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Effects of current density on nanostructure and light emitting properties of porous sili-
con (PS) samples were investigated by field emission scanning electron microscope (FE-
SEM), gravimetric method, Raman and photoluminescence (PL) spectroscopy. FE-SEM
images have shown that below 60 mA/cm2, macropore and mesopore arrays, exhibiting
rough morphology, are formed together, whose pore diameter, pore depth and porosity
are about 265–760 nm, 58–63 µm and 44–61%, respectively. However, PS samples pre-
pared above 60 mA/cm2 display smooth and straight macropore arrays, with pore diam-
eter ranging from 900–1250 nm, porosity of 61–80% and pore depth between 63–69 µm.
Raman analyses have shown that when the current density is increased from 10 mA/cm2

to 100 mA/cm2, Raman peaks of PS samples shift to lower wavenumbers by comparison
to crystalline silicon (c-Si). The highest Raman peak shift is found to be 3.2 cm−1 for
PS sample, prepared at 90 mA/cm2, which has the smallest nanocrystallite size, about
5.2 nm. This sample also shows a pronounced PL, with the highest blue shifting, of
about 12 nm. Nanocrystalline silicon, with the smallest nanocrystallite size, confirmed
by our Raman analyses using microcrystal model (MCM), should be responsible for
both the highest Raman peak shift and PL blue shift due to quantum confinement effect
(QCE).

Keywords: Porous silicon; nanostructure; Raman scattering; microcrystal model; photo-
luminescence; phonon confinement.

PACS numbers: 78.67.Bf, 61.46.−w, 78.30.−j, 61.46.Hk, 78.55.Mb, 33.20.Tp

1. Introduction

Since the formation of porous silicon (PS) layer on crystalline silicon (c-Si) wafer

exhibits photoluminescence (PL) properties, PS has received a great deal attention

‡Corresponding author.
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to characterize and understand its properties.1 Light emitting PS layer has been

produced by using different techniques, such as electrochemical anodization etching

technique,1 stain etching process,2 and hydrothermal etching technique.3 Among

these methods, anodization has been recognized as the most technologically feasible

and economically superior technique for production of PS layer. Compared to other

methods, the advantages of anodization technique are easy to control attribute,

versatility and low cost. It has long been known that by varying the anodization

parameters, such as concentration of hydrofluoric acid (HF), current density, time,

doping type of substrate, etc., various PS samples with different structural, mor-

phological and optical properties can be obtained. These controllable properties

enable PS to be used in different areas, such as optoelectronics,4 microelectronics,5

chemical6 and biological sensors.7

The first report of room temperature visible PL from PS fabricated by elec-

trochemical anodization has attracted much attention from a fundamental physics

viewpoint and because of the potential application to optical devices.1 The mecha-

nism of visible PL from PS is not understood well. Several models have been pro-

posed to explain PL from PS.8 However, the quantum confinement model (QCM)

has been proved to be the most consistent with the experimental data.9 It is gen-

erally accepted that the size of the bandgap of silicon increases as a result of quan-

tum confinement of electron–hole pair in reduced crystallite size and hence PL

is shifted to visible spectral range.9–11 It has been reported that the pore size,

porosity and grain size in PS layer, which are believed to be the reasons for strong

visible PL from PS at room temperature, strongly depend on the applied current

density of the anodization.11–13 Therefore, structural investigation is essential for

PS samples. Among several structural investigation techniques, Raman scattering

spectroscopy is a nondestructive method and it can give us a lot of information

related to the morphology and dimension of nanocrystals in PS.14 In addition, field

emission scanning electron microscope (FE-SEM) and the gravimetric method are

also used to investigate the surface morphology and the porosity of the samples,

respectively.

