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An analytic approach to a class of fractional
differential-difference equations of rational
type via symbolic computation
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Fractional derivatives are powerful tools in solving the problems of science and engineering. In this paper, an analytical
algorithm for solving fractional differential-difference equations in the sense of Jumarie’s modified Riemann–Liouville
derivative has been described and demonstrated. The algorithm has been tested against time-fractional differential-
difference equations of rational type via symbolic computation. Three examples are given to elucidate the solution proce-
dure. Our analyses lead to closed form exact solutions in terms of hyperbolic, trigonometric, and rational functions, which
might be subject to some adequate physical interpretations in the future. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Fractional calculus, which deals with the derivatives and integrals of fractional (real or complex) order, has found its applications in vari-
ous areas of science and engineering. To make mention, a few areas of science and engineering are as follows: bioengineering, robotics,
electrochemical processes, viscoelasticity theory, electro analytical chemistry, noise simulations, transport processes, electrical circuits,
electromagnetic theory, porous media, polarography theory, fractal theory, colored noise, dielectric polarization, viscoelastic materials,
and so on. To get a feel about these applications, we refer the interested reader to Ref. [1–5]. In the literature, on the basis of the problem
under investigation, there exist vast different definitions of fractional derivatives such as Riemann–Liouville derivative, Grünwald–
Letnikov derivative, Sonin–Letnikov derivative, Riesz derivative, Caputo derivative, Marchaud derivative, Weyl derivative, and others.
Among those, Grünwald–Letnikov derivative, Riemann–Liouville derivative, and Caputo derivative are widely used. Grünwald–Letnikov
derivative and Riemann–Liouville derivative are equivalent if the functions they act on are sufficiently smooth, and Riemann–Liouville
derivative is meaningful under weaker smoothness requirements. In addition, Caputo fractional derivative first computes an ordinary
derivative followed by a fractional integral, whereas Riemann–Liouville fractional derivative is computed in the reverse order. More-
over, a number of local versions of fractional derivatives also presented for the analysis of local behavior of fractional models such as
Jumarie’s modified Riemann–Liouville derivative [6], Cresson’s derivative [7], and Kolwankar–Gangal local derivative [8]. On the other
hand, the recent appearance of fractional differential equations (FDEs) as adequate models in science and engineering made it neces-
sary to develop methods of solutions (both analytical and numerical) These methods include finite difference method [9], finite element
method [10], differential transform method [11], Adomian decomposition method [12], variational iteration method [13], homotopy
perturbation method [14], first integral method [15], fractional sub-equation method [16], B-spline function method [17], Tau method
[18], homotopy analysis method [19, 20], and collocation method [21]. Although these methods lead to exact solutions in some special
cases, exact solutions are much needed in engineering applications. Besides, some of the just-mentioned methods use a transforma-
tion in order to reduce equations into simpler forms, whereas others provide a solution in an infinite series form converging to the
desired exact solution.

Differential-difference equations (DDEs), also known as lattices or networks, play an important role in many scientific fields from engi-
neering to physics, chemistry, biology, and so on. Applications of DDEs are diverse, for instance, currents in electrical networks, pulses
in biological chains, particle vibrations in lattices, chemical reactions, and wave phenomena in fluids. Since the time of Fermi, Pasta,
and Ulam [22], quite a few lattices have been discovered, in particular, Volterra lattice, Toda lattice, discrete (modified) KdV equation,
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Ablowitz–Ladik lattice, and Suris lattice [23]. In addition to their physical relevance, DDEs also play an important role in numerical sim-
ulations of nonlinear partial differential equations. Consequently, considerable attention has been given to the solution of DDEs. Many
powerful methods for solving such equations appeared in the open literature, such as Exp-function method [24], Casoratian technique
[25], homotopy perturbation method [26], ADM-Padé technique [27], Hirota’s bilinear method [28], (G’/G)-expansion method [29], and
Tau method [30]. Of course, each of the just-stated methods for DDEs has its own advantages and its own defects, and as a result,
alternatives may be useful in some instances, for getting different insights into the problem. As far as we could verify, less work is being
performed for the symbolic computation of exact solutions to DDEs in the form Pun D R .un�1, un, unC1/, where R is a rational function
of its arguments, whereas there has been a considerable amount of work performed in finding exact solutions to DDEs in the form
Pun D P .un�1, un, unC1/, where P is a polynomial function of its arguments. Here, we should note that we deal with a DDE in which
the spatial variable n is discrete, whereas the time t is kept continuous. This means that there will be a different problem for each n.
Because of their structure, DDEs can be considered as hybrid systems as well. To broaden the class of DDEs and study various processes
described by them is of interest. In a previous review paper, He et al. [31] suggested for the first time that DDEs can be extended in the
context of fractional calculus, namely, the reformulation of DDEs with fractional order. In fact, it is logical to do research in this direction.
Thus, the main object of our study will be the investigation of time-fractional DDEs in the form

