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Electron-electron interactions and topology in the electronic properties of gated graphene
nanoribbon rings in Möbius and cylindrical configurations
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We present a theory of the electronic properties of gated graphene nanoribbon rings with zigzag edges in
Möbius and cylindrical configurations. The finite width opens a gap and nontrivial topology of the Möbius ring
leads to a single edge with edge states with an induced, effective gauge field, in analogy to topological insulators.
The single zigzag edge leads to a shell of degenerate states at the Fermi level and a ferromagnetic (FM) ground
state at half-filling, i.e., at charge neutrality, due to electron-electron interactions. For fractional fillings, both the
magnetic moment and the energy gap are found to oscillate as a function of the shell filling. In cylindrical rings,
the two edges lead to AF ground state at half-filling but FM ground state at fractional fillings.
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I. INTRODUCTION

Graphene,1–5 a single layer of graphite, shows promise
as a material for nanoelectronics due to high electronic and
thermal conductivity. As a result, there is increasing interest
in understanding properties of graphene engineered at the
nanoscale to form graphene nanoribbons and dots. Graphene
nanoribbons are quasi-one-dimensional structures6–37 with
electronic properties depending on the angle at which they are
cut. This includes a tunable energy gap with semimetallic or
semiconductor behavior,13–15 one-dimensional edge states at
the Fermi level with unusual magnetic properties with possible
spintronic applications,16–23 and solitonic edge states as in
polyacetylene.37–39

Graphene nanoribbons also played an important role in
inspiring the field of topological insulators.6–12 The interior
of the graphene ribbon acts like an insulator with a gap
in the energy spectrum, whereas the energies of the edge
states are in the middle of the gap. The topological aspect
of the edge states is generated by the spin-orbit coupling
which lifts the spin degeneracy at a given edge, leading to
graphene nanoribbon as a spin Hall insulator.6 Unfortunately,
spin-orbit coupling in graphene is found to be too small to
give rise to a spin Hall effect.10 Interestingly, it has been
suggested that nontrivial properties of graphene nanoribbons
can be generated directly by engineering a nontrivial Möbius
geometry of the nanoribbon without the need for the spin-orbit
coupling.40–51 For example, it was shown by Guo et al.46 that
one electron states of a class of Möbius graphene ribbons with
zigzag edges can be understood by introducing a non-Abelian
gauge field46 as in topological insulators.6–12 However, these
authors used the s orbitals instead of pz orbitals as the basis
needed to describe graphene nanoribbons and limited their
work to an even number of atomic chains. The effects of
Coulomb interactions on the magnetic structure of zigzag
graphene nanoribbons with an even number of carbon chains
were studied within mean-field Hubbard models42,43 and
density functional theories.44,47 It was found that mean-field
Hubbard treatment of Coulomb interactions gives a minimal
spin polarization and an associated magnetic domain wall,42,43

whereas density functional calculations predict finite total
magnetization.44,47 On the experimental side, although we are
not aware of Möbius graphene nanoribbons with zigzag edges
yet, twisted nanoribbons were recently obtained inside car-
bon nanotubes through electron irradiation of functionalized
fullerenes36 and a stable Möbius aromatic hydrocarbon was
synthesized by Ajami et al.41

In this work we describe the effect of Möbius topology on
the one-electron properties of graphene nanoribbon rings as a
function of the number of carbon chains, both even and odd.
We compare the Möbius topological insulator with normal
insulators, cylindrical graphene nanoribbon rings with cyclic
boundary conditions. Our main contribution involves inclusion
of electron-electron interaction using configuration-interaction
method (CI) combined with tight-binding and Hartree-Fock
approach in the Möbius topological insulator with carrier
density controlled by an external gate.

We show that the magnetic properties of the nanoribbons
are strongly affected by the filling factor of the edge states
due to degeneracies and electron-electron interactions. The
dependence of the magnetization on the filling factor is
drastically different for Möbius ribbons with even and odd
number of chains, and cyclic ribbons. Away from charge
neutrality, strong oscillations of edge magnetization as a
function of filling factor are observed for Möbius ribbons.
The cyclic nanoribbon is found to be antiferromagnetic at half-
filling but becomes ferromagnetic away from charge neutrality.
The magnetic properties of a Möbius ribbon have similarities
with triangular graphene quantum dots with zigzag edges.52–54

Indeed, both systems have only a single edge and insulating
bulk, and we compare the magnetic properties as a function of
the filling of the edge states with carriers in both structures.

