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Abstract

Identifying shared sequence segments along amino acid sequences generally requires a collection of closely related
proteins, most often curated manually from the sequence datasets to suit the purpose at hand. Currently developed
statistical methods are strained, however, when the collection contains remote sequences with poor alignment to the rest,
or sequences containing multiple domains. In this paper, we propose a completely unsupervised and automated method to
identify the shared sequence segments observed in a diverse collection of protein sequences including those present in a
smaller fraction of the sequences in the collection, using a combination of sequence alignment, residue conservation
scoring and graph-theoretical approaches. Since shared sequence fragments often imply conserved functional or structural
attributes, the method produces a table of associations between the sequences and the identified conserved regions that
can reveal previously unknown protein families as well as new members to existing ones. We evaluated the biological
relevance of the method by clustering the proteins in gold standard datasets and assessing the clustering performance in
comparison with previous methods from the literature. We have then applied the proposed method to a genome wide
dataset of 17793 human proteins and generated a global association map to each of the 4753 identified conserved regions.
Investigations on the major conserved regions revealed that they corresponded strongly to annotated structural domains.
This suggests that the method can be useful in predicting novel domains on protein sequences.
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Introduction

Large amounts of data regarding the molecular attributes of

living organisms are being accumulated in databases since the

availability of molecular scanning tools over the last decades. A

considerable amount of this data consists of molecular sequences.

Biomolecular sequences carry the information that make up the

whole structural properties and metabolism of an organism. As

each one has a specific task in the life of the organism, they are

highly diverse. Yet, some of them still share sequential features.

These features emerge as statistically significant similarities

between different regions of the sequences, often indicating

mutuality in the history of these sequences and/or commonality

in metabolic functions. This information is an important

instrument for the discovery of the molecular mechanisms that

govern the organism’s system. These shared regions are grouped

under two widely used terms in the literature; motifs and domains.

A motif is a short sequence fragment usually composed of just a

few nucleotides or amino acids that possess biological significance,

while a domain is a part of a protein sequence that can function,

evolve and fold independent from the rest of the protein [1,2].

Protein domains are up to 600 amino acids in length and usually

highly specific. Each domain has a specific molecular function and

a protein’s functional attributes are directly related to the domains

it contains. Domains are collected in vast databases under different

names, subject to varying rules and regulations, such as Protein

families (Pfam) [3], InterPro [4], NCBI Conserved Domain

Database [5], SCOP: Structural Classification of Proteins [6],

CATH Protein Structure Classification [7] and Simple Modular

Architecture Research Tool (SMART) [8].

Motifs and domains are believed to be highly conserved during

the evolutionary process since changes in their primary structure

can cause the loss of vital molecular functions. In order to extract

these highly conserved/shared sequential features, biomolecular

sequences are compared and contrasted to each other using

efficient sequence analysis methods that also invoke concepts from

graph theory. In these methods, biomolecular sequences are

treated as vertices of a graph, and a connection between two

vertices represents the presence of a significant statistical sequential

similarity between the corresponding sequences.

GeneRAGE [9] and TRIBE-MCL [10] are two of the earliest

methods to employ this concept in similarity-based methods.

TRIBE-MCL incorporates Markov Clustering for rapid and

accurate clustering of proteins especially addressing multi-domain

sequences. Apeltsin et al., add an edge weight distribution along

with an automated threshold selection to initial similarity network,

and increase the clustering performance of fast MCL to match

novel highly efficient clustering algorithms on a gold standard
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dataset [11]. Spectral Clustering [12], another Markov Clustering

algorithm with a global approach also offered with a user-interface

SCPS [13], is an efficient and widely used algorithm for sequence

clustering.

The Connected Component Analysis is another widely used

graph theory application [14], employed both as a stand-alone

method and as an intermediary step in other sequence clustering

methods. Briefly, in an undirected graph G, two vertices a and b

are connected if there is a path from a to b. A connected

component is defined as a connected sub-graph of G whose

vertices are pairwise connected to each other (directly or indirectly)

[14]. Sequences in a connected component are then presumed to

share a significant sequence similarity, and thus, belong to the

same cluster of sequences. On the other hand, when the

Connected Component Analysis is used on multi-domain proteins,

unrelated sequences can group within the same cluster due to the

domain-chaining effect [15].

The Cluster-C [15] method efficiently avoids the chaining effect

by incorporating maximal clique extraction on the connectivity

map following a pairwise similarity search. However, the

incorporation of maximal clique finding into clustering suffers

from practical problems especially on large datasets, such as clique

redundancy. In theory, sequences in each maximal clique should

contain at least one unique conserved feature. In practice, though,

the maximal cliques are redundant, with a shared region

represented in more than one maximal clique. This arises from

the accidental removal of pairwise connections due to remote

homology or just poor alignment between some of the homolog

sequence pairs.

Three important bottle-necks stand out in general in motif

discovery approaches. The first one is the treatment of multi-

domain proteins: Most of these methods are optimized to process

single domain sequences and the assignment of multi-domain

proteins into clusters is often problematic. The second issue is the

standardization of the input parameters: The behaviors of these

algorithms are controlled by several parameters to be provided by

the user at the input stage. However, in the absence of a known

standard to deduce the optimal parameters given the input

sequences, selecting the correct parameters becomes nearly

impossible. As a result, the accuracy of the results becomes

questionable. Finally, in most of the methods, no further

processing can be performed for the remote input sequences left

out as singleton points after the initial similarity search.

In this paper, we propose a new method named CRIS (acronym

for Conserved Region Identification and Search) for the automatic

allocation of diverse sequences into biologically relevant groups by

exposing highly conserved regions and associating them with the

input sequences using statistical grouping and graph theory

concepts. The method is completely unsupervised requiring no

information except the sequences at the input level. This is done

first by grouping the sequences in connected components

characterized by significant sequence similarities based on pairwise

alignment e-values, and then, splitting the sequences in each

connected component into maximal cliques consisting of sequenc-

es containing a shared feature. Next, the shared/conserved regions

on multiple sequence alignments of the member sequences of each

maximal clique were identified using a residue conservation

scoring algorithm, and conserved region profiles were generated

and subsequently queried on the input sequences. Finally, the

associations between the input sequences and the identified highly

conserved regions were presented as a table that can be used to

infer structural, functional and/or evolutionary relationships

between the sequences.

We have tested the proposed method’s biological relevance by

carrying out clustering on gold standard sequence datasets from

the SCOP Database [6] that were used previously in the literature

[12,13] and comparing clustering performances to the widely used

clustering methods.

