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The main problem in the synthesis of any mechanism is the fact that the objective function of the
mechanism, which will be synthesized, should be found and simplified by using appropriate
algebraic method. Finding objective function and calculation process can become complicated
especiallywhen thenumber of design parameters is increased for the over-constrainedmechanisms.
A new technique for solving the kinematic synthesis of over-constrained double-spherical six-bar
mechanism is developed and applied in this work. Interpolation approximation is used during
synthesis procedure. A numerical example for the kinematic synthesis procedure is given to validate
the theory in application.
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1. Introduction

One of the main problems in kinematic synthesis is finding the function generation, which describes a relation between input
and output of the mechanism with a desired function complying with the constraint conditions. Several mathematical methods
including algebraic method, complex numbers method, vector method, quaternion and bi-quaternion methods, matrix and screw
methods, and computer-aided-design (CAD) based methods have been developed and applied in order to solve for the kinematic
synthesis problem. The kinematic synthesis problem becomes harder to solve for when the number of design parameters is
increased especially for the over-constrained mechanisms.

Spherical mechanisms hold a transition position between the planar and spatial linkages, hence there is still an ongoing
interest in solving for the kinematic synthesis of these mechanisms. Many studies have been conducted based on the limit
positions of the input and output links. The design of spherical four-bar linkages for four specified orientations were was
proposed by Ruth and McCarthy [1], where they described a CAD software solution procedure for spherical four-bar linkages that
is based on Burmester's planar theory [2]. Cervantes-Sanchez and Medellin-Castillo [3,4] proposed a classification scheme and an
improved motion analysis for spherical four-bar linkages. Shih-Hsi Tong and C.H. Chiang [5] discussed the syntheses of planar and
spherical four-bar path generators, wherein they based the syntheses on the geometrical relations between the pole of the
coupler and the joints of the mechanism.

Function generation synthesis of four-bar spherical linkage has been widely studied. Function generation for the entire motion
cycle for spherical four-bar linkages has been discussed in [6]. Denavit and Hartenberg [7] presented the synthesis procedure for
three precision points in the function generation of spherical four-bar mechanism. Zimmerman [8] proposed a different algorithm
for the same mechanism for four precision points. Polynomial approximation is used for three, four and five precision points in
the work of Murray and McCarthy [9], Alizade [10], and Alizade and Kilit [11], respectively for the spherical four-bar mechanism.
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Furthermore, Alizade and Gezgin [12] proposed a new function generation synthesis method for spherical four-bar mechanism
with six independent parameters. They applied interpolation approximation, least-square approximation and Chebyshev
approximation and evaluated the error magnitudes of the approximations. Furthermore, several researchers made significant
contributions in this field and many mathematical techniques have been developed for the synthesis and analysis of spherical
four-bar mechanisms [14–17].

Double-spherical six-bar mechanism is not a new mechanism and researchers have identified simple constraints to have the
mechanism move. Some have named the mechanism as double-Hooke's-joint linkage [19] or 6R double-spherical
over-constrained mechanism [20] and worked on the analysis of the mechanism. In the study of N. Makhsudyan et al. [13], the
comparative analysis and synthesis of six-bar mechanisms are discussed for two serially connected spherical four-bar linkages
and two serially connected planar four-bar linkages. However, they placed the input and output axes of the spherical linkages
parallel and the construction parameters of the first spherical and planar mechanism are selected by the authors and not
determined by the kinematic synthesis procedure.

The objective of this study is the function generation synthesis of double spherical six-bar mechanism. A passive revolute joint
is inserted into the mechanism between the intersections of the joint axes of the two spherical four-bars. The passive joint's
rotation axis is aligned with the line drawn from one intersection point to the other one. The objective functions for the first and
the second spherical four-bar are determined. The objective function of the double-spherical six-bar mechanisms is defined.
However, the objective function of the first spherical four-bar linkage is selected independent of the whole mechanism's function
between the input and the output. Four precision points are selected by using equal spacing for the first spherical four-bar linkage
and the double-spherical six-bar mechanism. Interpolation approximation method is used for designing the six construction
parameters for the mechanism and the results are tabulated.

