method yields an unconditionally stable approximate

solution.

Backward Euler Case For θ = 1, the amplification factor (4.3) with (4.5) is represented

as

g =
1

1 + C

 1

Pe
+

2τβ

∆x

 (1− cosφ) + i sinφ

2 + cosφ

3
− i

τβ

∆x
sinφ

. (5.13)

Then its magnitude is

|g|2 =

2 + cosφ

3

2

+

 τβ

∆x

2

sin2 φ

2 + cosφ

3
+ C

 1

Pe
+

2τβ

∆x

 (1− cosφ)

2

+

C−
τβ

∆x

2

sin2 φ

.
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which can be re-expressed as

|g|2 = 1−

C2(1− cosφ)

 1

Pe
+

2τβ

∆x

2

(1− cosφ) + (1 + cosφ)


2 + cosφ

3
+ C

 1

Pe
+

2τβ

∆x

 (1− cosφ)

2

+

C−
τβ

∆x

2

sin2 φ

−

2C(1− cosφ)

3Pe

2 +
τβPe

∆x
+

1−
τβPe

∆x

 cosφ


2 + cosφ

3
+ C

 1

Pe
+

2τβ

∆x

 (1− cosφ)

2

+

C−
τβ

∆x

2

sin2 φ

.

Looking on the right hand side, second term is positive. Again by using Lemma 5.1, third

term is also positive. Thus, |g| ≤ 1 holds true which yields the unconditionally stability

of the approximate solution.

We summerize the stability conclusions as following.

Theorem 5.1 Consider the fully discretized form of the model problem (2.1)-(2.4) by us-

ing SDFEM in space and generalized trapezoidal rule in time. Let ∆x, β and Pe are

given constants and τ be a stabilization parameter.

i. Let θ = 0 and assume that Pe ≤ 3τβ
∆x

+

√
3 +

(
3τβ
∆x

)2
holds true. Then the time

stability requirement is given by

C <
1

3

(
2βτ

∆x
+

1

Pe

)−1

.

ii. Let θ = 0 and assume that Pe > 3τβ
∆x

+

√
3 +

(
3τβ
∆x

)2
holds true. Then the time

stability requirement is given by

C <
1

Pe
⇒ ∆t <

2κ

β
.

iii. Let θ = 1
2

or θ = 1. Then the numerical solution is stable independent of choosing

Courant number and Peclet number, i.e. space and time mesh sizes.
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Lastly, note that setting τ = 0, we recover the results given in the Corollary 4.2.

5.2. Accuracy Analysis

This section is devoted to the similar study done on Section 4.2. We are going to

measure the temporal behaviours of the approximate solutions, again using the relations

we derived on Section 3.2. Unlike the previous section, we now consider Pe > 1 case

and therefore a stabilization parameter is required to be set, which is given by (B.2) in

Appendix B. Also let us state that, we now do not interested in forward Euler case as

the stability condition we derived for convection dominated case (5.11) is too restrictive

on choosing time step. Moreover choosing such small time steps does not only cause

a computational cost, but also cause a rounding error which affects the accuracy of the

numerical solution due to the finite precision of computer arithmetic [2].

5.2.1. Relative Damping Error

In this part, we give the results of damping properties for Crank-Nicolson and

backward Euler methods.

Crank-Nicolson Case Series expansion of numerical damping for θ = 1
2

is given by

ξh = ξ +
1

12∆x4

(
−3κ2∆t2 + (κ+ β2τ)∆x2 − 12κβ2τ 2

)
φ4

+
(
60κ(κ2 − 6κβ2τ + 3β4τ 2)∆t2 + 45κβ4∆t4 + 2(κ+ 5β2τ)∆x4

+ 720κβ4τ 4 − 15β2(κ+ β2τ)∆t2∆x2 + 60β2(−κ+ β2τ)∆x2τ 2
)
φ6 +O(φ8).