We have also applied the proposed method on a genome wide

dataset of 17793 human protein sequences to obtain a global

familial relation map of human proteins. The dataset contained

both similar and considerably distant proteins. We have evaluated

the performance of the proposed method in the identification of

the documented domains on the input sequences by comparing

the identified conserved/shared regions and their associations with

the input sequences to the reference manually curated domain

associations obtained from Protein Family (Pfam) database [3] and

NCBI Conserved Domain Database (CDD) [16]. The results

revealed that the discovered conserved regions highly correspond

to documented domains on the input proteins.

The details of the proposed conserved region discovery and

association method are presented in the next section. The results

of the comparative performance evaluation experiments as well as

the application of the method to 17793 human proteins is

provided in Results, followed by the discussion of the results along

with the significance of the method in Discussion.

Materials and Methods

The flow diagram of the proposed method is given in Figure 1.

We describe each step in detail below.

Pairwise Sequence Alignment
A stand-alone version of SSEARCH algorithm from FASTA

v36.3.5 software package [17] was used for the Smith-Waterman

pairwise all-against-all sequence alignment [18] with the default

options. This choice represented the preference for alignment

accuracy at the expense of computation time, though the BLAST

algorithm [19] could also be used albeit with a preference for the

reduced computational expense. Running time for the all-against-

all pairwise alignment step was O(n2) where n represents the

number of input sequences.

After that, a pairwise connectivity map was formed using the

pairwise alignment e-values threshold with 0.01. The pairwise

similarities with e-values higher than the threshold are discarded.

The threshold here is selected to be fairly loose in order to only

remove very weak similarities/connections. The purpose behind

the removal of the weak connections was the elimination of the

deduced similarity between the sequences with poor pairwise

alignment. This specific threshold value was selected after many

trial tests on reference datasets (data not shown), though it is

possible to set a different threshold value to suit a particular

sequence dataset.

Statistical Grouping
Routines provided by the MATLABH Bioinformatics Toolbox

(The MathWorks Inc., 2010) were used for the Connected

Component Analysis using the binary connectivity map generated

at the previous step as the input. The input sequences were

grouped into components possessing a direct or an indirect

connection between every sequence pair. The running time for the

connected component analysis step was O(N+E) where N

represents the number of nodes and E represents the number of

edges. Due to the domain chaining effect, some of the diverse

sequences are expected to be clustered together at the end of the

Connected Component Analysis especially in the case of analyzing

the multi-domain proteins.

Detection of Conserved Regions in Remote Proteins
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Next, the maximum clique finding operation was applied

separately on the members of each connected component using

the Bron–Kerbosch algorithm [20]. A maximal clique, or a fully

connected sub-component, is a subset of an undirected graph

where each vertex is directly connected to every other vertex. This

means that all proteins in a maximal clique share a unique

sequential feature (a conserved sequence segment). Note that

unlike connected components, a vertex (sequence) may appear in

more than one maximal clique. This allows capturing a second,

third or so on features located on a sequence by looking at its

involvement in different maximal cliques. The part A of Figure 2

shows 15 protein sequences with the different family regions

highlighted in different colors and the sequence of a multi-

domain/family protein (SQ X) with 3 different consecutively

located family regions at the last row. The part B of the figure

shows the clusters of sequences after the statistical grouping

process. The part C of the figure shows the two-dimensional

undirected graph representation of the results. The black dots

represent the different sequences and the red lines represent the

edges corresponding to statistically significant similarities. Finally,

the large black circle indicates the connected component. Here, all

sequences belong to a single component since there is either a

direct or an in-direct connection between them. Colored circles

represent the three maximal cliques. The vertex marked by yellow

corresponds to the sequence shared between all cliques, the last

sequence in part A (SQ X).

The worst-case running time for the maximal clique identifi-

cation step was O(3n/3) where n is the number of sequences in each

connected component. The NP-complete nature of the maximal

clique finding operation presented computational challenges for

the connected components possessing a large number of sequenc-

es. To address this issue, the connected components with more

than 100 sequences were randomly divided into groups of 100

sequences and the maximal clique identification procedure was

Figure 1. Flow diagram of the proposed method. Flow diagram
of the proposed method.
doi:10.1371/journal.pone.0075458.g001

Figure 2. Statistical grouping. Representation of the statistical
grouping procedure.
doi:10.1371/journal.pone.0075458.g002
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applied on these groups separately. Supposing there is a connected

component with 850 sequences, it will be split into 9 groups (8

groups of 100 sequences and 1 group of 50 sequences). In order to

detect the families with more than 100 member sequences, a later

step was employed in the procedure involving the merging of the

redundant conserved regions.

Note that the non-homologous sequences that were potentially

brought together at the previous step are separated from each

other by the maximal clique identification process since a full

inter-connection between the sequences is required to be clustered

within the same clique.

As a result of the maximal clique identification procedure,

several redundant cliques were produced that differed from each

other by a few sequences, revolving around an underlying clique

missing a few connections in the connectivity map. In order to

detect and eliminate the redundant cliques, Hamming distances

[21] between maximal clique pairs were computed. The Ham-

ming distance is a measure of difference between two strings of

equal length, counting the number of substitutions to change the

first string into the second [21]. We defined the fractional

Hamming distance between a pair of cliques as the regular

Hamming distance divided by the total number of sequences in

both cliques. This normalization eliminated the effects of the

possible discrepancy between the clique sizes on the distance

measure. Calculation of the fractional Hamming distance is given

in Equation 1.

Hf ab~

Pn
i~1 mabi

naznb

ð1Þ

In the expression above, Hfab is the fractional Hamming

distance between cliques a and b, mabi is a binary variable that

represent the match or the mismatch at the ith position between

cliques a and b, equalling 0 if there is a match and 1 if there is a

mismatch, n is the total number of proteins in the test, n1 and n2

are the number of proteins in the corresponding cliques.

The cliques were then clustered using a pre-defined fractional

Hamming distance threshold of 0.3 and the redundant cliques

were eliminated by selecting the clique with the highest number of

sequences to represent each group. Figure 3 shows the selection of

the fractional Hamming distance threshold regarding the perfor-

mance of the method in the clustering of reference SCOP datasets.

Part A of the figure shows the average clustering performances

assessed by the F-measure for varying fractional Hamming

distance thresholds. In part B, average CPU times (in seconds)

to run the process on a 2.3 GHz single core and 50 GB of RAM is

plotted against varying fractional Hamming distance thresholds.

The vertical black lines on both plots indicate the selected

threshold. At 0.3, the maximum clustering performance was

obtained within a reasonable CPU time. The running time for the

redundant clique elimination step was O(n2) where n represents the

number of maximal cliques.

