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Abstract
We introduce a new class of complex functions of complex argument which we
call q-analytic functions. These functions satisfy q-Cauchy–Riemann equations
and have real and imaginary parts as q-harmonic functions. We show that
q-analytic functions are not the analytic functions. However some of these
complex functions fall in the class of generalized analytic functions. As a
main example we study the complex q-binomial functions and their integral
representation as a solution of the D-bar problem. In terms of these functions
the complex q-analytic fractal, satisfying the self-similar q-difference equation
is derived. A new type of quantum states as q-analytic coherent states and
corresponding q-analytic Fock–Bargmann representation are constructed. As
an application, we solve quantum q-oscillator problem in this representation,
and show that the wave functions of quantum states are given by complex
q-binomials.
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1. Introduction

‘Complex variable theory is so beautiful that I feel that nature must have made good use of it,
and, very likely, we need to make stronger use of it than we’ve done up to present’ PAM Dirac

1.1. Analytic functions in classical and quantum physics

It is hard to overestimate the role of analytic function theory in classical and quantum physics.
The main property of analytic functions as the power series expansion systematically has been
used already by Newton for solving mechanical problems. D’Alembert and Euler in their
study of hydrodynamic problems found the system of equations, ϕx = ψy, ϕy = −ψx, known
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as the Cauchy–Riemann equations, and got solution of the system as real and imaginary parts
of an analytic function of complex variable [1]. For the stationary planar flow v = (ϕx, ϕy),
this system describes incompressible div v = 0 and irrotational rot v = 0 fluid in terms of
complex potential f = ϕ + iψ .

In 1851 Riemann introduced the formal complex derivatives and defined the analytic
function by the holomorphicity condition i fx = fy or ∂ f /∂ z̄ = 0. Later this form becomes
very common in conformal geometry and analytic description of surfaces. In the 19th century,
in works firstly by Cauchy, the modern theory of analytic functions has been created and
developed together with problems of mathematical physics [1]. Among these, the stability
criteria in vibration theory which was given by location of complex roots of analytic polynomial
function. It becomes also clear that new geometry discovered by Lobachevsky is as well the
geometry of analytic functions of one complex variable.

With the discovery of quantum physics, where complex wave function of the quantum
states satisfies the complex amplitude addition rules for quantum probabilities, the role of
complex analysis becomes even more significant. The Glauber coherent states and correspond-
ing Fock–Bargman representation in quantum theory give direct meaning to an entire analytic
function as the wave function of quantum states. Solutions of the planar electrons problem
in magnetic field (Landau levels) and the Quantum Hall effect (the Laughlin wave function)
include an arbitrary analytic wave function, which reflects degeneracy of the ground state.

In attempts to construct axiomatic quantum field theory analyticity plays the central role.
The causality as one of the most fundamental principle of modern physics becomes related
to analyticity principle and is reflected in the dispersion relations. Introduced in optics by
Kronig and Kramers in 1926, these relations were intensively investigated in 1960s, when the
concept of the S-matrix dominated in particle physics. The possibility to solve problem exactly
just from symmetry principles has been realized then in the conformal field theory, one of
the most active area of recent research in mathematical physics. It has found applications in
string theory, statistical physics, phase transitions, condensed matter physics etc. Conformal
mappings as a powerful method of solving boundary value problems in hydrodynamics and
electrostatics, become an infinite dimensional group of quantum transformations.

In quantum scattering theory, analyticity plays a fundamental role and allows the
formulation of integral equations for inverse scattering theory, like Gelfand–Levitan and
Marchenko equations. Beautiful applications of this theory for solution of nonlinear evolution
equations like the Korteweg–deVries equation, opened new area of applied mathematics as
the soliton theory. Then an attempt to solve equations in 2+1 dimension exactly, when quite
difficult and some time impossible to specify analyticity domain for scattering data, leaded to
extension of class of analytic functions to the generalized analytic functions. It was formulated
as the ∂̄-problem. This way generalized analytic functions become important for solution of
higher dimensional evolution equations and some boundary value problems. Exact solutions
of nonlinear field equations like solitons, instantons, cnoidal waves etc are based on analytic
functions theory.

Finally we like to emphasize the deep role of analyticity in science in general, where the
possibility of extrapolation is related with possibility of prediction. As mentioned by Rene
Thom: ‘I believe it is still true, even now, strict quantitative prediction in science is associated
with analytic continuation’. Get out of the field of analyticity and analytic continuation is not
possible and there is no strict way of extrapolation and quantitative prediction [6].

1.2. q-periodic analytic functions

Development of infinite dimensional group theory, conformal field theory and quantum
integrable systems, has illuminated from a new direction one of the classical subjects known as
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q-calculus [2]. Besides quantum groups and anyon physics, this calculus was found recently in
the applications in the old classical problem of hydrodynamics in circular multiple connected
domain [3]. Here q-periodic analytic functions allowed us to formulate the two circle theorem
for irrotational and incompressible flow in double connected domain bounded by two circles
[4, 5]. Let f (z) is the complex potential of the flow in plane, then with addition of two
concentric circular cylinders with cross sections C1 : |z| = r1 and C2 : |z| = r2, the flow
between cylinders becomes

F(z) =
∞∑

n=−∞
f (qnz) +

∞∑
n=−∞

f̄

(
qn r2

1

z

)
. (1)

Here parameter q has the simple geometrical meaning q = r2
2/r2

1 as a unique characteristic
of the double connected domain. This solution shows that complex potential is q-periodic
analytic function F(qz) = F(z). Corresponding complex velocity V̄ (z) = dF(z)/dz is scale-
invariant analytic function V̄ (qz) = q−1V̄ (z) and admits representation V̄ (z) = z−1Aq(z),
where Aq(qz) = Aq(z) is q-periodic analytic function. The form of scale-invariant function
W (qt) = qdAq(t) is characteristic of fractal self-similar functions. So the famous Mandelbrot–
Weierstrass fractal function is represented in this form. Besides in hydrodynamics, analytical
extension of this function in Fock–Bargman or in coherent state representation can be used
for construction of quantum wave function analogue of everywhere continuous but nowhere
differentiable function of Mandelbrot–Weierstrass fractal. This is why naturally to consider
it as quantum fractal. The structure of quantum fractal is typical for hierarchical lattices and
phase transitions critical phenomena [20].