The next section of this paper provides the theory for the synthesis of six-bar mechanisms. Structural synthesis of
double-spherical six-bar mechanism is explained through the analogy between various planar and spatial six-bar mechanisms.
Later, the kinematic synthesis procedure for function generation of the double-spherical six-bar mechanism is explained.
Objective function determination and interpolation approximation methods are then complemented by a numerical example to
validate the theory presented in this paper. Finally, discussions on the developedmethodology and the results are given in the last
section.
2. Structural synthesis of six-bar mechanisms

This section consists of the analogy between the structural syntheses of six-bar mechanisms. The first step in the design of new
robot manipulators is structural synthesis, which is the fundamental concept in mechanism design. In this section, structural
synthesis of three 6R spatial closed-loop serial robot manipulators is considered.

The mobility of a robot mechanism describes the number of actuators needed to define the location of end-effectors. It is
important that the mobility or the degrees of freedom (DoF) of robot manipulators (M N 1) indicates the number of independent
input parameters to determine all the possible configurations of robot manipulators.

If links are connected in a loop by four single-DoF joints and the joints are configured so that the links move in
parallel planes, the assembly is called a planar four-bar linkage [7]. If the linkage has four revolute joints with axes angled
to intersect in a single point, then the links move on concentric spheres, and thus, the assembly is called a spherical
four-bar linkage.
Fig. 1. (RRR)(RRR) double-spherical six-bar mechanism.
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Alizade et al. [18] generalized Freudenstein's equation [22] on determining the DoF or mobility equation for robotic systems
with independent loops and variable general constraint as presented in Eq. (1).
M ¼ −Lλþ
X j

i¼1
f i þ q− jp ð1Þ
In Eq. (1), λ is the general constraint parameters of simple structural groups, L = c − B is the number of independent loops,
c = cb + cl + ch (cb is the number of branches between platforms, ch is the number of hinges and cl is the number of legs), B is
the number of moving platforms, jp is number of passive joints, q is the number of excessive links or overclosing constraints, fi is
DoF of relative motion permitted at the ith joint and j is the number of joints.

The general constraint parameters of the simple structural groups can be calculated if the mobility is selected for a mechanism
by pre-determining the structural configuration of the mechanism as shown in Eq. (2).
λ ¼
X j

i¼1
f i þ q− jp−M

L
ð2Þ
For the double spherical six-bar linkage presented in Fig. 1, Eq. (2) is applied as the mobility of the mechanism is known to be
M = 1, and the general constraint parameters of the simple structural group is calculated to be λ = 5. In order to accommodate
the kinematic synthesis, the double-spherical six-bar mechanism is required to be redefined as a serially connected two spherical
four-bar mechanisms. Therefore, a passive joint with excessive connections is inserted between the two spherical linkages. The
location of the passive joint is between the intersection of the joint axes and the direction of the passive joint axis is aligned with
the line drawn from one intersection point to the other one. As a result of this, there forms an excessive platform B = 1 with c =
3, hence L = 2, total DoF of all joints is increased to 7, mobility is required to be one, M = 1, also q = 1 and jp = 1. Substituting
this information in Eq. (2), λ is calculated to be 3 for each independent loop. Therefore, it is validated that for the same
mechanism without the insertion of the passive joint and excessive connections (L = 1, total DoF of joints is 6,M = 1, also q = 0
and jp = 0), λ is calculated to be 5 using Eq. (2) for the double-spherical six-bar mechanism. The structural synthesis procedure of
the planar-spherical 6R linkage presented in Fig. 2 and the spatial planar–planar 6R linkage shown in Fig. 3 is analogous to the
structural synthesis procedure of the double-spherical six-bar linkage. The general constraint parameter of the simple structural
group for both mechanisms is calculated to be λ = 5. When both mechanisms are reconfigured to have two closed loops, the
general constraint parameter of the simple structural group for each loop is calculated to be λ = 3. It should be noted that for the
planar–planar 6R linkage, a passive prismatic joint is inserted instead of a passive revolute joint.

3. Double-spherical six-bar mechanism

In this section, mechanism is described and mechanism parameters are reconfigured as two spherical four-bar mechanisms
that are connected with a passive joint. Input and output equations for both the first spherical linkage and the second spherical
linkage are provided.