Conserved Region Identification & Search Process
First, member proteins of each individual maximal clique were

subjected to global multiple sequence alignment using the

ClustalO package [22] with the default parameters. The use of

the procedure here is quite standard that any multiple sequence

alignment algorithm (for general purpose) would do the necessary

job. Clustal family tools are among the most widely known

alignment algorithms for general use. With such a well-known

general-purpose alignment technique, we desired to maintain

general applicability of the method, whose performance could

otherwise have been attributed to a less well-known and more

specialized alignment tool had we opted for one. Among the

Clustal family methods, ClustalO was used as it provides the

parallelization of the process on multiple cores, reducing the CPU

times significantly. The running time for the conserved region

identification (alignment step) was O(n) where n represents the

number of maximal cliques.

Following the alignment step, the ScoreCons algorithm [23], a

residue conservation scoring method was employed with the

default parameters to review the multiple alignment of each

maximal clique. Many different residue conservation scoring

methods exist in the literature. These methods are designed to

scan the multiple alignments column-wise and reveal the

conservation degree of each position in terms of the stereochemical

diversity, diversity of symbols based on theoretical entropy, and/or

amino acid frequency [23]. In this work, the valdar01 scoring

method [23] was used, where a substitution matrix was employed

to evaluate the stereochemical diversity. Consequently, each

position was scored between 0 that indicated no conservation

and 1, indicating full conservation. This procedure allows the

identification of highly conserved regions (highlighted with colors

in Figure 2, part B) on the multiple sequence alignment outputs of

the members of each maximal clique. The running time for the

conserved region identification (residue conservation scoring step)

was O(n*P) where n is the number of maximal cliques and P is the

number of positions in each alignment.

Since the residue conservation scoring algorithm acts on each

position independently, the output was inevitably noisy. In order

to clearly identify the conserved regions, we have used the one-

dimensional median filtering method [24] with a neighborhood or

frame size of 50 to filter out this noise. This method was shown to

preserve the edges in the original signal better than most of the

linear de-noising/smoothing methods [24], and yield a more

accurate detection around the boundaries. The frame size of the

median filter was set to match the minimum size of the conserved

regions: This was aimed at detecting the conserved regions that are

longer than 20 amino acids, since nearly all of the structural

domains registered on the databases currently fall in this range.

Figure 4 shows a segment of an alignment of 5 sequences sharing a

family region during the application of median filtering for

smoothing the residue conservation scores. The row below the

alignment shows the raw conservation scores. The position marked

by an ‘‘X’’ is being processed in the case where the raw

conservation score is only 0.1 although the position is inside the

family region. With a frame size of 50, the raw conservation scores

of 25 positions to the right and 25 to the left are taken together

with the score of the position X and these 51 values are sorted in

an increasing order. The median value (the 26th value in the

ordered list) is assigned to the position X. In the example, this

value is 0.9. The plot of the median filtered curve is shown at the

bottom side of the figure. The horizontal blue line represents the

threshold score for the positions to be accepted as part of a

conserved region.

Note that since the conservation around the boundaries of

family regions is often less prominent, there is a probability of

error of a few residues (about 62.5) for misplacing the boundaries.

Since the frame size is 50 in the median filtering operation, highly

conserved regions shorter than 25 residues will be filtered out

completely. The shortest possible detected region size can thus be

20 residues; when the original family region is 25 residues long and

the boundary positions are rounded off by the filter possibly

reducing the region by another 5 residues. The running time for

the conserved region identification (score filtering step) was O(n*P)

Detection of Conserved Regions in Remote Proteins
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where n is the number of maximal cliques and P is the number of

positions in each alignment.

Another key component here is the selection of the threshold

conservation score to determine the conserved positions. In

principle, the threshold should strike a balance to identify only

the true conserved residues without missing any. In order to

determine such a threshold, we have downloaded reference

manually curated multiple sequence alignments of different

eukaryotic proteins that were used for building NCBI-curated

domain profiles [16]. The locations of the domains on these

alignments were known in advance. Following the application of

the residue conservation scoring algorithm on the reference

alignments and the subsequent median filtering, the threshold

score providing the most accurate identification of the domains

was determined via statistical analysis.

Figure 3. Optimization of the fractional Hamming distance threshold. Plots for the optimization of the fractional Hamming distance
threshold: (A) the average clustering performances (F-measure) vs. fractional Hamming distances, (B) average CPU times (in seconds) vs. fractional
Hamming distances.
doi:10.1371/journal.pone.0075458.g003

Figure 4. Median filtering. Representation of the Median filtering application to the residue conservation scores.
doi:10.1371/journal.pone.0075458.g004
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Histograms of the residue conservation scores of domain and

non-domain regions on original scores and on smoothed/filtered

scores are shown in Figure 5. Clearly, higher scores accumulated

conspicuously in the domain regions. The filtering operation

reduced the number of the low scoring positions within domain

regions by nearly 30%. To determine the optimal threshold

conservation score, a receiver operating characteristic (ROC)

curve [25] was drawn using reference labels of all positions,

calculating the true positives rate (sensitivity) and the false positives

rate (fall-out) for varying threshold selections (Figure 6). The

optimum point at the knee of the ROC curve was determined to

be equal to 0.2. The positions that have a conservation score over

0.2 were thus taken to be conserved and a conserved/shared

region was subsequently formed by an uninterrupted series of

conserved positions no shorter than 20 amino acids.

Figure 7 shows the complete conserved region identification

process. On the top, an actual multiple sequence alignment output

of the members of a sample clique from the human protein dataset

is shown, where each row represents a different sequence. Red

regions represent a shared domain/family region on these

proteins, black regions are the remaining filled positions and the

gray ones are the gaps. The plot in the middle shows the residue

conservation scoring output on this alignment, with the elevated

conservation scores corresponding to the domain region. The

output of the median filtering operation is shown on the bottom

plot. The positions with scores higher than the optimal conserva-

tion threshold at 0.2 formed the conserved region. Note also that a

nearly perfect correspondence is obtained between the identified

conserved region and the reference domain/family region.

Profiles consisting of the frequency of amino acids as well as the

gaps were created for all conserved/shared regions based on the

conserved region identification results. These profiles were then

aligned to all sequences in the dataset using a local version of

Position Specific Iterative Blast (PSI-blast) algorithm [19] with the

default parameters. PSI-blast takes a query sequence, searches

through a database, forms a profile (a PSSM) with the query and

the significant hits, and searches the database once again, this time

querying the profile to include more remote hits. This procedure

then repeats iteratively until convergence. As a result, remote

homologs are retrieved that might be missed with a normal blast

search [19]. The queries in our case were the previously generated

conserved region profiles, calling for the execution of the PSI-blast

using the ‘‘querying an intermediate PSSM’’ option. In order to

include only highly significant hits, we have used a threshold of

Figure 5. Residue conservation scoring histograms. Residue conservation scoring histograms of curated multiple sequence alignments of
different eukaryotic proteins. The original scores: (a) the residues outside the NCBI-curated domains (non-domain regions), (b) the residues inside the
NCBI-curated domains (domain regions). Filtered scores: (c) non-domain regions (d) domain regions.
doi:10.1371/journal.pone.0075458.g005
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1025 over the e-values and carried out the algorithm only for one

iteration. The running time for the conserved region search step

was O(n*N) where n is the number of input sequences and N is the

number of conserved regions. For the example in Figure 2 part B,

with the completion of the conserved region search process, all of

the conserved regions can accurately be identified on SQ X.