D˛t un D R .un�1, un, unC1/ , 0< ˛ � 1, (1)

where D˛t denotes Jumarie’s modified Riemann–Liouville derivative (in time) of order ˛. Here, the dependent variable un is assumed to
be a function u.n, t/ of a lattice variable n 2 �. We call Equation (1) as a rational type in the sense that the right-hand side is a ratio-
nal function of dependent variables. At the same time, the authors [31] have also pointed out new directions in nonlinear science by
proposing three standard variational iteration algorithms for solving differential equations, integro-differential equations, FDEs, fractal
differential equations, DDEs, and fractional/fractal DDEs.

We shall show here how the so-called (G’/G)-expansion method [32], which is used for solving nonlinear evolution equations as well
as FDEs [33, 34], can be extended to time-fractional DDEs. In comparison with other analytical schemes, the main advantage of (G’/G)-
expansion method is in its flexibility and ability to solve nonlinear evolution equations accurately and conveniently. Being computer
oriented, it reduces the problems of those solving a system of algebraic equations.

This paper is organized as follows. In the next section, a short background on the definition of the Jumarie’s modified Riemann–
Liouville derivative is given. In Section 3, we shall describe the method itself. In Section 4, three time-fractional DDEs of rational type
are analyzed. Finally, Section 5 is devoted to concluding remarks.

2. Preliminaries

The Jumarie’s modified Riemann–Liouville derivative of order ˛ is defined as

D˛t f .t/D
1

�.�˛/

Z t

0
.t� �/�˛�1.f .�/� f .0// d� , ˛ < 0, (2)

D˛t f .t/D
1

�.1� ˛/

d

dt

Z t

0
.t� �/�˛.f .�/� f .0// d� , 0< ˛ < 1, (3)

D˛t f .t/D
�

f .˛�n/.t/
�.n/

, n� ˛ < nC 1, n� 1. (4)

This fractional derivative was successfully implemented to fractional Laplace problems [35], fractional variational calculus [36], and
probability calculus [37]. Jumarie’s modified Riemann–Liouville derivative has many interesting properties: the ˛ order derivative of a
constant is zero and it can be applied to both differentiable and nondifferentiable functions. Some formulas and results can be found
in [6]. For example,

D˛t t� D
�.1C �/

�.1C � � ˛/
t��˛ , � > 0, (5)

D˛t .f .t/g.t//D g.t/D˛t f .t/C f .t/D˛t g.t/, (6)

D˛t f .g.t//D f
0

g.g.t//D
˛
t g.t/D D˛g f .g.t//

�
g
0

t

�˛
, (7)

which are direct consequences of the equality d˛x.t/D �.1C ˛/dx.t/.2
8
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3. Methodology

In a recent study, Li and He [38] proved that FDEs in the sense of Jumarie’s modified Riemann–Liouville derivative can be easily turned
into ODEs so that anyone can deal with fractional calculus with ease. The authors proposed a fractional complex transformation in
the form

� D
px˛

� .1C ˛/
C

qyˇ

� .1C ˇ/
C

rt�

� .1C �/
, 0< ˛ � 1, 0< ˇ � 1, 0< � � 1, (8)

which is a variant of the wave transformation �D kxC lyCmt, where k, l, and m are constants to be determined. Now, to illustrate the
basic idea of the method, we consider a general system of M fractional DDEs of rational type