3.1. Description of the linkage

Double-spherical linkage is a mechanism with general constraint one, which belongs to subspace λ = 5. It has six revolute
joints whose axes are intersecting three by three in two different points. The screw axes (joint unit vectors) that denote the two
Fig. 2. (RRR) RRR
� �

spherical-planar six-bar mechanism.

image of Fig.�2


Fig. 3. RRR RRR planar–planar spatial six-bar mechanism.
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groups of mechanisms are S14–S12–S10 and S6–S4–S2. For the input–output function synthesis of the double spherical linkage, the
mechanism is described as two spherical four-bar linkages as shown in Fig. 4. The passive revolute joint that has the S8 rotation
axis is added to the mechanism. This passive joint is included in both groups to form two separate spherical four-bar mechanisms
as S14–S12–S10–S8 and S8–S6–S4–S2.

The transformation unit vector equation described in [21] can be used as a valuable tool to relate the unit vectors assigned in
Fig. 4. Therefore, for each Si(li, mi, ni) that rotates around Sj(lj, mj, nj) by angle αik, we can calculate Sk(lk, mk, nk) as follows;
Sk ¼ Si cos αik þ Sji sin αik ð3Þ
Fig. 4. The double-spherical mechanism with screw axes.

image of Fig.�3
image of Fig.�4


where

where

where

158 O.W. Maaroof, M.İ.C. Dede / Mechanism and Machine Theory 73 (2014) 154–168
,

Sji ¼ S j � Si: ð4Þ
The screws of revolute pairs of double-spherical six-bar mechanism were shown as joint unit vectors, where S1 = (1,0,0) and
S2 = (0,0,1). Finding the other screws is important to find the objective functions of the two four-bar linkages. So we find the
screws as follows:
For the first four-bar linkage of the mechanism
 For the second four-bar linkage of the mechanism
S1, S2 and α1,3 → S3,
 S8, S1 and α8,14 → S14

S2, S3 and α2,4 → S4,
 S1, S14 and α1,13 → S13

S2, S1 and α2,8 → S8,
 S14, S13 and α14,12 → S12

S1, S8 and α1,15 → S15,
 S1, S8 and α1,9 → S9

S8, S15 and α8,6 → S6,
 S8, S9 and α8,10 → S10
3.2. Input–output equation of the first spherical linkage

The objective function (input–output equation) of the first four-bar linkagewill be calculated as (Cα = cos α& Sα = sin α):
S6 � S4 ¼ Cα4;6: ð5Þ
Substituting values of S4 and S6 and making some arrangements will result in:
−Cα4;6 þ Cα2;4Cα2;8Cα8;6 þ Cα1;3Cα8;6Sα2;4Sα2;8 þ Cα1;3Cα1;15Cα2;8Sα2;4Sα8;6−Cα1;15Cα2;4Sα2;8Sα8;6 þ Sα1;3Sα1;15Sα2;4Sα8;6 ¼ 0

ð6Þ
the input ϕ is α1,3 and output eψ is α1,15.
where

The function can be written in the polynomial form if divided by −Sα2,4Sα8,6 as;
P0 f 0 ϕð Þ þ P1 f 1 ϕð Þ þ P2 f 2 ϕð Þ þ P3 f 3 ϕð Þ−F ϕð Þ ¼ 0 ð7Þ

P0 ¼ Cα4;6−Cα2;4Cα2;8Cα8;6

� �
= Sα2;4Sα8;6

� �
; P1 ¼ −Cα8;6Sα2;8=Sα8;6; P2 ¼ −Cα2;8;

P3 ¼ Cα2;4Sα2;8=Sα2;4

f 0 ϕð Þ ¼ 1; f 1 ϕð Þ ¼ Cϕ; f 2 ϕð Þ ¼ CϕCeψ; f 3 ϕð Þ ¼ Ceψ; F ϕð Þ ¼ SϕSeψ :
3.3. Input–output equation of the second spherical linkage

The objective function (input–output equation) for the second four-bar linkage will be:
S12 � S10 ¼ Cα10;12 ð8Þ
the input eψ is α1,9 and output ψ is α1,13.
where

