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ABSTRACT

Motivation: Given a pair of metabolic pathways, an alignment of the

pathways corresponds to a mapping between similar substructures of

the pair. Successful alignments may provide useful applications in

phylogenetic tree reconstruction, drug design and overall may

enhance our understanding of cellular metabolism.

Results: We consider the problem of providing one-to-many align-

ments of reactions in a pair of metabolic pathways. We first provide

a constrained alignment framework applicable to the problem. We

show that the constrained alignment problem even in a primitive set-

ting is computationally intractable, which justifies efforts for designing

efficient heuristics. We present our Constrained Alignment of

Metabolic Pathways (CAMPways) algorithm designed for this purpose.

Through extensive experiments involving a large pathway database,

we demonstrate that when compared with a state-of-the-art alterna-

tive, the CAMPways algorithm provides better alignment results on

metabolic networks as far as measures based on same-pathway

inclusion and biochemical significance are concerned. The execution

speed of our algorithm constitutes yet another important improvement

over alternative algorithms.

Availability: Open source codes, executable binary, useful scripts, all

the experimental data and the results are freely available as part of the

Supplementary Material at http://code.google.com/p/campways/.

Contact: cesim@khas.edu.tr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Metabolic pathways consisting of metabolites, biochemical reac-

tions transforming a set of metabolites to others and enzymes

catalyzing these reactions provide valuable information regard-

ing material processing centers of a functioning cell and cellular

metabolism in general. Several online databases including

KEGG (Kanehisa et al., 2012) and BioCyc (Caspi et al., 2008)

provide access to metabolic pathways of various organisms. A

comparative analysis of pathways from different organisms

provides insights for understanding evolution, speciation, phylo-

genic reconstruction (Mithani et al., 2011; Heymans and Singh,

2003) and drug target discovery (Guimerà et al., 2007).

Pharmaceutical drug testing is usually implemented on animals,

most of the time on mice, before human testing. In such an

application, it is usually crucial to know whether specific path-

way components of the two species exhibit similar properties

(Caglic et al., 2009). A successful pathway alignment would

prove useful for determining whether test results on one species

could be transferred to another without incurring complications.
Furthermore, such an analysis is not limited to that between

different organisms. It may also be applied between pathways
of cancer types and those of healthy cell types to enhance our

understanding of cancer-specific metabolic features (Agren et al.,
2012).

A common method for comparative analysis of pathways and
biological networks in general is through network alignment.

Given a pair of biological networks either from different species
or from different tissues within the same species, the goal of

network alignment is to map components in one of the networks
to their similar counterparts in the other. With regard to align-

ments targeting specifically metabolic pathways, several methods
have been suggested. In Tohsato et al. (2000), an alignment

method based on enzyme hierarchies and enzyme EC number
similarity was suggested for the alignment of possibly more than

two pathways. Path matching and graph matching to query cer-
tain metabolic pathways in an input graph was provided by

Yang and Sze (2007). Sets of reactions in multiple pathways
were compared, omitting the connectivity between the reactions

in Clemente et al. (2007). Heymans and Singh (2003) created an
enzyme graph and obtained a one-to-one mapping between the

enzymes of two input pathways via maximum weight bipartite
matching. Similar enzyme graph construction was used in Pinter

et al. (2005). An integer quadratic programming-based method
was suggested by Zhenping et al. (2007). Similar to metabolic

pathway alignment is the problem of protein–protein interaction
(PPI) network alignment. The graph models used in the latter are

undirected, whereas the former usually aligns directed graphs.
However, as far as general graph matching and alignment is

concerned, most of the time, the techniques can be extended in
both directions, and mainly similar approaches are proposed.

Two versions of network alignment have been suggested in
related work. In local network alignment, the goal is to identify

from the input networks, subnetworks that closely match in
terms of network topology and/or sequence similarities.

Approaches proposed for this version of the problem include
PathBLAST (Kelley et al., 2004), NetworkBLAST (Sharan

et al., 2005), MaWISh (Koyutürk et al., 2006) and Graemlin
(Flannick et al., 2006). In global network alignment on the

other hand, the goal is to align the networks as a whole, provid-
ing unambiguous mappings between the nodes of different net-

works. Starting with IsoRank (Singh et al., 2008), several global
network algorithms using similar definitions have been suggested

(Aladağ and Erten, 2013; Chindelevitch et al., 2010; Kuchaiev
and Pržulj, 2011; Zaslavskiy et al., 2009).

We provide a constrained alignment framework and a meta-
bolic pathway alignment algorithm, CAMPways. Our algorithm

is inspired by the model suggested in Ay et al. (2011). Within this*To whom correspondence should be addressed.
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general model, the goal is to find a global one-to-many alignment

of the pathways such that a node may be mapped to a connected

subgraph of many nodes. The model is justified by the fact that

biologically meaningful mappings may exist when different

organisms perform the same function through varying number

of steps. Therefore, it appropriately handles the gaps/mismatches

inherent in alignment problems, an issue arising in both

sequence-related and network-wise alignment. Such is the motiv-

ation behind the PPI network alignment approach of Liao et al.

(2009) as well. Although this general model of one-to-many

alignments is the same, our method diverges from that of

Ay et al. (2011) after this point. The novelties of the current

work are 3-fold. First of all we provide a novel constrained align-

ment framework appropriate for the one-to-many alignments

model. This framework has not been used in biological network

alignment previously. Second, we show that even the simplest

version of the alignment problem within this framework is com-

putationally hard. Based on this computational intractability

result, we finally provide a novel algorithm, CAMPways,

which appropriately and efficiently implements this framework.

Through experimental evaluations based on reverse engineering

pathways and biochemical significance measured through func-

tional group conversion hierarchy of KEGG (Kanehisa et al.,

2012), we demonstrate that the CAMPways algorithm provides

higher quality alignments than the state-of-the-art approaches.