Due to the important role of analytic function theory in physics, any development in the
concept of analytic functions could be highly desirable not only from the mathematical point of
view but also for applications. Motivated by the hydrodynamic problem mentioned above with
q-periodic and self-similar structure, in the present paper we study complex functions under
finite scaling transformations. This allows us to introduce a new class of complex functions
of complex argument, depending on real parameter q and reducible to analytic functions for
particular value of q = 1. The construction is based on q-derivative extension of the Riemann
holomorphicity equation. As an example of this q-analytic functions we treat in details the
complex q-binomial. We show that this q-analytic function, being non-analytic for q �= 1,
still is the generalized analytic function. This function allows us to construct also new type of
quantum coherent states and quantum fractals.

The paper is organized as follows. In section 2 we introduce main definitions and examples
of q-analytic functions. q-Taylor expansion and q-Laurent expansions are considered in
sections 3–5 correspondingly. The advantage of our approach is that due to factorization
property of q-binomials, we have factorization of complex q-exponential functions, similar
to the polar coordinate representation of a complex function. In section 6 we introduce
q-harmonic functions. In section 7 we show that complex q-binomial is a generalized analytic
function, satisfying D-Bar equation and the generalized Cauchy representation. Details of
calculations are given in the appendix. In section 8 we consider self-similarity equation and
construct complex q-analytic fractals represented in terms of double Mellin series. Sections 9
and 10 are devoted to application of q-analytic functions in quantum theory. In our presentation
we try to be pedagogical and represent our ideas and calculations in explicit and detailed form.

2. q-analytic function

The q-differential of finite scale transformation for real function of one variable is defined as [2]

dq f (x) = f (qx) − f (x) = (Dx f (x)) dqx, (2)
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where dqx = (q − 1)x, and q-derivative is

Dx f (x) = f (qx) − f (x)

(q − 1)x
. (3)

For a complex-valued function f (x, y) of two real variables x and y, the q-differential

dq f (x, y) = f (qx, qy) − f (x, y), (4)

can be rewritten as

dq f (x, y) = (My
qDx f (x, y)) dqx + (Dy f (x, y)) dqy, (5)

where dqx = (q−1)x, dqy = (q−1)y, Dx and Dy are partial q-derivatives in x and y variables.
Here My

q is the dilatation operator in y variable: My
qF(x, y) = F(x, qy). In operator form we

have My
q = qy d

dy , and Dy ≡ Dy
q = q

y d
dy −1

(q−1)y . In terms of complex coordinates z = x+ iy, z̄ = x− iy
we can rewrite complex q-differentials dqz = dqx+ i dqy, dqz̄ = dqx− i dqy as dqz = (q−1) dz
and dqz̄ = (q − 1) dz̄. For q-differential of an arbitrary complex-valued function f (x, y) then
we get

dq f (x, y) = (My
qDz f ) dqz + (My

qDz̄ f ) dqz̄, (6)

where we have introduced two linear operators of complex q-derivatives

Dz ≡ 1
2

(
Dx − iMy

1/qDy
)
, Dz̄ ≡ 1

2

(
Dx + iMy

1/qDy
)
. (7)

Definition 2.1. A complex-valued function f (x, y) of two real variables is called a q-analytic
in a region if the following identity holds in the region:

Dz̄ f = 1
2

(
Dx + iMy

1/qDy
)

f = 0. (8)

The q-differential of q-analytic function then is given by

dq f = (
My

qDz f
)

dqz. (9)

In the limit q → 1, this definition reduces to the standard analyticity condition

∂

∂ z̄
f = 1

2

(
∂

∂x
+ i

∂

∂y

)
f = 0 (10)

leading to independence of z̄: df = ∂ f
∂z dz.

Similar way for q-anti-analytic function we have

Dz f = 1
2

(
Dx − iMy

1/qDy
)

f = 0, (11)

and

dq f = (
My

qDz̄ f
)

dqz̄. (12)

We like to notice that analytic function f (z) as a function of z can depends on several
constants. In case of q-holomorphic function (8) these constants could be arbitrary q-periodic
functions of z. For example Dz̄ f (z) = 0 determines f (z) not uniquely but up to f (z) + Aq(z̄),
where Dz̄Aq(z̄) = 0, and Aq(z̄)-is q-periodic function Aq(qz̄) = Aq(z̄).
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2.1. q-analytic binomial

The simplest and most important set of q-analytic functions is given by complex q-binomials

(x + iy)n
q ≡ (x + iy)(x + iqy)(x + iq2y) . . . (x + iqn−1y) =

n∑
k=0

[
n

k

]
q

qk(k−1)/2ikxn−kyk

expandable according to Gauss’s binomial formula. Here we follow notations for real
q-binomial introduced in [2]. By direct substitution we have

Dz̄(x + iy)n
q = 0 (13)

and

Dz(x + iy)n
q = [n]q(x + iy)n−1

q . (14)

Then for q-differential we get

dq(x + iy)n
q = (

My
qDz(x + iy)n

q

)
dqz = [n]q(x + iqy)n−1

q dqz. (15)

Similar way it is easy to show that complex conjugate q-binomial (x − iy)n
q is q-anti-analytic.

Here we notice an interesting limit of this binomial. For q < 1 and x = 1 the limit n → ∞
exists and is given by the q-analogue of the Euler Formula

(1 + iy)∞q = E iy/(1−q)
q = Cosq

y

1 − q
+ iSinq

y

1 − q
,

where Ex
q is the second Jackson’s q-exponential function.

2.2. Negative power q-analytic binomial

We define complex q-binomial of negative power as

(x + iy)−n
q = 1

(x + iq−ny)n
q

. (16)

For z �= 0 it is q-analytic function

Dz̄(x + iy)−n
q = 0 (17)

and

Dz(x + iy)−n
q = [−n]q(x + iy)−(n+1)

q . (18)

For q-differential then we have

dq(x + iy)−n
q = (

My
qDz(x + iy)−n

q

)
dqz = [−n]q(x + iqy)−(n+1)

q dqz. (19)

3. q-Taylor formula for q-analytic polynomial

By taking linear combination of complex q-binomials, we get q-analytic polynomials.
Conversely, any complex-valued q-analytic polynomial function P(z; q) of degree N has
the following q-Taylor expansion

P(z; q) =
N∑

k=0

(
Dk

zP
)
(0)

(x + iy)k
q

[k]!
. (20)

It follows from expansion

P(z; q) =
N∑

k=0

ak(x + iy)k
q (21)
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where polynomials {(x+iy), (x+iy)2
q, . . . , (x+iy)N

q } are linearly independent. They constitute
a basis for the space of complex q-analytic polynomials degree N. Due to q-analyticity
condition, the above expansion includes only (x + iy)k

q polynomials, and not the complex
conjugate ones. Then differentiating this expression k-times in z, and putting z = 0 we find
coefficients ak = (Dk

zP)(0)/[k]!.