The function can be written in the polynomial form if divided by −Sα8,10Sα14,12 as:
R0g0 eψ� �
þ R1g1 eψ� �

þ R2g2 eψ� �
þ R3g3 eψ� �

−G eψ� �
¼ 0 ð9Þ

R0 ¼ Cα10;12−Cα8;10Cα8;14Cα14;12

� �
= Sα8;10Sα14;12

� �
;R1 ¼ −Cα14;12Sα8;14=Sα14;12;

R2 ¼ −Cα8;14;R3 ¼ Cα8;10Sα8;14=Sα8;10

g0 eψ� �
¼ 1; g1 eψ� �

¼ Ceψ; g2 eψ� �
¼ CeψCψ; g3 eψ� �

¼ Cψ; G eψ� �
¼ SeψSψ:
4. Kinematic synthesis

Synthesis of double-spherical six-bar mechanism is difficult since the number of construction parameters is high and objective
function is hard to obtain. However, the mechanism can be separated into two sections and solved recurrently. The next
sub-sections describe the Chebyshev spacing and precision points used in the synthesis procedure and derivation and
computation of the design equations for both spherical four-bar linkages.
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4.1. Chebyshev spacing and precision points

It is assumed that there are two mechanisms and a virtual revolute pair between these two parts is included in the loop,
where the output of the first one is the input for the second spherical four-bar linkage. Making use of having two successive
mechanisms that use prior mechanism's output as the input for the second mechanism, function decomposition can be
accommodated. A given objective function can be decomposed into function of a function and therefore, the objective function
can be shared between two spherical four-bar linkages. The procedure for the function generation synthesis by decomposition
method starts with selecting an overall double-spherical six-bar linkage function, function y = f(x). Following this, an
arbitrary function ý = h(x) is selected as the first function. The range of x is given as x0 ≤ x ≤ xm and respectively ý0 ≤ ý ≤ ým
where ý0 = h(x0) and ým = h(xm).

Initially, the arbitrary function ý = h(x) is scaled for the input (ϕ) and output eψ� �
of the first mechanism. When the range of

input is ϕ0 ≤ ϕ ≤ ϕm and the range of output is selected as eψ 0 ≤ eψ ≤ eψm, the scaling equations will be;
and th

and th
ϕ ¼ á1xþ á2; eψ ¼ b �1�yþ b �2 ð10Þ

e selected objective function for the output angle for the first mechanism will be;

eψ ¼ b �1h
ϕ−á2
á1

� �
þ b2: ð11Þ
After defining the input–output relations, a generated function is found by making synthesis of the first four-bar linkage
as;
eψ ¼ h ϕ; cð Þ ð12Þ

c is the vector containing the designed construction parameters of the first four-bar linkage.
where
After designing the construction parameters for the first four-bar linkages, the objective function for the second spherical

four-bar linkage should be calculated. The calculation should be conducted to find a function y = g(ý), where y = g(h(x)) =
f(x). The range of input for the second spherical linkage is the same as the range of output of the first spherical linkage. The
range of output should be selected as the range of output for the whole mechanism, ψ0 ≤ ψ ≤ ψm. Thus, the scale equations
are;
eψ ¼ b �1�yþ b �2;ψ ¼ b1yþ b2 ð13Þ

e desired objective function for the output angle of the whole mechanism will be;

ψ ¼ b1g
⋅eψ−ḃ2
b �1

!
þ b2:

 
ð14Þ
After defining the input–output relations, a generated function is found by making synthesis of the second four bar linkages
as;
ψ ¼ g eψ;d� �
: ð15Þ
Substituting Eq. (12) in Eq. (15), the generated function for the whole double-spherical six-bar mechanism can be calculated
as;
ψ ¼ g h ϕ; cð Þ;d
� �

ð16Þ

c and d are the designed construction parameters of the first and second four-bar linkages respectively.
where
Interpolation approximation will be used for finding the construction parameters of the mechanism. For the exact solution, 4

positions of the mechanism are required and four unknown parameters for each spherical linkage must be determined. Thus,
n = 4 (where n is the number of equations or precision points) and precision points are distributed for exact synthesis equally in



Fig. 5. Selected objective function, ý = x0.8, and function generated by first linkage of example #1.
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the range of x from x0 = 1 to xm = 2 as shown in Eq. (17).
y valu