Conserved Region Merge and Modification
This operation was applied on the collection of conserved

regions identified above, to remove the potential duplicate

conserved regions coming from the redundant maximal cliques

that may still be remaining. To this end, non-gapped consensus

sequences of conserved region profiles were generated and aligned

to each other in an all-against-all manner using a Smith-

Waterman pairwise local alignment procedure [18] provided by

the SSEARCH algorithm from FASTA v36.3.5 software package

[17] with the default options.

Specifically, among the significantly aligned (e-value , 0.01)

conserved region pairs, if one was contained in the other or the

overlap between them was greater than 90% they were assumed to

represent the same family and merged into a new conserved

region. The profile of the new conserved region was generated by

combining the amino acid counts in the aligned profiles. The

protein sequences associated with the new conserved region were

determined by the union of those associated with the two original

conserved regions. In cases where the above conditions were not

satisfied, the conserved regions were not merged. Figure 8 shows

two significantly aligned conserved regions X and Y where their

associated sequences are 1, 2, 3, 4, 5 and 4, 5, 6, 7 respectively.

Part A of the figure shows the case where the shorter one is

contained within the longer one as identified by the pairwise

alignment. These two conserved regions were merged into a new

conserved region (Z) with the combined sequence associations of 1,

2, 3, 4, 5, 6 and 7. Part B of the figure shows another instance

where the two conserved regions have a slight overlap, in which

case the merging operation is not carried out.

The members of the same families separated from each other

accidently at the random grouping to reduce the computational

expense (before the maximal clique finding procedure) and

therefore clustered in different cliques were also accurately

identified and brought together at this step. This way, the method

can reliably detect the domain families with more than 100

members. As a result, the remaining conserved regions contained

unique attributes distinct from each other. The running time for

the conserved region merge and modification step was O(n2) where

n is the number of conserved regions.

Finally, a binary table was generated that represented the

identified conserved regions along its columns and the input

sequences along its rows, with ones and zeros indicating the

presence or absence of the conserved regions in each sequence.

This table and the profiles of the identified conserved regions

constituted the main output of the proposed method.

Performance evaluation of the method in the prediction
of domains/family regions

The performance was assessed in terms of the number of

accurately detected domains/family regions using the results on

the human protein dataset. The test steps are shown in Figure 9 as

a flow diagram. In order to generate the reference domain

association set, first, the human protein dataset was queried in

batch-CDD search tool in NCBI CDD web site with the default

parameters using NCBI curated domain profiles as the database

and an e-value cut off of 0.05. Next, a standalone version of

HMMER v3.0 algorithm [26] was used for querying the dataset

through Pfam-A (manually curated) profile Hidden Markov Model

database with the default options. This way, we have discovered

the confirmed domains on the test sequences separately for Pfam-

A and NCBI curated domain databases.

In the following step, the consensus sequences of the identified

conserved region profiles were generated in order to search against

the pre-formatted domain database of NCBI CDD and profile

HMM’s of Pfam. Each conserved region profile consensus

sequence and domain profile were aligned to each other and

significant matches were identified using the local Reverse Position

Specific Blast (Rps-blast) algorithm [27] for NCBI curated

domains and HMMER v3.0 for Pfam-A entries with default

parameters in both cases. Rps-blast is a blast type algorithm used

to search a query sequence against a database of profiles in order

to discover significant matches [27]. A significant alignment

between a conserved region profile and a reference domain

indicated a high likelihood that they represent the same domain.

In cases where there were more than one significant hit, the most

significant hit -with the lowest E-value- was accepted to represent

the corresponding conserved region. In cases with no significant

hits to the query profile, those regions were not paired with any

reference domains.

The identification performance was measured using sensitivity

and precision scores. To this end, the domain hits to the input

proteins found by the proposed method were compared to the

reference domain hits and the true positive (TP), false negative

(FN) and false positive (FP) rates were calculated. A true positive

hit was obtained when the same domain was found both by the

proposed method and the reference domain search on a protein.

When the proposed method failed to find a domain present in

reference search, this was counted as a false negative. A false

positive was obtained if a hit by the proposed method did not

present in the reference pool. The rates represented the average

hits for all proteins in the dataset to display a global performance

of the proposed method in the identification of domains in human

proteins.

Apart from the count of the recovered documented domains, we

have also determined the residue count measure that calculates the

Figure 6. The ROC curve. The ROC curve for the binary classification
of residues of reference multiple sequence alignments as domain or
non-domain regions for the determination of threshold score in residue
conservation scoring process. The black dot indicates the TPR and FPR
values at the selected threshold.
doi:10.1371/journal.pone.0075458.g006
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overlap of the positions containing domains/family regions

between the reference assignments and the positions of the

conserved regions identified by the proposed method. For each

sequence in the dataset, the positions marked as part of a domain/

family region by both the proposed method and the reference

Pfam associations were counted as true positives (TP), while those

marked by the reference hits but missed by the proposed method

were counted as false negatives (FN), and those marked by the

proposed method but not in the reference hits as false positives

(FP). Figure 10 shows a representative case for the residue count

performance evaluation. The rows represent the same sequence

(namely, the sequence X). On the top row, the grey region

represents a reference family region documented in the Pfam

database. The bottom row shows the same sequence with the

conserved region detected by the proposed method in blue along

with the residues contributing to the TP, FP and FN rates.

Results

First, reference datasets from SCOP Domain Database [6] were

clustered and the performance of the proposed method’s success in

separating the protein sequences into families was measured and

compared with the conventional methods. Second, the method

was applied on a genome wide dataset of human protein sequences

to obtain a global familial relation map. The accuracy of the

identified relations was evaluated with respect to the current

domain assignments in Pfam [3] and NCBI CDD [16] databases.

All computations were done using a single core of a system with

two quad-core processor operating at 2.3 GHz and 50 GB of

RAM.