The paper is organized as follows. In Sec. II we describe
single particle properties in the tight-binding approximation.
We review basic properties of single and double chain
nanoribbons with Möbius and cyclic configurations. Then
we derive analytical and semianalytical results for larger
nanoribbon rings with even and odd number of chains. In
Sec. III we use a tight-binding–Hartree-Fock–configuration-
interaction method to investigate many-body properties of
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Möbius and cyclic nanoribbon rings as a function of filling
factor of edge states. Summary and conclusion are contained
in Sec. IV.

II. SINGLE PARTICLE PROPERTIES OF
GRAPHENE NANORIBBON RINGS IN MÖBIUS AND

CYLINDRICAL CONFIGURATIONS

In this section we review the tight-binding method applied
to the single particle properties of graphene with standard
periodic and Möbius boundary conditions. For charge neutral
nanoribbon, there is one pz electron for every carbon atom.
The remaining three valence electrons occupy the s, px , and
py orbitals to form sp2 bonds with the three nearest in-plane
neighbors. The sp2 bond electrons are responsible for the
structural properties of the system and are neglected in the
study of the electronic properties determined by the pz orbitals.

The one electron states of graphene nanoribbon can be
written as a linear combination of pz orbitals on every
carbon atom. The resulting tight-binding Hamiltonian1 is
given by

H =
∑
i,l,σ

tilσ c
†
iσ clσ , (1)

where the operator c
†
iσ creates an electron on the ith pz

orbital with spin σ , tilσ is an effective hopping integral which
describes the probability of scattering of electron from the lth
pz orbital φl to the ith pz orbital φi .

Before discussing the single particle properties of graphene
nanorings with zigzag edges, we would like to point out that the
stability of zigzag edges in graphene nanostructures is an active
research subject.55–61 Theoretical calculations55,56,59,60 show
that if the dangling bonds on the zigzag edges are passivated
by a single hydrogen each, then a stable zigzag edge can be
obtained. Otherwise an edge reconstruction may occur. The
stability of zigzag edges free of reconstruction was recently
confirmed experimentally.61

A. Heilbronner ring

The simplest Möbius system of π electrons is a Möbius an-
nulene first studied by Heilbronner.48 Heilbronner considered
a ring of carbon atoms with pz orbitals rotating by a constant
amount when moving from atom to atom around the ring, as
shown in Fig. 1(a). The ring can also be viewed as a cyclic
polyacetylene with Möbius boundary condition. Within this
model, starting with atom at 0, the hopping integral between
neighboring atoms t should be replaced by tM = t cos(π/M),
where M is the number of atoms in the ring. This substitution
fails if we want to tunnel from the last M − 1 orbital to the
first 0th orbital. This is seen in Fig. 1 where the signs of the
pz wave functions are shown in dark gray (blue color online)
and light gray (red color online), showing that at the point
where atom number 0 meets atom number M − 1 the hopping
matrix element becomes −t cos(π/M) due to the opposite
orientation of pz orbitals. The change of sign of the tunneling
matrix element is possible because of the internal degree of
freedom of each carbon atom—direction of the quantization
axis. The energy spectra for the Möbius and cyclic annulene

sign
inversion

(a)

m=0
m=M-1 m=M-2

(b)

FIG. 1. (Color online) (a) Heilbronner ring with M pz orbitals.
Different gray scale (blue and red colors online) represent sign of
the wave function. The Möbius condition requires a sign inversion
between the 0th and M − 1th sites. (b) For a Heilbronner ring with
odd M , pz orbitals can be chosen to be alternating their sign from site
to site.

are then given by Heilbronner in Ref. 48:

E
cyc
j = 2tM cos

(
2jπ

M

)
,

(2)
j = 0,1, . . . ,M − 1 (M = even or odd),

EMob
j = 2tM cos

[
(2j + 1)π

M

]
,

(3)
j = 0,1, . . . ,M − 1 (M = even or odd).