4. q-Taylor representation for q-analytic functions

In the limit N → ∞, the above Taylor formula for convergent series, represents the q-analytic
function

f (z; q) =
∞∑

k=0

ak(x + iy)k
q =

∞∑
k=0

(
Dk

z f
)
(0)

(x + iy)k
q

[k]!
. (22)

It is clear that this q-analytic function satisfies equation (8): Dz̄ f (z) = 0. If we fix base |q| < 1,

and n = 0, 1, 2, . . . then we get inequality

x2 + q2ny2 � x2 + y2,

which implies

∣∣(x + iy)n
q

∣∣ � |(x + iy)n| ⇒
∣∣∣∣∣

∞∑
n=0

an(x + iy)n
q

∣∣∣∣∣ �
∞∑

n=0

|an||(x + iy)n|.

It gives next result.

Proposition 4.1. For a given complex-valued function f (z) analytic inside the disc of radius
R, CR : |z| < R, ∂ f (z)/∂ z̄ = 0, and with the Taylor expansion

f (z) =
∞∑

n=0

anzn, (23)

exists the q-analytic function f (z; q), Dz̄ f (z; q) = 0, convergent in the same disc CR with the
q-Taylor expansion

f (z; q) =
∞∑

n=0

an(x + iy)n
q. (24)

According to this, to every analytic function corresponds the q-analytic function. For
q = 1 a q-analytic function becomes the analytic f (z; q = 1) = f (z) and parameter q shows
deviation from this analyticity.

4.1. q-analytic function examples

From standard exponential and trigonometric functions we have following entire q-analytic
functions with |q| < 1:

e(z; q) =
∞∑

n=0

(x + iy)n
q

n!
, (25)

sin(z; q) =
∞∑

n=0

(−1)n
(x + iy)2n+1

q

(2n + 1)!
, (26)

cos(z; q) =
∞∑

n=0

(−1)n
(x + iy)2n

q

(2n)!
. (27)
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From the definition of Jackson’s q-exponential function,

eq(z) ≡
∞∑

n=0

(x + iy)n

[n]!q
,

which is  the  entire     function for q > 1, we have q-analytic q-exponential function

eq(z; q) ≡
∞∑

n=0

(x + iy)n
q

[n]!q
,

or in terms of z ≡ x + iy, zq ≡ x + iqy, . . . zqn ≡ x + iqny, . . . ,

eq(z; q) =
∞∑

n=0

zzq . . . zqn−1

[n]q!
.

This function eq(x + iy; q) is q-analytic Dz̄eq(z; q) = 0 for q > 1 in the strip −∞ < x < ∞,

|y| < q/(q − 1), and can be factorized in terms of Jackson’s q-exponential functions as

eq(x + iy; q) = eq(x)Eq(iy) = eq(x)(Cosq(y) + i Sinq(y)). (28)

This formula is q-analogue of the Euler formula for analytic function ez = ex eiy =
ex(cos y + i sin y).

Here we like to emphasize that q-analytic functions as complex-valued functions are not
analytic functions in the usual sense, because arguments

zqn = x + iqny = (1 + qn)

2
z + (1 − qn)

2
z̄,

include both z and z̄, so that ∂
∂ z̄ eq(x + iy; q) �= 0. The only exception for q �= 1 is a linear

function f = az + b.
Geometrically, we can represent every complex variable zqn = x + iqny, n =

0,±1,±2, . . . as a complex plane with coordinates (x, qny) (with re-scaled y coordinate).
All these planes are intersecting along the real axis x. Then, the q-analytic function depends on
infinite set of complex variables on these planes z, zq±1 , zq±2 , . . . and not on z̄, z̄q±1 , z̄q±2 , . . . . In
the limiting case q → 1, all planes coincide with the complex plane z, and q-analytic function
becomes the standard analytic function.

5. q-Laurent expansion for q-analytic functions

The Laurent formula for an analytic function in annular domain allows us to introduce
corresponding q-analytic function.

In (16) for the negative power q-binomial

(x + iy)−n
q = 1

(x + iq−ny)n
q

, (29)

we found that for z �= 0 it is q-analytic function, Dz̄(x + iy)−n
q = 0. If we fix the base |q| < 1,

then we have inequality
1∣∣(x + iq−ny)n

q

∣∣ � 1

|(x + iy)n| (30)

and as follows ∣∣∣∣∣
∞∑

n=1

bn

(x + iq−ny)n
q

∣∣∣∣∣ �
∞∑

n=1

|bn|
|(x + iy)n| . (31)

According to this relation we can extend class of q-analytic functions.
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Proposition 5.1. For a given complex-valued function f (z) analytic inside the annular domain
D : r < |z| < R, ∂ f (z)/∂ z̄ = 0, and with the Laurent expansion

f (z) =
∞∑

n=−∞
bnzn, (32)

exists the q-analytic function f (z; q), Dz̄ f (z; q) = 0, convergent in the same domain D, with
the q-Laurent expansion

f (z; q) =
∞∑

n=−∞
bn(x + iy)n

q. (33)

As an example we have

e

(
1

z
; q

)
=

∞∑
n=0

(x + iy)−n
q

n!
=

∞∑
n=0

1

n!(x + iq−ny)n
q

(34)

which is q-analytic everywhere except z = 0.

6. The q-Cauchy–Riemann equations

Expanding a q-holomorphic function to real and imaginary parts f (x + iy; q) = u(x, y; q) +
iv(x, y; q) due to (8), (Dx + iMy

1
q

Dy)(u + iv) = 0 we get the system of q-Cauchy–Riemann

Equations

Dxu = My
1
q

Dyv, Dxv = −My
1
q

Dyu. (35)

The q-Laplace operator is defined in terms of q-holomorphic derivatives (7) as

�q ≡ 4DzDz̄ = D2
x +

(
My

1
q

Dy

)2

= D2
x + 1

q
My

1
q2

D2
y,

where the order of My
q and Dy operators is interchanged according to Q-commutative formula

(DyMy
Q) = Q(My

QDy).

Due to (8) operator Dz acts on q-holomorphic function f (z; q) just as Dx derivative:

Dz f (z; q) = 1
2

(
Dx − iMy

1
q

Dy
)

f (z; q) = Dx f (z; q). (36)

Definition 6.1. The real function φ(x, y) is a q-harmonic function if it satisfies the q-Laplace
equation

�qφ(x, y) = 0. (37)

Due to factorization �q f = 4DzDz̄ f = 0, the real and imaginary parts of a q-analytic
function are conjugate q-harmonic functions

�qu(x, y) = 0, �qv(x, y) = 0.