R
�

unCp1
.x/, : : : , unCpk

.x/, : : : , u˛nCp1
.x/, : : : , u˛nCpk

.x/, : : : , u.r˛/nCp1
.x/, : : : , u.r˛/nCpk

.x/
�
D 0, 0< ˛ � 1, (9)

where the dependent variable un have M components ui,n and so do its shifts; the continuous variable x has N components xi ; the
discrete variable n has Q components nj ; the k shift vectors pi 2 �Q; and u.r˛/.x/ denotes the collection of Jumarie’s modified
Riemann–Liouville derivative terms of order r˛. As mentioned earlier, using the fractional complex transformation

unCps
.x/D UnCps

.�n/, �n D

QX
iD1

dini C

NX
jD1

cj

�.1C ˛/
x˛j C �, .sD 1, 2, : : : , k/, (10)

where the coefficients c1, c2, : : : , cN, d1, d2, : : : , dQ and the phase � are all constants and the symbol � is the gamma function, we can
rewrite Equation (9) as a system of DDEs of integer order in the form

R
�

UnCp1
.�n/, : : : , UnCpk

.�n/, : : : , U
0

nCp1
.�n/, : : : , U

0

nCpk
.�n/, : : : , U.r/nCp1

.�n/, : : : , U.r/nCpk
.�n/

�
D 0. (11)

According to the basic (G’/G)-expansion method, we assume that the solution(s) of Equation (11) can be expressed in the form

Un.�n/D

mX
lD0

al

 
G
0

.�n/

G.�n/

!l

, am ¤ 0, (12)

where m is a positive integer, ai ’s are constants to be determined, and G.�n/ is a solution of the second-order linear ordinary differential
equation

G
00

.�n/C �G
0

.�n/C�G.�n/D 0, (13)

where � and � are arbitrary parameters and prime denotes derivative with respect to �n. The general solution of Equation (13) is well
known to us. Thus, three cases follow:
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G.�n/
D�
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2
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2
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1
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G.�n/
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�
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C
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2

0
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1
A , �2 � 4� < 0, (15)

G
0

.�n/

G.�n/
D�

�

2
C

C1

C1�nC C2
, �2 � 4�D 0, (16)

where C1 and C2 are arbitrary constants. A straightforward calculation leads to the identity

�nCps
D �nC 's, 's D ps1d1C ps2d2C � � � C psQdQ, (17)

where psj is the jth component of the shift vector ps. Hence, considering trigonometric/hyperbolic function identities and using the
expressions (14)–(16) as well as (17), we derive
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� , (18)
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where " 2 f0,˙1g and ı 2 f0, 4g, whereas

f

��q
ıC ".�2 � 4�/=2

�
's

�
D tanh

��q
�2 � 4�=2

�
's

�
, "D 1, ı D 0, �2 � 4� > 0, (19)

f

��q
ıC ".�2 � 4�/=2

�
's

�
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��q
4�� �2=2

�
's

�
, "D�1, ı D 0, �2 � 4� < 0, (20)

f

��q
ıC ".�2 � 4�/=2

�
's

�
D 's, "D 0, ı D 4, �2 � 4�D 0. (21)

We therefore obtain a uniform shift formula in the form

UnCps
.�n/D
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lD0

al

0
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�
2 C

G
0

.�n/
G.�n/
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p
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2

�
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ıC".�2�4�/
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�
1
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l

. (22)

Balancing the highest order derivative term and the highest order nonlinear term(s) in Un.�n/ as in the continuous case, the degree m

of Equations (12) and (22) can be easily determined from Equation (11). Because UnCps
can be thought as being of degree zero in G

0

.�n/
G.�n/

,

the leading terms of UnCps
.ps ¤ 0/will not have any effect on the balancing procedure. Substituting Equations (12) and (22) together

with (13) into (11), equating the coefficients of

�
G
0

.�n/
G.�n/

�l

.lD 0, 1, 2, : : :/ to zero, we obtain a system of nonlinear algebraic equations

from which the unspecified constants ai , di , cj , and k can be explicitly found. Finally, substituting these results into Equation (12), one
can derive various kind of exact solutions to Equation (9).

Remark 1
The second-order linear equation G00C �G0C�GD 0 plays a crucial role in the process of the basic (G’/G)-expansion method, where �
and� are arbitrary parameters. However, Aslan [39] proved that the parameter � can be set to zero without loss of generality. This idea
is more advantageous because it minimizes the number of involved parameters at the beginning as well as leading equivalent results
with the original assumption. Hence, from now on, we take �D 0.