Table 1
Precisio

i

1
2
3
4

xn ¼ xn−1 þ δ n ¼ 1;2;3;4 ð17Þ
When Eq. (18) is used for equal spacing, δ = 0.2.
δ ¼ xm−x0ð Þ= nþ 1ð Þ for n ¼ 4 ð18Þ

es of the given and selected functions can be calculated by

y1 ¼ f xið Þ; i ¼ 0;nþ 1: ð19Þ

The scaled equations of input and output variables are given in Eq. (10), the constant parameters will be calculated using

Eq. (20) for the first and second linkages.
a1 ¼ ϕ0−ϕmð Þ= x0−xmð Þ;
b1 ¼ ψ0−ψmð Þ= y0−ymð Þ;

a2 ¼ xmϕ0−x0ϕmð Þ= xm−x0ð Þ
b2 ¼ ymψ0−y0ψmð Þ= ym−y0ð Þ ð20Þ
4.2. Derivation of the first spherical linkage's design equation and computation of the design parameters

General form of equations for the objective function shown in Eq. (21)
Xn−1
k¼0

Pk f k ϕið Þ−F ϕið Þ ¼ 0; i ¼ 1;n : ð21Þ
n points and designed construction parameters for the first spherical four-bar linkage of example #1.

xi ýi ϕi rad
⋅ψi radð Þ Pi First four-bar parameters (rad)

1.22 1.1724 1.6713 0.6796 0.2297 α2,8 = 0.4218
1.42 1.3238 2.0483 1.0005 −0.1702 α2,4 = 0.8031
1.62 1.4710 2.4253 1.3125 −0.9123 α8,6 = 1.1769
1.82 1.6146 2.8023 1.6168 0.3951 α4,6 = 1.1639

image of Fig.�5


Fig. 6. Calculated error for the first spherical linkage of example #1.
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The number of precision points is four, thus, four linear equations with four unknowns are required for the objective function.
The equations can be written in the matrix form,
Table 2
Precisio

i

1
2
3
4

f 0 ϕ1ð Þ f 1 ϕ1ð Þ f 2 ϕ1ð Þ f 3 ϕ1ð Þ
f 0 ϕ2ð Þ f 1 ϕ2ð Þ f 2 ϕ2ð Þ f 3 ϕ2ð Þ
f 0 ϕ3ð Þ f 1 ϕ3ð Þ f 2 ϕ3ð Þ f 3 ϕ3ð Þ
f 0 ϕ4ð Þ f 1 ϕ4ð Þ f 2 ϕ4ð Þ f 3 ϕ4ð Þ

2664
3775 �

P0
P1
P2
P3

2664
3775 ¼

F ϕ1ð Þ
F ϕ2ð Þ
F ϕ3ð Þ
F ϕ4ð Þ

2664
3775: ð22Þ
Values of Pi can be found by using Eq. (23) or by using Cramer's rule, and unknown construction parameters of the first
spherical four-bar linkage can be determined as shown in Eq. (24).
P ¼ f i; j
h i−1 � F ð23Þ

α2;8 ¼ cos−1 −P2ð Þ; α2;4 ¼ cot−1 csc α2;8

� �
� P3

� �
; α8;6 ¼ − cot−1 csc α2;8

� �
� P1

� �
α4;6 ¼ cos−1 sin α2;4

� �
� sin α8;6

� �
� cos α2;8

� �
� cot α2;4

� �
� cot α8;6

� �
þ P0

� �� � ð24Þ
Generated function can be calculated by using construction parameters determined in Eq. (24) and the input ϕ as in Eq. (12),
where c ¼ α2;8;α2;4;α8;6;α4;6

� 	
.

Here α angles are the angular link-length of spherical four-bar linkage as previously shown in Fig. 4. Eq. (12) will be used to
find the input of the second spherical four-bar linkage.

4.3. Derivation of the second spherical linkage's design equation and computation of the design parameters

Similarly, for the second spherical four-bar linkage, the general form of equations derived from the objective functionwill be
Xn−1
k¼0

Rkgk eψi

� �
−G eψi

� �
¼ 0; i ¼ 1;n : ð25Þ
n points and designed construction parameters for the second spherical four-bar linkage of example #1.