These functions can be used for solution of two-dimensional q-heat and q-Schrödinger
equations. Recently, we have studied the q-heat equations in a line [12, 13]. Different forms of
these equations can be derived in problems of random walk on quantum group [25] and gauge
theory of self-similar systems [23]. Two-dimensional version of stationary heat distribution in
such systems is described by the q-Laplace equation �qu = 0 with general solution in terms
of q-harmonic functions.

8
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6.1. Examples of q-harmonic functions

From q-binomial for n = 2

(x + iy)2
q = (x + iy)(x + iqy) = x2 − qy2 + (1 + q)ixy

we have q-harmonically conjugate functions u(x, y) = x2 − qy2, v(x, y) = (1 + q)xy.
For arbitrary n = 1, 2, 3, . . ., polynomial q-harmonic functions are

u(x, y) = 1

2

[
(x + iy)n

q + (x − iy)n
q

]
, v(x, y) = 1

2i

[
(x + iy)n

q − (x − iy)n
q

]
. (38)

Simplest non-polynomial q-harmonic functions follow from (28) as

u(x, y) = eq(x)Cosq(y), v(x, y) = eq(x)Sinq(y). (39)

7. q-analytic function as generalized analytic function

In previous sections we have seen that q-analytic functions depend on both z and z̄ variables
and are not analytic. Nevertheless, here we are going to show that some of q-analytic functions
are generalized analytic functions [14]. This class of functions is related with the ∂̄-problem
(D-Bar problem). The scalar equation

∂�(z, z̄)

∂ z̄
= f (z, z̄) (40)

for simple connected domain in complex z-plane called ∂̄-problem [16]. For complex functions

� = u + iv, f = g + ih

2
, z = x + iy

it is equivalent to the system of a generalized Cauchy–Riemann equations

∂u

∂x
− ∂v

∂y
= g(x, y),

∂u

∂y
+ ∂v

∂x
= h(x, y). (41)

In case of analytic functions, g(x, y) = h(x, y) = 0 → f (x, y) = 0 it recovers the Cauchy–
Riemann equations.

Definition 7.1. Complex function �(z, z̄) in a region R, satisfying equation

∂�

∂ z̄
= A(z, z̄)� + B(z, z̄)�̄ (42)

is called the generalized analytic function.

In particular case B = 0 it reduces to D-Bar equation

∂�

∂ z̄
= A(z, z̄)� (43)

which can be solved in closed form [14, 16] as:

�(z, z̄) = ω(z)e
1

2π i

∫∫
D

A(ζ ,ζ̄ )

ζ−z dζ∧ dζ̄
, (44)

where ω(z) is an arbitrary analytic function. First time this solution was obtained by
Theodoresco in 1931 [15].
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7.1. Complex q-binomial

Here we show that complex q-binomials �(z, z̄) = (x+iy)n
q are generalized analytic functions.

Calculating partial derivatives
∂
∂x (x + iy)n

q

(x + iy)n
q

= ∂

∂x

n−1∑
k=0

ln(x + iqky) =
n−1∑
k=0

1

x + iqky
(45)

we get

∂

∂x
(x + iy)n

q = (x + iy)n
q

n−1∑
k=0

1

x + iqky
,

∂

∂y
(x + iy)n

q = (x + iy)n
q

n−1∑
k=0

iqk

x + iqky
, (46)

and

∂

∂ z̄
(x + iy)n

q = 1 − q

2
(x + iy)n

q

n−1∑
k=0

[k]

x + iqky
. (47)

Therefore �(z, z̄) = (x + iy)n
q is the generalized analytic function satisfying ∂̄-equation (43)

∂

∂ z̄
�(z, z̄) = �(z, z̄)(1 − q)

n−1∑
k=0

[k]

(1 + qk)z + (1 − qk)z̄
, (48)

where

A(z, z̄) = (1 − q)

n−1∑
k=1

[k]q

(1 + qk)z + (1 − qk)z̄
.

Here parameter q expresses deviation from analyticity, and for q = 1 → A(z, z̄) ≡ 0 and
D-Bar equation (∂-problem) reduces to the holomorphicity condition ∂

∂ z̄ zn = 0. By using (43)
and (44) we find new representation for q-Binomial:

(x + iy)n
q = ω(z) exp

[
1

2π i

∫∫
D

1 − q

ζ − z

n−1∑
k=1

[k]q

(1 + qk)ζ + (1 − qk)ζ̄
dζ ∧ dζ̄

]
, (49)

where

ω(z) =
( z

2

)n n−1∏
k=0

(1 + qk). (50)

Details of these calculations are given in appendix. This representation shows explicitly relation
between complex q-binomial (x + iy)n

q and complex binomial (x + iy)n = zn.

8. Complex q-analytic fractals

In this section we are going to construct self-similar fractal surface as a q-analytic function.
In papers [20, 21] it was shown how generators of fractal and multi-fractal sets with discrete
dilatation symmetries can be related to q-derivative operator. It was applied then to free energy
of spin systems on hierarchical lattices [20, 21] and irreversible dynamics on such lattices [22].
Key point is that singular part of critical spin systems on hierarchical lattices possesses discrete
dilatation symmetry and satisfies the homogeneity relation. Following similar arguments here
we consider complex q-derivative and q-analytic functions to obtain new type of fractal sets.

10
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We introduce complex-valued function f (x, y), as homogeneous function degree d:

f (qx, qy) = qd f (x, y). (51)

The q-differential of this function is

dq f = f (qx, qy) − f (x, y) = (qd − 1) f (x, y) (52)

and due to (6) it can be rewritten as

(qd − 1) f (x, y) = (
My

qDz f
)

dqz + (
My

qDz̄ f
)

dqz̄. (53)

For q-analytic function Dz̄ f = 0 the last term vanishes and we have the homogeneous
q-difference equation

zMy
qDz f = qd − 1

q − 1
f . (54)

Below we consider only the case d = n as a positive integer. To find solution of this equation,
first we notice that complex q-binomial (x + iy)n

q is a homogenous function degree n

(λx + iλy)n
q = λn(x + iy)n

q. (55)

Combining this condition for λ = q with q-analyticity condition Dz̄(x + iy)n
q = 0, we find that

it satisfies equation (54)

zMy
qDz(x + iy)n

q = [n]q(x + iy)n
q. (56)

Then the general q-analytic fractal solution is

f (x, y) = (x + iy)n
qAq(x, y), (57)

where Aq(qx, qy) = Aq(qx, y) = Aq(x, qy) = Aq(x, y) is complex-valued q-periodic function
in both x and y.