Although numerous studies have already been reported on both fabrication and

optical properties of PS,15,16 the influence of the current density alone on the nano-

structure and optical properties of PS has rarely been reported which are focused

only on p-type PS formed at low current densities.17,18 Hence, the aim of this study

is to investigate the relationship between light emitting and structural properties

of PS, by controlling the applied current density in the range from 10 mA/cm2

to 100 mA/cm2. Discussions on how other properties, such as the PS thickness,

pore diameter, pore density, porosity and surface roughness, are influenced by the

applied current density are also presented. We have also reported our results on

the relationship between Raman scattering and PL spectra in the framework of the

QCM by taking into consideration the effect of current density on nanostructures

of PS samples.
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2. Experimental Details

The PS samples were prepared from (100) oriented and double-polished n-type

silicon wafers (phosphor-doped) with a resistivity of 1–10 Ω · cm through elec-

trochemical etching. Prior to etching, the wafer was cut into a constant area of

1 cm × 1 cm, and cleaned in acetone and distilled water, respectively. After that,

the native SiO2 was removed by immersing the samples in 4% HF aqueous solution

for 5 min. The PS layer was obtained by an anodic etch in ethanolic HF consisting of

a 1 : 1 volume mixture of aqueous 40% HF (Aldrich) and absolute ethanol (Merck)

at a constant anodization time of 30 min and the temperature of ethanolic HF

was kept at a constant value of 15◦C and then air-dried. In electrochemical setup,

silicon was the anode, Pt was the cathode in polypropylene cell. The anodization

was performed under the illumination with 150 W halogen lamp and anodization

current density was adjusted to be constant during etching by the use of a DC

power supply. The current densities were in the range of 10–100 mA/cm2. FE-SEM

(FEI QUANTA 250 FEG) was used to investigate the surface morphology of PS

samples. Thickness of PS layers was estimated by cross-section scanning electron

microscopy (X-SEM). Porosity of the PS samples was calculated by the gravimetric

method. MicroRaman measurements were performed at room temperature using

S&I Trivista Raman Spectroscopy system. Raman spectra of our PS samples were

collected using an argon ion (488 nm) laser source, 1800 line/mm grating and 10x

objective. The spectrometer was calibrated against the 520 cm−1 transverse optical

(TO) phonon frequency of n-type Si (100) wafer; the resolution of the spectrometer

is <2 cm−1. The PL spectra of the samples were measured by spectrophotometer

at the room temperature, and the excitation wavelength was 488 nm.

3. Results and Discussion

3.1. Effect of applied current density on the pore structure of

n-type porous silicon

The effect of the applied current density on the surface morphology has been in-

vestigated for a constant HF concentration (20%). The surface morphologies of PS

samples are obtained with FE-SEM and shown in Figs. 1 and 2. FE-SEM images

reveal that as the applied current density increases from 10 mA/cm2 (maximum

potential observed: 15 V) to 100 mA/cm2 (maximum potential observed: 90 V),

pore diameter of the PS samples increases from 265 nm to 1250 nm, as summarized

in Table 1. As can be seen in Figs. 1 and 2, the bright and dark regions represent

the Si structures and pores, respectively. The images of PS samples indicate that

the surface has no cracks in the applied current density range of 10–100 mA/cm2.

Figure 1 also reveals that the porosity of the PS layers increases when the

current density is increased from 10 mA/cm2 to 100 mA/cm2 at a constant HF

concentration of 20%. In Fig. 1, it is also observed that as the porosity of the PS

layers increases the amount of the silicon in the structure becomes less, while the

1550093-3

In
t. 

J.
 M

od
. P

hy
s.

 B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

r.
 A

lp
er

 Ç
et

in
el

 o
n 

05
/0

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



April 15, 2015 12:6 IJMPB S0217979215500939 page 4

A. Cetinel et al.

Fig. 1. (Color online) The top view FE-SEM images of PS samples prepared in 20% HF concen-
tration at different current densities: (a) 10, (b) 20, (c) 30, (d) 40, (e) 50, (f) 60, (g) 70, (h) 80,
(i) 90 and (j) 100 mA/cm2. All samples are anodized for constant etching time of 30 min, using
n-type silicon (resistivity 1–10 Ω · cm) in solution composed of HF/Ethanol (1 : 1).
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Fig. 2. (Color online) The top-view and cross-section FE-SEM images of PS samples prepared in
20% HF concentration at different current densities: (a–a∗) 10 mA/cm2 (macropores are marked
by circle), (b–b∗) 50 mA/cm2 and (c–c∗) 100 mA/cm2.

Table 1. Anodization parameters and the PS samples’ characteristics
obtained by FE-SEM and gravimetric method.