ýi yi
⋅ψi radð Þ ψi (rad) Ri Second four-bar parameters (rad)

1.1186 1.1998 0.5655 1.7377 −0.4954 α8,14 = 0.8245
1.2668 1.4686 0.8797 1.9623 0.8375 α14,12 = −0.7198
1.4150 1.7578 1.1938 2.2040 −0.6789 α8,10 = 0.5035
1.5632 2.0667 1.5079 2.4620 −1.3329 α12,10 = 0.9214

image of Fig.�6


Fig. 7. Selected objective function, y = ý(1.625), and function generated by second linkage of example #1.
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The number of precision points is again four, thus four linear equations with four unknowns are also acquired for the objective
function and can be written in the matrix form,
g0 eψ1

� �
g1 eψ1

� �
g2 eψ1

� �
g3 eψ1

� �
g0 eψ2

� �
g1 eψ2

� �
g2 eψ2

� �
g3 eψ2

� �
g0 eψ3

� �
g1 eψ3

� �
g2 eψ3

� �
g3 eψ3

� �
g0 eψ4

� �
g1 eψ4

� �
g2 eψ4

� �
g3 eψ4

� �

26666664

37777775 �
R0
R1
R2
R3

2664
3775 ¼

G eψ1

� �
G eψ2

� �
G eψ3

� �
G eψ4

� �

26666664

37777775: ð26Þ
Values of Ri can be determined by Eq. (27) or by applying Cramer's rule, and unknown parameters of the second spherical
four-bar linkage can be found as shown in Eq. (28).
R ¼ gi; j
h i−1 � G ð27Þ
Fig. 8. Calculated error for the second spherical linkage of example #1.

image of Fig.�8
image of Fig.�7


Fig. 9. Function generated by linkage and given objective function y = x1.3 of example #1.
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α8;14 ¼ cos−1 −R2ð Þ; α14;12 ¼ cot−1 −R1= sin α8;14

� �� �
; α8;10 ¼ − cot−1 −R3= sin α8;14

� �� �
α12;10 ¼ cos−1 sin α8;10

� �
� sin α14;12

� �
� cos α8;14

� �
� cot α8;10

� �
� cot α14;12

� �
þ R0

� �� � ð28Þ
Generated function can be calculated by using the construction parameters determined in Eq. (28) and the input eψ as in
Eq. (15), where d ¼ α8;14;α14;12;α8;10;α12;10

� 	
.

5. Numerical examples

Equally spaced precision points are used to find themechanism that will generate minimum error. Then, precision points are
shifted within a range of ±0.5δ with 0.1δ steps, which resulted in 10 different sets of precision points. After each selection of
precision points, Pi&Ri values are controlled if they are real numbers, and values of P2&R2 are checked if they are within the
range ±1. If all these values meet the criteria stated in the previous sentence, then the results of the synthesis procedure are
added to the list that contains the possible spherical four-bar linkages with their construction parameters and related errors.
Fig. 10. Total error of the double-spherical six-bar linkage of example #1.

image of Fig.�10
image of Fig.�9


Table 3
Precision points and designed construction parameters for the first spherical four-bar linkage of example #2.

i xi ýi ϕi rad
⋅ψi radð Þ Pi First four-bar parameters (rad)

1 1.2800 4.6460 1.7844 0.5845 0.6011 α2,8 = 0.3755
2 1.4800 5.9062 2.1614 0.8415 0.3772 α2,4 = −1.1245
3 1.6800 7.5082 2.5384 1.1682 −0.9303 α8,6 = −0.7714
4 1.8800 9.5448 2.9154 1.5835 −0.1755 α4,6 = 0.8421
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Finally, best approximation is selected with respect to the criteria to have minimum error and to be constructible. The error can
be calculated by the difference between the selected or desired objective function and the generated function (the generated
functions are simplified using MATLAB® by substituting the calculated construction parameters in function generation) for the
first linkage and the second linkage as shown in Eqs. (30) and (31) respectively.