By choosing Aq(x, y) as a real q-periodic function, we get the q-harmonic fractals as

U (x, y) = u(x, y)Aq(x, y), V (x, y) = v(x, y)Aq(x, y), (58)

where u and v are q-harmonic functions (38). Specific form of these fractals depends on
structure of Aq(x, y). To fix it we have the following Proposition.

Proposition 8.1. A q-periodic function can be represented in the general form

Aq(x, y) = (xy)−s
∞∑

k=−∞

∞∑
l=−∞

q−s(k+l)G(qkx, qly) (59)

Proof.

Aq(qx, y) = (qxy)−s
∞∑

k=−∞

∞∑
l=−∞

q−s(k+l)G(qk+1x, qly).

By replacing k �→ k − 1, it is obvious that Aq(qx, y) = Aq(x, y). Similarly, it is easy to see
that Aq(x, y) is q-periodic in y argument as well. �

According to the above proposition, the general q-analytic fractal solution of q-difference
self-similarity equation (56) is

f (x, y) = (xy)−s(x + iy)n
q

∞∑
k=−∞

∞∑
l=−∞

q−s(k+l)G(qkx, qly). (60)

11
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8.1. Examples of q-periodic functions

For G(x, y) = sin x sin y, from (59) we find

Aq(x, y) = (xy)−s
∞∑

k=−∞

∞∑
l=−∞

sin(qkx) sin(qly)

qs(k+l)
. (61)

With another choice G(x, y) = (1 − eix) (1 − eiy), we get

Aq(x, y) = (xy)−s
∞∑

k=−∞

∞∑
l=−∞

(1 − eiqkx)(1 − eiql y)

qs(k+l)
.

This function can be separated to one-dimensional q-periodic functions A(x) and B(y),

Aq(x, y) = x−s
∞∑

k=−∞

1 − eiqkx

qsk
y−s

∞∑
l=−∞

1 − eiql y

qsl
= A(x)B(y),

representing the q-periodic parts of the Weierstrass–Mandelbrot function. And the last function
is a canonical example of the fractal curve.

8.2. Double Mellin series expansion

Below we restrict our consideration by Aq(x, y) = Aq(x) Bq(y), where Aq(qx) =
Aq(x), Bq(qx) = Bq(x) are q-periodic functions. Without loss of generality we consider
Aq(x) case only in details. By changing argument ln x = t and ln q = T we have

Aq(qx) = Aq(x) ⇒ Aq(e
T et ) = Aq(e

t ).

Denoting Aq(et ) ≡ F(t) we find that it is T-periodic, F(t + T ) = F(T ), and can be expanded
to Fourier series

F(t) =
∞∑

n=−∞
cn e

i2πnt
T ,

with Fourier coefficients

cn = 1

T

∫ T

0
F(t) e

−i2πnt
T dt.

According to this, q-periodic function Aq(x) can be represented by complex series (the Mellin
series)

Aq(x) = F(ln x) =
∞∑

n=−∞
cnx

i2πn
ln q , (62)

where

cn = 1

ln q

∫ q

1
Aq(x)x

−i2πn
ln q

dx

x
.

In a similar way for Bq(y) we have

Bq(y) =
∞∑

n=−∞
dny

i2πn
ln q , (63)

with coefficients

dn = 1

ln q

∫ q

1
Bq(y)y

−i2πn
ln q

dy

y
.

12
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Combining together we get the double Mellin series representation of q-periodic function in
the following form

Aq(x, y) =
∞∑

n=−∞

∞∑
m=−∞

cn dmx
i2πn
ln q y

i2πn
ln q . (64)

By substituting to (57) and expanding q-binomial according to Gauss’s Binomial formula,
we obtain expansion of self-similar q-analytic function (q-analytic fractal) to double Mellin
series

f (x, y) =
∞∑

k=−∞

∞∑
m=−∞

ck dm

n∑
l=0

[
n

l

]
q

ilq
l(l−1)

2 xn−l+ i2πk
ln q yl+ i2πm

ln q . (65)

In case of fractal (61) the expansion is

f (x, y) = Aq(x, y)(x + iy)n
q

=
∞∑

k=−∞

∞∑
m=−∞

n∑
l=0

[
n

l

]
q

ilq
l(l−1)

2 xn−l−syl−s sin(qkx) sin(qmy)

qs(k+m)
.

8.2.1. Examples of q-analytic fractals. By choosing function

Aq(x, y) = sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
, (66)

as q-periodic in x and y, we obtain the following set of homogenous self-similar q-analytic
fractals of degree n,

fn(x, y) = sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
· (x + iy)n

q, (67)

and for Re fn(x, y) ≡ un and Im fn(x, y) ≡ vn the set of self-similar q-harmonic functions.
For n = 0, the simplest q-harmonic and q-periodic function is f0(x, y) = Aq(x, y) from

(66). In figures 1 and 2, we plot f0(x, y) for q = 2 and −0.5 � x � 0.5, −0.5 � y � 0.5.

By changing scale (x, y) → (qnx, qny), or in our example magnifying our figure in scales
. . . , 1

4 , 1
2 , 2, 4, 8, . . . , etc we find that the figure shows the self-similar character remaining in

the same form.
For n = 2, we have

u2(x, y) = (x2 − qy2) · sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
,

v2(x, y) = [2]q(xy) · sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
. (68)

In figure 3 we show 3D plot of u2(x, y) at q = 2 and −10 � x � 10, −10 � y � 10. By
re-scaling coordinates in 2n scale we get the same figures, showing self-similar structure of
our q-harmonic function.

For n = 3, we get

u(x, y) = x
(
x2 − qy2 − [2]qq2y2

) · sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
,

v(x, y) = y
(
[2]qx2 + q2(x2 − qy2)

) · sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
. (69)

In figure 4 we show 3D plot of q-harmonic fractal u3(x, y) at q = 2 and −1 � x � 1,

−1 � y � 1. This figure also shows self-similar structure at 2n scale.
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Figure 1. Contour plot of q-periodic q-harmonic function.

Figure 2. 3D plot of q-periodic q-harmonic function.

For n = −1, we have

f−1(x, y) = sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
· (x + iy)−1

q (70)
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Figure 3. 3D plot of n = 2 q-harmonic function.