Current
density Anodization time HF concentration Pore diameter

(mA/cm2) (min) (%) (nm)

10 30 20 265
20 30 20 375
30 30 20 400
40 30 20 625
50 30 20 760
60 30 20 900
70 30 20 1000
80 30 20 1200
90 30 20 1250
100 30 20 1220

1550093-5
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Table 2. Anodization parameters and the PS samples’ characteristics obtained by X-SEM
and gravimetric method.

Current density HF concentration Anodization time Layer thickness (X-SEM) Porosity
(mA/cm2) (%) (min) (µm) (%)

10 20 30 58 44
50 20 30 64 61
100 20 30 62 79

size of the pores increases and the interpore distance decreases. It is also known

that PS has the same structure as bulk silicon.19 But when the porosity is in the

range of 55–75%, the lattice constant of the PS is 1–3% larger than that of the bulk

silicon.20,21 When the PS layer has the lattice mismatch with silicon substrate,

a high residual stress (lateral and/or vertical stresses, depending on the applied

current density and HF concentration) is expected to exist on their interface, which

may cause the crack of the PS layer.19,20 Therefore, the PS sample formed at

100 mA/cm2 is susceptible to both lateral and vertical stresses, resulting from a

larger lattice mismatch at PS–Si interface, which is expected to alter Raman and

PL peak positions of PS samples, as will be discussed in the following sections.

X-SEM image of this sample (Fig. 2), indicating a slight decrease in the thickness,

also confirms the above mentioned discussions (Table 2).

At low current densities (<50 mA/cm2), macropores coexisting with mesopores

are formed for an etching time of 30 min (Figs. 1 and 2). However, the formation

of mesoporous silicon at current density greater than 60 mA/cm2 is not observed.

This result can be attributed to dissolution rate of silicon.22 As the current density

increases from 20 mA/cm2 to 100 mA/cm2, etching speed increases gradually, hence

the chemical dissolution of the PS increases and accordingly only macropores occur

on PS layer.

In addition to FE-SEM analysis, porosity of PS samples is also calculated by the

gravimetric method13 and summarized in Table 2. In Table 2, the porosity of PS in-

creases with the increasing current density, in agreement with previous reports.23,24

Our X-SEM analysis reveal that the thickness of the PS samples is positively cor-

related with etching current density. It has been also evidenced from Fig. 2 that at

the current density, varying from 10 mA/cm2 to 40 mA/cm2, macro–mesoporous

layer with heavily branched morphology is fabricated. The pores are straight, but

pore walls are of considerably rough morphology. The average diameter of (100)

orientated main pores are between 265–625 nm and the porosity and depths are

about 44–60% and 58–63 µm, respectively. As the current density is increased to

50 mA/cm2, straight pores with 61% porosity, 64 µm depths and average diameter

of 760 nm are formed. The pore walls, formed at 50 mA/cm2, are generally straight

and their smoothness is better than that of the one obtained at 10 mA/cm2. While

current density is further increased to above 50 mA/cm2, the macropore arrays

are generally nice with the pore walls straight and rather smooth. The average di-

ameter of stable macropores is between 900–1250 nm, the depths and porosity are
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about 62–63 µm and 61–80%, respectively. As seen in Figs. 1 and 2, the shape of

the pore is affected by the applied current density, and it changes from circular to

square shape with increasing current density. Furthermore, PS layer has a columnar

structure perpendicular to the Si substrate and the pores are not interconnected

with each other (Fig. 2). In addition, some pores, which appear to be missing,

seen in Figs. 2(a∗), (b∗) and (c∗), are actually through-channels. By cleaving the

silicon substrate, it is impossible to obtain full cross sections of the pore arrays.25

X-SEM images of PS samples [Figs. 2(a∗), (b∗) and (c∗)] also reveal that as the

applied current density increases, branched morphology of PS samples decreases. It

has been pointed out that the low current density (<50 mA/cm2) which produces

small pores also favours the formation of branched structure.15,22,26 As the cur-

rent density is decreased, silicon dissolution is suppressed, thus an increase of the

branching tendency will consequently occur [Fig. 2(a∗)].15,22,26 In the case of high

current density, silicon dissolution is strong, thus straight and smooth macropores

without branching tendency are observed [Fig. 2(c∗)]. From our SEM and X-SEM

investigations, we can conclude that the pore size and morphology are very sensitive