The error for the first four-bar linkage is calculated as
e1 ¼ b1 � h
ϕ−á2
á1

� �
þ b2 �

� �
−h ϕ; cð Þ





 



: ð30Þ
The error for the second four-bar linkage is calculated as
e2 ¼ b1g
⋅eψ−ḃ2
b �1

 !
þ b2

 !
−g eψ;d� �











: ð31Þ
5.1. Example #1

Let's consider that the given objective function for the synthesis of the whole mechanism is y = x1.3 and 90° ≤ ψ ≤ 160° is the
desired range for the output of the double-spherical six-bar linkage. The desired input range of the mechanism is 72° ≤ ϕ ≤ 180°.

For the first four-bar linkage the arbitrary function ý = x0.8 is selected as the objective function and 18° ≤ eψ ≤ 108° is selected
as the arbitrary range for the output of first spherical four-bar linkage. 72° ≤ ϕ ≤ 180° is the desired range for the mechanism
input as it was previously set. The minimum error for the first four-bar linkage is calculated to be e1 = 0.0537. The corresponding
precision points and the parameters are shown in Table 1.

In Fig. 5, selected objective function and function generated by the linkage are shown for the first spherical four-bar linkage.
Precision points are indicated with blue dots in Fig. 5. The calculated error is shown in Fig. 6.
Fig. 11. Selected objective function, ý = e1.2x and function generated by linkage of example #2.

image of Fig.�11


Fig. 12. Calculated error for the first spherical linkage of example #2.
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The objective function of the second spherical mechanism is dependent on the overall mechanism objective function and the
arbitrary objective function of the first spherical mechanism. Thus, the second spherical mechanism's function is calculated to be
y = ý1.625. Therefore, the resultant objective function becomes equal to the set function for the whole mechanism, y = (x0.8)
1.625 = x1.3. The desired range of the input for the second spherical mechanism is selected to be equal to the range of output for
the first spherical mechanism as 18° ≤ eψ ≤ 108°. The range of output for the second spherical mechanism is already specified at
the beginning as the range of output for the whole mechanism, 90° ≤ ψ ≤ 160°. The minimum error for the second four-bar
spherical linkage is calculated to be e2 = 0.0993. The corresponding precision points and the parameters are shown in Table 2.

In Fig. 7, the given function and objective function are shown for the second spherical four-bar linkage. Precision points are
indicated with blue dots in Fig. 7. The error graph is depicted in Fig. 8.

The overall comparison between the generated function and given objective function is presented in Fig. 9 between the range
of input and the range of output. Precision points are indicated with blue dots in Fig. 9. The minimum error for the
double-spherical six-bar linkage is calculated to be 0.0738. The error graph with respect to the input range for the whole
mechanism can be observed in Fig. 10.

5.2. Example #2

For the second example, let's consider that the given objective function for the synthesis of the whole mechanism is y = e2x

and 90° ≤ ψ ≤ 160° is the desired range for the output of the double-spherical six-bar linkage. The desired input range of the
mechanism is 72° ≤ ϕ ≤ 180°.

For the first four-bar linkage the arbitrary function ý = e1.2x is selected as the objective function and 18° ≤ eψ ≤ 108° is
selected as the arbitrary range for the output of the first spherical four-bar linkage. 72° ≤ ϕ ≤ 180° is the desired range for the
mechanism input as it was previously set. The minimum error for the first four-bar linkage is calculated to be e1 = 0.1546. The
corresponding precision points and the parameters are shown in Table 3.

In Fig. 11, selected objective function and the function generated by the linkage are shown for the first spherical four-bar
linkage of example #2. Precision points are indicated with blue dots in Fig. 11. The calculated error is shown in Fig. 12.