Furthermore, a second major advantage of the CAMPways

algorithm is in terms of its much faster execution speeds as com-

pared with the alternatives.

2 METHODS AND ALGORITHMS

2.1 Problem definition

The metabolic pathway alignment problem definition we con-

sider is based on the one-to-many alignments of the reaction-

based pathway representations used in (Ay et al., 2011). Given

a metabolic pathway P, we assume a reaction-based representa-

tion GP ¼ ðVP,EPÞ of P. GP is a directed graph where each node

uri 2 VP corresponds to a reaction ri in P. There exists a directed

edge ðuri , urj Þ if an output compound of ri is an input compound

of rj. If ri is reversible, the edge existence condition is extended by

considering the case where an input compound of ri becomes an

input compound of rj. Similar extension applies to rj as well.

Thus, if both reactions are reversible, there are in total four

cases for the existence of an edge.

Given two pathway representations GP,G
0
P, we need to for-

malize the types of mappings that are allowed under the one-to-

many mapping restrictions. Let Rx indicate a subset of VP such

that the induced subgraph of the nodes in Rx is connected in the

underlying undirected graph. Denote the set of all such subsets of

size greater than zero and less than or equal to k withRk. LetR
0
k

denote the analogous set for G0P. A legal alignment A between

GP,G
0
P is a set of mappings ðRx,R

0
xÞ for Rx 2 Rk, R

0
x 2 R

0
k such

that the following are satisfied:

(i) For ðRx,R
0
xÞ 2 A, jRxj or jR

0
xj is 1.

(ii) For ðRx,R
0
xÞ 2 A and ðRy,R

0
yÞ 2 A, Rx \ Ry ¼ ; and

R0x \ R
0
y ¼ ;.

The first condition implies that all mappings in the alignment

are one-to-many mappings, whereas the second implies that all

mappings are pairwise compatible in the sense that no reaction

from a given pathway may belong to more than one mapping.

The quality of an alignment is usually defined in terms of two

possibly conflicting measures; homological similarity and topo-

logical similarity. The former can be defined as a sum of hom-

ology scores of all mappings in the alignment. The homology

score of a given mapping ðRx,R
0
xÞ can be defined in terms of

the similarities of input compounds, output compounds and

enzymes of Rx and R0x. Such similarity scores are usually deter-

mined as a result of sequential similarity analysis of the molecules

under consideration (enzymes or input/output compounds). For

the current study, we use the homological similarity scores pro-

duced by Ay et al. (2011). For a given mapping ðRx,R
0
xÞ, first

Ex,E
0
x, which correspond to the unions of all enzymes involved

in the reactions subsets Rx and R0x, respectively, are produced.

An enzymatic homological similarity between Ex,E
0
x can be com-

puted by creating a bipartite graph where a partition corresponds

to the enzymes of Ex and the other to those of E0x. A similarity

score between every pair of enzymes from Ex and E0x is assigned

as the weight of the corresponding edge in the bipartite graph.

The homology score between Ex,Ey then corresponds to the

maximum weight bipartite matching of the produced graph.

Similar constructions can be carried out for the unions of

input compounds, Ix, I
0
x and the unions of output compounds

Ox,O
0
x. The homology score of Rx,R

0
x is then defined as a

convex combination of the scores attained from the scores cal-

culated independently for the enzymes, input compounds and

output compounds. Topological similarity on the other hand is

a measure of the conservation of network topologies with respect

to the given set of mappings in the alignment. Given a pair of

mappings ðRx,R
0
xÞ 2 A and ðRy,R

0
yÞ 2 A, a conserved edge is

induced by this pair if there exists an edge from a reaction in

Rx to a reaction in Ry and an edge from a reaction in R0x to a

reaction in R0y, or vice versa. Topological similarity is then

defined as a score proportional to the number of conserved

edges induced by the pairs of mappings in the alignment. Once

both types of similarity scores are resolved, the network align-

ment problem is usually posed as that of maximizing a convex

combination of these two scores.

2.2 Constrained alignment framework

We provide a formal description of our constrained alignment

framework within the provided one-to-many pathway align-

ments model. Rather than posing the problem as one of a sim-

ultaneous optimization of two possibly conflicting goals, that is,

that of homological similarity and of topological similarity, we

propose a framework where the only goal is to maximize topo-

logical similarity while satisfying some constraints on homologi-

cal similarity.
Given a pathway representation GP ¼ ðVP,EPÞ let G

k
p denote

the kth extension of Gp. It is a directed, edge-weighted graph.

Each node uRx
in Gk

p corresponds to a reaction subset

Rx 2 Rk. There exists a directed edge ðuRx
, uRy
Þ in Gk

p if there

exists a directed edge from uri to urj in Gp, where ri 2 Rx and

rj 2 Ry. Let wðuRx
, uRy
Þ denote the total number of such edges.

We note that G0kp can be defined analogously. The set of
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constraints of node uRx
in Gk

p, denoted with ConsðuRx
Þ, is defined

as the subset of nodes of G0kp that uRx
can be mapped to. The

definition can be extended to the nodes of G0kp analogously. Note

that this definition is symmetrical in the sense that

uR0y 2 ConsðuRx
Þ if and only if uRx

2 ConsðuR0y Þ. Assume

jConsðuRx
Þj � k1 for any node uRx

in Gk
p and jConsðuR0y Þj � k2

for any node uR0y in G0kp , for fixed constants k1 and k2. All con-

straints can be represented as a bipartite similarity graph where

the nodes of Gk
p form one partition and those of G0kp form the

other, and each constraint is represented with an edge in the

bipartite graph. The constrained alignment problem is that of

finding a subset of constraints, that is, a subset of edges from

the bipartite similarity graph, such that the subset of edges define

a legal alignment and the number of conserved edges induced by

the alignment is maximum. It is worth noting that the concept of

constrained alignments has appeared in biological network align-

ment literature before. Zaslavskiy et al. (2009) provide a defin-

ition of constrained alignments applicable to global one-to-one

alignments of PPI networks. We note that our constrained align-

ment framework may trivially be generalized to undirected PPI

networks. Moreover, our framework is more general; it strictly

includes the model of Zaslavskiy et al. (2009). There are instances

that can not be defined using their model, whereas the opposite is

never the case. Using our notation, given uRx
, uRy

from one of the

networks, if ConsðuRx
Þ \ ConsðuRy

Þ 6¼ ;, their model imposes the

condition that ConsðuRx
Þ ¼ ConsðuRy

Þ. Considering the case

where the Cons definition reflects high-homological similarity,

this is restrictive; either long homologically similar chains of

nodes are to be created incorrectly or some homologically similar

pairs missed completely.
We first state that the constrained alignment problem defined

herein is computationally intractable even in a restricted case.