to the current density. In this study, wide range of porosities (from 44% to 80%)

and pore diameter (from 265 nm to 1250 nm) are achieved by changing the current

density from 10 mA/cm2 to 90 mA/cm2. It is well known that the macropores

with diameters between 100 nm and 800 nm have a technological significance but

become difficult to obtain for lightly doped n-type silicon wafer.25

3.2. Effect of applied current density on the Raman spectra of

n-type porous silicon

Figures 3 and 4 show the Raman spectra of the PS samples prepared at different

current densities, ranging from 10 mA/cm2 to 100 mA/cm2, under constant HF

concentration (20%). The Raman spectrum from our reference n-type c-Si substrate

is also shown as a comparison in Figs. 3 and 4. The first-order TO phonon centered

at 520 cm−1 with a full width at half maxima (FWHM) of 2.4 cm−1 for our reference

c-Si sample is seen in Figs. 3 and 4. It should be noted that there is no evidence of

amorphous phase at 480 cm−1 in the measured Raman spectra of all PS samples

(Figs. 3 and 4). Apart from this, we cannot assign any Raman peak to the defects,

causing a significant effect on the Raman spectra of our PS samples in Figs. 3

and 4. Moreover, we also found two broad peaks at 302 cm−1 and 616 cm−1 in all

PS spectra (Fig. 3). We have observed a weak peak at 302 cm−1 which is from the

scattering of two transverse acoustic (2TA) phonons in the Raman spectra of our PS

samples (Fig. 3).27 The appearance of a broad peak at 616 cm−1, which is from the

scattering of two transverse optic (2TO) phonons, in the spectra of PS samples is

expected as the typical characteristic of PS.28 Both weak and broad peaks should be

ascribed to the quantum confinement effect (QCE) of nanocrystals among the walls

in PS samples.29 Therefore, we may identify these observed spectra as the intrinsic

Raman spectra of our PS samples. It can be seen in Fig. 3 that the intensities of
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Fig. 3. (Color online) Raman spectra of reference c-Si and PS samples prepared in 20% HF
concentration at different current densities ranging from 10 mA/cm2 to 100 mA/cm2. Raman
Spectra of c-Si and PS samples were collected using an argon ion (488 nm) laser source.

two broad peaks at 302 and 616 cm−1 in all PS spectra are significantly decreased

with increasing applied current density from 10 mA/cm2 to 100 mA/cm2.

Now we can concentrate on the changes in the first-order TO phonon mode of our

PS samples. As can be seen in Fig. 4, as the applied current density increases from

10 mA/cm2 to 100 mA/cm2, the Raman spectra of PS samples show asymmetrical

broadening and peak positions shift to a lower wavenumber relative to our reference

c-Si. From Fig. 4 and Table 3, we have observed that the Raman peak positions shift

from 520 cm−1 down to 518 cm−1, and that the FWHM increases from 2.4 cm−1

to 4.7 cm−1, as the current density increases in the range of 10–100 mA/cm2. It

should be also pointed out that as the current density increases from 20 mA/cm2 to

90 mA/cm2, the Raman peak positions shift to lower wavenumbers from 520 cm−1

to 516.8 cm−1, about 3.2 cm−1 (the highest shifting), relative to c-Si, whereas at

the current density of 100 mA/cm2, Raman peak position shows a smaller shifting

from 520 cm−1 to 518 cm−1, about 2 cm−1. The first effect can be explained in

terms of the decreasing Si nanocrystallite size (or with increasing porosity), yielding

an increase in surface-induced residual stress (lateral stress) with increasing cur-

rent density19,21,30 as confirmed by our FE-SEM and Raman analyses. However, a

smaller Raman peak shift observed in the sample of 100 mA/cm2 can be caused

by a slightly larger nanocrystallite size, resulting in a slightly larger residual stress

1550093-8
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Fig. 4. (Color online) Raman spectra of TO phonon modes for c-Si and PS samples prepared in
20% HF concentration at different current densities ranging from 10 mA/cm2 to 100 mA/cm2.

