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Abstract— This paper address the output feedback learning
tracking control problem for robot manipulators with repetitive
desired joint level trajectories. Specifically, an observer–based
output feedback learning controller for periodic trajectories
with known period have been proposed. The proposed learning
controller guarantees semi–global asymptotic tracking despite
the existence of parametric uncertainties associated with the
robot dynamics and lack of velocity measurements. A learning–
based feedforward term in conjunction with a novel observer
formulation is designed to obtain the aforementioned result.
The stability of the controller–observer couple is guaranteed via
Lyapunov based arguments. Numerical studies performed on a
two link robot manipulator are also presented to demonstrate
the viability of the proposed method.

I. INTRODUCTION

The main purpose of using robotic automation in nearly
all different fields industry, is to perform repetitious tasks.
Therefore robots used in an industrial application mostly
perform a predefined task over and over again. Given the
nonlinear nature of the robot dynamics, the need to achieve
better tracking performance despite system uncertainties and
periodic disturbances related to the periodic task, learning
controllers among other nonlinear model based controllers
are the preferred controller choice. Moreover, compared to
other controller formulations, repetitive learning controllers
are computationally efficient, can compensate disturbance
terms without the need of high frequency or high gain
feedback terms and can deal with time–varying disturbances.

Some of the initial work on repetitive learning control
research for robotic systems was made by [1], [2], and
[3]; where asymptotic convergence of the aforementioned
control schemes can only be guaranteed under restrictive
conditions on the plant dynamics. Later to enhance the
robustness of [1], [2] modified the repetitive update rule
to include the so–called Q–filter. In an attempt to increase
the robustness of the previously proposed repetitive learning
algorithm [4] and [5] proposed a scheme that exploited the
use of kernel functions in the update rule. Sadegh et al. in
[6] also proposed to enhance the robustness of the repetitive
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learning controllers by using a saturated update rule. In [7],
authors presented a full state feedback learning controller
that achieves asymptotic tracking backed up by a Lyapunov
based stability analysis.

All of the controllers mentioned above are full state
feedback controllers, that is the controller formulation re-
quires both the position and velocity measurements. However
nearly all industrial robots only have position sensors. And
it is a known fact that using numerical differentiation to
numerically form the velocity signal from position informa-
tion introduces extra noise to the system. Therefore many
researchers were also motivated to design output feedback
learning controllers that does not require link velocity mea-
surements. To name a few, in [8] and [9] neural network
based reinforcement–learning controllers were presented for
different classes of nonlinear discrete–time systems. In [10],
a learning controller for a class of single–input, single–
output, minimum phase, nonlinear, time–invariant systems
with unknown output–dependent nonlinearities, unknown
parameters and known relative degree ρ is considered.

In this study, by making use of a model free observer
together with a novel feedforward learning term, we were
able to design an output feedback repetitive learning type
controller for robotic manipulators with periodic joint level
trajectories. The proposed method ensures asymptotic track-
ing despite the uncertainties associated with the robot dy-
namics and lack of velocity measurements. Overall stability
of the observer–controller couple was ensured via the use
of Lyapunov based arguments. The rest of the text is or-
ganized in the following manner; The robot dynamics and
its properties are given in Section 2; The observer–controller
design and closed loop definitions are presented in Section 3.
Stability analysis of the overall closed loop system is detailed
in Section 4 while the numerical studies performed on a two
link planar robot manipulators are presented in Section 5.
Concluding remarks are given in Section 6.

II. SYSTEM MODEL AND PROPERTIES

The dynamic model of an n degree of freedom, direct
drive robot manipulator is given in the following form [11],
[12]

M (q) q̈ + Vm (q, q̇) q̇ +G (q) + Fdq̇ = τ (1)

where q (t), q̇ (t), q̈ (t) ∈ Rn denote the joint positions, ve-
locities, and accelerations, respectively, M(q) ∈ Rn×n is the
positive–definite and symmetric inertia matrix, Vm (q, q̇) ∈
Rn×n is the centripetal–Coriolis terms, G(q) ∈ Rn is the
gravitational effects, Fd ∈ Rn is the constant, diagonal,
positive–definite, viscous frictional effects, and τ (t) ∈ Rn is
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the control torque input. We will assume that the left–hand
side of (1) is first–order differentiable. The dynamic model
given by (1) satisfies the following properties that will later
be utilized in the controller design and the accompanying
stability analysis:

Property 1: The inertia matrix M (q) satisfies the follow-
ing inequalities [13]

m1In ≤M (q) ≤ m2In (2)

where m1, m2 ∈ R are known positive–definite bounding
constants, In ∈ Rn×n is the standard identity matrix.
Likewise the inverse of M(q) can be bounded as