As mentioned for the first example, the objective function of the second spherical mechanism is dependent on the overall
mechanism objective function and the arbitrary objective function of the first spherical mechanism. Thus, the second spherical
mechanism's objective function is calculated to be y = ý(2/1.2). Therefore, the resultant function becomes equal to the set function
for the whole mechanism, y = (e1.2x)(2/1.2). The desired range of the input for the second spherical mechanism is selected to be
equal to the range of output for the first spherical mechanism as 18° ≤ eψ ≤ 108°. The range of output for the second spherical is
Table 4
Precision points and designed construction parameters for the second spherical four-bar linkage of example #2.

i ýi yi
⋅ψ�i radð Þ ψi (rad) Ri Second four-bar parameters (rad)

1 4.5526 12.5054 0.5655 1.7032 −3.3772 α8,14 = 1.5969
2 6.0932 20.3271 0.8796 1.9056 3.8417 α14,12 = −0.2546
3 7.6338 29.5961 1.1938 2.1455 0.0261 α8,10 = 0.1952
4 9.1744 40.2065 1.5080 2.4201 −5.0564 α12,10 = 1.4302
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Fig. 13. Selected objective function, y = ý(2/1.2) and function generated by the second linkage of example #2.
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already specified at the beginning as the range of output of the whole mechanism, 90° ≤ ψ ≤ 160°. The minimum error for the
second four-bar spherical linkage is calculated to be e2 = 0.2342. The corresponding precision points and the parameters are
shown in Table 4.

In Fig. 13, the determined objective function and the function generated by linkage are shown for the second spherical
four-bar linkage of example #2. Precision points are indicated with blue dots in Fig. 13. The error graph is given in Fig. 14.

For the second example, the overall comparison between the objective function and function generated by the whole
mechanism is presented in Fig. 15 between the range of input and the range of output. In Fig 15, the precision points are indicated
with blue dots. The minimum error for the double-spherical six-bar linkage is calculated to be 0.0744. The error graph with
respect to the input range for the whole mechanism can be observed in Fig. 16.
6. Conclusions

The spherical four-bar and the planar four-bar linkages contain only revolute joints and they have been well studied in
mechanism design. However, no study has been carried out on the synthesis construction design of serially connected spherical
Fig. 14. Calculated error for the second spherical linkage of example #2.
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Fig. 15. Function generated by linkage and given objective function y = e2x of example #2.
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four-bar mechanisms. The comparative structural syntheses of planar and spherical six-bar mechanisms are discussed. Kinematic
synthesis of the double-spherical six-bar mechanism is formulated by separating the mechanism into two spherical four-bar
linkages by the addition of a passive revolute joint. Decomposition method is defined to share the overall mechanism's function
between two spherical four-bar linkages which work as a function of function system. Transformation of unit vector equation is
used to find the objective functions of the two spherical four-bar linkages. The limit positions and objective function for the
relation of the input and output link for the double-spherical six-bar mechanism are given. The limit positions for the output link
and the objective function that defines the relation between the input and output link for the first spherical four-bar linkage are
selected arbitrarily to design the construction parameters of the first spherical linkage. The calculated construction parameters
are checked with respect to constructability and for minimum error. First spherical four-bar linkage is designed with respect to
the calculated construction parameters and then, the output angle of the first spherical four-bar linkage is used as the input of the
second spherical four-bar linkage. This is realized through the virtual (passive) joint inserted between them. Finally, the synthesis
procedure is applied for the second spherical four-bar mechanism and the last four construction parameters are designed for the
smallest error and constructability. The overall error of the mechanism's function generation as a result of the decomposition
method is calculated and presented to be within the same ranges of errors as two spherical four-bar linkage errors.
Fig. 16. Total error of the double-spherical six-bar linkage of example #2.
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In order to validate that the procedure holds for different functions that have more nonlinear characteristics, two example
studies with different nonlinearity characteristics are carried out. It is shown that for both numerical examples, the kinematic
synthesis method with the decomposition method could be applied and generated functions were able to match the desired
objective function with bounded errors at similar error ranges.

It should be noted that during the design of the first four-bar mechanisms, the inputs are within the range specified for the
input of the whole mechanism and the outputs for the second four-bar mechanisms are selected to have the same range as the
whole mechanism's output.

The synthesis procedure carried out in this study is for four precision points. This results in four linear equations to solve for
each spherical loop. This method can be extended for five and even six precision points since relative studies on spherical four-bar
mechanisms are available [11,12]. Kinematic synthesis of double-spherical six-bar mechanism with five or six precision points is
regarded as a future study, in which one can foresee that in addition to linear equations, there will be a total of four nonlinear
equations in the case of five precision points and 12 nonlinear equations in the case of six precision points to solve for.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.mechmachtheory.2013.10.013.
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