PROPOSITION 2.1. The constrained alignment problem where

k ¼ k1 ¼ 1 and k2 ¼ 3 is NP-complete.

PROOF. Because of space considerations, the proof is provided

in the Supplementary Document. We simply state that as the

proof works for the undirected graphs as well, the same theorem

can immediately be applied to the constrained pairwise align-

ment of PPI networks. g

To provide further depth to our understanding of the problem

within the constrained alignment framework, we next state the

following proposition, which may suggest a clue as to the point

the computational intractability starts dissolving.

PROPOSITION 2.2. The constrained alignment problem where

k ¼ k1 ¼ 1 and k2 any positive integer constant is polynomially

solvable if one of the directed graphs Gp or G
0
p is acyclic.

PROOF. Because of space considerations, the proof is left to the

Supplementary Document. g

2.3 The CAMPways alignment algorithm

Although Proposition 2.2 provides a positive result, it is restrict-

ive to be useful in practice. We provide a more general algorithm

that although may not find the optimum in all cases, will in

general produce high-quality alignments. Assuming Gk
p, G

0k
p ,

the constants k1, k2, and a homological similarity value between

the pair ðuRx
, uR0y Þ for any node uRx

in Gk
p and any node uR0y in

G0kp , the algorithm consists mainly of three steps. These major

steps are depicted in Figure 1 on a sample input pathway pair.
Step1-Constructing the bipartite Similarity Graph: This step

involves the construction of ConsðuRx
Þ for every node uRx

in

Gk
p such that jConsðuRx

Þj � k1 and ConsðuR0y Þ for any node uR0y
in G0kp such that jConsðuR0y Þj � k2. Assuming an edge-weighted

bipartite graph on the set of nodes of Gk
p in one partition and

those of G0kp in the other, where each weight represents the homo-

logical similarity of the pair of nodes, a reasonable goal is to find

out a subset of edges that satisfies the degree constraints k1, k2
and that maximizes the sum of edge weights in the output subset;

see Figure 1 where the weight is depicted through the thickness of

bipartite graph edges in the similarity graph. The problem then

turns into that of b-matching (or the degree constrained subgraph

problem), which has been studied fairly well starting with the

pioneering work of Edmonds (1965). Polynomial time solutions,

including appropriate modifications of the network flow algo-

rithms (Gabow, 1983) and belief propagation methods (Bayati

et al., 2011), have been suggested. For efficiency considerations,

we choose to use a simple greedy algorithm for this step. Each

time the algorithm selects the heaviest edge that does not violate

the degree constraints k1, k2 for neither of the end points and

extends the output set with the edge. The algorithm stops when

there are no more edges to consider, and the bipartite graph

resulting from the output set of edges is the similarity graph, S.

Step2-Conflict Graph Generation and Conflict Resolution:

Assume the bipartite similarity graph S is extended with the

directed edges of Gk
p, G

0k
p , that is, directed edge ðuRx

, uRy
Þ is in-

serted in S for uRx
and uRy

in Gk
p, if ðuRx

, uRy
Þ is an edge in Gk

p.

Analogous extensions apply to edges of G0kp . We construct an

undirected node-weighted conflict graph C, where each node cor-

responds to a set of four nodes providing a conserved edge in the

extended graph S. More precisely, in the conflict graph, there is a

node corresponding to 4�tuple � uRx
, uRy

, uR0x , uR0y � if and only

if all of the following hold:

(i) Rx \ Ry ¼ ; and R0x \ R
0
y ¼ ;.

(ii) Either ðuRx
, uRy
Þ, ðuR0x , uR0y Þ are in Gk

p, G
0k
p , respectively, or

ðuRy
, uRx
Þ, ðuR0y , uR0x Þ are in Gk

p, G
0k
p , respectively.

(iii) fuRx
, uR0x g, fuRy

, uR0y g are undirected edges in S.

Denote such a 4�tuple with a c4, as the underlying undirected

subgraph induced on the four nodes gives rise to a 4�cycle. A

weight of 1 is assigned to the c4s satisfying only one part of con-

dition ii, and a weight of 2 is assigned to those satisfying both

parts of ii. It should be clear that each c4 node in the conflict

graph represents a pair of reaction subset mappings that gives

rise to at least one conserved edge. Furthermore, the weight of

the node provides the number of edges conserved as a result of the

pair of mappings. The conflict graph depicted in Figure 1 is the

exact conflict graph corresponding to the partially depicted ex-

tended similarity graph in the figure. Note that although the

structure of the 4�tuple � uR9
, uR2

, uR0
5
, uR0

6
� resembles that of

a c4, that is, conditions ii and iii defined earlier in the text are

valid, it does not correspond to a node in the conflict graph, as

condition i is not satisfied. Regarding the weights, it should be

noted that the node� uR1
, uR9

, uR0
4
, uR0

5
� has weight two, and the

rest has weight one in the conflict graph depicted in the figure.
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Let C1¼� uRx
, uRy

, uR0x , uR0y �, C2¼� uRw
, uRz

, uR0w , uR0z �

and let S1 2 fRx,Ryg,S2 2 fRw,Rzg and

S012 fR
0
x,R

0
yg,S

0
2 2 fR

0
w,R

0
zg. For a c4 Ci, let MCi

ðuÞ indicate

the neighbor of u in Ci from the opposite network. There exists

an edge between the nodes corresponding to the two c4s in the

conflict graph if and only if at least one of the following holds:

(i) 9S1,S2 such that S1 6¼ S2 and S1 \ S2 6¼ ;.
(ii) 9S01,S

0
2 such that S01 6¼ S02 and S01 \ S

0
2 6¼ ;.