(in this case, both lateral and vertical stresses operate simultaneously) than those

of the PS samples of 70–90 mA/cm2, due to the decreasing of quantity of silicon

within the PS in consistent with QCE.19,20,29,30 Based on the QCE, these observed

shifts in the Raman spectra of the PS samples toward a lower wavenumbers, com-

pared with c-Si and broadening of the peaks, with increasing current density from

10 mA/cm2 to 100 mA/cm2 can be attributed to the confinement of phonons in Si

nanocrystals among the pore walls.11,14,28,29

It has been reported that when nanocrystallite size is decreased, the larger shifts

in the peak positions and more asymmetric and broader lineshape are observed in

the Raman spectra of PS samples.31,32 These features can be supported by our

Raman analyses, where we have determined nanocrystallite size of our PS sam-

ples. Different confinement models have been used to calculate particle size.32–34

In order to explain our experimental results in Fig. 4, we have calculated the size of

silicon nanocrystallites using MCM based on the QCE, because MCM has been suc-

cessfully applied to many nanoscale materials.27,28 The calculated size of nanocrys-

tallite has been summarized in Table 3. Our Raman analyses have also revealed

that the smallest nanocrystallite size of 5.2 nm is obtained for the samples pre-

pared at 90 mA/cm2 in a fixed HF concentration of 20%. It should be noted that

there is a good agreement between nanocrystallite sizes of our PS samples calcu-

lated from Raman spectra using MCM and the nanocrystallite sizes determined

1550093-9
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Table 3. Spectral parameters determined from Raman analysis and calculated crystallite
size using microcrystal model (MCM) based on QCE.

Coefficient
Raman Raman Crystallite of Asymmetric

frequency Shift Intensity FWHM Size Broadening Coefficient
Samples (cm−1) (cm−1) (a.u.) (cm−1) (nm) (Cb) (Ca)

c-Si 520 — 4082 2.4 — 1 1

10 520 — 46,851 4.6 — 1.44 1

20 519.6 0.4 34,176 4.5 14.9 1.31 1.16

30 519.2 0.8 27,951 4.7 10.5 1.98 1.17

40 518.8 1.2 24,629 5.1 8.6 2.05 1.19

50 518.4 1.6 27,144 5.1 7.4 2.05 1.20

60 518 2 21,843 5.1 6.6 2 1.20

70 517.2 2.8 14,149 5 5.6 1.99 1.19

80 517.6 2.4 8977 4.8 6 1.94 1.18

90 516.8 3.2 10,403 5.5 5.2 2.25 1.21

100 518 2 7379 4.7 6.6 1.98 1.18

from QCE in previous studies.27–29 Table 3 shows the spectral parameters and

calculated nanocrystallite size of PS samples. The spectral parameters are the Ra-

man wavenumber, the Raman shift relative to the Raman wavenumber of c-Si,

the FWHM, the coefficient of broadening (Cb) (FWHMPS/FWHMc-Si) and the

asymmetric coefficient (Ca) (LWHM/RWHM, where LWHM and RWHM are the

left width at half maximum and the right width at half maximum from the cen-

tral peak position, respectively). From Table 3, we have found that the Raman

shift and asymmetric coefficient (Ca) of PS samples increase, while nanocrystal-

lite size and peak intensity of PS samples decrease, as the applied current density

is increased from 10 mA/cm2 to 100 mA/cm2. It can be seen in Fig. 4 and Ta-

ble 3 that by increasing the applied current density, peak intensity of our samples

decreases from 46851 (a.u.) to 7379 (a.u.). It is well known that Raman peak in-

tensity is proportional to Si density.31 In our study, when the porosity increases,

Si density decreases because of pore diameter increase as confirmed by FE-SEM

investigation. Based on our Raman investigation, we can conclude that this ob-

served decrease in Raman intensity of PS samples is resulted from different ab-

sorptions of probe light, scattered and reflected inside pores.27 As can be seen in

Tables 1 and 3, Raman peaks shift from 520 cm−1 to 516.8 cm−1 and broaden-

ing of the peak FWHM from 2.4 cm−1 (symmetric) to 5.5 cm−1 (asymmetric)

are observed with increasing pore diameter from 265 nm to 1250 nm, that is, de-

creasing nanocrystallite size from 15 nm to 5.2 nm thereby changing the applied

current density from 10 mA/cm2 to 90 mA/cm2. It has been pointed out that

when the nanocrystallite size is less than 100 Å, a significant contribution of the

Raman scattering belongs to those phonons as observed in Raman spectra of PS,

whose wave vectors have been stuck out of the Brillouin zone.28,29 Thus, these
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Table 4. Effect of applied current density on PL parameters of PS samples.