The energy spectra can be obtained using periodicity condition
ψm+M = ψm for the cyclic annulene, and ψm+M = −ψm for
the Möbius annulene. Alternatively, the basis set of pz orbitals
can be chosen in such a way that pz orbitals alternate their
sign, as shown in Fig. 1(b). As we will see later, this choice
can be practical for more complex structures. For a Heilbronner
ring with odd M , we then need to replace tM by −tM and we
no longer need to change the sign of the hopping parameter
between atoms 0 and M − 1. Thus, we can use periodic
boundary condition ψm+M = ψm with reversed overall sign
of the hopping parameter to obtain

EMob
j = −2tM cos

[
(2j + 1)π

M

]
,

(4)
j = 0,1, . . . ,M − 1 (M = odd).

Hence, the energy spectrum of a Heilbronner Möbius ring
with odd M is the mirror image of the energy spectrum
of a cyclic ring, if normalized by their respective effective
hopping parameter tM . In the following we will ignore the
M dependence of the hopping parameter and take tM =
t cos(π/M) ≈ t for large M .

B. Polyacene ring

The narrowest graphene nanoribbons can be formed by
bringing together two chains of polyacetylene, as seen in Fig. 2.
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(a)

(b)

FIG. 2. (Color online) Polyacene ring with (a) cyclic and (b)
Möbius periodicity. In the Möbius polyacene ring, pz orbitals are
chosen to be alternating their sign from site to site.

Such structures are also called polyacene. In polyacene rings,
cyclic [Fig. 2(a)] or Möbius [Fig. 2(b)], the number of atoms
in a chain M must be even in order to keep the hexagonal
structure intact. The analytical solutions to the cyclic and
Möbius structures were previously calculated,49,50 and are
given by

E
cyc
j = ± t

2

[
1 ±

√
1 + 16 cos2

(
2jπ

M

)]
,

(5)
j = 0,1, . . . ,M/2 − 1 (M = even),

EMob
j = t

2

[
(−1)j ±

√
1 + 16 cos2

(
jπ

M

)]
,

(6)
j = 0,1, . . . ,M − 1 (M = even).

Note that, in each case, the total number of hexagons
in these structures is given by M/2. Detailed discussion of
polyacene rings can be found in Refs. 49 and 50.

C. Graphene nanoribbon ring with three chains

We will now derive the secular determinant leading to the
analytical energy spectrum for a graphene nanoribbon with
three polyacetylene chains, as shown in Fig. 3. Each chain
contains M atoms, and the unit cells are defined such that there
are a total of M unit cells in the system. There is a condition
on the parity of M depending on the boundary condition. In
order to keep the hexagonal structure intact, M must be even
for a cyclic ring and odd for a Möbius ring.

Although it is not possible to define A and B sublattices in a
Möbius ring since the system is not bipartite, for the following
analysis we define A and B atoms, shown in light gray (red
color online) and dark gray (blue color online). For a Möbius
configuration, two atoms of the same type become neighbors at

unit cell
m=0

unit cell
m=M-1

site
(1,m-1)

site
(3,m)

site
(1,m+1)

site
(1,m)

site
(3,m+1)

site
(3,m+1)

FIG. 3. (Color online) Graphene nanoribbon with three poly-
acetylene chains. pz orbitals are chosen to be alternating their sign
from site to site, shown by different gray scales (red and blue colors
online). In any given unit cell, the edge site that has only two neighbors
is assigned to be the first site of the unit cell.

the boundary between cell 0 and cell M − 1. Next, we assign
pz orbitals to A and B atoms with opposite polarity for the
Möbius ring. The effect of this polarity alternation is that there
is an overall change of sign of the hopping parameter t but the
boundary condition requires no more special treatment for the
change of phase of the hopping matrix element.

The key step is the definition of the mth unit cell creation
operator ψ

†
m as

ψ†
m =

⎛
⎜⎝

c
†
1m

c
†
2m

c
†
3m

⎞
⎟⎠ . (7)

Here the c
†
im are defined in a special way. The c

†
1m is defined

as the creation operator of the edge site that has only two
neighbors, c

†
2m is for the middle site, and c

†
3m is for the

remaining site. Thus the order of site operators in ψ
†
m alternates

from cell to cell, as shown in Fig. 3. The advantage of this
choice is that we can apply a periodic boundary condition and
define the Fourier transform ψk:

ψm = ψm+M = 1√
M

M−1∑
k=0

ψke
−i2πkm/M. (8)