(iii) 9S1,S2 such that S1 ¼ S2 andMC1
ðS1Þ 6¼ MC2

ðS2Þ.
(iv) 9S01,S

0
2 such that S01 ¼ S02 andMC1

ðS01Þ 6¼ MC2
ðS02Þ.

This construction implies that an edge exists between a pair of c4s

if and only if the pair of conserved edges represented by the c4s

can not coexist in any legal alignment. For the conflict graph

of Figure 1 for instance, the edge between the c4s

� uR1
, uR9

, uR0
4
, uR0

5
� and � uR2

, uR4
, uR0

6
, uR0

7
� is due to condi-

tion i; reaction subsets R9 and R2 share a reaction. Therefore, no

legal alignment can include both of the corresponding

conserved edges. On the other hand, the edge between

� uR4
, uR5

, uR0
7
, uR0

15
� and � uR2

, uR4
, uR0

6
, uR0

5
� is due to iii.

Simultaneously conserving both edges corresponding to both

c4s, R4 would have to be mapped to two different reaction sub-

sets, which is not possible in any legal alignment by definition.

The discussion regarding the conflict graph construction leads to

the following proposition:

PROPOSITION 2.3. The maximum weight independent set

(MWIS) of C provides an optimum solution to the constrained

alignment problem.

However, some modifications are necessary to make our con-

flict graph model more useful in practical applications of the

constrained alignment framework. First, each node in the

conflict graph may not necessarily have an exact binary

contribution, that is, 1 or 2 to the quality of the final alignment.

Therefore, we propose appropriate generalizations for the

weights of conflict graph nodes. We provide two alternative

weighting schemes. For a given edge e in the similarity graph

S, let wSðeÞ denote the weight of e, which reflects the homological

similarity of the reaction subsets corresponding to the

end points of e. For C1 ¼� uRx
, uRy

, uR0x , uR0y �, the first

scheme, denoted with W1, assigns a weight of

��HðC1Þ þ ð1� �Þ � IðC1Þ, where

HðC1Þ ¼
1

2
� ðwSðuRx

, uR0x Þ þ wSðuRy
, uR0y ÞÞ

IðC1Þ ¼
1

2ðk2 þ 1Þ
�

X

i, j2fuRx , uRy g, i 6¼j
i0 , j02fu

R0x
, u
R0y
g, i0 6¼j0

wði, jÞ þ wði0, j0Þ

For the computation of IðC1Þ, the total number of directed edges

between Rx,Ry and between R0x,R
0
y is normalized with the max-

imum number of possible directed edges Gk
p,G

0k
p in any c4. The

parameter � is a balancing parameter between the weight of
homological similarity and that of conserved interactions. Our

second weighting scheme does not check the number of con-

served edges; as long as there is at least one conserved edge,

the contribution of edge conservation remains the same. On

the other hand, depending on the evolutionary distance of the

organisms providing the input pathways, it might be more mean-

ingful do differentiate between the alignments yielding one-

to-many mappings as opposed to those providing one-to-few

mappings. Therefore, for the second scheme, denoted with W2,

we introduce additional input parameters �1,�2 . . .�k such that

�1 þ �2 þ �sþ �k ¼ 1. Each �i reflects the relative importance of

the one-to-i mappings in the complete alignment. Without loss of

Fig. 1. CAMPways algorithm depicted on a sample input for k¼ 2; the final alignment includes 1-to-1 and 1-to-2 mappings of reactions. First step

involves b-matching; degrees of nodes are bounded by k1 or k2 depending on the partition they belong to in the similarity graph. Only a small

representative portion of the extended similarity graph is shown. The conflict graph arising from this portion is shown exactly. All the alignments in

the MWIS boxes of the loops in Steps 1 and 2 and in the MWIS box of the final expansion step are included in the output alignment. Note that the

conflict graph definitions within the loops and that of the final expansion phase are different
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generality, let jRxj4 ¼ jR0xj and jRyj4 ¼ jR0yj. The weight of
C1¼� uRx

, uRy
, uR0x , uR0y � is defined as

�jRx j � jRxj þ �jRyj � jRyj.

A second issue is related to resolving conflicts, that is, the
computation of the MWIS of the conflict graph. The problem
is NP-complete in general (Garey and Johnson, 1979). Several

greedy heuristics have been investigated in Sakai et al. (2003). We
implemented each and applied extensive tests to determine their
performances. The GWMIN2 heuristic, which selects the node u

in the conflict graph C that maximizes WðuÞ=
P

v2Nþ
C
ðuÞ WðvÞ,

where Nþ
C
ðuÞ denotes the neighborhood of u in C together with

the node u itself, provided better results than the rest.