The error in damping for various choices of Courant numbers are shown in Figure

5.1. In the range of long waves, i.e. φ → 0, all choices yields nearly same amount of

dampings which are almost same as the optimal level, as in the case of SGFEM in section

4.2.1. This is due to the fact that the stabilization parameter (B.2) vanishes as φ → 0

and thus the behaviour of the approximate solutions derived by SDFEM and SGFEM are

similar. As a result, the artificial diffusion does not shows up for long waves as it should

be and consequently, we shall comment that, this is a positive effect of Crank-Nicolson

method.
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(a) Pe = 2.5.
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(b) Pe = 10.

Figure 5.1. Relative damping error for various values of Courant numbers, using SD-
FEM in space and Crank-Nicolson method in time.

On the other hand looking at the high frequency range, especially for Pe = 10,

all choices yield an additional dissipation on the numerical solution. This is very wel-

come, especially for the convection dominated problems where high frequency modes are

responsible for the spatial oscillations, since the main duty of the artificial diffusion is to

damp these spurious oscillations occured because of the standard spatial discretization.

Backward Euler Case Taking θ = 1, series expansion of numerical damping in terms

of φ is

ξh = ξ +
β2∆t

2∆x2
φ2 +

1

12∆x4

(
−6κ(κ− 2β2τ)∆t+ (κ+ β2τ)∆x2 − 12κβ2τ 2

− 12κβ2∆t2 − 3β4∆t3
)
φ4 +O(φ6).

Plots of relative damping errors for various choices of Courant numbers are dis-

played in Figure 5.2. An immediate observation here is, in the range of long waves,

εD > 1 and therefore even the long waves are being damped overmuch. As we increase

the Peclet number, i.e. the coefficient of diffusive term becomes smaller, this situation be-

comes more evident and is not welcome. To catch a reasonable approximation, we require

a low Courant number.
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(a) Pe = 2.5.
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(b) Pe = 10.

Figure 5.2. Relative damping error for various values of Courant numbers, using SD-
FEM in space and backward Euler method in time.

5.2.2. Relative Phase Speed Error

In this part, we give the series expansions and display the numerical results of the

phase speed errors obtained by Crank-Nicolson method and backward Euler method.

Crank-Nicolson Case Let θ = 1
2
. Series expansion of numerical temporal frequency in

terms of φ is given by

ωh = ω +
1

12∆x3

(
−12κβτ + β3∆t2

)
φ3 +

1

720∆x5

(
180κβ(−κ+ β2τ)∆t2

− 60β(κ+ β2τ)∆x2τ + 720κβ3τ 3 − 9β5∆t4 + 4β∆x4
)
φ5 +O

(
φ7
)

Looking at Figure 5.3 choice of Courant number should be neihter large nor small

to catch a good accuracy on phase speed. Sufficiently large Courant numbers yield a

delayed numerical solution, whereas the small ones cause a leading error. The behaviour

is not monotonic with respect to Courant number, or ∆t, thus there may be expected a

intermediate value close to the expected level εS = 1.

Remark 5.3 To annihilate the third order term in the series expansion given above, we

let τ = ∆x2

12κ
under the choice C = 1. Consequently, the method becomes forth order

accurate in space. Related comments on the phase error and corresponding numerical

experiments are shown in Section 5.2.3.

61



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) Pe = 2.5.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) Pe = 10.

Figure 5.3. Relative phase speed error for various values of Courant numbers using
SDFEM in space and Crank-Nicolson method in time.

Backward Euler Case Taking θ = 1, series expansion of numerical temporal frequency

in terms of φ is given by

ωh = ω +
1

12∆x3

(
−3κβ∆t− β3∆t2 + 3κβτ

)
φ3 +

1

180∆x5

(
180κβ(−κ+ β2τ)∆tτ

+ 180κβ(κ− β2τ)∆t2 + 15β(κ− β2τ)∆x2τ − 15β(κ+ β2τ)∆t∆x2

+ 180κβ3∆t3 − 180κβ3τ 3 + 36β5∆t4 − β∆x4
)
φ5 +O

(
φ7
)
.
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Figure 5.4. Relative phase speed error for various values of Courant numbers using
SDFEM in space and backward Euler method in time.