Figure 4. 3D plot of n = 3 q-harmonic function.

and corresponding self-similar q-harmonic functions for (x + iy �= 0) are

u(x, y) = q2x

x2q2 + y2
· sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)

v(x, y) = −qy

x2q2 + y2
· sin

(
2π

ln q
ln |x|

)
· sin

(
2π

ln q
ln |y|

)
(71)

In figures 5 and 6 we show contour plot and 3D plot of this q-harmonic fractal u(x, y) at q = 2.
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Figure 5. Contour plot of n = −1 q-harmonic function.

Figure 6. 3D plot of n = −1 q-harmonic function.

9. q-analytic coherent states

In this section, we apply our q-analytic functions to construct quantum states of harmonic
oscillator. We consider bosonic operators

[a, a+] = I, [a, I] = 0, [a+, I] = 0 (72)
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and the vacuum state |0〉:
a|0〉 = 0, 〈0|0〉 = 1. (73)

The orthonormal set of n-particle states, n = 0, 1, 2, . . .,

|n〉 = (a+)n

√
n!

|0〉, 〈n|m〉 = δnm, (74)

generates the normalized Glauber coherent states, with complex α [27],

|α〉 = e− 1
2 |α|2

∞∑
n=0

αn

√
n!

|n〉. (75)

By analogy with these coherent states we introduce a new set of q-analytic coherent states,
parameterized by complex number α = α1 + iα2:

|α; q〉 = C
∞∑

n=0

(α1 + iα2)
n
q√

[n]q!
|n〉. (76)

Normalization condition gives

1 = 〈α; q|α; q〉 = |C|2
∞∑

n=0

(
α2

1 + α2
2

)n

q2

[n]q!
= |C|2eq

(
α2

1 + α2
2

)
q2 ,

where we denoted

eq
(
α2

1 + α2
2

)
q2 =

∞∑
n=0

(
α2

1 + α2
2

)n

q2

[n]q!
(77)

in Hahn’s notations [8], see also [11]. Then the normalized q-analytic coherent states are given
by

|α; q〉 = (
eq
(
α2

1 + α2
2

)
q2

)− 1
2

∞∑
n=0

(α1 + iα2)
n
q√

[n]q!
|n〉. (78)

For |q| < 1, due to evident relation (α2
1 + α2

2 )n
q2 � (α2

1 + α2
2 )n, we get inequality

eq
(
α2

1 + α2
2

)
q2 � eq

(
α2

1 + α2
2

)
, (79)

where on the rhs we have the Jackson q-exponential function. From infinite product
representation [2] of the last function

eq(|α|2) = 1

(1 − (1 − q)|α|2)∞q
, (80)

we can see that singularities of this function are located on the set of concentric circles with
radiuses given by growing geometric progression rn = r0q−n/2 , r0 = 1/

√
1 − q. Then both

functions convergent in the disc D : |α|2 � 1/(1 − q). This is the region where normalization
of our q-analytic coherent states is defined.

When q → 1 these states reduce to the Glauber coherent states (75) and radius of
convergency r0 → ∞. Here we emphasize that our q-analytic coherent states are also different
from the q-coherent states appearing in representation of q-deformed Heisenberg–Weyl algebra
[17–19]. The last ones are analytic in α, while our states are not analytic but the q-analytic.
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10. q-analytic Fock–Bargmann representation

The standard Fock–Bargman representation of an arbitrary state

|ψ〉 =
∞∑

n=0

cn|n〉, 〈ψ |ψ〉 =
∞∑

n=0

|cn|2 = 1,

is given by the scalar product of this state with Glauber’s coherent state (75):

〈α|ψ〉 = e− 1
2 |α|2ψ(ᾱ), (81)

where the wave function

ψ(α) =
∞∑

n=0

cn
αn

√
n!

(82)

is an entire analytic function [27].
As an example, our q-analytic coherent state (78) in Fock–Bargman representation 〈z|α; q〉

is characterized by analytic function in z:

ψα(z) = (
eq
(
α2

1 + α2
2

)
q2

)− 1
2

∞∑
n=0

(α1 + iα2)
n
qzn√

[n]q!n!
. (83)

By using our q-analytic coherent states (78), now we introduce new representation of
these states which we call the q-analytic Fock–Bargman representation. By taking the scalar
product of |ψ〉 with (78) we get

〈α; q|ψ〉 = (
eq
(
α2

1 + α2
2

)
q2

)− 1
2

∞∑
n=0

cn

(α1 − iα2)
n
q√

[n]q!
(84)

= (
eq
(
α2

1 + α2
2

)
q2

)− 1
2 ψ(ᾱ; q), (85)

where the wave function

ψ(α; q) =
∞∑

n=0

cn

(α1 + iα2)
n
q√

[n]q!
, (86)

is complex q-analytic function. Therefore, every complex q-analytic function, Dz̄ψ(x+ iy)q =
0, determines quantum state in our q-analytic Fock–Bargmann representation.

Proposition 4.1 from section 4, allows us to compare two wave functions in Fock–Bargman
representation (82) and in q-analytic Fock–Bargman representation (86). Entire character of
the first one implies existence of the second one for |q| < 1.

As simplest example we find representation of the orthonormal basis {|n〉}, which is given
just by complex q-analytic binomial

|n〉 → ψn(α; q) = (α1 + iα2)
n
q√

[n]q!
. (87)

It is not analytic, but as we have seen in section 6, it represents the generalized analytic
function.

As a next example, we find the Glauber coherent state |α〉 (75) in our q-analytic Fock–
Bargmann representation 〈z; q|α〉:

ψα(z; q) = e− 1
2 |α|2

∞∑
n=0

(x + iy)n
q√

[n]q!

αn

√
n!