4. Applications

We shall point out that we now have at hand the entire framework for extending (G’/G)-expansion method to time-fractional DDEs of
rational type. In this section, we consider three examples that demonstrate the performance and efficiency of our method.

Example 4.1
Consider the following time-fractional DDE of rational type:

D˛t un D
un�1 � unC1

1C un�1 � unC1
, 0< ˛ � 1. (23)

The case ˛ D 1 of Equation (23), from which the discrete KdV equation can be directly produced, appears in [40]. To discover exact
solutions for Equation (23), let us first make the fractional complex transformation

un D Un .�n/ , �n D dnC
k

� .1C ˛/
t˛ C 	, (24)

where d and k are real parameters to be specified, whereas 	 denotes the phase shift. On substituting Equation (24) into Equation (23),
one obtains

kU
0

n .1C Un�1 � UnC1/� .Un�1 � UnC1/D 0, (25)

where prime denotes ordinary derivative with respect to the new independent variable �n. Then, our procedure suggests looking for a
solution of Equation (25) in the form

Un D a0C a1

 
G
0

G

!
, a1 ¤ 0, (26)

where GD G.�n/ satisfies Equation (13), whereas a0 and a1 are arbitrary constants to be determined at the stage of solving the problem.3
0
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4.1.1. Hyperbolic function solutions. In case � < 0, we first derive the shift formulas

Un˙1 D a0C a1
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in accordance with Equation (22). Substituting Equations (26) and (27) along with (13) into Equation (25), clearing the denominator, and

setting the coefficients of
�

G
0

G

�l
.lD 0, 2, 4/ to zero, we derive a system of nonlinear algebraic equations for a0, a1, d, k, and �. Solving

the resulting system, we obtain the relation
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�
d
p
��

�
2
p
��

, kD�
sinh

�
2d
p
��

�
p
��

, (28)

which yields a hyperbolic function solution to Equation (23) as
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1
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�
d
p
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�p
���n

�
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���n
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���n

�
!
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where �n D dn�
sinh.2d

p
��/

�.1C˛/
p
��

t˛ C 	, whereas a0, d, 	, � .< 0/, C1, and C2 remain arbitrary.

4.1.2. Trigonometric function solutions. In case � > 0, we first derive the shift formulas
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0
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in accordance with Equation (22). Substituting Equations (26) and (30) along with (13) into Equation (25), clearing the denominator, and

setting the coefficients of
�

G
0

G

�l
.lD 0, 2, 4/ to zero, we derive a system of nonlinear algebraic equations for a0, a1, d, k and �. Solving

the resulting system, we obtain the relation
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�
d
p
�
�

2
p
�

, kD�
sin
�
2d
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�
�

p
�

, (31)

which gives a trigonometric function solution to Equation (23) as

un.t/D a0C
1

2
tan

�
d
p
�
�0@�C1 sin

�p
��n

�
C C2 cos

�p
��n

�
C1 cos

�p
��n

�
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�p
��n

�
1
A , (32)

where �n D dn�
sin.2d

p
�/

�.1C˛/
p
�

t˛ C 	, whereas a0, d, 	, �.> 0/, C1, and C2 remain arbitrary.

4.1.3. Rational function solutions. In case �D 0, we first derive the shift formulas

Un˙1 D a0C a1

0
@��

2
C

G
0

G C
�
2

1˙
�

G0

G C
�
2

�
d

1
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in accordance with Equation (22). Substituting Equations (26) and (33) along with (13) into Equation (25), clearing the denominator,

and setting the coefficients of
�

G
0

G

�l
.l D 2, 4/ to zero, we derive a system of nonlinear algebraic equations for a0, a1, d, and k. Solving

the resulting system, we obtain the relation

�D 0, a0 D a0, a1 D
d

2
, kD�2d, (34)

which yields a rational function solution to Equation (23) as

un.t/D a0C
d

2

0
@ C1

C1

�
dn� 2d

�.1C˛/ t˛ C 	
�
C C2

1
A , (35)

where a0, d, 	, C1, and C2 remain arbitrary.
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Remark 2
It is possible to construct some special solutions for Equation (23) by assigning special values to the arbitrary parameters C1 and C2. For
example, if we set ‘C1 D 0 and C2 ¤ 0’ or ‘C1 ¤ 0 and C2 D 0’ in Equation (29), respectively, then we obtain formal solitary wave
solutions to Equation (23) as