Clustering with Reference Datasets
We tested the performance of the proposed method in clustering

amino acid sequences using gold standard reference datasets used

in previous studies in the literature. Five different datasets from

SCOP 1.75 Database [6] previously analyzed by Paccanaro et al.

and Nepusz et al. to test their widely used method Spectral

Clustering were taken exactly as they appeared in the referenced

studies. The clustering performance was evaluated at the level of

superfamilies. Four of these datasets were generated by manually

curating domain sequences from different superfamilies in the

SCOP 1.75 Database and composed of 550 to 670 sequences

each, located in 5 to 6 superfamilies. The fourth dataset was

composed of the members from 8 superfamilies and was regarded

as a more difficult case for clustering algorithms [13]. The fifth

Figure 7. The complete conserved region identification process. Top: Multiple sequence alignment output of members of a sample clique,
middle: residue conservation scoring process (ScoreCons) output, bottom: smoothed output with Median filtering, horizontal black line: threshold
score to assume conservation, vertical dashed line: the borders of the recovered conserved region.
doi:10.1371/journal.pone.0075458.g007
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dataset was composed of all domain sequences in SCOP 1.75

Database refined further by removing the sequences with pairwise

identity values greater than 95% (ASTRAL-95) via ASTRAL

Database [28], and by removing the members of the superfamilies

with less than five domains [13]. This final dataset called SCOP$5

contained 14309 sequences from 632 superfamilies and represent-

ed one of the most difficult cases known for sequence clustering

methods [13]. We have applied the proposed method to these

datasets with the default parameters without any specific

parameter tuning. The proposed method’s optional final clustering

was obtained by incorporating a fast clustering process at the end

by a Connected Component Analysis using the correspondence

between the conserved regions and the sequences as the input

similarity matrix. The total CPU time was around 15 minutes each

for the analyses of SCOP datasets 1 through 4 and nearly 12 hours

for SCOP dataset 5.

The comparisons of the results with the gold standard were

carried out as described in [13] to ensure a fair assessment of the

methods. The clustering performance was calculated via the

combined F-scores, defined as the combination of precision and

recall with equal contributions [12]. The combined F-score was

calculated as in [13].

The F-score measures the recognition performance by incor-

porating both precision and recall scores into a single number

[12,13]. Since the cluster corresponding to a gold standard

superfamily was not known in advance, precision and recall scores

were calculated for all cluster and superfamily combinations. The

combinations that maximized the combined F-score were then

selected as matching sequence groups. The calculations of the

precision and recall scores as well as the combined F-score are

shown in Equations 2, 3 and 4 respectively.

Pij~
TPi j

TPi jzFPi j
ð2Þ

Rij~
TPi j

TPi jzFNi j
ð3Þ

In the expressions above, Pij and Rij are the precision and recall

scores respectively for the superfamily i and the cluster j. TPij is the

number of proteins both present in the superfamily i and the

cluster j. FPij is the number of proteins present in the cluster j but

not in the superfamily i. FNij is the number of proteins present in

the superfamily i but not in the cluster j. As for the combined F-

score,

F~
X

i

ni max
j

2Pi jRi j

Pi jzRi j
ð4Þ

where i indexes the superfamilies and j indexes the clusters, ni is

the number of proteins in superfamily i, Pij and Rij are the

precision and recall values respectively.

The clustering performances of previous methods given in [13]

are shown in Table 1 with the addition of the proposed method

(CRIS) in the last column. The method listed as CCA represents

the Connected Component Analysis that is also used as an

intermediate step in the proposed method. The others, TribeMCL

and Spectral Clustering were described in the Introduction

Section.

On the first 3 datasets representing relatively easy clustering

instances, the proposed method’s performance was comparable to

Spectral Clustering, the top performing algorithm from the

literature. On the fourth and fifth datasets, the proposed method

outperformed all the alternatives, albeit slightly. This demonstrates

the effectiveness of the proposed approach based on statistical

grouping over detected conserved regions.

To supplement these results, we have carried out an additional

test to verify that the increased performance was not due to the use

of Smith-Waterman pairwise alignment in the first step instead of

the faster but less accurate Blast algorithm used in Spectral

Clustering. To this end, the Blast pairwise alignment results for

datasets 1, 2, 3 and 4 were directly taken from [13], and the

corresponding e-values were used as input to the proposed

method. The results were similar to those obtained before: F-

scores of 0.894, 0.864, 0.904 and 0.724 were achieved for datasets

1, 2, 3 and 4 respectively, indicating that the proposed method’s

better performance was not due to the use of an optimal pairwise

alignment algorithm. In addition, even though these datasets only

contained domain sequences from SCOP database, the proposed

method extracted the most conserved core regions. As a result,

remote sequences were clustered more accurately, owing to the

correspondence between the conserved regions and the input

samples.

In order to assess the contribution of conserved region merge

and refinement step in the clustering performance of the proposed

method, the performance in the clustering of SCOP datasets was

measured before and after the conserved region merge and

refinement step. The results indicated that this step provided an

average increase of 28.5% in the clustering performance of the

method as measured by the F-measure. Also the difference

between the average clustering performance (F-measure) of the

Figure 8. Conserved region merge and modification. Represen-
tation of the conserved region merge and modification procedure.
doi:10.1371/journal.pone.0075458.g008
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initial clustering (using the e-values of all-against-all pairwise

alignment, threshold with the selected value: 0.01) and the final

result was nearly 18% in favor of the finalized procedure. The

reduced performance in the initial clustering was mainly due to the

grouping of diverse sequences together at this step.

At this point, it should be noted that the datasets (from SCOP

Database) are composed of single domain sequences and not full

proteins, and thus, they are depleted of non-domain segments such

as low complexity regions. As a result, the measured performance

of the method on this dataset may not represent the performance

on the datasets composed of full protein sequences. However, the

performance of the method in the identification of the document-

ed domains and family regions on a genome wide dataset which

will be discussed below represents the potential of the method on

full and multi-domain proteins.

Figure 9. Flow diagram of the performance test. Flow diagram of the performance test for the proposed method in the identification of
reference domains in human proteins.
doi:10.1371/journal.pone.0075458.g009

Figure 10. Residue count performance test. Representation of the
residue count performance evaluation.
doi:10.1371/journal.pone.0075458.g010

Table 1. Clustering performance results on gold standard
datasets from SCOP Database.

Number of F-scores

sequences CCA TribeMCL SCPS CRIS

Dataset 1 669 0.530 0.630 0.844 0.866

Dataset 2 587 0.681 0.772 0.905 0.884

Dataset 3 567 0.588 0.625 0.893 0.906

Dataset 4 654 0.497 0.573 0.685 0.740

Dataset 5 14309 0.530 0.576 0.607 0.641

CCA: Connected Component Analysis, SCPS: Spectral Clustering.
doi:10.1371/journal.pone.0075458.t001
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Relational Mapping of Human Proteins and Automatic
Domain/Family Region Prediction

Next, we have applied the proposed method to a genome wide

collection of human protein sequence data. The reason for

choosing a wide range of human proteins was to obtain a global

familial relation map of human proteins as well as to determine the

performance of the proposed method in predicting domains in a

genome-wide collection of protein sequences.