Furthermore, it provides a theoretical guarantee that the
weight of the output independent set is at leastP

u2VC
½WðuÞ2=

P
v2Nþ

C
ðuÞ WðvÞ�, where VC denotes the vertex set

of the conflict graph C. Therefore, we chose to implement this
part of our algorithm using this heuristic.
Finally, we note that the resulting mappings are those limited

to the edges of the bipartite similarity graph S constructed after
Step1. To enlarge the alignment, we remove all mapped nodes

from Gk
p, G

0k
p after the execution of Step1 and Step2, restore all

the homological similarity edges and repeat both steps. This
whole process is iterated until convergence, that is, the conflict

graph C generated after Step2 becomes empty. For the example
pathway alignment of Figure 1, the loop iterates only once; the
remaining extended similarity graph contains nodes defined on

reaction subsets R6,R7,R13 and R06, which gives rise to an empty
conflict graph.
Step3-Final Alignment Expansion: The iterative process invol-

ving the first two steps aforementioned produces mappings based
on 4�tuples because of the conserved interaction maximization
goal of the constrained alignment framework. The convergence

of the process implies that no more conserved interactions can be
attained. However, there may still exist potential mappings with
high-homological similarity that might be added to the align-

ment. To implement such an expansion, we first remove all the
mapped nodes from Gk

p, G
0k
p and restore all homological similar-

ity edges. Considering the resulting similarity graph S, we create
a new type of a conflict graph, called the expansion conflict graph.
Each node in the expansion conflict graph corresponds to a

2�tuple � uRx
, uR0x � such that fuRx

, uR0x g is an edge in
S. There is an edge between two nodes of this conflict graph if
and only if the intersection of their reaction subsets coming from

the same pathway is non-empty; see Figure 1 for the expansion
conflict graph generation on the sample pathways. Note that the
conflict graph defined in Step 2 is conceptually different from

the expansion conflict graph of this step. We finally apply the
GWMIN2 heuristic to resolve the conflicts in the expansion con-
flict graph, and the alignment is expanded with the mappings

corresponding to the resulting nodes.

3 DISCUSSION OF RESULTS

The CAMPways implementation is in Cþþ using the LEDA
library (Mehlhorn and Naher, 1999). Source code, useful scripts

for testing and evaluations, all the data and output results are
available as part of the Supplementary Material. We experi-
mented on data from the KEGG database (Kanehisa et al.,

2012) as retrieved and reformatted by Ay et al. (2011). Our

comparative performance evaluations presented in this section
are with regards to those achieved in SubMAP (Ay et al.,
2011), as the used problem definitions are the same; the goal

being one-to-many mappings for an input pair of pathways.
We note that although a version of SubMAP using network
compression to speed-up the original algorithm has appeared

recently (Ay et al., 2012), lack of publicly available implementa-
tion made further extensive comparisons with the new version
impossible. Nevertheless, it is suggested that the compression-

based version is provided mainly for execution performance at
the expense of output alignment qualities. Therefore, in terms of
alignment qualities, it is sensible to compare CAMPways with

SubMAP. According to the reported results of Ay et al. (2012),
attaining considerable runtime efficiency could cost an accuracy
loss of almost 50%, where accuracy is measured in terms of the

Pearson’s correlation coefficient between the alignment outputs
of the compressed version and the original version of SubMAP.
Our experimental results on the other hand indicate that not only
does our algorithm provide superior runtime efficiency but also

achieves this without incurring any cost on accuracy; to the con-
trary, the alignment outputs provided by CAMPways provide
better accuracies than those of the original SubMAP algorithm.

Although the KEGG database provides pathways under de-
tailed metabolism categories, such as Glycerolipid metabolism
and Tryptophan metabolism among many others, directly using

these pathways in a network alignment study does not reveal
enough information. The most important reason is the lack of
a gold standard to be the basis of an objective evaluation of the

alignment qualities. Although less serious, the small pathway
sizes constitute yet another problem. Predicting the behavior of
a possible alignment method at this scale may not lead to reliable

conclusions. A mechanism to handle both of these issues is to
merge all pathways from detailed metabolism categories that are
categorized under the same more general metabolism categories

provided in KEGG. Considering the first 11 of the listed high-
level categories, we merged all pathways specified under each
into a larger metabolic network. This way we obtained 11 meta-

bolic networks in total, each corresponding to one of the follow-
ing metabolisms: 1.1 carbohydrate metabolism, 1.2 energy
metabolism, 1.3 lipid metabolism, 1.4 nucleotide metabolism,

1.5 amino acid metabolism, 1.6 metabolism of other amino
acids, 1.7 glycan biosynthesis and metabolism, 1.8 metabolism
of cofactors and vitamins, 1.9 metabolism of terpenoids and

polyketides, 1.10 biosynthesis of other secondary metabolites
and 1.11 xenobiotics biodegradation and metabolism. The
number of pathways contained in each larger metabolic network

changes between 2 and 15. The subjects of all experimental evalu-
ations of this section are these metabolic networks from pairs of
different species.

The next two subsections provide our comparative experimen-
tal evaluations with regards to the accuracies of output align-
ments produced by CAMPways and SubMAP. We used two

types of accuracy parameters for this purpose. The first one is
based on reverse engineering successes of the output alignments,
whereas the second one is based on their biochemical signifi-

cances in terms of coherence with regards to the functional
group conversion categorizations as provided by KEGG. We
finally conclude our evaluations by providing a running time

analysis of CAMPways and a discussion of experimental results
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on observed execution speeds of both algorithms running on

networks under consideration.

3.1 Reverse engineering metabolic pathways

The large metabolic networks under consideration can be re-

garded as networks engineered out of small pathways on detailed

metabolism categories. A natural accuracy measure is then the

reverse engineering capabilities of the provided output align-

ments; intuitively an alignment mapping reactions that belong

back to the same original KEGG pathway is considered to be of

high quality. Thus, the pathways on detailed metabolism cate-

gories provided by KEGG become our gold standard. Note that

this approach assumes the retrieved pathways are noise-free, that

is, all pathways in KEGG are considered perfectly correct with-

out any missing data or incorrect pathway associations. Let X,X0

denote two species and GX,G
0
X be their metabolic networks cor-

responding to some metabolism 1:m, listed earlier in the text. Let

� uRx
, uR0x � be a mapping from an alignment of GX,G

0
X, where

Rx is a subset of reactions from X and R0x is a subset of reactions

from X0. Without loss of generality, let Rx ¼ frxg, that is, it is the

subset containing a single reaction in the one-to-many mapping.