Observing from the Figure 5.4, all choices except the low ones causes a delay

on the numerical solution. We note that there is not any significant change on the phase

speed behaviour of the solution as we increase Peclet number. This situation also holds
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for higher Peclet numbers.

5.2.3. Some Remarks and Numerical Experiments

Consistency Each of the method we considered, the constant terms in the series ex-

pansions of ξh and ωh are identical to their exact counterparts ξ and ω, as ∆x → 0 and

∆t → 0 provided that τ → 0 is automatically being satisfied according to our choice

(B.2). Hence, consistency is recovered.

Accuracy In the Table 5.1 lowest order terms of ∆x, ∆t and τ are shown for both

methods. They have the same accuracy in space: second order and mixed term involving

second order for numerical damping and forth order or mixed term involving second order

for numerical frequency. Observe for the numerical frequency that, the stabilization term

τ occurs together with a second order spatial mesh. Therefore an inappropriate choice of

stabilization term may cause a drop of the accuracy of numerical frequency in space. The

difference of the errors occurs in time so that, Crank-Nicolson is second order accurate in

both numerical damping and numerical frequency, whereas backward Euler is first order

accurate.

Time Integrator ξh ωh

Crank-Nicolson O (∆t2,∆x2, τ 2,∆t2τ,∆x2τ) O (∆t2,∆x4, τ,∆t2τ,∆x2τ)
Backward Euler O (∆t,∆x2, τ 2,∆tτ,∆x2τ) O (∆t,∆x4, τ,∆tτ,∆x2τ)

Table 5.1. Accuracy of the numerical damping and numerical frequency of the nu-
merical schemes with different time integrators.

Comparison Between Time Integrators: Damping In the Figure 5.5 plots for relative

damping errors of Crank-Nicolson Method and backward Euler method for Pe = 2.5

case on the above and Pe = 10 case on the below are displayed. Immediate observation

from the figures is the overdamped behaviour of the backward Euler method in the low

frequency range. On the other hand the error of Crank-Nicolson method varies around the

optimal level and is better on damping according to backward Euler method in general as

we mentioned in Section 5.2.1. Especially, for some particular choices on the parameters

yield closer relative errors to the optimal level.
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Figure 5.5. Comparison of relative damping errors of the time integrators for
convective–diffusive case: Pe = 2.5 on the above and Pe = 10 on the
below.

Comparison Between Time Integrators: Phase Speed For a comparison of relative

phase speed errors, see Figure 5.6. As we stated previously, all choices causes a delay

on the numerical solution obtained by backward Euler method. On the other hand, it

is obvious to observe that Crank-Nicolson method is more capable on phase accuracy

especially for some specific parameters.

Numerical Experiments for Different Choice of Stabilization Terms In this part,

we test the numerical solutions using our stabilization term τ = ∆x2

12κ
, that we give in

Remark 5.3, with different choices. These stabilization terms are given in (B.2) which is

suggested by Shakib and Hughes [34] and in (B.5) which is suggested by Raymond and

Garder [32]. Depending on our damping error and phase speed error comparisons on the

previous part, we prefer using Crank-Nicolson time stepping. The problem we present

is as following: The diffusion coefficient is taken as κ = 10−6, the convective field is

β = 1, there is no external source acting on the system and final time is set to be T = 0.5.

Lastly, refering to [28], the Courant number is set to be C = 0.5 for other stabilization

parameters, since the numerical method with this choice has a better ability on reducing

the spurious oscillations, whereas choice of Courant number for our stabilization term is

set to be C = 1.
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(a) C = 0.5.
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(b) C = 0.75.
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(c) C = 1.
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(d) C = 0.5.
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(e) C = 0.75.
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Figure 5.6. Comparison of relative phase speed errors of the time integrators for
convective–diffusive case: Pe = 2.5 on the above and Pe = 10 on the
below.