Current

density Peak maximum Peak intensity Crystallite size Pore diameter
(mA/cm2) (nm) (a.u.) (nm) (nm)

10 692 1096 — 265
20 687 1362 14.9 375
30 687 1499 10.5 400
40 686 2032 8.6 625
50 686 2123 7.4 760

60 684 2391 6.6 900
70 683 4826 5.6 1000
80 684 3464 6.0 1200
90 680 15838 5.2 1250
100 684 2340 6.6 1220

observed shifts in the Raman peaks toward lower wavenumbers and broadening of

the peaks with increasing pore diameter and porosity (or with decreasing crystallite

size) can be attributed to the confinement of optical phonons in nanodimensional

Si nanocrystallites among the walls.

3.3. Effect of applied current density on the PL spectra of n-type

porous silicon

PL spectra of PS give the information of a cross-sectional view of the silicon

nanocrystals which remain among the pores, owing to the large optical penetration

depth. PL is directly related to the electronic structure and transition.35 Therefore,

in this study, the effects of current density on the electronic structure of PS, thereby

the changes in nanocrystallite size, porosity and pore size of PS samples, induced

by varying applied current densities were also investigated by PL measurements.

The PL spectra of PS samples were measured at room temperature and recorded in

the range of 580–790 nm, presented in Fig. 5 and Table 4. It can be seen from Fig. 5

and Table 4 that PL starts to appear at nanocrystallite size below 8.6 nm (that is,

the pore size above 625 nm), corresponding to the current density ≥40 mA/cm2.

From Fig. 5 and Table 4, in the current density range of 10–80 mA/cm2 the PL

peak positions of PS samples shift gradually toward lower wavelengths, about 5–

8 nm, while at 90 mA/cm2 it shows a pronounced blue shifting, about 12 nm, and

also a remarkable increase in intensity, about 15,838 (a.u.) (corresponding to the

smallest nanocrystallite size of 5.2 nm and also the largest pore size of 1250 nm

and porosity 80%) and then starts to slightly decrease as current density is in-

creased up to 100 mA/cm2, at which, nanocrystallite size starts to increase, from

5.2 nm to 6.6 nm. This observed increase in the blue shifting of our PS samples,

with increasing current density of 20–90 mA/cm2 can be explained in terms of

the similar discussions of Raman peak shifting, corresponding to the samples pre-

pared at same current densities. Therefore, the observed increase in the amount of
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Fig. 5. (Color online) Room temperature PL from PS samples prepared in 20% HF concentration
at different current densities ranging from 10 mA/cm2 to 100 mA/cm2. Spectra were taken with
488 nm excitation source focused on the sample. Dash lines show PL peak maximum at 680 nm
and 692 nm for the samples 90 mA/cm2 and 10 mA/cm2, respectively.

PL blue shifting to lower wavelengths, over the current densities of 20–90 mA/cm2

should be also caused by decreasing Si nanocrystallite size, resulting in an increased

surface-induced residual stress (lateral stress), causing a smaller lattice mismatch,

compared with c-Si substrate.19–21,36 Whereas, observed slight decrease in the PL

blue shifting at the current density of 100 mA/cm2 can be explained in terms of

slightly larger Si crystallite size, causing a slightly larger lattice mismatch at Si–PS

interface, induced by larger residual stress (both lateral and vertical stress) with

respect to those of the PS sample of 90 mA/cm2.19–21,36 Accordingly, it can be

concluded that Raman and PL behaviors of our PS samples are combined effects
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of the Si nanocrystallite size (or porosity) and the residual stress, due to the ap-

plied current density. Smaller Si nanocrystallite size, which leads to QCE, causes

blueshift in PL spectra, whereas the residual stress determines the amount of the

blue shifting.35

Based on our PL analysis, we can conclude that PL peaks of our PS samples

are related to the S-band, which extends blue–red spectral range and they show a

blueshift, about 12 nm, over the wavelength range of 692–680 nm, with increasing

current density from 10 mA/cm2 to 90 mA/cm2. The best PL efficiency is observed

for PS sample, prepared at current density of 90 mA/cm2 around 680 nm. These

observed effects can be explained satisfactorily in terms of the QCE.1,35 Bulk sili-