un.t/D a0C
1

2
tanh

�
d
p
��

�
tanh

 
p
��

 
dn�

sinh
�
2d
p
��

�
� .1C ˛/

p
��

t˛ C 	

!!
, (36)

un.t/D a0C
1

2
tanh

�
d
p
��

�
coth

 
p
��

 
dn�

sinh
�
2d
p
��

�
� .1C ˛/

p
��

t˛ C 	

!!
, (37)

where a0, d, 	, and �.< 0/ remain arbitrary.
Similarly, if we let ‘C1 ¤ 0 and C2 D 0’ or ‘C1 D 0 and C2 ¤ 0’ in Equation (32), respectively, then we obtain formal periodic wave

solutions to Equation (2) as

un.t/D a0 �
1

2
tan

�
d
p
�
�

tan

 
p
�

 
dn�

sin
�
2d
p
�
�

� .1C ˛/
p
�

t˛ C 	

!!
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un.t/D a0C
1

2
tan

�
d
p
�
�

cot

 
p
�

 
dn�

sin
�
2d
p
�
�

� .1C ˛/
p
�

t˛ C 	

!!
, (39)

where a0, d, 	, and �.> 0/ remain arbitrary.

Example 4.2
Consider another time-fractional DDE of rational type:

D˛t un D
4 .un�1 � unC1/ u2

n

.1C un�1un/ .1C ununC1/
, 0< ˛ � 1. (40)

The case ˛ D 1 of Equation (40), which can be transformed to the discrete modified KdV equation via a real discrete Miura
transformation, appears in [41]. Now, we aim to solve Equation (3). In like manner, we first make the fractional complex transformation

un D Un .�n/ , �n D dnC
k

� .1C ˛/
t˛ C 	, (41)

where d and k are real parameters to be specified, whereas 	 denotes the phase shift. Substituting Equation (41) into Equation (40)
leads to the equation

kU0n .1C Un�1Un/ .1C UnUnC1/� 4 .Un�1 � UnC1/U2
n D 0, (42)

where prime denotes ordinary derivative with respect to the new independent variable �n. Our procedure suggests then to look for
special solutions of Equation (42) in the form

Un D a0C a1

 
G
0

G

!
, a1 ¤ 0, (43)

where G D G.�n/ satisfies Equation (13), whereas a0 and a1 are arbitrary constants to be specified. Because the procedure is similar,
from now on, we shall omit some details for the sake of brevity.

4.2.1. Hyperbolic function solutions. In case � < 0, substituting Equation (43) and Un˙1 along with (13) into Equation (42), clearing the

denominator, and setting the coefficients of
�

G
0

G

�l
.l D 0, 1, : : : , 6/ to zero, we derive a system of nonlinear algebraic equations for a0,

a1, d, k, and �. Solving the resulting system, we obtain the relations

�D 0, a0 D cosh
�

d
p
��

�
, a1 D˙

sinh
�

d
p
��

�
p
��

, kD�
2 tanh

�
d
p
��

�
p
��

, (44)

�D 0, a0 D� cosh
�

d
p
��

�
, a1 D˙

sin
�

d
p
��

�
p
��

, kD�
2 tanh

�
d
p
��

�
p
��

. (45)3
2
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Setting the parameter values (44) and (45) into the expression (43) in accordance with Equation (14), one can construct hyperbolic
function solutions to Equation (40) as

un.t/D cosh
�

d
p
��

�
˙ sinh

�
d
p
��

�  C1 cosh
�p
���n

�
C C2 sinh

�p
���n

�
C1 sinh

�p
���n

�
C C2 cosh

�p
���n

�
!

, (46)

un.t/D� cosh
�

d
p
��

�
˙ sinh

�
d
p
��

�  C1 cosh
�p
���n

�
C C2 sinh

�p
���n

�
C1 sinh

�p
���n

�
C C2 cosh

�p
���n

�
!

, (47)

where �n D dn�
2 tanh.d

p
��/

�.1C˛/
p
��

t˛ C 	, whereas d, 	, �.< 0/, C1, and C2 remain arbitrary.