Example 5.1 (Cosine Wave) First we consider a transport process of a smooth function,

a cosine profile, given by

u0(x) =


1 + cos(10π(x− 0.2))

2
, if |x− 0.2| ≤ 0.1

0, elsewhere

and shown by the Figure 5.7. See Figure 5.8 for the related numerical results of the
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Figure 5.7. The initial condition of Example 5.1.
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corresponding stabilization parameters, using various spatial mesh sizes.
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(a) ∆x = 0.05.
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(b) ∆x = 0.02.
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(c) ∆x = 0.01.

Figure 5.8. Numerical solutions of Example 5.1 for different choice of stabilization
parameters.

Example 5.2 (Triangular Wave) As a second example, we consider a triangular wave

as an initial condition given as

u0(x) =

1− |10x− 2|, if |x− 0.2| ≤ 0.1

0, elsewhere
.

See Figure 5.9 for the plot of the initial condition and Figure 5.10 for the approximate
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Figure 5.9. The initial condition of Example 5.2.

solutions for the specified stabilization parameters.
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(a) ∆x = 0.05.
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(b) ∆x = 0.02.
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(c) ∆x = 0.01.

Figure 5.10. Numerical solutions of Example 5.2 for different choice of stabilization
parameters.

Example 5.3 (Square Wave) The third example is devoted to a square pulse as an initial

condition,

u0(x) =

1, if |x− 0.2| ≤ 0.1

0, elsewhere
,

and shown in Figure 5.11. For the approximate solutions, see Figure 5.12.
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Figure 5.11. The initial condition of Example 5.3.

Immediate observation from the numerical experiments shown in Figures 5.8, 5.10

and 5.12 is that the other stabilization terms causes a dispersion on numerical solutions,

whereas the stabilization parameter τ = ∆x2

12κ
yields nearly a nondispersive numerical

solution, i.e. transports the initial profile nearly without causing a defect on it. On the first

problem, as we increase the number of elements, both methods become nearly equivalent.

On the other hand, dispersion error still remains even on the third problem if fine mesh
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(a) ∆x = 0.05.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1
Shakib & Hughes
Raymond & Garder

(b) ∆x = 0.02.
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(c) ∆x = 0.01.

Figure 5.12. Numerical solutions of Example 5.3 for different choice of stabilization
parameters.

is used, whereas choice of τ = ∆x2

12κ
holds the shape of square pulse even on the coarse

mesh.

Example 5.4 (Transport of a Wave Packet) Just as the phase speed error, studying on

group speed is essential in order to understand the dispersive behaviour of discrete mod-

els. Despite being out of our interest, we want to go one step further to check our stabi-

lization parameter with an initial condition taken as a wave packet, as this choice allows

us to make a direct examination and observation of group speed, i.e. the evolution of a

group of waves containing several wave numbers. We skip and refer to [38, 39] for tech-

nical details. The initial condition here we take is a sine wave modulated by a Gaussian

at x = 0.2

u0(x) = Φ(x, 0) sin(40πx).

where

Φ(x, 0) = e−160(x−0.2)2

is defined as the envelope of the wave packet. See Figure 5.13 for the initial condition and

corresponding envelope. Note that the group velocity, i.e. the velocity of the envelope,

is identical to the phase speed for a constant velocity, β. So our expectation from an

approximate solution is to preserve its shape as far as possible so that the envelope still

encloses the wave packet at the final time.

All parameters are set to be same as the previous exapmples except that the final

time is set to be T = 0.5 and space mesh sizes we study now are ∆x = 1
100

, ∆x = 1
200
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Figure 5.13. The initial condition of Example 5.4 and corresponding envelope.

and ∆x = 1
400

. See Figure 5.14 for the related approximate solutions.
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(b) ∆x = 0.02.
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(c) ∆x = 0.01.

Figure 5.14. Numerical solutions of Example 5.4 for different choice of stabilization
parameters.

As we experienced on the previous examples, our stabilization term that is shown

by green yields a nearly non-dispersive transport process, yet the method is coherent on

the group velocity whereas, fine mesh is required to be used in order to catch a nice

approximation for other parameters.