1

m2
In ≤M−1 (q) ≤

1

m1
In. (3)

Property 2: The inertia and centripetal–Coriolis matrices
satisfy the following equalities [13]

ξT
(
Ṁ − 2Vm

)
ξ = 0 ∀ξ ∈ Rn. (4)

Property 3: The centripetal–Coriolis matrix satisfies the
following expression [14]

Vm (q, ν) ξ = Vm (q, ξ) ν ∀ν, ξ, ∈ Rn. (5)
Property 4: The norm1 of centripetal–Coriolis matrix also

satisfies the following inequalities

‖Vm (q, ξ)‖i∞ ≤ ζc1 ‖ξ‖ ∀ξ ∈ Rn. (6)

The norm of frictional effects can be upper bounded as
follows

‖Fd‖i∞ ≤ ζf (7)

where ζc1 and ζf are positive–definite bounding constants.
Property 5: The robot dynamics given in (1) is linearly

parameterized as follows

W (q, q̇, q̈) =M (q) q̈ + Vm (q, q̇) q̇ +G (q) + Fdq̇ (8)

where W (q, q̇, q̈) ∈ Rn is the regression matrix. The
above expression (8) is also written in terms of the desired
trajectory in the following form

Wd (qd, q̇d, q̈d) =M (qd) q̈d+Vm (qd, q̇d) q̇d+G (qd)+Fdq̇d
(9)

where Wd (qd, q̇d, q̈d) ∈ Rn is the desired regression matrix
and qd, q̇d, q̈d ∈ Rn denotes the desired link position,
velocity and acceleration, respectively.

Property 6: The dynamic terms in (1) can be upper
bounded as follows [14], [6]

‖M(ξ)−M(ν)‖i∞ ≤ ζM1 ‖ξ − ν‖ (10)∥∥M−1(ξ)−M−1(ν)∥∥
i∞ ≤ ζM2 ‖ξ − ν‖ (11)

‖Vm(ξ, w)− Vm(ν, w)‖i∞ ≤ ζc2 ‖ξ − ν‖ ‖w‖ (12)
‖G(ξ)−G(ν)‖i∞ ≤ ζg ‖ξ − ν‖ (13)

∀ξ, ν, w ∈ Rn, where ζM1, ζM1, ζC2, ζg ∈ R are positive–
definite bounding constants.

1The matrix norms presented are actually induced infinity norms, however
for the ease of the presentation, standard norm representation is used.

III. OBSERVER–CONTROLLER FORMULATION

As our goal is to design an output feedback controller, we
are under the restriction that only the link position q(t) are
available for the controller design. To quantify the control
objective, we define the link position tracking error, denoted
by e (t) ∈ Rn, as

e , qd − q (14)

where the desired joint space trajectory qd (t) is periodic with
its first three time derivatives. That is;

qd(t) = qd(t− T ), q̇d(t) = q̇d(t− T ), q̈d(t) = q̈d(t− T )
(15)

where T is a known constant.
The development of the estimate of the unmeasurable

link velocity signal is initiated by introducing the velocity
observation error signal ˙̃q (t) ∈ Rn which is defined as

˙̃q , q̇ − ˙̂q (16)

with the auxiliary position observation error q̃ (t) ∈ Rn
defined similarly as

q̃ , q − q̂ (17)

where ˙̃q (t) , q̂ (t) and ˙̂q (t) ∈ Rn denote velocity observation
error, observed joint position and observed joint velocity sig-
nals, respectively. At this stage we will define two auxiliary
signals, namely a filtered tracking error signal, denoted by
r (t) ∈ Rn, and a filtered version of observation error signal,
denoted by s (t) ∈ Rn in order to ease the presentation of
the subsequent analysis

r , ė+ αe (18)

s , ˙̃q + αq̃ (19)

where α ∈ R is a constant, positive–definite, diagonal control
gain. Based on the subsequent stability analysis, the velocity
observer is designed as

˙̂q = p+ k0q̃ − kce (20)

where p (t) ∈ Rn is an auxiliary variable with proper initial
value and is updated according to

ṗ = k1Sgn (q̃) + k2q̃ − αkce (21)

with k0, kc, k1, k2 ∈ Rn×n being positive–definite, diagonal
gain matrices, and Sgn(·) ∈ Rn is defined as follows

Sgn(ς) = [sgn(ς1), sgn(ς2), · · · , sgn(ςn)]
T ∀ς ∈ Rn. (22)

