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The first integral method for constructing
exact and explicit solutions to nonlinear
evolution equations
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Problems that are modeled by nonlinear evolution equations occur in many areas of applied sciences. In the present study,
we deal with the negative order KdV equation and the generalized Zakharov system and derive some further results using
the so-called first integral method. By means of the established first integrals, some exact traveling wave solutions are
obtained in a concise manner. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Applied sciences rely on processes that are usually modeled by nonlinear evolution equations (NEEs), especially because of their
frequent applications in various research fields, such as mathematical biology, mathematical finance, industrial mathematics, etc.
In the past decades there has been a growing interest in the problem of finding exact and explicit solutions of NEEs because they
play an important role in science and engineering, and their importance will certainly grow in the future. Usually, it is difficult to obtain
exact solutions for these models. Many different methods have been developed for tackling NEEs from both analytical and numerical
point of views. Some recent ones include: homogeneous balance method [1], tanh function method [2], (G’/G)-expansion method [3],
Exp-function method [4], F-expansion method [5], homotopy perturbation method [6–10], the solitary wave ansatz method [11],
multiple Exp-function method [12], Adomian–Pade technique [13], further improved F-expansion method [14], and variational
iteration method [15–18], etc. However, different methods are required for different targets because each mathematical method has
its own features.

The study of finding first integrals for nonlinear ordinary differential equations (NODEs) has also been an important subject because
they allow us to get the general solution by means of quadratures. However, there is no systematic approach that can provide us a
way of finding the first integrals of NODEs, nor is there a logical way for telling us what these first integrals are. Not long ago, via the
ring theory of commutative algebra, Feng [19, 20] coined an algebraic curve method for solving NEEs in terms of the so-called traveling
waves. The approach is currently known as the first integral method. The method has found several applications in the applied sciences
(see, for instance, [21–28] and the references therein). The main idea behind the method is to construct a polynomial first integral (with
polynomial coefficients) to an autonomous planar system which is equivalent to the equation to be solved. Through the established
first integrals, exact solutions can be obtained under some parameter conditions.

However, the application of the first integral method to distinct types of equations is still an interesting and important research
problem. Every nonlinear equation has its own physically rich and complicated structure that is worth to be analyzed by innovative
new methods. The focus of the present paper is to further extend the first integral method to the negative order KdV equation and the
generalized Zakharov system for the first time. The outline of the paper is as follows: in Section 2 we explain our method that allows us
to derive the desired results in Sections 3 and 4. We end our analysis with a conclusion in Section 5.
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2. The first integral method

Let us consider a partial differential equation for a function u .x, t/ in the form

P .u, ut , ux , utt , utx , uxx , : : :/D 0, (1)

where P is a polynomial in its arguments while subscripts denote partial derivatives. By the wave transformation u.x, t/ D U.�/, � D
kx �wtC �0, where k, w, and �0 are arbitrary constants, Equation (1) can be reduced to an ODE of the form

P.U,�wU0, kU0, w2U00,�kwU00, k2U00, : : :/D 0, (2)

where UD U.�/ and the primes denote ordinary derivatives with respect to � . Introducing the new variables

X.�/D U.�/, Y.�/D U� .�/, (3)

we assume that Equation (2) can be reduced to a two-dimensional autonomous system of the form

X� .�/D Y.�/,
Y� .�/D Q .X.�/, Y.�// ,

(4)

where the subscript denotes ordinary derivative with respect to � . In general, solving a planar autonomous system of ODEs of the form
(4) is a challenging and difficult task. Hence, based on the qualitative theory of ODEs [29], if one can derive a single first integral for the
system (4), then one may be able to reduce Equation (2) to a first-order integrable ODE. Then, a class of exact solutions may be obtained
by solving the resulting first-order ODE by a quadrature. At this stage, the following Division Theorem will play the central role in
our analysis:

Division Theorem. Suppose that P .w, z/ and Q .w, z/ are polynomials inC Œw, z� and P .w, z/ is irreducible inC Œw, z�. If Q .w, z/ vanishes
at all zero points of P .w, z/ , then there exist a polynomial G .w, z/ in C Œw, z� such that Q .w, z/D P .w, z/G .w, z/.