Numerical Experiments for Phase Speed Error Comparison Using τ = ∆x2

12κ
The

stabilization parameter τ = ∆x2

12κ
that we give on Remark 5.3 ends up with nice approxi-

mate solutions as we illustrate on Examples 5.1-5.4. But this term is derived by regarding

to a specific choice of Courant number, C = 1 and now we are in search of to find a

reasonable explanation for the sensitiveness of this quantity. For this purpose, we slightly

increase and decrease the Courant number, and then give the corresponding relative phase

speed errors of the numerical method as well as for C = 1. We use the same problem with

same parameters given previously. The spatial mesh is now set to be ∆x = 0.01. Courant

numbers are taken as C = 0.9, C = 1, C = 1.1. To shed to the sensitiveness of Courant
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number, we give the plots of relative phase speed errors in Figure 5.15. Observe through

the plots that choice of C = 0.9 causes a leading error and C = 1.1 causes a lagging error

on the numerical solutions. On the other hand the error with C = 1 varies very close to

the εS = 1 level which is the optimal level as we have a constant convective velocity, i.e.

our expectation from the approximate solution is to be nondispersive.
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Figure 5.15. Relative phase speed error for stabilized method in space using τ = ∆x2

12κ

and Crank-Nicolson method in time.

In the figures 5.16-5.18, numerical results that corresponds to the examples 5.1-5.3

are being displayed respectively. By a straight observation at the results obtained for the

choice of C = 0.9, spurious oscillations occur on the numerical solution and these stand

beyond from where they should be. As we explained in the above, the reason behind this

situation is the behaviour of relative phase speed error. Again looking at 5.15, the error is

strictly greater than one, i.e. all modes are moving faster than they should move. More-

over the waves that has different wave numbers propagate with different speeds which

causes a dispersion error on the numerical solution. As a result, this situation reflects and

shows itself on the numerical solution as a spurious oscillations which propagates faster

than the convective velocity. The reason of the oscillations occur on the numerical solu-

tions obtained by C = 1.1 is again depend on the same idea, except the fact that now there

is a delay on the waves and this may be verified by looking at the Figure 5.15.

On the other hand, looking at the numerical solutions obtained by C = 1, solutions

almost preserve the shape of the corresponding initial conditions and this is again due to

the fact that the relative phase speed error for this case is nearly optimal, i.e. both low and

high frequency modes are propagating almost in same speed.

70



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5.16. Numerical solutions of Example 5.1 using various Courant numbers.
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Figure 5.17. Numerical solutions of Example 5.2 using various Courant numbers.
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Figure 5.18. Numerical solutions of Example 5.3 using various Courant numbers.
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CHAPTER 6

CONCLUSION

We have presented a Fourier stability and accuracy analysis of forward Euler,

Crank-Nicolson and backward Euler time integration algorithms to scalar unsteady convection–

diffusion equation, where standard and stabilized finite element method is applied for

space discretization.

Crank-Nicolson and backward Euler time stepping methods yield unconditional

stable numerical results. However, we demonstrated and experienced by numerical ex-

periments for Crank-Nicolson method that, choosing sufficiently large Courant numbers

may result an oscillatory numerical solution, eventhough the stable behaviour is still pre-

served. On the other hand numerical solution obtained by forward Euler method is stable

only under a certain condition. For the unsteady convection–diffusion equation with dif-

fusion dominated case, we deduced that the stability condition is

∆t ≤ ∆x2

6κ
(6.1)

whereas, when convective process starts dominating the diffusive process, the stability

estimate (6.1) changes to

∆t ≤ 2κ

β2
. (6.2)