The tight-binding Hamiltonian can now be written as

H = −t
∑
m

[ψ†
mUψm + (ψ†

mT ψm+1 + H.c.)], (9)

where the matrix U describes the hopping terms between sites
within a cell m, whereas the matrix T describes the hopping
terms between cell m and cell m + 1. The U and T matrices
are given by

U =
⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ (10)

and

T =
⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ . (11)
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Using Eq. (8) we obtain

H = −t
∑

k

ψ
†
k [U + (T ei2πk/M + H.c.)]ψk, (12)

which is diagonal in k. The band structure of graphene Möbius
ribbon for a given M and k can then be analytically obtained
by solving the following secular determinant:∣∣∣∣∣∣

−E 0 −2t cos
(

2πk
M

)
0 −2t cos

(
2πk
M

) − E −t

−2t cos
(

2πk
M

) −t −E

∣∣∣∣∣∣ = 0,

(13)

where k = 0, . . . ,M − 1 and M is odd.
It is important to note that the same equation also applies

to a cyclic ring with even M . In this case, we no longer need
to assign alternating signs to the polarity of A and B atomic
orbitals. Thus, the overall sign of t must be reversed in Eq. (13)
in order to get correct solutions for a cyclic ring with even M .

D. Graphene nanoribbon ring with N chains

For odd N , the solutions found in the previous subsection
are easily generalized to any Möbius ring with odd M or any
cyclic ring with even M . The U and T matrices of size N are
given by

U =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

· · · · · ·

⎞
⎟⎟⎟⎟⎟⎠ (14)

and

T =

⎛
⎜⎜⎜⎝

0 0 0 0 1
0 0 0 1 0
0 0 · · · 0 0
0 1 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎠ . (15)

The band structure for a given N, M, and k can then be
calculated by diagonalizing U + (

T ei2πk/M + H.c.
)
.

For even N , the solutions were analyzed in detail in
Ref. 46 for s-type orbitals using a bonding and antibonding
combination of opposite edge sites of the ribbon. For pz type
orbital, the solutions found in Ref. 46 still apply, but with
reversed sign of the hopping parameter t since one needs
to consider alternating orbital signs for A and B atoms, as
discussed earlier. Hence the valence states obtained in this
work are conduction states in Ref. 46.

E. Single particle energy spectra of Möbius and cyclic ribbons

In this subsection we analyze energy spectra of Möbius and
cyclic rings as a function of size and parity. In Fig. 4 we focus
on even N rings. Figure 4 shows the energy spectrum for the
N = 2, M = 26 ring, in cyclic and Möbius configurations,
calculated using Eqs. (5) and (6) with |t | = 2.8 eV. Since
the total number of electrons is equal to the number of sites,
we have Ne = 52 electrons filling the first 26 valence levels,
assumed for now to be doubly occupied. Note that, close to the
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 M=26, N=2, Mobius
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Polyacene

FIG. 4. (Color online) Single particle energy spectrum of poly-
acene ring with N = 2, M = 26 (total of Na = 52 atoms), in cyclic
(solid line) and Möbius (circles) configurations. Cyclic and Möbius
configurations share the same valence band edge state energy levels.

Fermi level, cyclic and Möbius configurations share the same
valence levels corresponding to edge states. However, a cyclic
configuration has electron-hole symmetry [clearly displayed
in Eq. (5)], which is absent in the Möbius configuration
[cf. Eq. (6)].

This broken electron-hole symmetry in the Möbius con-
figuration has a subtle but important implication for wide
ribbons. Figure 5 is a similar graph to Fig. 4 but for a wider
ribbon with N = 14. For a ribbon with length M , as the
width N increases, edge states become more distinguishable
in the energy spectrum; their energies become increasingly
degenerate at the Fermi level, with a substantial energy gap
separating them from remaining valence and conduction band
levels.