Here, C Œw, z� denotes the complex domain. We shall not prove this result here, but refer the interested reader to Refs. [30, 31].

3. The negative order KdV equation

First, let us consider the negative order KdV equation, which reads

uuxxt � utuxx C 2u3ux D 0, (5)

where uD u .x, t/. In fact, Equation (5) can be rewritten in compact form

�uxx

u

�
t
C 2uux D 0, (6)

which belongs to the negative KdV hierarchy and leads to the Camassa–Holm equation via a hodograph transformation [32].
Now, assume that Equation (6) admits a traveling wave solution of the form

u .x, t/D U .�/ , � D kx �wtC �0, (7)

where k and w are arbitrary constants to be specified, while �0 denotes an arbitrary phase shift. Substituting (7) into Equation (6) and
integrating the resulting equation once yield

U00 D cUC
1

kw
U3, (8)

where U D U .�/, the primes denote derivatives with respect to � , and c is an integration constant. Letting z D U and y D U0,
Equation (8) can be rewritten as the plane autonomous system

(
dz
d� D y,
dy
d� D czC 1

kw z3.
(9)

Now, suppose that z D z.�/ and y D y.�/ are nontrivial solutions of (9). Also, assume that q.z, y/ D
Pm

iD0 Ai.z/yi is an irreducible
polynomial in the complex domain C such that

q.z.�/, y.�//D
mX

iD0

Ai.z/y
i D 0, (10)
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where the polynomials Ai.z/ .i D 0, 1, : : : , m/ are relatively prime in C with Am.z/ �= 0. Equation (10) is called a first integral of
Equation (9). We note that dq=d� is a polynomial in z and y. Thus, q.z.�/, y.�// D 0 implies that dq=d� D 0. Then, by the Division
Theorem, there exists a polynomial B .z/C C .z/ y in the complex domain C such that

dq

d�
D
@q

@z

dz

d�
C
@q

@y

dy

d�
D .B .z/C C .z/ y/

"
mX

iD0

Ai.z/y
i

#
. (11)

We consider the case mD 2 of (10). Hence, taking Equations (9) and (11) into account, we get

2X
iD0

h
A0i .z/ yiC1

i
C

2X
iD0

�
iAi .z/ yi�1

�
czC

1

kw
z3
��
D ŒB .z/C C .z/ y�

"
2X

iD0

Ai .z/ yi

#
. (12)

Equating the coefficients of yi .0� i � 3/ in Equation (12) leads to the system

y3 : A02 .z/D C .z/A2 .z/ , (13)

y2 : A01 .z/D C .z/A1 .z/C B .z/A2 .z/ , (14)

y1 : A00 .z/D C .z/A0 .z/C B .z/A1 .z/� 2

�
czC

1

kw
z3
�

A2 .z/ , (15)

y0 : B .z/A0 .z/D A1 .z/

�
czC

1

kw
z3
�

. (16)

Because A2 .z/ and C .z/ are polynomials, from Equation (13) we deduce that C .z/ D 0 and A2 .z/ must be a constant. For
simplicity, we can take A2 .z/ D 1. Balancing the degrees of A0 .z/, A1 .z/, and B .z/, we conclude that deg B .z/ D 1 only. Suppose
that B .z/D b1zC b0 .b1 ¤ 0/. Then, from (14) and (15), we get

A1 .z/D
b1

2
z2C b0zC e, (17)