To this end, we have downloaded the accession numbers of

human proteins with GO associations from the Gene Ontology

Project web site [29]. Gene Ontology is a project aiming to

standardize the gene and gene product attributes by assigning

controlled vocabulary terms to each entry under three main

headings: molecular function, biological process and cellular

component [29]. The sequences filtered through the careful

inspection of GO ensures a certain degree of reliability in the

functional annotations. All of the sequences in the human protein

dataset used in this study contained at least one GO association.

This way, the newly discovered relations between the sequences

can also be tested further regarding their GO associations.

Furthermore, sequences with no annotations were not expected

to provide useful information to assess the performance of the

proposed method to identify documented annotations, and they

were subsequently discarded from the analysis.

Protein sequences were downloaded from the UniProt Database

[30]. Human protein sequences shorter than 100 amino acids or

longer than 10000 amino acids were assumed to be outliers and

were also removed from the dataset. Filtering the sequence set

based on length was an attempt to improve the statistical analysis.

Protein sequence databases contain redundant entries such as the

sequence fragments sent by different external sources. The pool of

sequences that are shorter than 100 amino acids contain a large

amount of these redundant sequence fragments. In a multiple

alignment instance, these redundant sequences tend to align with

each other and subsequently risk creating false conservations.

Furthermore, the probability of non-specific alignment increases

with shorter sequences that may also lead to falsely discovered

conservations. The final dataset consisted of 17793 human protein

sequences. The total CPU time for the analysis of the human

protein dataset was approximately 18 hours.

Following the initial pairwise local alignment and connectivity

map thresholding, 3592 connected components were formed of

varying sizes along with 2440 singleton components. Figure 11

shows the histogram of the all-against-all pairwise alignment e-

values, with the threshold shown by the vertical line. Only the e-

value counts between 0 and 0.1 are shown on the figure for

readability. Within the non-singleton components, 6537 maximal

cliques were located following the elimination of the redundant

cliques. After the remaining intermediate steps, a total of 4753

distinct conserved regions were identified and presented in a table

showing the association of each conserved region with the input

human protein sequences. Conserved regions, in this context, refer

to the sequence segments with potential functional and/or

evolutionary attributes that correspond strongly to domains and

other family regions. The proposed method identified a total of

108588 hits on the human protein dataset, as the total number of

associations between the input sequences of 17793 human proteins

and the discovered 4753 conserved regions.

Following the application of the method to the human protein

dataset, the resulting conserved region profiles were tested for

typical sources of non-homologous alignments such as low

complexity regions, signal-peptides, coiled-coils and trans-mem-

brane motifs. To this end, NCBI Blast segmasker script [31] was

used with the default options to scan for the low complexity

regions. Stand-alone SSEARCH algorithm from FASTA v36.3.5

software package [17] was used to align the consensus sequences of

the conserved region profiles against signal peptide (http://www.

signalpeptide.de/) and trans-membrane motif (PDBTM) [32]

databases. A relatively loose e-value cut off of 0.01 was selected

to derive all possible alignments. In addition, CCHMM web-

server [33] was employed to test the conserved regions against

coiled coils. The results are shown in Table 2. The first 4 rows

represent the number of conserved regions containing the

aforementioned segments; the fifth row shows the average ratio

of the corresponding positions to the total number of positions in

all conserved regions. Finally, the columns represent different

types of the sources of non-homologous alignments. These results

indicate that the overlap between the sequence strings causing

non-homologous alignments and the output conserved regions of

the human protein dataset is considerably low.

In order to validate the results on human proteins further, we

have evaluated the correspondence between the conserved regions

identified above and the Pfam-A domains in Protein Families

Database 26.0 [3] as well as the NCBI curated domains in

Conserved Domain Database v3.07 [16]. A total of 674 human

protein sequences in Pfam-A and 171 sequences in NCBI CDD

were found to contain more than 6 significant domain hits. Due to

the high number of hits these sequences were removed from the

performance tests as outliers. The analyses were thus carried out

on the proteins with 6 domain hits or less on different regions of

the sequences -not counting multiple hits on a particular region-.

HMM profile search identified a total of 24197 reference Pfam-

A domain type hits on our dataset, while Batch-CDD search in

NCBI CDD web site identified 16526 reference domain hits. The

total number of reference Pfam hits (considering domain, family,

repeat and motif type hits) on human proteins were 41551. 45% of

the 17793 human proteins lacked domain type assignments in

Pfam database, while this number was at 47% for the NCBI CDD.

Considering all four types of entries in Pfam database, only 9% of

the human protein sequences were found to lack any assignments.

Domain type entries in Pfam database are usually more reliable

than the other types since they are verified by additional sources

such as structural data where available [34]. As a result, we

Figure 11. E-value histogram of all-against-all pairwise align-
ment. E-value histogram of all-against-all pairwise alignment of the
human protein dataset.
doi:10.1371/journal.pone.0075458.g011
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calculated the performance for the domain type hits separately

from the rest.

Table 3 shows the sensitivity scores observed in the identifica-

tion of the domain type hits in Pfam in human protein sequences.

The scores were 0.744 for Pfam and 0.776 for NCBI CDD. Nearly

76% of the domain hits on the reference databases were accurately

recovered by the proposed method, with more than 77% and 61%

of the reference domains on Pfam and NCBI CDD respectively

being from multi-domain proteins. Table 4 shows the sensitivity

and precision scores for the mixed type hits (domain, family,

repeat and motif) in the Pfam database. The precision scores here

can be deceptive since it incorporates the false positives count as

well. In our case, these hits were ambiguous as they could be true

false positives or new family regions undiscovered so far.

Nevertheless, precision was calculated to obtain a rough indication

about how often the proposed method returns an incorrect

assignment. Note that the precision score was calculated only for

protein sequences that had at least one reference Pfam hit.

Following the domain/family region counts, the residue counts

were also considered as another performance metric as it can

provide additional insight regarding the performance of the

method in identifying domains/family regions. The sensitivity and

precision scores for the residue counts with respect to the reference

mixed type Pfam hits were calculated, though it should be noted

that precision here again can be deceptive (Table 5).