Let P1 . . .Px be the pathways that include reaction rx in the set of

pathways associated with metabolism 1:m in the species X. We

call the mapping correct if every reaction in the subset R0x is

included in at least one of the pathways P01, . . .P0x where each

P0i is a pathway in metabolism 1:m of species X0, corresponding

to Pi of X. We divide the experimental evaluations into two;

those regarding the alignments between species within the same

domain and those between species from different domains. We

pick Homo sapiens (hsa) and Mus musculus (mmu) as the two

representative species from the eukaryota domain, and the

Escherichia coli (eco) and Agrobacterium tumefaciens (atc)

from bacteria. The value of k¼ 3 is fixed, that is, each reaction

from one of the networks may be mapped to at most three

reactions from the other. For the CAMPways alignments, we

pick k1 ¼ k2 ¼ 3.

3.1.1 Same-domain alignments The evaluations of the output
alignments of hsa versus mmu and atc versus eco with regards

to all 11 high-level metabolism categories are presented in

Table 1. Each multi-row in the table provides the results for

the alignments of two pairs of networks for metabolisms 1.1

through 1.11 from top to bottom; the top row at the mth

multi-row lists the alignment results of the hsa-mmu network

pair pertaining to metabolism category 1:m, and the bottom

row lists those of the atc-eco network pair for the same metab-

olism category. The TR column in the table provides the number

of total reactions of the network pair. The coverage column pro-

vides the total number of reactions covered by the mappings in

the alignment. The correct mappings column provides the

number of correct mappings in the alignment, whereas the

ratio column provides the ratio of the number of correct map-

pings to the total number of mappings produced by the align-

ment. In each subcolumn, we indicate the name of the algorithm

providing the alignment scores with respect to the parameter

provided in the column including it. The subcolumn marked

with S provides the corresponding column scores of the align-

ments produced by SubMAP and the one marked with C1

provides those of the alignments produced by CAMPways with

weighting schemeW1 and �¼ 0.3. Alignments obtained for other

settings of � provide almost the same results as this setting. The

subcolumn marked with C2 provides the corresponding column

scores of CAMPways with weighting scheme W2 and

�1¼ 0:4, �2¼ 0.5 and �3¼ 0.1. The coverages of both algo-

rithms are similar; in some instances, coverages of SubMAP

are better, whereas in others, both versions of CAMPways pro-

vide higher coverage, although in neither case the differences are

large. With regard to the number of correct mappings,

CAMPways results are overwhelmingly superior to those of

SubMAP. For the atc-eco alignment of 1.11 xenobiotics biodeg-

radation and metabolism for instance, even though SubMAP

provides a much larger coverage than CAMPways (153 versus

134), the number of correct mappings of CAMPways is still

better (60 versus 53). This implies that although in some cases

SubMAP aggressively creates mappings in favor of covering

many reactions, in a lot of the mappings, it provides the

mapped reactions that do not share the same pathway. Over

all 22 instances, in five instances, SubMAP does not execute

until completion because of excessive memory consumption;

shown with empty entries in Table 1. For 16 instances,

CAMPways provides a larger number of correct mappings,

whereas only in one instance, both algorithms provide equal

number of correct mappings. The provided ratios also confirm

Table 1. Same-domain reverse engineering experiment

TR Coverage Correct mappings Ratio

S C1 C2 S C1 C2 S C1 C2

437 — 435 435 — 211 213 — 0.99 0.98

458 — 416 416 — 166 171 — 0.82 0.83

62 62 62 62 29 31 31 0.96 1 1

116 105 110 110 45 51 51 0.93 0.94 0.94

745 — 726 726 — 361 361 — 0.99 0.99

264 244 254 254 96 105 103 0.82 0.82 0.83

320 — 320 320 — 159 159 — 0.99 0.99

296 280 262 262 110 128 128 0.90 0.98 0.98

496 491 481 481 221 239 239 0.96 0.99 0.99

369 352 340 339 122 143 143 0.79 0.86 0.86

134 128 130 130 59 64 64 0.96 0.98 0.98

108 102 97 97 37 39 39 0.78 0.82 0.82

168 148 168 168 73 76 76 1 0.90 0.90

73 69 64 64 31 31 31 0.96 0.96 0.96

307 — 306 307 — 150 151 — 0.98 0.98

334 325 324 326 129 143 144 0.87 0.89 0.90

31 28 28 28 12 14 14 1 1 1

51 43 43 44 15 17 17 0.78 0.80 0.77

35 34 34 34 16 17 17 1 1 1

23 21 20 20 8 9 9 0.8 0.9 0.9

207 201 200 200 87 100 100 0.92 1 1

175 153 134 134 53 60 60 0.81 0.89 0.89

Note: In each multi-row, the top row lists the hsa-mmu alignment results and the

bottom row lists the atc-eco results. The entries of the rows corresponding to the

hsa-mmu network pair are italicized for readability purposes. Each multi-row itself

provides the results for the alignments of networks for metabolisms 1.1 through 1.11

from top to bottom.
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the superiority of CAMPways over SubMAP. Note that the ratio

does not normalize the number of correct of mappings with

coverage but rather with the total number of output mappings.

Thus, it is a measure of the percentage of the correct mappings in

the alignment.

3.1.2 Across-domains alignments We repeated the same tests for
every pair of species under consideration such that members in

the pair belong to different domains giving rise to four pairwise

alignment instances per metabolism. Two noteworthy observa-

tions arise. First, both the number of correct mappings and the

correctness ratios decrease for all alignments as compared with

those presented in Table 1. This is in accordance with the intu-

ition that as the divergence of the pair of species increase, any

global alignment starts providing more dissimilar mappings, that

is, mappings that match reactions from different pathways of the

given species. Second, comparing the alignment qualities of the

algorithms, the trend is the same as with the same-domain ex-

periments; in almost all cases, CAMPways provides more correct

mappings and better correctness ratios. Over all 44 instances,

SubMAP is unable to produce results in 20 of them. In seven

instances, both algorithms provide equal number of correct map-

pings. For 16 instances, CAMPways alignments induce more

correct mappings, whereas only for a single instance, the correct

mapping count of SubMAP is better. The complete table with

detailed results of the across-domains setting can be found in the

Supplementary Document.
We note that we implemented several tests to determine how

the correctness values and the number of 1-to-i mappings for

each i ¼ 1, 2, 3 in the output alignments of CAMPways change

with respect to various �1, �2,�3 settings in theW2 version of the

algorithm. Because of space constraints, we provide a detailed

discussion regarding these results in the Supplementary

Document.