Moreover when we consider using a stabilized method for spatial discretization of con-

vective dominated problem, we derived that the stability condition using forward Euler

time stepping is exactly same as (6.2). As the duty of stabilized methods is to cure the

undesired and poor numerical approximations that occurs due to the low diffusion coeffi-

cient, i.e. 0 < κ � 1, we conclude that the stability estimate (6.2) is a strong condition

on choosing time step so that, it restricts ourselves to choose a very small time step. This

is not only bad because of the computational cost, but also may end up with a rounding

error, and as a result, affect the accuracy of the numerical solution that occurs due to the

finite precision of computer arithmetic [2].
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Along the stability properties, we studied the temporal errors by use of Fourier

analysis. This provided us an automatic process for seperating the terms, which are re-

sponsible for dissipation and dispersion, i.e. damping and frequency of discrete convective–

diffusive operator. Using the relationship between Fourier analysis and classical trunca-

tion error analysis as given in [39], we express the asymptotic truncation errors associated

with numerical damping and numerical frequency of each time marching method to obtain

the order of accuracy with respect to space and time mesh. We obtained some particular

choice of parameters that increases the order of accuracy. Then we formulate the relative

errors which are expressed by comparing the exact damping and exact frequency with

their numerical counterparts. Comparisons of the errors for each time integrator showed

that, applying backward Euler method to the heat equation yields better approximate re-

sults on damping. However, as we consider the unsteady convection–diffusion model and

increase the Peclet number, this situation changes in favour of Crank-Nicolson method.

Especially for Pe > 1 case which is in our particular interest, backward Euler operator

damps the numerical solution much more than enough even in the low frequency range,

whereas the error in damping for the Crank-Nicolson method is in the optimal range as

φ→ 0. On the other hand, for high wave numbers, we observed that Crank-Nicolson has

an overdmaped behaviour which is very welcome and also expected, since the additional

dissipation that occurs due to the artificial diffusion is responsible to damp the spurious

high frequency oscillations related with the spatial discretization of convective dominated

problems. For the frequency accuracy, the error plots for each Peclet number indicate

that, backward Euler method slows down the waves that causes a delay on the numerical

solution. On the contrary, for Pe ≥ 1 case Crank-Nicolson method yields better numeri-

cal results on phase speed than backward Euler. Especially by choosing Courant number

within a certain range, we observed through the figures that, the error varies closer to the

optimal level.

Then, based on the series expansion of numerical frequency, we derived a stabi-

lization parameter

τ =
∆x2

12κ

regarding to the choice of Courant number C = 1. As we displayed on the Figure 5.15,

such choice ensures the relative phase speed error to behave nearly as the optimal level

εS = 1. In other words, different Fourier modes propagate almost in same speed which

prevents the dispersion error. Ofcourse the error is not exactly εS = 1, therefore one may
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expect even a little dispersion on the approximate solution. But in our opinion, these small

oscillations that occurs due to the little dispersion is damped by the additional dissipative

effect of the artificial diffusion. Thus, we may comment that, the artificial diffusion idea

that comes through the discretization of singularly perturbed problems of elliptic differ-

ential equations, is responsible not only to damp the spurious oscillations caused by the

space discretization, but also responsible to damp the oscillations that occur due to the

dispersion error of the numerical method. In fact, numerical experiments verifies these

comments on the nearly optimal phase error result so that, observing from the given ex-

amples, our choice on stabilization term prevents the distortion on the shape of the initial

condition.
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APPENDIX A

DESCRIPTION OF THE STABILIZED METHODS

As we gave briefly in Section 1.1.1, solving elliptic boundary value problems

using SGFEM yields poor numerical approximations through the sharp changes of the

analytical solution. To troubleshoot this situation, SGFEM must be improved in some

way. Again as we mentioned in the same section, there are two well-known ideas to

achive spatial stability, which are based on adding the residual of the differential operator

to the standard Galerkin formulation and enriching the standard finite element space with

bubble type functions. Here, we briefly introduce these methods and show how the ho-

mogeneous parts of the corresponding discrete schemes have equivalent structure for our

model problem. For this purpose, let us first introduce a steady state convective–diffusive

model,

−κu′′ + βu′ = f, in Ω

where Ω = (0, 1) as usual with periodic boundary conditions and f is set to be same as in

our model problem. Define a test space as

Vh =
{
vh ∈ H1

per(Ω) : vh|Ωe ∈ P1(Ωe),∀Ωe ∈ Th,
}
.