During the performance evaluation of the proposed method, the

recovered conserved regions agreed to a significant degree with the

reference curated domains/family regions. However, a significant

portion of the conserved regions could not be paired with any of

the documented domains and were therefore proposed as novel

conserved regions. Table 6 shows the statistics on the known and

the novel conserved regions against the reference domains in

Pfam-A and NCBI CDD databases. The first column shows the

number of the known conserved regions, while the second column

shows the novel ones, out of the 4753 recovered regions.

Approximately 51% and 41% of the conserved regions did not

have a correspondence on the Pfam-A and NCBI CDD databases

respectively.

In order to determine if these novel conserved regions

corresponded to the automatically generated low significance

domain entries in the Pfam database, we queried the conserved

region profiles against a database containing both Pfam-A and

Pfam-B [3] entries. Pfam-B entries were generated to supplement

Table 2. The results of the test for the typical sources of non-homologous alignment of the conserved regions obtained after the
human protein dataset analysis.

Ratio of the compositionally biased
region: Type of the region

Low complexity Signal peptide Trans membrane Coiled coil

Number of CR with . 10% 1225 127 640 24

Number of CR with . 25% 434 40 586 17

Number of CR with . 50% 81 6 439 10

Number of CR with . 90% 8 0 127 2

Total residue count (%) 0.072 0.007 0.090 0.067

CR: Conserved regions.
doi:10.1371/journal.pone.0075458.t002

Table 3. Performance of the proposed method in identifying
reference domains in the human protein dataset.

Number of domains in Sensitivity values

reference database: Pfam ref. NCBI CDD ref.

Single domain: 0.809 0.919

Up to 2 domains: 0.779 0.883

Up to 3 domains: 0.765 0.862

Total: 0.744 0.776

(Sensitivity: TP/(TP + FN), TP: true positives, FN: false negatives).
doi:10.1371/journal.pone.0075458.t003

Table 4. Performance of the method (hit counts) in the
identification of the reference (all types) Pfam hits on the
human proteins.

Number of hits in Pfam
database: Performance results

Sensitivity Precision

Single domain: 0.754 0.522

Up to 2 domains: 0.684 0.522

Up to 3 domains: 0.663 0.504

Total: 0.631 0.505

doi:10.1371/journal.pone.0075458.t004

Table 5. Performance of the method (residue counts) in the
identification of the reference (all types) Pfam hits on the
human proteins.

Number of hits in Pfam
database: Performance results

Sensitivity Precision

Single domain: 0.739 0.654

Up to 2 domains: 0.731 0.644

Up to 3 domains: 0.733 0.636

Total: 0.739 0.628

(Sensitivity: TP/(TP + FN), TP: true positives, FN: false negatives).
(Precision : TP/(TP + FP), TP: true positives, FP: false positives).
doi:10.1371/journal.pone.0075458.t005

Detection of Conserved Regions in Remote Proteins

PLOS ONE | www.plosone.org 12 September 2013 | Volume 8 | Issue 9 | e75458



the Pfam database for the sequences where there are no Pfam-A

associations (Finn et al., 2010). Pfam-B was generated automat-

ically using the ADDA algorithm (Heger and Holm, 2003) that

finds appropriate sites for domain boundaries and cuts the

sequences from these positions to call one side of the boundary

as domain 1 and the other as domain 2. As a result, all of the

residues in a protein sequence reside in a domain. Note that the

logic behind this method is different than the proposed method

that only marks the conserved regions as potential domains or

family regions. The results showed that only 27% of the novel

conserved regions corresponded to Pfam-B domains, meaning that

nearly 73% of them were indeed novel domain or family region

candidates.

Finally, we have carried out a manual analysis on the conserved

regions identified on the human protein dataset for possible new

functional associations. Firstly, we noted that the 1009th conserved

region largely overlapped with the proteins annotated with the

term: GO:0008270 – zinc ion binding, with 508 out of 513

proteins containing this conserved region being associated with

this GO category. In other words, more than 99% of the proteins

in the corresponding cluster had zinc ion binding associations.

One of the five proteins that lacked this particular GO association,

Kelch-like ECH-associated protein 1 (KEAP1) (UniProt identifier:

‘Q14145’) takes part in the suppression of the transcriptional

activity of NFE2L2/NRF2 protein by targeting it for ubiquitina-

tion and degradation by the proteasome [35]. This protein has

only one GO molecular function association (GO:0005515 –

protein binding) and it has no direct ancestor-child relation to

GO:0008270. They are joined at a high level on the hierarchical

GO tree at the category GO:0005488 - binding. As a result, there

appears to be no indication that this protein has a documented

zinc ion binding function association in GO. Due to the high

correlation between the GO:0008270 term and the conserved

region 1009, our results predict that this protein have a zinc ion

binding function. To test this prediction, the amino acid sequence

of this protein was searched in the Pfam database. One of the three

types of structural domains was ‘‘BTB/POZ domain’’ (PF00651),

found frequently in zinc finger proteins [36]. This finding supports

our prediction since zinc ion binding function is naturally

associated with zinc finger proteins. In order to take another look

at the case, we have analyzed the other conserved regions residing

on this protein and found that the domain Zinc finger, C2H2 type

(PF00096) in Pfam was associated with one of these conserved

regions with high significance. This domain, in turn, is also

associated to GO:0008270 though not to GO:0005515, providing

extra support in favor of this prediction.

Furthermore, the location of the 1009th conserved region along

the amino acid sequence of this protein was between the positions

310 to 342. In Pfam database this region overlapped with a Kelsh

motif (PF01344) between the positions 317 to 359. The alignment

of the Kelsh motif with this region gave a bit score of 21.9. The

1009th conserved region was aligned to this region with a bit score

of 45.6 and a similarity of 80% even though the size of the

conserved region was significantly shorter than the Kelsh motif:

The 1009th conserved region was 38 residues long, while the Kelsh

motif contained 47 residues. Finally, a search on the associations

between the Pfam hits to KEAP1 and GO terms via pfam2go at

InterPro database [4] determined that these Pfam hits were

associated only with the category GO:0005515 – protein binding.

As a result, the zinc ion binding (GO:0008270) association is

indeed a novel finding.

Note that in this analysis, we started from GO associations and

predicted a new functional assignment to a protein using the

results obtained with the proposed method. Similar analyses can

be made on other proteins in the dataset to predict additional

novel functional assignments.

Discussion

In this study, we proposed CRIS: a computational method to

identify family relations between protein sequences in diverse

datasets over evolutionary conserved regions. In the experiment

results, these conserved regions corresponded to the documented

structural domains. The identification of these regions was

achieved in a completely unsupervised manner using only

sequence data that was subjected to pairwise sequence alignment,

residue conservation scoring and graph theoretical analyses. In the

validation experiments, the method was first applied on gold

standard datasets and the functional clustering performance was

measured and compared with the conventional methods. The

results indicated highly accurate clustering. Second, we used the

proposed method to process a genome-wide dataset composed of

17793 human protein sequences to obtain a global familial relation

map. As a result, we obtained a table representing the

correspondence between the proteins and the recovered conserved

regions. Familial relations of the proteins were clearly observed

through the connections over these regions. We also measured the

correspondence of these conserved regions to the manually

curated domain assignments on these proteins both in Pfam and

NCBI CDD databases. The results showed that most of the known

structural domains were correctly identified even on multi-domain

human proteins.