= e− 1
2 |α|2

∞∑
n=0

(αx + iαy)n
q√

[n]q!n!
, (88)

which is q-analytic in z = x + iy.
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10.1. Quantum q-oscillator

We consider q-bosons with creation and annihilation operators

b+ = a+
√

[N + I]q

N + I
=
√

[N]q

N
a+, (89)

b =
√

[N + I]q

N + I
a = a

√
[N]q

N
, (90)

where operators a+, a are given by (72), N = a+ a, [N]q = qN−1
q−1 . The commutation relations

are

bb+ − b+b = qN, (91)

bb+ − qb+b = I, (92)

and for q-number operators we have

b+b = [N]q, bb+ = [N + I]q. (93)

As easy to see, n-particle states for b and a operators are the same

|n〉 = (a+)n

√
n!

|0〉 = (b+)n√
[n]q!

|0〉, (94)

where vacuum state is a|0〉 = b|0〉 = 0. Then for b, b+ operators we have

b|n〉 = √
[n]q|n − 1〉, b+|n〉 = √

[n + 1]q|n + 1〉. (95)

By using last relations we find action of these operators in q-analytic Fock–Bargman
representation:

b → Dz, b+ → zMy
q, (96)

where Dz is complex derivative operator defined in (7). For q-number operator we get
representation

[N]q → zMy
qDz. (97)

This representation shows interesting connection with self-similarity condition discussed in
section 6. The eigenvalue problem

[N]q|n〉 = [n]q|n〉 (98)

in q-analytic Fock–Bargman representation

zMy
qDz

(x + iy)n
q√

[n]q!
= [n]q

(x + iy)n
q√

[n]q!
, (99)

is equivalent to the self-similarity q-difference equation (56).
Quantum q-oscillator is described by Hamiltonian operator

H = �ω(bb+ + b+b). (100)

The Hamiltonian in q-analytic FB representation becomes operator

H = �ω
(
DzzMy

q + zMy
qDz

)
, (101)

and the Schrödinger equation

H|n〉 = En|n〉, (102)

19



J. Phys. A: Math. Theor. 47 (2014) 045204 O K Pashaev and S Nalci

takes the form of q-difference equation

�ω
(
DzzMy

q + zMy
qDz

)
ψn(z; q) = Enψn(z; q), (103)

with q-analytic solution

ψn(z; q) = (x + iy)n
q√

[n]q!
, En = �ω([n]q + [n + 1]q). (104)

The above consideration shows that our q-analytic functions even being non-analytic
functions could describe quantum states. Moreover, fractal q-analytic functions discussed in
section 7 describe quantum states with fractal properties. These questions are now under
investigation.

11. Conclusion

In the present paper we have introduced a new type of analyticity property for the complex
function of the complex argument which we called q-analyticity. The main object in our
consideration is given by the complex q-binomial as a q-analytic function. It was shown that this
q-analytic function is not an analytic function in the standard sense, but is a generalized analytic
function. We formulated a self-similar equation for the q-analytic function and constructed
q-analytic fractals in terms of the q-periodic function and double Mellin series.

Following similar steps as in section 7 we can show that our q-analytic fractals are also
generalized analytic functions. For example, the simplest q-periodic fractal (66) satisfies the
D-Bar equation

∂

∂ z̄
φ(z, z̄) = B(z, z̄)φ(z, z̄), (105)

where f0(x, y) ≡ φ(z, z̄) and

B(z, z̄) = (1 − q)

n−1∑
k=1

[k]q

(1 + qk)z + (1 − qk)z̄

+ 4π

ln q

⎛
⎝cot

(
2π
ln q ln |z+z̄|

2

)
z + z̄

−
cot

(
2π
ln q ln |z−z̄|

2

)
z − z̄

⎞
⎠ . (106)

Here we should comment an important point related with terminology and originality
of our results comparing with other papers. First we should mention paper [9] which has
introduced the q-complex numbers as ‘a kind of complex numbers’ based on abstract algebraic
concept of q-addition. In contrast to it, in our paper we play with ordinary complex numbers
and complex function theory. Moreover definition of complex q-difference operator and q-
holomorphic equation in paper [9] and in our paper are different. Complex q-binomials which
are main q-analytic example in our paper are not satisfying holomorphic condition in Ernst
paper, so they are not holomorphic in his sense. There exists the set of polynomials satisfying
q-holomorphicity condition in [9], but they do not have simple product representation as q-
binomials. But this product representation is crucial for a function to be the generalized analytic
function. We think that complex q-binomials are most natural complex extensions of q-Taylor
expansion introduced by Jackson [7], which recently was applied to statistical field theory
in [24] and to generalization of multifractal theory in [26]. This is why we prefer instead of
abstract mathematical concepts to work on the solid basis of conventional complex analysis.
The second paper [10], called as motivation for q-complex numbers, adds no new results
comparing with the first paper, but contains basically the history of conventional calculus
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with piquant details. One more paper should be mentioned [28], where the notion of the
q-analytic function is given to convergent double power series of q-commutative operators
from the quantum plane. This definition has no direct relation with ours and do not use
holomorphic equation at all, though we think it is possible to reformulate our results in terms
of q-commutative coordinates. This questions would be addressed in our future work.

Finally we think that our results relating q-analytic functions with fractals and generalized
analytic functions are new and important for several applications. The first potential field of
applications is related with point vortex problems in bounded domains where q-calculus
already showed usefulness by computing all necessary physical quantities like vortex images,
Hamiltonian function, stream function, etc [3]. The second potential application is related to
new type of q-analytic coherent states. This set of quantum states allows one to construct a
new type of Fock–Bargmann representation with description of the q-oscillator in terms of
q-analytic functions. We expect that by using this approach we can construct a new type of
quantum fractal coherent states with self-similarity properties.
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Appendix. D-Bar representation of complex q-binomial

In this section, we are going to prove q-complex binomial representation (49), (50).

A.1. Generalized Cauchy formula

For non-analytic function �(z), the next generalized Cauchy formula is valid [14, 16]

�(z) = 1

2π i

∮
�

�(ζ ) dζ

ζ − z
− 1

π

∫ ∫
G

∂�

∂ζ̄

dξ dη

ζ − z
, (A.1)

where ζ = ξ + iη. First we are going to check this formula for non-analytic function

�n(z) = x + iqny = 1 + qn

2
z + 1 − qn

2
z̄, (A.2)

with
∂�n

∂ z̄
= 1 − qn

2
= [n]q

2
(1 − q).