FIG. 5. (Color online) Single particle energy spectrum of
nanoribbon ring with N = 14, M = 26 (total of Na = 364 atoms), in
cyclic (solid line) and Möbius (circles) configurations. The Möbius
configuration (circles) has nine degenerate edge states occupied by
eight electrons.
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The number of edge states can be estimated in the limit
of large N and zero energy, following the energy spectra
derived in Ref. 46. For the cyclic ring, edge state k values are
given by M/6 < kd < M/3 both for valence and conduction
spectra. For the Möbius ring we must have M/6 < kd < M/3
for the valence spectrum and M/6 < kd − 1/2 < M/3 for
the conduction spectrum. Hence, the total number of edge
states is (for a given M) by one larger in Möbius than cyclic
configurations. Figure 5 confirms this assertion. There exists a
degenerate shell in the vicinity of the Fermi level (circles), split
into a subshell with seven states and a subshell at higher energy
� with two states, with a total of nine states, one more than a
cyclic ribbon with the same number of atoms, shown as bars in
Fig. 5. The splitting of the degenerate shell � is related to the
width of the ribbon and decreases with increasing ribbon width.
Next, we need to calculate the number of electrons occupying
the edge states. Assuming all remaining valence states are
doubly occupied, for a ribbon ring in cyclic configuration with
a degenerate band of Nd edge states, charge neutrality requires
the degenerate band to be occupied with Nd electrons, leading
to antiferromagnetic edge states.42,43 In the example given in
Fig. 5 for the the cyclic ring, eight electrons occupy eight edge
states giving a filling factor ν = 1. The remaining electrons
doubly occupy the valence states. However, for the Möbius
configuration, an unusual situation occurs. Due to the broken
electron-hole symmetry, we have nine degenerate edge states
(Fig. 5) occupied by eight electrons, thus filling factor ν �= 1.
As we will see below, the difference in the filling factor gives
rise to different magnetic properties when electron-electron
interactions are taken into account.

In Fig. 6 we show the energy spectrum of a wide ribbon
with odd number of chains N in Möbius configuration, with
N = 13 and M = 25. In this case we have nine electrons filling
eight edge states, once again leading to ν �= 1 as in the even
N Möbius ring. However, there is an important difference
between the odd N and even N Möbius configurations.
Although both systems have a single edge due to the topology,
odd N configurations always have an odd number of edge
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FIG. 6. Single particle energy spectrum of a nanoribbon ring
with N = 13, M = 25. Only Möbius configuration is allowed. Eight
degenerate edge states are occupied by nine electrons.

atoms, whereas even N configurations always have an even
number of edge atoms. Indeed, we will see later that the two
configurations have significantly different magnetic properties
of their edges.

III. EFFECT OF ELECTRON-ELECTRON INTERACTIONS
ON THE ELECTRONIC PROPERTIES OF MÖBIUS

AND PERIODIC RINGS

In systems with high degeneracy of energy levels many-
body effects play an important role, with electronic properties
determined by electron-electron interactions alone. In order
to investigate many-body effects as a function of filling
factor of edge states, we use a tight-binding–Hartree-Fock–
configuration interaction (TB-HF-CI) approach.52–54 In prac-
tice, one needs to apply an external gate potential in order
to control the number of electrons in the system. In ring
geometries considered here, the electrical field of the gate will
create potential gradient across the structure depending on the
geometry of the gate and of the ribbon, possibly resulting
in a charge density redistribution. Such effects are ignored
in our analysis and will need to be investigated for specific
experimental realizations of graphene ribbons.

As a first step, we remove electrons from the edge states, and
numerically find solutions of the Hartree-Fock Hamiltonian
HHF describing the remaining valence electrons for which a
mean-field approach is expected to be sufficient:

HHF =
∑
ijσ

τij c
†
iσ cjσ +

∑
ilσ

∑
jkσ ′

(
ρjkσ ′ − ρbulk

jkσ ′
)

× (〈ij |Vee|kl〉 − 〈ij |Vee|lk〉δσ,σ ′)c†iσ clσ . (16)

We have also included the next-nearest neighbor hopping
tnnn = −0.1 eV, in addition to the nearest neighbor hopping
tnn = −2.8 eV in our numerical calculations. The terms
ρ and ρbulk are nanoribbon and bulk density matrices,
respectively.52–54 The two-body Coulomb matrix elements
〈ij |Vee|kl〉 computed using Slater pz orbitals include on-site
interactions, all scattering and exchange terms within next-
nearest neighbors, and all long range direct interactions. It is
important to remember that, for Möbius structures, we use
alternating signs for the pz orbitals corresponding to A- and
B-type atoms in order to take into account correct boundary
conditions. Consequently, one must reverse the sign of tnn,
and update the sign of two-body Coulomb matrix elements
〈ij |Vee|kl〉 (note that the sign of tnnn is not affected by the
choice of alternating sign basis set).