A0 .z/D

�
1

8
b2

1 �
1

2kw

�
z4C

1

2
b1b0z3C

 
eb1C b2

0

2
� c

!
z2C eb0zC f , (18)

where e and f are integration constants. Substituting A0 .z/, A1 .z/, and B .z/ into (16) and setting the coefficients of zi .0� i � 5/ to
zero, we derive a system of nonlinear algebraic equations for b0, b1, e, f , k and w. Solving the resultant system simultaneously, we get
the solution set

f D
kwc2

2
, eD�c

p
2kw, b0 D 0, b1 D�2

r
2

kw
, (19)

where all other constants remain arbitrary. Using the relation (19) in (10), we get

y D˙
z2C kwc
p

2kw
. (20)

Combining the first Equation of (9) with Equation (20), solving the resulting equations by quadratures, and changing to the original
variables, we obtain

Observation 1
The negative order KdV Equation (5) admits traveling wave solutions of the form

u˙1 .x, t/D˙
p

ckw tan

 r
c

2
.kx �wtC �0/

!
, c > 0, kw > 0, (21)

u˙2 .x, t/D˙
p
�ckw tanh

 r
�c

2
.kx �wtC �0/

!
, c < 0, kw > 0, (22)

where all involved constants remain arbitrary.

Our results can be compared with those of [32].
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4. The generalized Zakharov system

Second, let us consider the so-called generalized Zakharov system [33], which reads

utt � �
2uxx � ˇ

�
jvj2

�
xx
D 0,

ivt C ˛vxx � ı1uvC ı2 jvj
2 vC ı3 jvj

4 v D 0,
(23)

where the real unknown function uD u .x, t/ is the fluctuation in the ion density about its equilibrium value, and the complex unknown
function v D v .x, t/ is the slowly varying envelope of highly oscillatory electron field, i is the imaginary unit, the parameters ˛, ˇ, � ,
ı1, ı2, and ı3 are real numbers, while � is proportional to the ion acoustic speed (or electron sound speed). Now, we assume that
Equation (23) admits a solution of the form

v.x, t/D  .�/� exp .i .�x � "t// , u.x, t/D u .�/ , � D kx �wtC �0, (24)

where  D  .�/ is an undetermined real function, � , ", k and w are arbitrary constants to be specified, and �0 is an arbitrary phase
shift. Then, the system (23) leads to

�
w2 � k2�2

	
u00 � ˇk2

�
 2
	00
D 0,�

� � ˛�2 � ı1u
	
 C ı2 

3C ı3 
5C k2˛ 00C i .2k˛� �w/  0 D 0.

(25)

Setting the imaginary part of (25) to zero, we get the relation w D 2k˛� . Integrating the first equation of (25) and taking the constants
of integration as zero give

uD
ˇ

4˛2�2 � �2
 2, � ¤�2˛� . (26)

Substituting (26) into the second equation of (25)

 00C
� � ˛�2

k2˛
 C

 
ˇı1

k2˛
�
�2 � 4˛2�2

	 C ı2

k2˛

!
 3C

ı3

k2˛
 5 D 0, ˛ ¤ 0, (27)

where the primes denote derivatives with respect to � . Letting z D  and y D  0, Equation (27) can be rewritten as the plane
autonomous system

( dz
d� D y,
dy
d� D

˛�2��
k2˛

z�
�

ˇı1
k2˛.�2�4˛2�2/

C ı2
k2˛

�
z3 � ı3

k2˛
z5,

(28)

According to the first integral method, we consider the case mD 2 of (10). Then, by equating the coefficients of yi .0� i � 3/ on both
sides of (11) with the consideration of (28), we have

y3 : A02 .z/D C .z/A2 .z/ , (29)

y2 : A01 .z/D B .z/A2 .z/C C .z/A1 .z/ , (30)

y1 : A00 .z/D B .z/A1 .z/� 2

 
˛�2 � �

k2˛
z�

 
ˇı1

k2˛
�
�2 � 4˛2�2

	 C ı2

k2˛

!
z3 �

ı3

k2˛
z5

!
A2 .z/C C .z/A0 .z/ , (31)

y0 : B .z/A0 .z/D

 
˛�2 � �

k2˛
z�

 
ˇı1

k2˛
�
�2 � 4˛2�2

	 C ı2

k2˛

!
z3 �

ı3

k2˛
z5

!
A1 .z/ . (32)