con has an indirect bandgap and does not show any PL peak, while PS structures

have been reported to have efficient luminescence in a range, extending from the

near-infrared (IR) to the blue region of the visible spectrum.35 The observed PL

can be assigned to three luminescence bands: The F-band luminescence which cor-

responds to the blue–green emission (∼470 nm), the S-band luminescence which

corresponds to the blue–red emission (400–800 nm) and the IR-band corresponding

near-IR spectral range (1100–1500 nm) luminescence. Among these three lumines-

cence bands, the red PL band is usually the most intense. The PL peak position

of the red band extends from about 1.3 eV (950 nm) to 2.1 eV (590 nm). The PL

peak position of the red band can be shifted by the variation of the anodization

parameters. A blueshift is observed for an increase in applied current density, for a

decrease in nanocrystallite size and for an increase in porosity and pore diameter

of PS samples, in agreement with our FE-SEM and Raman results.

As mentioned above, higher current densities produce PS samples with relatively

smaller nanocrystallite size and higher porosity. Accordingly, increasing current

density, leading to a significant increase in the PL blueshift and peak intensity,

is a strong indication that silicon nanocrystallite size approaches the dimension

of a free exciton (i.e., ∼5 nm) of bulk Si. According to the QCE, the average

size of nanocrystallites in PS is expected to get smaller and make a blueshift in

PL peaks, with the increasing applied current density.1,10,11,14,29,31,36 Based on

the origin of the luminescence, this blueshift increase should be resulting from

the quantum-sized silicon crystallites among the walls, or from the defect and the

species formed during the anodization process in Si complexes including amorphous

silicon, siloxene and Si hydrides.8 According to our Raman scattering analysis, we

have not observed a broad peak at 480 cm−1, indicating that there is no substantial

contribution to the Raman intensity from possible amorphous silicon on the PS

surface. Furthermore, we have not observed any defect in the PS layer, which is

presented in Raman spectra. The results of our analysis support the basic model

depicted by Canham,1 in which the source of the luminescence is due to the quantum

confinement. Consequently, our PL analysis reveals that applied current density has

a significant effect on the electronic structure and accordingly on the light emitting

properties of our PS samples.
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4. Conclusion

In this study, the effects of applied current density on the surface morphology and

light emitting properties of PS samples have been investigated by a combination of

FE-SEM, X-SEM, Raman and PL spectroscopy. From our FE-SEM and X-SEM in-

vestigations, we have concluded that the pore size and morphology are very sensitive

to applied current density. The Raman spectra of PS samples show asymmetrical

broadening and peak shifting to lower wavenumbers, relative to the our reference

c-Si line position of 520 cm−1, with increasing applied current density. We have

found that PS sample formed at 90 mA/cm2, which has the smallest Si nanocrys-

tallite size of 5.2 nm, the largest pore diameter of 1250 nm and the highest porosity

of 80%, shows the highest Raman peak shifting, about 3.2 cm−1. Based on our

PL analysis, PL peaks of PS samples are related to the S-band, which extends in

blue–red spectral range, and they show a blue shifting, about 5–12 nm, over the

wavelength range of 692–680 nm, with increasing current density of 20–90 mA/cm2.

The best PL efficiency, around 680 nm, is also observed for PS sample prepared

at current density of 90 mA/cm2, which can be attributed to QCE. According to

the QCE, optical phonons confined in nanocrystals among the pore walls should

be responsible for both Raman peak shifts and pronounced PL peaks with blue

shifting, observed in our PS samples.

The PL blue shifting and Raman peak shifting, observed in our PS samples,

which show an increase towards lower wavelengths and wavenumbers respectively,

is a combined effect of the smaller Si nanocrystallite size (or higher porosity) and

residual stress, yielding a slight increase in the lattice mismatch at PS/Si interface,

in consistent with the QCE model.

In conclusion, by changing the applied current density, the light emitting and

structural properties of PS samples can be controlled. These results suggest that

the PS sample with finely controlled atomic-scale structure, is a good candidate for

the potential applications in optoelectronic and sensor devices.
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