After diagonalizing the Hartree-Fock Hamiltonian, we
obtain Hartree-Fock quasiparticles denoted by the creation
operator b

†
pσ , with eigenvalues εp and eigenfunctions |p〉. We

can now fill the new quasiparticle edge states with varying
number of electrons and solve the many-body Hamiltonian
given by

H =
∑
pσ

εpb†pσ bpσ + 1

2

∑
pqrsσσ ′

〈pq|Vee|rs〉b†pσ b
†
qσ ′brσ ′bsσ .

(17)

The above many-body Hamiltonian can then be diago-
nalized in subspaces with different total spin projection Sz
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FIG. 7. (Color online) Total spin S as a function of number of
electrons occupying the edge states for a cyclic ribbon with length
M = 26 for different widths, N = 2, 8, and 14.

allowing us to deduce the ground state total spin S of the system
for a given number of electrons in the degenerate shell of edge
states. Figure 7 show the result obtained for a cyclic ribbon
with length M = 26 for different widths, N = 2, 8, and 14.

There are eight edge states which can be occupied by up
to Ne = 16 electrons. When the system is charge neutral, i.e.,
Ne = 8, we find that the cyclic ribbon has minimal total spin
S = 0. For the wide ribbon, N = 14, this result is consistent
with infinite length ribbon results where opposite edges are in
a antiferromagnetic configuration carrying opposite net spin,
with a zero net magnetization. However, here we find that
the net magnetization is sensitive to the net charge in the
system. If we charge the system with even a single electron or
hole, an abrupt change from antiferromagnetic configuration
to ferromagnetic configuration occurs. In fact, away from the
charge neutrality, the total spin of the edges is maximized.
When Ne = 0 or Ne = 16 we have a completely empty or
fully occupied edge states, leading to total zero spin again in a
paramagnetic configuration. In the other limit of thin ribbon,
N = 2, the edge states are not highly degenerate but form
a shell structure with double orbital degeneracy. This leads
to a Hund’s-like rule, where within each shell the total spin is
maximized. As a result, we obtain an oscillating net spin: Every
time the number of electrons is a multiple of two we obtain
S = 1. When N = 8 the system can neither be considered thin
nor wide enough to have strongly degenerate edge states. The
competition between Hund’s rules for double shells and net
edge magnetization give rise to rather complex oscillations of
the total spin as a function of number of electrons.

In Fig. 8 we show the results of exact diagonalization of
the quasiparticle Hamiltonian [Eq. (17)] for the same ribbon
as in Fig. 7, but in Möbius configuration. Although both
ribbons have the same number of atoms, the zero energy
shells are different. For the cyclic case there are N = 8
degenerate states half-filled at Ne = 8. For a band in Möbius
configuration the zero energy shell is split into N = 7 and
N = 2 subshells. The lowest degenerate subshell is half-filled
at Ne = 7 and not at the charge neutrality point Ne = 8.
For the wide ribbon (N = 14), at half-filling Ne = 7, the
system is found to be ferromagnetic. This can be understood
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FIG. 8. (Color online) Total spin S as a function of number of
electrons occupying the edge states for a Möbius ribbon with length
M = 26 for different widths, N = 2 and 14.

from the fact that Möbius configuration is a one edged
system, behaving like the zigzag edge of semi-infinite bulk
graphene, or of a triangular graphene quantum dot.52–54 The
magnetization is lost in the charge neutral case Ne = 8. This
is in agreement with earlier mean-field Hubbard calculations
using s-type orbitals, where opposite edges are found to
be in a antiferromagnetic configuration, but with a spin
domain wall helping to overcome the magnetic frustration
along the zigzag edge of the Möbius strip. This finding is
also consistent with spin polarization of a single edge in a
triangular graphene quantum dot with sevenfold degenerate
shell where addition of an eighth electron leads to full spin
depolarization.52 Away from charge neutrality, the effects
of long range Coulomb interactions become increasingly
important and Wigner localization occurs. A detailed study
of the effect of Wigner localization and corresponding spin
states will be published elsewhere. For the thin Möbius ribbon
N = 2, as for the cyclic ribbon, the degeneracy between
edge states is lifted, and shell structure becomes prominent.
There is a difference, however, due to the broken electron-hole
symmetry in the single particle energy spectrum of the Möbius
ribbon. Thus, Hund’s rule that maximizes the total spin within
a shell still applies, but the total spin spectrum does not have
the electron-hole symmetry anymore.