The control input torque τ (t) is designed as the following
form

τ = Ŵ + kpe+ kcα (qd − q̂) + kc

(
q̇d − ˙̂q

)
(23)

where kp ∈ Rn×n is a positive–definite, diagonal gain matrix
with the feedforward learning term Ŵ (t) ∈ Rn is updated
according to

Ŵ (t) = Satβ
(
Ŵ (t− T )

)
+ kLα (qd − q̂) + kL

(
q̇d − ˙̂q

)
(24)
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where kL ∈ R is a positive–definite constant control gain,
β ∈ R denotes the limits of the vector saturation function
Satβ (·) ∈ Rn. We would like to point out that though the
observer–controller formulation presented above does not
require joint velocity measurement but for the ease of the
presentation we would make use of the following property

qd − q̂ = e+ q̃ (25)
q̇d − ˙̂q + α (qd − q̂) = r + s (26)

so that we can re–arrange the controller of (23) and the
learning term (24) in the following form

τ = Ŵ + kpe+ kc (r + s) (27)

Ŵ (t) = Satβ
(
Ŵ (t− T )

)
+ kL (r + s) . (28)

In the rest of the paper, we will make use of (27) and (28)
formulations instead of the velocity free version for analysis
purposes only.

A. Observer Analysis

To this end we take the time derivative of (19), insert for
(20), (27), (28), cancel out some common terms and selecting
the observation gain k0 to satisfy

k2 = α (k0 − αIn) (29)

so that we would obtain the dynamics of the filtered version
of the observation error in the following form

ṡ = Nd +Nb − k1Sgn(q̃) + kcr −
1

α
k2s (30)

where the auxiliary signals Nd(q, qd, q̇d, q̈d, t) ∈ Rn and
Nb(q, q̇, qd, q̇d, e, r, s, t) ∈ Rn are defined as

Nd , q̈d +M−1(q)
[
Satβ

(
Ŵ (t− T )

)
−Wd (t)

]
(31)

and

Nb ,
[
M−1(q)−M−1(qd)

]
M(qd)q̈d

+M−1(q) [Vm(qd, q̇d)q̇d − Vm(q, q̇)q̇

+G(qd)−G(q) + Fdė]

+M−1(q) [kpe+ kc(r + s)]

+M−1(q) [kL(r + s)] . (32)

We would like to note that applying (3), (6), (7), (10), (11),
(12) and (13) to the auxiliary terms Nd and Nb can be
bounded as follows

‖Nd‖ ≤ ζNd
(33)

‖Nb‖ ≤ ρ01 ‖e‖+ ρ02 ‖r‖+ ρ03 ‖s‖+ ρ04 ‖r‖2(34)

where ζNd
, ρ01, ρ02, ρ03, ρ04 ∈ R are positive known

bounding constants.

B. Error System Development

To obtain the tracking error dynamics, we start with taking
the time derivative of r (t) in (18), then pre–multiply by
M (q), and utilize (1), (14), (23) to obtain

Mṙ = −Vmr + χ+Wd − Ŵ − kpe− kc (r + s) . (35)

In (35), the auxiliary variable χ(t) ∈ Rn is defined as

χ ,M (q̈d + αė) + Vm (q̇d + αe) +G+ Fdq̇ −Wd. (36)

Similar to the bound of (34), an upper bound for χ(t) can
be obtained to have the following form

‖χ(t)‖ ≤ ρ1 (‖e‖) ‖e‖+ ρ2 (‖e‖) ‖r‖ (37)

where ρ1(·), ρ2(·) ∈ R are positive bounding functions that
are in the following form

ρ1 = ζ1 + ζ2 ‖e‖ , ρ2 = ζ3 + ζ4 ‖e‖ (38)

with ζ1, ζ2, ζ3, ζ4 ∈ R being known positive bounding
constants.

IV. BOUNDEDNESS/STABILITY PROOF

The closed–loop error systems in (30) and (35) yields
the following theorem to analyze the stability of observation
error and position tracking error.

Theorem 1: The velocity observer in (20) and the control
law in (23) ensures the closed–loop observer/controller cou-
ple is semi–globally asymptotically stable in the sense that

‖e(t)‖ ,
∥∥ ˙̃q(t)∥∥→ 0 as t→ 0 (39)

provided that the observer gain is selected to satisfy (29),
the controller gain kc is designed as

kc =
(
knζ

2
1 + knζ

2
2 + ζ3 + 1

)
In (40)

and the observer gain k2 is designed as

k2 = α
(
knρ

2
01 + knρ

2
02 + knρ

2
03 + ρ04 + knk

2
L + 1

)
In
(41)

where kn is a positive damping constant, and ρ0i and ζi
i = 1, ..., 4 were defined in (34) and (38).