4.2.2. Trigonometric function solutions. In case � > 0, substituting Equation (43) and Un˙1 along with (13) into Equation (42), clearing

the denominator, and setting the coefficients of
�

G
0

G

�l
.lD 0, 1, : : : , 6/ to zero, we derive a system of nonlinear algebraic equations for

a0, a1, d, k, and �. Solving the resulting system, we obtain the relations

�D 0, a0 D cos
�

d
p
�
�

, a1 D˙
sin
�

d
p
�
�

p
�

, kD�
2 tan

�
d
p
�
�

p
�

, (48)

�D 0, a0 D� cos
�

d
p
�
�

, a1 D˙
sin
�

d
p
�
�

p
�

, kD�
2 tan

�
d
p
�
�

p
�

. (49)

Setting the parameter values (48) and (49) into the expression (43) in accordance with Equation (15), one can construct trigonometric
function solutions to Equation (40) as

un.t/D cos
�

d
p
�
�
˙ sin

�
d
p
�
�0@�C1 sin

�p
��n

�
C C2 cos

�p
��n

�
C1 cos

�p
��n

�
C C2 sin

�p
��n

�
1
A , (50)

un.t/D� cos
�

d
p
�
�
˙ sin

�
d
p
�
�0@�C1 sin

�p
��n

�
C C2 cos

�p
��n

�
C1 cos

�p
��n

�
C C2 sin

�p
��n

�
1
A , (51)

where �n D dn�
2 tan.d

p
�/

�.1C˛/
p
�

t˛ C 	, whereas d, 	, �.> 0/, C1, and C2 remain arbitrary.

4.2.3. Rational function solutions. In case � D 0, substituting Equation (43) and Un˙1 along with (13) into Equation (42), clearing the

denominator, and setting the coefficients of
�

G
0

G

�l
.l D 0, 1, : : : , 5/ to zero, we derive a system of nonlinear algebraic equations for a0,

a1, d, and k. Solving the resulting system, we obtain the relation

�D 0, a0 D 1, a1 D˙d, kD�2d, (52)

�D 0, a0 D�1, a1 D˙d, kD�2d. (53)

Inserting the parameter values (52) into the expression (43) in accordance with Equation (16), one can construct a rational function
solution to Equation (40) as

un.t/D 1˙ d

0
@ C1

C1

�
dn� 2d

�.1C˛/ t˛ C 	
�
C C2

1
A , (54)

un.t/D�1˙ d

0
@ C1

C1

�
dn� 2d

�.1C˛/ t˛ C 	
�
C C2

1
A , (55)

where d, 	, C1, and C2 remain arbitrary.
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Example 4.3
Consider the following system of time-fractional DDEs of rational type:

D˛t un D
.vnC1 � vn�1/

�
1� u2

n

� �
1� v2

n

�
.vn�1C vn/ .vnC vnC1/

, 0< ˛ � 1,

D˛t vn D
.unC1 � un�1/

�
1� u2

n

� �
1� v2

n

�
.un�1C un/ .unC unC1/

, 0< ˛ � 1.

(56)

The case˛ D 1 of the system (56), which is related to the self-dual network equations via a real discrete Miura transformation, appears
in [42]. Like before, we first make the fractional complex transformation

un D Un .�n/ , vn D Vn .�n/ , �n D dnC
k

�.1C/
t˛ C 	, (57)

where d and k are real parameters to be specified, whereas 	 denotes the phase shift. Substituting Equation (57) into Equation (56)
leads to the system

kU0n .Vn�1C Vn/ .VnC VnC1/� .VnC1 � Vn�1/
�

1� U2
n

� �
1� V2

n

�
D 0, (58)

kV 0n .Un�1C Un/ .UnC UnC1/� .UnC1 � Un�1/
�

1� U2
n

� �
1� V2

n

�
D 0, (59)

where prime denotes derivative with respect to the new independent variable �n. Our procedure suggests then to look for special
solutions of the system (31) in the form

Un D a0C a1

 
G
0

G

!
, a1 ¤ 0; Vn D b0C b1

 
G
0

G

!
, b1 ¤ 0, (60)

where GD G.�n/ satisfies Equation (13), whereas a0, a1, b0, and b1 are arbitrary constants to be specified. Because the procedure is very
similar, we just present the results.