In Fig. 9 we plot the total spin as a function of number
of electrons occupying the edge states of odd N Möbius
configurations, with M = 25, for a thin ring N = 3, and wide
ring N = 13. For the wide ring, at half-filling Ne = 8, the
edge states are fully spin polarized, and the polarization is
lost if the system is charge neutral at Ne = 8, similar to the
even N Möbius ring. However, in contrast with the even N

case, the total spin diagram has strongly broken electron-hole
symmetry. To understand this, let us assume that in the limit
of a very wide ribbon, the edge states almost completely lie
on the edge atoms. Those edge atoms of the Möbius strip can
be thought of as a single chain ring with an effective hopping
between them. For odd N , there are an odd number of edge
atoms in the chain, leading to a broken electron-hole symmetry.
For even N , as we have seen in Fig. 8, the electron-hole
symmetry is recovered for wide Möbius ribbons. For the
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FIG. 9. (Color online) Total spin S as a function of number of
electrons occupying the edge states for a Möbius ribbon with length
M = 25 for different widths, N = 3 and 13.

M = 25, N = 3 system shown in Fig. 9, once again the
degeneracy of the edge states is lost and the spin oscillations
follow closely the shell structure, as in the M = 26, N = 2
system shown in Fig. 8.

IV. CONCLUSIONS

We have presented a theory of the electronic properties of
gated graphene nanoribbon rings with zigzag edges in Möbius
and cylindrical configurations. The finite width opened a gap
and nontrivial topology of the Möbius ring led to a single
edge with edge states in the presence of an effective gauge
field in analogy to topological insulators. The single zigzag
edge led to a shell of degenerate states at the Fermi level
and a ferromagnetic (FM) ground state at half-filling due to
electron-electron interactions. The half-filling corresponds to
a Möbius strip with one electron removed. For a charge neutral
Möbius ring the ground state is found to be antiferromagnetic.
For fractional filling both the magnetic moment and the energy
gap is found to oscillate as a function of the shell filling. In
cylindrical rings the two edges lead to AF ground state at
half-filling but FM ground state at fractional fillings.

ACKNOWLEDGMENTS

The authors thank Y. Shen, P. Potasz, and M. Korkusinski
for discussions, and NSERC, NRC, Canadian Institute for
Advanced Research, and UCCS-CRCW for support.

1P. R. Wallace, Phys. Rev. 71, 622 (1947).
2A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

3K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666
(2004).

4Y. B. Zhang, Y. W. Tan, and H. L. Stormer, P. Kim, Nature (London)
438, 201 (2005).

5M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A.
de Heer, Phys. Rev. Lett. 97, 266405 (2006).

6C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
7L. Brey and H. A. Fertig, Phys. Rev. B 73, 195408 (2006).
8L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
9Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Phys. Rev. B 75,
041401(R) (2007).

10S. Konschuh, M. Gmitra, and J. Fabian, Phys. Rev. B 82, 245412
(2010).

11W. Yao, S. A. Yang, and Q. Niu, Phys. Rev. Lett. 102, 096801
(2009).

12D. Gosálbez-Martı́nez, J. J. Palacios, and J. Fernández-Rossier,
Phys. Rev. B 83, 115436 (2011).

13Y.-W. Son, M. L. Cohen and S. G. Louie, Nature (London) 444,
347 (2006).

14M. Ezawa, Phys. Rev. B 73, 045432 (2006).
15S. Ihnatsenka and G. Kirczenow, Phys. Rev. B 83, 245442 (2011).
16M. Wimmer, I. Adagideli, S. Berber, D. Tomanek, and K. Richter,

Phys. Rev. Lett. 100, 177207 (2008).
17O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209

(2008).
18L. Yang, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 101, 186401

(2008).
19J. Jung and A. H. MacDonald, Phys. Rev. B 79, 235433 (2009).

20F. Munoz-Rojas, J. Fernandez-Rossier, and J. J. Palacios, Phys. Rev.
Lett. 102, 136810 (2009).