Proof: The proof is composed of four sub–proofs where
only a highlight of the first part is given and the rest is
presented in detail.

Firstly, the nonnegative function, denoted by V1(r, e, s) ∈
R, is defined

V1 ,
1

2
rTMr +

1

2
eT kpe+

1

2
sT s. (42)

After taking the time derivative of V1(t) and substituting for
(18), (30) and (35), results in

V̇1 ≤ −γ0V1 + ε0 (43)

where γ0 and ε0 are positive constants. From the structures
of (42) and (43), it is easy to see that V1(t) ∈ L∞ and thus
e(t), r(t), s(t) ∈ L∞. Standard signal chasing arguments
are then applied to demonstrate the boundedness of all the
signals under the closed–loop operation, including q̃(t) and
˙̃q(t).
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Next, provided that q̃ (t) and ˙̃q (t) are bounded, the fol-
lowing expression for the upper bound of the integral of the
absolute value of the ith entry of ˙̃q (t), i = 1, · · · , n, can be
obtained

t∫
t0

∣∣ ˙̃qi (σ)∣∣ dσ ≤ γ1 + γ2

t∫
t0

|q̃i (σ)| dσ + |q̃i| (44)

where γ1, γ2 ∈ R are some positive bounding constants. The
proof of (44) can be found in [15] or in [16].

At this stage, to prove the overall stability of the closed–
loop system and the asymptotic convergence of the error sig-
nals, we define the following non–negative function, denoted
by V (t) ∈ R,

V , V1 + P (45)

+
1

2kL

∫ t

t−T

∥∥∥Satβ(Wd(σ))− Satβ(Ŵ (σ))
∥∥∥2dσ.

where P (t) ∈ R is an auxiliary term defined as

P , ζp −
∫ t

0

sT (σ) [Nd(σ)− k1Sgn(q̃(σ))] dσ (46)

where ζp is a positive constant. Provided the entries of the
control gain matrix k1 are chosen to be greater than the upper
bound of the auxiliary term Nd(t), the proof in [16] can be
traced to demonstrate the non–negativeness of P (t).

After taking time derivative of (45), then substituting (30),
(35), (36), and performing some straightforward algebric
manipulations, we obtain following expression

V̇ = −rT kcr − αeT kpe−
1

α
sT k2s+ rTχ+ sTNb

+
1

2kL

∥∥∥Satβ(Wd(t))− Satβ(Ŵ (t))
∥∥∥2

− 1

2kL

∥∥∥[Wd − Ŵ
]∥∥∥2

−kL
2
‖(r + s)‖2 + kLs

T (r + s). (47)

The following relationship can be obtained for second and
third lines of (47) as [7]∥∥∥Satβ(Wd(t))− Satβ(Ŵ (t))

∥∥∥2 − ∥∥∥[Wd − Ŵ
]∥∥∥2 ≤ 0. (48)

After utilizing (34), (37), and (48) along with (47), and then
applying the nonlinear damping argument to the resulting
expression, we can obtain

V̇ ≤ −
[
min {α, 1} − 3

kn
− 1

kn
‖z‖2

]
‖z‖2. (49)

Where z = [e, r, s]
T denotes combined error signals. It is

now possible to upper bound the right–hand side of (49) as

V̇ ≤ −γ4‖z‖2 (50)

where γ4 ∈ R is some positive constant (0 < γ4 ≤ 1).
Barbalat’s Lemma [13], [14] can now be utilized to prove
the semi–global asymptotic convergence of the joint velocity
estimation error and the tracking error to the origin.

V. SIMULATION RESULTS

To illustrate the performance of the observer based out-
put feedback controller in (23), we performed a numerical
simulation with a two link, planar robot manipulator. The
dynamic model in (1) is considered with the following model
functions

M =

[
p1 −0.5p2s(q1−q2)

−0.5p2s(q1−q2) p3

]
(51)

Vm =

[
0 0.5p2q̇2c(q1−q2)

−0.5p2q̇1c(q1−q2) 0

]
(52)

N =

[
p4cq1 + p5c(q1−0.5π)

p6sq2

]
(53)

in which sq2 = sin(q2), cq2 = cos(q2),s(q1−q2) = sin(q1 −
q2), c(q1−q2) = cos(q1 − q2), c(q1−0.5π) = cos(q1 − 0.5π)
and p1 = 2.52610−3, p2 = 2.76610−3, p3 = 1.65210−3,
p4 = 164.15810−3, p5 = 117.29410−3 and p6 = 94.0510−3.
We would like to note that the above dynamic model is not
utilized in the control design when performing the numerical
simulations.