As is well known, grouping amino acid sequences using a

linkage method such as a Connected Component Analysis imposes

a domain chaining problem: A given sequence pair within a

component may not necessarily share a significant sequential

similarity, but appear in the same component due to the chain

effect where they may both possess similarity to a third sequence

over different regions [15,37]. As a result, being in the same

component does not stipulate a shared feature between all

sequences in the component, though appearing in different

components guarantees the absence of any significant shared

features. All shared features, however, are to be discovered within

each component. In this work, the detection of the maximal

cliques within each connected component was used to discover this

mutuality. All sequences residing in the same maximal clique were

thus guaranteed to share at least one significant sequential regional

similarity, on top of any additional features shared between a

smaller number of sequences in the clique.

At this point, component formation procedure may appear to

be dispensable since maximal clique search discovers the shared

sequence features, but it is important to note that maximal clique

finding is an NP-hard problem and it may require a substantial

processing even for a relatively small dataset of 500 sequences with

an average computational power. Pre-processing with connected

Table 6. The statistics on the conserved region pairings with
the reference hits.

Number of conserved regions:

match no-match

Pfam-A 2324 2429

NCBI CDD 2795 1958

Out of 4753 conserved regions.
doi:10.1371/journal.pone.0075458.t006
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component identification ensures the separation of sequence

clusters with no inter cluster relationships. In the proposed

method, to further reduce the computational load associated with

clique identification in large components, groups of 100 random

sequences were subjected to maximal clique finding separately.

The additional amount of redundancy in the identified maximal

cliques was resolved later at the conserved region merge and

modification step.

Generally speaking, highly conserved regions along amino acid

sequences often correspond to zones with evolutionary and/or

functional signatures. Thus, the conserved regions found by the

proposed method were expected to capture the known domains in

the input sequences. In the results on human proteins, conserved

regions did indeed contain domains, with slight variations in

detection performance between Pfam and NCBI CDD domains. It

is, however, likely that this performance gap was due to the

differences in the domain assignments in these databases. It is

shown on Table 4 and Table 5 that, as the number of domains in

sequences increase, the sensitivity of our method in terms of hit

counts decreases whereas the sensitivity in terms of residue

coverage remains almost the same. This can be attributed to the

ability of the proposed method to capture these regions with a

relatively stable performance though it becomes harder to separate

them into individual domains/family regions as the number of

these domains increase on the sequences. The precision score was

also stable and did not change significantly with varying number of

reference hits.

As shown in Table 6, nearly half of the recovered conserved

regions identified on the human protein dataset did not

correspond to the documented domains on the online databases,

with only 27% corresponding to the domain entries in the low

significance Pfam-B database. The remaining conserved regions

can thus be predicted to depict new families that have not been

discovered and/or documented so far. The only way to verify

these predictions may be detailed studies directed to each sequence

individually including experimental work.

Comparative performance evaluation results showed that the

proposed method performed better with single domain proteins,

and the performance decreased as the proteins with higher

number of domains were included. Further inspection of the

results revealed that most of the false negative hits belonged to the

consecutively located domains on multi-domain proteins. Howev-

er, when the variety of domain distribution on sequences was

large, these domains were identified accurately. This is especially

important to be able to identify the domains in multi-domain

proteins. During the statistical grouping step, the sequence

clusters, each sharing a unique conserved feature were generated.

Note that when the variety of domain distribution is sufficiently

large, it is possible to construct a new cluster for each unique

feature. For very small datasets, however, it becomes considerably

harder to distinguish the shared features from a statistical point of

view. This makes the proposed method a suitable candidate to

analyze shared features on whole proteomes.

On another note, the input sequences that do not align with any

other sequences in similarity based sequence analysis methods are

generally left out of the results. In our method, we have

incorporated the singleton sequences into the analysis by searching

for the conserved region profiles once more through all sequences.

Owing to the remote homology recognition ability of profile

alignments, features hidden inside these sequences have been

discovered more clearly. This way, the reference domains were

indeed identified on some of the singleton human protein

sequences.

At this point, it should be noted that it is not possible to be

absolutely certain about the performance of the method in the

detection of families and domains on protein sequences without

testing on gold standard datasets incorporating established true

negative families. One option would be using simulated datasets

where the families, domains, evolutionary relations and so forth

are known beforehand. However, because of the complexity of the

biological sequences and their evolutionary relations, and due to

the high number of parameters to be controlled, it is quite difficult

to generate realistic simulations. Furthermore, the results obtained

on such synthetic datasets would be highly dependent to the

properties of the underlying simulation procedures, and defeat the

purpose of carrying out performance evaluations to predict future

performance on real sequence datasets. Under these circumstanc-

es, performance evaluation analyses incorporating simulated

sequence datasets were left out of the current study.

It is also important to note that the proposed method is not

optimized in any way to outperform its predecessors in compu-

tational performance using the specifics of the reference datasets.

The principal contribution of this method comes from the

improved prediction performances without any guided parameter

tuning. As shown in both the clustering analyses and the

identification of the regions containing family signatures, the

method outperformed its predecessors wherever a comparison was

possible.

On a final note, the correspondence table generated by the

proposed method provides the associations between the proteins

and the conserved regions. As such, it allows inferring protein

families as those sharing the same set of conserved regions.

However, it can also be viewed to document the relationship

between the conserved regions over the proteins that possess them

simultaneously. This suggests a duality in the analysis of protein

sequences: Just as families of proteins associated with similar

functional or structural attributes, one can also consider families of

conserved regions that followed through the process of molecular

evolution together. As a future work, this duality can be explored

and exploited to aid the construction of a parallel analysis of the

evolution of whole proteomes. Another potential future study

would be the inspection of the correlation between the protein-

protein interactions and the associations of the interacting proteins

over the conserved regions. Since these regions correspond to

highly conserved sequence segments with possible functional

signatures, there is a high likelihood that the interactions between

the proteins are occurring over these regions.

The proposed method CRIS (Conserved Region Identification

and Search) is freely available for academic use as a MATLAB

implementation together with the datasets and the results figuring

in this article (including the global familial relation map of human

proteins) at http://biplab.eee.iyte.edu.tr/en/projects/conregidase/.
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