Then the coresponding Galerkin method reads: find uh ∈ Vh such that

A0(uh, vh) = (f, vh), ∀vh ∈ Vh (A.1)

where A0 is the usual bilinear form given by (2.8).
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A.1. Streamline Upwind/Petrov–Galerkin Method

Modifying the standard finite element basis functions with respect to the flow

direction is equivalent to modifying the test space as

Wh =
{
wh : wh = vh + τβvhx , v

h ∈ Vh
}
.

This modification graphically shown in Figure A.1. Analytically, this modification shows

Figure A.1. Comparison of SUPG and SGFEM basis functions for a node x = A.
Figure is taken from [8].

itself in the standard Galerkin formulation as an addition of a residual of the differential

equation,

∑
Ωe∈Th

(
Luh − f, τβvhx

)
Ωe
. (A.2)

weighted by a parameter τ , called stabilization parameter, that is to be determined or

suggested depending on the varios metrics such as truncation error, coercivity properties,

order of convergence, temporal errors and so on. The subscript Ωe here refers that the in-

tegration is considered in elementwise. Under this improvement, the SUPG discretization

reads: find uh ∈ Vh such that

A0(uh, vh) +
∑

Ωe∈Th

(
Luh − f, τβvhx

)
Ωe

= (f, vh), ∀vh ∈ Vh. (A.3)
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Skipping the details, we can re-express the last expression as

(κ+ τβ2)
(
uhx, v

h
x

)
+
(
βuhx, v

h
)

=
(
f, vh + τβvhx

)
, ∀vh ∈ Vh

which shows that such improvement shows itself as an artificial diffusion, that is respon-

sible to damp the spurious oscillations.

A.2. Galerkin/Least–Squares Method

Similar to the SUPG method, this method is a residual based method except that

now the additional residual, which is again weighted by the stabilization parameter, is

given by

∑
Ωe∈Th

(
Luh − f, τLvh

)
Ωe
.

Considering the fact that the basis functions are linear and differentiable on each element,

one can re-express this term as (A.2). Consequently, discrete structure of the homoge-

neous parts of the methods become equivalent.

A.3. Unusual Stabilized Finite Element Method

This method, which is also known as adjoint stabilized Galerkin method, is based

on adding again a residual to the standard Galerkin formulation, but now given by

−
∑

Ωe∈Th

(
Luh − f, τL∗vh

)
Ωe
.

where L∗ is the adjoint operator of L. Similarly, one can conclude that the structure of

the scheme is same as the previous ones.
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A.4. Residual–Free Bubble Method

For the purpose of enlarging the finite element space, define BK := H1
0(Ωe) for

each Ωe ∈ T h and enlarge the finite element space as Vh ⊕ VB where

VB := ⊕ThBΩe = span {be} .

Here the bubbles belong to the first and last element are supposed to be equivalent due

to the periodic boundary conditions. Using this enlargement, we can decompose any

function that belongs to Vh ⊕ VB, as a sum of linear part and a bubble part given by

vh + vB = vh +
∑

Ωe∈T h
cebe, ce ∈ R.

Now we will solve the steady state problem (A.1) on Vh⊕VB. So the RFB discretization

of the problem (A.1) by splitting itself reads: Find uh + uB ∈ Vh ⊕ VB such that

A(uh + uB, vh) = (f, vh), ∀vh ∈ Vh (A.4)

A(uh + uB, be)Ωe = (f, be)Ωe (A.5)

where the subscript Ωe indicates that the integrals are restricted to the corresponding ele-

ment. To obtain the numerical solution, one needs to derive ce’s, i.e. bubbles first. This

could be done by solving (A.5) in elementwise. By following [7], the result is given by

ce = (f − βvhx)Ωe
(1, be)Ωe

κ(bhx, b
e
x)Ωe

.