4.3.1. Hyperbolic function solutions.

un.t/D˙

q
1� 2b1

p
�� coth

�
d
p
��

�
��b2

1

1� 2b1
p
�� coth

�
d
p
��

� C
b1
p
��

1� 2b1
p
�� coth

�
d
p
��

�
 

C1 cosh
�p
���n

�
C C2 sinh

�p
���n

�
C1 sinh

�p
���n

�
C C2 cosh

�p
���n

�
!

,

vn.t/D˙
p

1� 2b1
p
�� coth

�
d
p
��

�
b1 ��b2

1C b1
p
��

 
C1 cosh

�p
���n

�
C C2 sinh

�p
���n

�
C1 sinh

�p
���n

�
C C2 cosh

�p
���n

�
!

,

(61)

where �n D dn�
2b2

1
p
��

�.1C˛/.tanh.d
p
��/�2b1

p
��/

t˛ C 	, whereas b1, d, 	, �.< 0/, C1, and C2 remain arbitrary.

4.3.2. Trigonometric function solutions.

un.t/D�

q
1� 2b1

p
� cot

�
d
p
�
�
��b2

1�
1� 2b1

p
� cot

�
d
p
�
�� �

b1
p
��

1� 2b1
p
� cot

�
d
p
�
��
 
�C1 sin

�p
��n

�
C C2 cos

�p
��n

�
C1 cos

�p
��n

�
C C2 sin

�p
��n

�
!

,

vn.t/D˙
q

1� 2b1
p
� cot

�
d
p
�
�
��b2

1C b1
p
�

 
�C1 sin

�p
��n

�
C C2 cos

�p
��n

�
C1 cos

�p
��n

�
C C2 sin

�p
��n

�
!

,

(62)

where �n D dnC
2b2

1
p
�

�.1C˛/.tan.d
p
�/�2b1

p
�/

t˛ C 	, whereas b1, d, 	, �.> 0/, C1, and C2 remain arbitrary.

4.3.3. Rational function solutions.

un.t/D�
d

d� 2b1

r
1�

2b1

d
�

db1

d� 2b1

0
BB@ C1

C1

�
dnC

2b2
1

�.1C˛/.d�2b1/
t˛ C 	

�
C C2

1
CCA ,

vn.t/D˙

r
1�

2b1

d
C b1

0
BB@ C1

C1

�
dnC

2b2
1

�.1C˛/.d�2b1/
t˛ C 	

�
C C2

1
CCA ,

(63)

where b1, d, 	, C1, and C2 remain arbitrary.3
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Remark 3
As in Example 4.1, if desired, one can assign special values to the involved arbitrary parameters in the results of the Examples 4.2 and
4.3 for further analysis. This procedure is also skipped for the sake of brevity.

5. Conclusion

Recent advances of fractional calculus are stimulated by new examples of applications in science and engineering. In this paper, a gen-
eralization of DDEs of rational type is made by means of Jumarie’s modified Riemann–Liouville derivative. These models are important
from theoretical and applied point of view. Novel results are being derived for the considered equations indicating that the field of
fractional calculus is very reach and interesting. As a result, a successful attempt on modeling time-fractional DDEs of rational type
has been made via an improved version of the (G’/G)-expansion method. Of course, symbolic computation systems (such as MATHE-
MATICA, MATLAB, and MAPLE) played a crucial role in the computations. Our examples convinced us that the used fractional complex
transformations are extremely helpful for converting FDEs with Jumarie’s sense to ODEs. Such transformations correspond to only wave
solutions. It should not be surprising that some classes of DDEs of fractional order may not be suited for our method. For example, one
cannot obtain real-valued solutions for the equation

D˛t un D
.un�1 � unC1/

�
1� u2

n

� �
�2 ��2u2

n

�
.un�1C un/ .unC unC1/

, 0< ˛ � 1, (64)

where � and � are taken as arbitrary parameters. This remains an open research problem. Indeed, the case ˛ D 1 of Equation (64) was
considered in [42]. In addition, it is worth to mention here that we could not give further details about the real physical meaning of
our exact solutions because of the lack of theoretical and experimental basis related to them. We believe that our findings will bring
some new insights into the field of fractional calculus and will be used in applications. For future work, our next step will be the analytic
investigation of DDEs with fractional order using some recent approaches such as Exp-function method [43–46].
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