For the disc of radius R we have:

(a) The line integral part in the above generalized Cauchy formula gives

1

2π i

∮
�

1+qn

2 ζ + 1−qn

2 ζ̄

ζ − z
dζ = 1

2π i

1 + qn

2

∮
�

dζ

+ 1

2π i

1 + qn

2
z
∮

�

dζ

ζ − z
+ 1

2π i

1 − qn

2

∮
�

ζ̄ dζ

ζ − z
. (A.3)

The first integral vanishes, while the second one gives 2π i so that we have

1 + qn

2
z + 1

2π i

1 − qn

2

∮
�

ζ̄ dζ

ζ − z
. (A.4)
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By substitution ζ = Reiθ the last integral becomes

1

2π i

1 − qn

2

∫ 2π

0

i dθ

Reiθ − z
. (A.5)

Then, rewriting it in terms of u = eiθ we get contour integral along the unit circle
1

2π i

1 − qn

2

∮
|u|=1

du

u(Ru − z)
. (A.6)

By the residues theorem this integral vanishes

1 − qn

2R

[
R

−z
+ R

z

]
= 0. (A.7)

As a result for the line integral we obtain

LI = 1 + qn

2
z. (A.8)

(b) The double integral part in polar coordinates ζ = ξ + iη = reiθ is

− 1

π

∫∫
G

1 − qn

2

dξ dη

ζ − z
= −1 − qn

2π

∫ 2π

0

∫ R

0

r dr dθ

reiθ − z
. (A.9)

By substitution u = eiθ we rewrite the angle part of integral as the contour integral along
the unit circle |u| = 1

− 1

π

∫∫
G

1 − qn

2

dξ dη

ζ − z
= −1 − qn

2π i

∫ R

0
dr
∮

|u|=1

du

u(u − z/r)
. (A.10)

By the residues theorem the contour integral for |z| > r is∮
|u|=1

du

u(u − z/r)
= 2π i

(
− r

z

)
(A.11)

and for |z| < r it vanishes. Thus the double integral for r > |z| also vanishes so that the
range of integration in r is going from 0 to |z|,

1 − qn

z

∫ |z|

0
r dr = 1 − qn

z

|z|2
2

. (A.12)

Then finally for the double integral we get

DI = 1 − qn

2
z̄. (A.13)

Adding the line and the double integrals (A.8), (A.13) together we obtain desired formula
(A.2): LI + DI = 1+qn

2 z + 1−qn

2 z̄.

A.2. Generalized analytic function

For �n(z) in (A.2) as a generalized analytic function, we have the D-bar equation
∂�n

∂ z̄
= (1 − qn)

(1 + qn)z + (1 − qn)z̄
�n(z) = An(z, z̄)�n(z), (A.14)

where

An(z, z̄) = (1 − qn)

(1 + qn)z + (1 − qn)z̄
.

Representation (44) for this function is

�n(z, z̄) = ω(z)e
1

2π i

∫∫
D

An (ζ ,ζ̄ )

ζ−z dζ∧ dζ̄
. (A.15)
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To check it we are going to calculate this integral explicitly and find holomorphic function
ω(z) for the disc of radius R.

The double integral in exponential is

I = 1

2π i

∫∫
D

An(ζ , ζ̄ )

ζ − z
dζ ∧ dζ̄ = −1 − qn

π

∫∫
D

dξ dη

[(1 + qn)ζ + (1 − qn)ζ̄ ][ζ − z]

where ζ = ξ + iη and D = {ζ : |ζ | � R} or in the polar coordinates ζ = reiθ ,

I = qn − 1

π

∫ R

0

∫ 2π

0

dr dθ

[(1 + qn)eiθ + (1 − qn)e−iθ ][reiθ − z]
= qn − 1

π

∫ R

0

dr

r
I0

where by complex substitution u = eiθ we have contour integral around unit circle

I0 = 1

i

∮
|u|=1

du

u

1[
(1 + qn)u + (1 − qn) 1

u

][
u − z

r

] , (A.16)

or

I0 = 1

i(1 + qn)

∮
|u|=1

du[
u2 + 1−qn

1+qn

][
u − z

r

] . (A.17)

For the base 0 < q < 1 the integrand has two simple poles inside of the unit circle at

u = ±i
√

1−qn

1+qn and for |z| < r, one more simple pole at u = z/r.
Then by the residues theorem

I0 = 2π

1 + qn

⎧⎪⎨
⎪⎩

− 1
1−qn

1+qn + z2

r2

, |z| > r,

0, |z| < r.

(A.18)

Substituting to integral I we get

I = 2
1 − qn

1 + qn

∫ R

0

dr

r

⎧⎨
⎩− 1

1−qn

1+qn + z2

r2

, |z| > r,

0, |z| < r,
(A.19)

or

I = 2
1 − qn

1 + qn

∫ z

0

dr

r

1
1−qn

1+qn + z2

r2

. (A.20)

By elementary integration

I = ln

(
r2 + 1 − qn

1 + qn
z2

) ∣∣∣∣
z

0

= ln
(1 + qn)z + (1 − qn)z̄

(1 + qn)z
, (A.21)

and for (A.15) then we find

�n(z, z̄) = ω(z)eI = 1 + qn

2
z + 1 − qn

2
z̄, (A.22)

where the analytic function

ω(z) = 1 + qn

2
z.
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A.3. Complex q-binomial as generalized analytic function

The above results can be applied now for the complex q-binomial degree n,

(x + iy)n
q = (x + iy)(x + iqy) . . . (x + iqn−1y).

Denoting

�(z) = �0(z)�1(z) . . . �n−1(z),

where �n(z) = x + iqny = 1+qn

2 z + 1−qn

2 z̄, we have

∂

∂ z̄
�(z, z̄) = �(z, z̄)(1 − q)

n−1∑
k=1

[k]q

(1 + qk)z + (1 − qk)z̄
= A(z, z̄)�(z, z̄),

where

A(z, z̄) = (1 − q)

n−1∑
k=1

[k]q

(1 + qk)z + (1 − qk)z̄
=

n−1∑
k=1

An(z, z̄).

By the above calculations for the double integral in a disc of radius R, (ζ = ξ + iη), we obtain

1

2π i

∫∫
D

A(ζ , ζ̄ )

ζ − z
dζ ∧ dζ̄ = 1

π

n−1∑
k=1

(qk − 1)

∫∫
D

dξ dη

((1 + qk)ζ + (1 − qk)ζ̄ )(ζ − z)

=
n−1∑
k=1

ln
(1 + qk)z + (1 − qk)z̄

(1 + qk)z
. (A.23)

Then

�(z, z̄) = (x + iy)n
q = ω(z)exp

(
1

2π i

∫∫
D

A(ζ , ζ̄ )

ζ − z
dζ ∧ dζ̄

)

= ω(z)exp

(
ln

n−1∏
k=1

(
1+qk

2 z + 1−qk

2 z̄
1+qk

2 z

))

= ω(z)
n−1∏
k=1

1+qk

2 z + 1−qk

2 z̄
1+qk

2 z
(A.24)

= ω(z)
n−1∏
k=1

2(x + iqky)

(1 + qk)z
(A.25)

or

(x + iy)n
q = ω(z)

2n

zn
∏n−1

k=0(1 + qn)
(x + iy)n

q. (A.26)

As a result we find the next form for the analytic function

ω(z) =
( z

2

)n n−1∏
k=0

(1 + qk). (A.27)
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