Now substituting ce back into the main equation (A.4), one can derive the problem: find

uh ∈ Vh such that

A0(uh, vh) +
∑

Ωe∈Th

(βuhx − f, τ eβvhx)Ωe = (f, vh). (A.6)
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where

τ e =
1

|Ωe|
(be, 1)2

Ωe

κ(bhx, b
e
x)Ωe

. (A.7)

For further details, we refer to [5, 7]. Now observe that (A.6) together with (A.7) has

exactly the same structure with (A.3). Thus, once we obtain an explicit form for (A.7), we

conclude that the RFB method for convective–diffusive model is equivalent to a stabilized

method using a stabilization term with streamline diffusion type.

Now extending this steady-state structure to an unsteady problem, we therefore

have the following semi-discrete form

(∂tu
h, vh) +A0(uh, vh) +

∑
Ωe∈Th

(
(∂t + L)uh − f, τβvhx

)
Ωe

= (f, vh), ∀vh ∈ Vh.
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APPENDIX B

CHOICE OF STABILIZATION PARAMETERS

Here we introduce some stabilization terms that are recommended and being used

in the literature.

In [8] stabilization term is suggested as

τ1 =
∆x

2β
α(Pe), α(Pe) = coth Pe− 1

Pe
. (B.1)

where, this choice makes the finite difference counterpart of the approximation for steady-

state problem nodally exact.

In [34], authors tested the temporal behaviours of the numerical solution of un-

steady convection–diffusion equation by using

τ2 =

((
2β

∆x

)2

+ 9

(
4κ

∆x2

)2
)−1/2

=
∆x

2β

(
1 +

(
3

Pe

)2
)−1/2

. (B.2)

In [11], the author gives some requirements on choosing stabilization term and

then deduces as

τ3 =

(
4κ

∆x2
+

2β

∆x

)−1

=
∆x

2β

(
1 +

1

Pe

)−1

(B.3)

Pseudo Residual–Free Bubbles To determine the stabilization term that corresponds

to the RFB method given by (A.7), bubble functions are needed to be determined. Tech-

nically, this requires the steady-state problem to be solved in each element [7] which is

same as solving the original problem. Therefore, as stated in [6], this problem cannot be

computable in an easy way. Again in the same reference, the authors construct a cheap
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way to compute the approximate solution, called Pseudo Residual–Free Bubbles (PRFB).

By using PRFB method, the author in [30] expressed the stabilization parameter as

τ4 =


∆x
2β
− κ

β2 , if κ ≤ ∆xβ
6

∆x2

18κ
, if κ > ∆xβ

6

.

This can be re-expressed in terms of Peclet number as

τ4 =


∆x
2β

(
1− 1

Pe

)
, if Pe ≥ 3

∆x
2β

2Pe
9
, if Pe < 3

. (B.4)

In the Figure B.1 we give the plots of the stabilization terms given by (B.1)-(B.4)

with respect to the change of Peclet number. Observe that all of the stabilization terms

approach to the same level as we increase the Peclet number. So our expectation is that,

there does not occur much difference in the temporal errors. However, according to our

numerical experiments, numerical solution obtained by using τ2 results in a better disper-

sive properties. So in our numerical tests, the stabilization term we use is (B.2).

5 10 15 20 25 30
0
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0.4

0.6

0.8

1

Figure B.1. Plots of the various stabilization terms.

A Choice on Maximixing Frequency Accuracy in Space In the limit case of ∆t→ 0,

i.e. the semi-discrete form, series expansion of numerical frequency for the generalized
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trapezoidal rule is given by

ωh = ω − κβτ

∆x3
φ3 +

1

180∆x5

(
−15κβ∆x2τ + 180κβ3τ 3 − 15β3∆x2τ 2

+ β∆x4
)
φ5 +O(φ7).

Now considering the pure convection problem, i.e. letting κ → 0, the third order term

vanishes. In order to annihilate the fifth order term, the stabilization parameter is supposed

to be chosen as

τ5 =
∆x√
15β

(B.5)

which was shown by Raymond and Garder [32]. This choice of stabilization term in-

creases the accuracy of the phase speed error of the method up to sixth order. We refer to

[10, 16] for further details.
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