3.2 Biochemical significance of the alignments

To compare the alignment qualities of both algorithms in terms

of biochemical significance, we use the functional group conver-

sion (FGC) hierarchy data provided as part of the RCLASS

database of KEGG (Kanehisa et al., 2012). The reactions in

the database are classified into hierarchically organized func-

tional group categories. The same functional group undergoes

the same or similar chemical reaction(s) regardless of the size of

the molecule it is a part of (March, 1985). Thus, an inter-species

alignment of a pair of pathways is considered biochemically vali-

dated if the alignment maps reaction subsets classified under the

same FGC category. There are five levels of the KEGG hier-

archy where the initial root level consists of eight high-level FGC

categorizations: carbon-related, hydrogen-related, isomerization-

related, nitrogen-related, oxygen-related, phosphorus-related,

sulfur-related and halogen-related. The correctness measure is

defined analogous to that used in the previous section; for a

fixed level i of the hierarchy, a mapping is called correct if

there exists at least one category at the ith level of the FGC

hierarchy that includes all the reactions involved in the

mapping. We compare and evaluate the correctness values pro-

vided by the alignments of CAMPways and SubMAP algorithms

for the first five levels of the hierarchy starting with the root level

at i¼ 1.
As with the experiments of the previous section, we use two

types of evaluations; those pertaining to the same-domain align-

ments and those of the across-domains alignments. The results of

the former are presented in Table 2. The used network pairs and

the correspondence of rows, multi-rows are the same as in

Table 1. The subcolumns marked with S indicate the results of

SubMAP alignments and those marked with C indicate results of

CAMPways’ W1 version. The W2 version provides results simi-

lar to those of W1; therefore, they are not included in the table.

The main column titles indicate all five levels of the FGC hier-

archy that provide the categories relevant for the correctness

definition of a mapping. Each table entry in these columns cor-

responds to the number of correct mappings. It can easily be

verified that in all the experimental instances, the CAMPways

alignments are superior to those of the SubMAP. As the network

pairs under consideration are those of the same-domain species,

going from more abstract categorizations of the root level 1 to

the less abstract levels deeper in the FGC hierarchy, the number

of correct mappings does not decrease significantly. We also note

that for the 1.7 glycan biosynthesis and metabolism, although

there are an average of 80 mappings for the hsa-mmu pair, both

algorithms produce few correct mappings. The ratio of the cor-

rect mappings to the total number of mappings of the alignment

is almost 6%. This is in contrast with the 90% correctness ratio

of the same pair under the reverse engineering results of the

previous section presented in Table 1. The prime reason for the

Table 2. Same-domain biochemical significance experiments

Level 1 Level 2 Level 3 Level 4 Level 5

S C S C S C S C S C

— 193 — 193 — 193 — 192 — 192

— 154 — 154 — 151 — 144 — 138

23 23 22 23 22 23 21 23 21 22

32 41 32 41 32 39 32 39 32 39

323 343 323 343 323 343 318 340 316 338

97 105 97 105 97 104 93 103 92 102

— 103 — 103 — 101 — 101 — 101

66 84 66 84 64 80 64 80 63 80

209 229 209 229 208 229 205 227 205 227

117 143 110 139 104 132 97 130 93 127

53 57 53 57 52 57 52 57 52 56

37 35 37 35 34 33 33 33 33 32

5 6 5 6 5 6 5 6 5 6

20 21 20 21 20 21 20 21 19 21

— 123 — 123 — 123 — 123 — 123

96 115 94 114 93 111 93 110 90 109

9 13 9 13 9 13 9 13 9 13

16 17 16 16 16 16 15 15 14 15

14 16 14 16 13 16 13 16 13 16

7 9 7 9 7 9 6 8 6 8

79 97 78 97 76 97 76 97 76 97

44 59 44 58 42 55 42 55 42 54

Note: The correspondence of the rows and multi-rows are the same as in Table 1.
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low correctness values is the lack of FGC categorizations for

most of the reactions involved in the mentioned network. This

in turn provides a potential application for the network align-

ment; the FGC category of a reaction can be transferred to those

with unknown categorizations if they belong to the same

mapping in the alignment. With regards to the results of the

across-domains setting, it can be stated that similar to the results

of Table 2, the alignment outputs of the CAMPways algorithm

provide more correct mappings than those of the SubMAP in

almost all network instances under all hierarchy levels; the only

exception is the hsa-atc metabolism 1.10, in which case the cor-

rectness values of both algorithms are already low to bear any

significance. The complete table providing results under the

across-domains setting is provided in the Supplementary

Document.
The aforementioned analysis based on functional group con-

version hierarchies is extended to include the RPAIR data pro-

vided by KEGG on a sample mapping pair provided by both

algorithms executed on the amino acid metabolism networks of

the atc-eco pair. A reactant pair is defined as a pair of a substrate

and a product that preserve chemical substructures through

enzymatic reactions. In fact, the RCLASS database classification

also provides information regarding reactant pairs. The differ-

ence is that the classifications of RCLASS are produced by com-

puterized methods based on chemical structure comparison or

molecular alignment, whereas those of RPAIR are produced by

manually compiled reactant pairs and molecular alignments

incorporating biochemical knowledge. The sample mapping

pair provided by the CAMPways alignment is depicted in

Figure 2. The atc reactions R01374 [D-phenylalanine: acceptor

oxidoreductase (deaminating)] and R01582 (D-phenylalanine:

2-oxoglutarate aminotransferase) are together mapped to reac-

tion R01374 of eco. Additionally, reactions R00694 (L-phenyl-

alanine: 2-oxoglutarate aminotransferase) and R01372

[phenylpyruvate: oxygen oxidoreductase (hydroxylating,decar-

boxylating)] of atc are together mapped to the reaction R00694

of eco. The output compound C00166 (phenylpyruvate) of the

reactions R01374 and R01582 is an input compound of the re-

actions R00694 and R01372. As a result, there is a directed edge

from the node corresponding to the subset of reactions R01374,

R01582 to the node corresponding to the subset of reactions

R00694, R01372 in the atc pathway. Similarly, a directed edge

exists from the node of reaction R01374 to the node of R00694 in

the eco pathway. This implies a conserved edge resulting from

the provided mappings. With regards to the classifications, it is

worth noting that the FGC categories of the reactions R01374

and R01582 are the same for all five levels of the hierarchy,

which further strongly validates the mapping involving these

reactions based on the RCLASS classification. Both reactions

are co-categorized even at the furthest level, which signifies iden-

tical RCLASS entry, RC00006. Further validation is observed

when the manually compiled and biochemically more reliable

RPATH data are examined; both reactions correspond to the

identical reactant pair, RP00289 within RPATH. In contrast,

the SubMAP mapping, including R01582, maps this reaction

and the reaction R01373 [prephenate hydro-lyase (decarboxy-

lating; phenylpyruvate-forming)] of atc to the single reaction

R01373 of eco. The FGC categories of reactions R01373 and

R01582 separate starting with the second level of the hierarchy

and thus belong to separate RCLASS entries. Furthermore,

there are no connections between the two as far as the RPAIR

database is of concern.

Table 3. The TR subcolumns provide the number of reactions in the network pair

TR S C TR S C TR S C TR S C TR S C TR S C

62 3.04 0.30 116 62.81 2.26 264 454.21 13.39 296 1620 15.73 496 975.31 39.87 369 121.43 25.23

134 48.09 1.42 108 17.99 0.94 168 0.32 2.94 73 0.50 0.28 334 1788.84 25.17 31 0.06 0.04

51 0.15 0.09 35 0.09 0.04 23 0.04 0.02 207 3.25 1.00 175 0.67 5.39

93 33.16 2.79 85 6.64 0.82 85 6.51 0.72 93 34.68 2.72 128 40.46 1.67 114 21.52 1.17

118 20.7 1.13 124 42.0 1.45 125 0.44 10.25 116 0.3 6.64 116 0.38 6.08 125 0.41 10.19

39 0.07 0.09 43 0.09 0.05 46 0.10 0.11 36 0.08 0.07 30 0.04 0.03 28 0.05 0.02

27 0.06 0.03 31 0.05 0.03 174 1.26 10.95 208 1.85 20.03 215 1.77 13.24 167 1.27 9.56

Note: CPU times in seconds are provided under the S and C subcolumns.

Fig. 2. Sample mapping from the CAMPways alignment of the amino

acid metabolism networks. The reactions at the top are part of the atc

network, whereas those at the bottom are part of the eco network. The

mapped reactions (reaction subsets) are shown with the vertical edge.

Enzymes are shown using EC numbers. The compounds are depicted

within small rectangles
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3.3 Execution speed and memory requirements

Assuming the degree of every node in Gp,G
0
p is bounded by a

constant, the running time of CAMPways is OðjVpj
2 log2 jVpjÞ,

where jVpj is assumed without loss of generality to be larger than

jV0pj. We provide a detailed analysis of this running time bound

in the Supplementary Document. In comparison, no explicit run-

ning time analysis of the SubMAP algorithm is provided. All

experimental results in this section are obtained by running the

algorithms on an Intel(R) Xeon(R) CPU 2.67GHz with 24 GB

of memory. The required CPU times for all the tested networks

are listed in Table 3. The first three rows correspond to the ex-

periments within the same-domain setting and the rest to those

within the across-domains setting. The total number of reactions

for each instance is listed at the subcolumns marked with TR.

The columns provide the abbreviations of algorithm names as in

Table 2. An important limitation of the SubMAP algorithm is its

excessive memory consumption; the SubMAP code could not be

executed until completion for some network pairs. For the hsa-

mmu alignment of the 1.1 carbohydrate metabolism for instance,

the CAMPways algorithm completed in 53min, whereas the

SubMAP code after 2 h of execution consumed all memory

resources before crashing. In 15 of the 17 instances within the

same-domain setting, CAMPways runs faster than SubMAP.

For the across-domains setting in 14 of 28 instances,

CAMPways provides better execution time. An important

point worth emphasizing is that for the instances where

CAMPways run faster, the differences between the execution

times of CAMPways and SubMAP are large, whereas for the

instances favoring SubMAP, both algorithms provide more or

less similar execution times. The difference between the

computational efficiency trends of the algorithms under the

same-domain and the across-domains settings is interesting. It

actually pinpoints the main reason behind the computational

efficiency differences of the two algorithms. Within the same-

domain setting, the pair of species that the metabolic networks

belong to are evolutionarily close. Therefore, the aligned

networks induce many conserved edges. In fact, these are the

instances for which application of network alignment is sensible;

simultaneous nature of the problem in terms of optimizing both

homological (high-sequence alignment scores) and topological

similarity (high-edge conservation) is most apparent in this set-

ting. Most of the reactions in the pair of networks are aligned

throughout the main loop of the CAMPways algorithm, as the

generated conflict graphs are large because of high-edge conser-

vation. When the pair of species is evolutionarily apart, the edge

conservation is naturally low in which case the main task of both

algorithms reduces to that of producing alignments that achieve

only high-homological similarity.
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