The periodic desired joint space trajectory was selected as

qd =

[
(0.8 + 0.2 sin(0.5t)) sin(0.5 sin(0.5t))
(0.6 + 0.2 sin(0.5t)) sin(0.5 sin(0.5t))

]
. (54)

The robot manipulator is considered to be at rest with the
initial joint position as q (0) = [0.1, 0.1]

T rad. Satisfactory
tracking performance is obtained when the gains set on, kp =
[0.1, 0; 0, 0.1], kc = [0.08, 0; 0, 0.08], k0 = [500, 0; 0, 500],
k1 = [0.1, 0; 0, 0.1], α = 5.2, k2 = α(k0−α) and kL = 0.1.

The joint space tracking error e (t) is shown in Figure 1.
Auxiliary possition observation error q̃ is shown in Figure 2.
Control input torque can be seen in Figure 3. The desired and
the actual joint space trajectories can be seen from Figure
4. From Figures 1, 2 and 4, it is clear that the tracking
objective was successfully met. Specifically, from Figure 1,
it is clearly observed that the proposed learning controller
ensures a significant improvement on the tracking error in
every period (which was 12.5sec).

VI. CONCLUSION

In this study, we have presented an observer based output
feedback learning controller for tracking control of robot
manipulators. A novel observer–controller formulation that
ensured semi–globally asymptotic tracking despite the lack
of link velocity measurements have been presented. The
convergence of the error signals and the stability of the
closed–loop system are illustrated via Lyapunov type anal-
ysis. Numerical solutions are demonstrated to illustrate the
tracking performance of the proposed method.

There is much to be considered as future work. One future
work is to obtain experimental verification of the proposed
controller–observer couple on a robotic platform. Another
possible interesting future research is applying the proposed
control method to telerobotic systems when the desired task
has a repeating structure. Another branch of future work is to
apply the proposed technique to control of active magnetic
bearings [17] and atomic force microscopy [18]. While this
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Fig. 1. Joint position tracking error e (t)
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Fig. 2. Auxiliary possition observation error q̃

work is presented for robot manipulators, it is possible to
apply the proposed methodology to other Euler–Lagrange
systems mentioned above. While the control problem in
the above mentioned applications are rejecting a periodic
disturbance type effects (rather than following a periodic
reference trajectory), the proposed method can with some
effort be applied to address those research problems.

APPENDIX I
PROOF OF BOUNDS

In this appendix, we discuss how the upper bound for
Nb (t) in (34) can be obtained. Obtaining the upper bound
for χ (t) in (37) is possible after following similar steps.

Starting with rewriting the expression (32) and utilizing
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Fig. 3. Control torque input τ (t)
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Fig. 4. Desired (dashed) and actual joint space trajectories

(5) we will obtain

Nb =
(
M−1(q)−M−1(qd)

)
M−1(qd)q̈d

+ M−1(q) {Vm (qd, q̇d) q̇d − Vm (q, q̇d) q̇d}
+ M−1(q) {2Vm (q, ė) q̇d − Vm (q, ė) ė}
+ M−1(q) {G(qd)−G(q) + Fd(q̇d − q̇)}
+ M−1(q) {kpe+ kcr + kcs} . (55)

After utilizing (3), (6), (7), (10), (11), (12) and (13) we can
obtain an upper bound for the right–hand–side of (55) as
follows

Nb ≤
{
ζM1m2 ‖q̈d‖+

1

m1
ζc2 ‖q̇d‖

}
‖e‖

+

{
1

m1
λmaxkp +

1

m1
ζg

}
‖e‖

+

{
2

m1
ζc1 ‖q̇d‖+

1

m1
ζf +

1

m1
λmaxkc

}
‖r‖

+
1

m1
ζc1‖r‖2 +

1

m1
λmaxkc ‖s‖ (56)
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where the fact that ‖r(t)‖ ≥ ‖ė(t)‖ is utilized. Let

ρ01 , ζM1m2 ‖q̈d‖+
1

m1
ζc2 ‖q̇d‖

+
1

m1
λmaxkp +

1

m1
ζg (57)

ρ02 ,
2

m1
ζc1 ‖q̇d‖+

1

m1
ζf +

1

m1
λmaxkc (58)

ρ03 ,
1

m1
ζc1 (59)

ρ04 ,
1

m1
λmaxkc (60)

then the bound given in (34) is valid.
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