21J. Jung and A. H. MacDonald, Phys. Rev. B 81, 195408 (2010).
22D. Soriano and J. Fernandez-Rossier, Phys. Rev. B 82, 161302(R)

(2010).
23H. Feldner, Z. Y. Meng, T. C. Lang, F. F. Assaad, S. Wessel, and

A. Honecker, Phys. Rev. Lett. 106, 226401 (2011).
24T. Hikihara, X. Hu, H.-H. Lin, C.-Yu. Mou, Phys. Rev. B 68, 035432

(2003).
25B. Wunsch, T. Stauber, F. Sols, and F. Guinea, Phys. Rev. Lett. 101,

036803 (2008).
26S. Dutta, S. Lakshmi, and S. K. Pati, Phys. Rev. B 77, 073412

(2008).
27H. Wang and V. W. Scarola, Phys. Rev. B 85, 075438 (2012).
28S. Dutta and K. Wakabayashi, Sci. Rep. 2, 519 (2012).
29M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett 98,

206805 (2007).
30X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229

(2008).
31K. A. Ritter and J. W. Lyding, Nat Mater. 8, 235 (2009).
32X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-

Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina,
J. Kong, M. Terrones, and M. S. Dresselhaus, Science 323, 1701
(2009).

33L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature
(London) 458, 877 (2009).

34J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg,
M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mllen and
R. Fasel, Nature (London) 466, 470 (2010).

35C. Tao, L. Jiao, O. V. Yazyev, Y.-C. Chen, J. Feng, X. Zhang, R. B.
Capaz, J. M. Tour, A. Zettl, S. G. Louie, H. Dai, and M. F. Crommie,
Nat. Phys. 7, 616 (2011).

035435-7

http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevB.73.195408
http://dx.doi.org/10.1103/PhysRevB.73.235411
http://dx.doi.org/10.1103/PhysRevB.75.041401
http://dx.doi.org/10.1103/PhysRevB.75.041401
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1103/PhysRevB.82.245412
http://dx.doi.org/10.1103/PhysRevLett.102.096801
http://dx.doi.org/10.1103/PhysRevLett.102.096801
http://dx.doi.org/10.1103/PhysRevB.83.115436
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1038/nature05180
http://dx.doi.org/10.1103/PhysRevB.73.045432
http://dx.doi.org/10.1103/PhysRevB.83.245442
http://dx.doi.org/10.1103/PhysRevLett.100.177207
http://dx.doi.org/10.1103/PhysRevLett.100.047209
http://dx.doi.org/10.1103/PhysRevLett.100.047209
http://dx.doi.org/10.1103/PhysRevLett.101.186401
http://dx.doi.org/10.1103/PhysRevLett.101.186401
http://dx.doi.org/10.1103/PhysRevB.79.235433
http://dx.doi.org/10.1103/PhysRevLett.102.136810
http://dx.doi.org/10.1103/PhysRevLett.102.136810
http://dx.doi.org/10.1103/PhysRevB.81.195408
http://dx.doi.org/10.1103/PhysRevB.82.161302
http://dx.doi.org/10.1103/PhysRevB.82.161302
http://dx.doi.org/10.1103/PhysRevLett.106.226401
http://dx.doi.org/10.1103/PhysRevB.68.035432
http://dx.doi.org/10.1103/PhysRevB.68.035432
http://dx.doi.org/10.1103/PhysRevLett.101.036803
http://dx.doi.org/10.1103/PhysRevLett.101.036803
http://dx.doi.org/10.1103/PhysRevB.77.073412
http://dx.doi.org/10.1103/PhysRevB.77.073412
http://dx.doi.org/10.1103/PhysRevB.85.075438
http://dx.doi.org/10.1038/srep00519
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1103/PhysRevLett.98.206805
http://dx.doi.org/10.1126/science.1150878
http://dx.doi.org/10.1126/science.1150878
http://dx.doi.org/10.1038/nmat2378
http://dx.doi.org/10.1126/science.1166862
http://dx.doi.org/10.1126/science.1166862
http://dx.doi.org/10.1038/nature07919
http://dx.doi.org/10.1038/nature07919
http://dx.doi.org/10.1038/nature09211
http://dx.doi.org/10.1038/nphys1991
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