From Equation (29), we obtain A2 .z/ D c0 exp
�R

C .z/dz
	
, where c0 is an integration constant. Because A2 .z/ and C .z/ are polyno-

mials, we deduce that C .z/ D 0 and A2 .z/ must be a constant. For simplicity, we can take A2 .z/ D 1. Then, Equations (30) and (31)
reduce to the following equations:

A01 .z/D B .z/ , (33)

A00 .z/D B .z/A1 .z/� 2

 
˛�2 � �

k2˛
z�

 
ˇı1

k2˛
�
�2 � 4˛2�2

	 C ı2

k2˛

!
z3 �

ı3

k2˛
z5

!
. (34)
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Case 1
deg A1 .z/D 0.

In this case, from (32) and (33), we conclude that A1 .z/� 0. Then, (34) gives

A0 .z/D
ı3

3k2˛
z6C

1

2

 
ˇı1

k2˛
�
�2 � 4˛2�2

	 C ı2

k2˛

!
z4 �

˛�2 � �

k2˛
z2, (35)

where we set the integration constant to zero for simplicity. Hence, Equation (10) becomes

ı3

3k2˛
z6C

1

2

 
ˇı1

k2˛
�
�2 � 4˛2�2

	 C ı2

k2˛

!
z4 �

˛�2 � �

k2˛
z2C y2 D 0, (36)

which is a first integral of Equation (28). Solving Equation (36) for y, we get

yD˙

 
˛�2 � �

k2˛
z2 �

1

2

 
ˇı1

k2˛
�
�2 � 4˛2�2

	 C ı2

k2˛

!
z4 �

ı3

3k2˛
z6

!1=2

. (37)

Here and henceforth, the signs .˙/ or .�/ should be taken into account in a vertical order. Combining the first equation of (28) with
Equation (37), solving the resulting equation by a quadrature, and changing to the original variables, we obtain

Observation 2
The generalized Zakharov system (23) admits a traveling wave solution of the form

u.x, t/D
ˇ

4˛2�2 � �2
 .�/2 , v.x, t/D  .�/� exp .i .�x � "t// , � D kx � 2k˛� tC �0, � ¤�2˛� , (38)

where

 .�/D˙
4
p

3a�p
6
�
6b2 � 32acC 1

	
cosh

�
2
p

a�
	
C
p

6
�
6b2 � 32ac� 1

	
sinh

�
2
p

a�
	
� 12b

�1=2
, (39)

in which aD ˛�2��
k2˛

, bD� ˇı1
k2˛.�2�4˛2�2/

� ı2
k2˛

, and cD� ı3
k2˛

,while all involved constants remain arbitrary.

Remark 1
We observed that the cases deg A1 .z/ D 1 or deg A1 .z/ D 2 provides the same first integral as (36). We omit to present the details
for brevity.

Case 2
deg A1 .z/D 3.

In this case, from (32) and (33), we conclude that deg B .z/D 2 and deg A0 .z/D 6. Assuming A1 .z/D a3z3Ca2z2Ca1zCa0 .a3 ¤ 0/
and B .z/D b2z2 C b1zC b0 .b2 ¤ 0/ in (33), we get b2 D 3a3, b1 D 2a2, and b0 D a1. Substituting A1 .z/ and B .z/ into Equation (34)
and integrating the resulting equation leads to

A0 .z/D

 
a2

3

2
C

ı3

3k2˛

!
z6C a2a3z5C

 
a2

2C 2a1a3

2
C

ˇı1

2k2˛
�
�2 � 4˛2�2

	 C ı2

2k2˛

!
z4C .a1a2C a0a3/ z3

C

 
a2

1C 2a0a2

2
�
˛�2 � �

k2˛

!
z2C a0a1zC d,

(40)

where d denotes an integration constant. Then, substituting A0 .z/, A1 .z/, and B .z/ into Equation (32), equating the coefficients of
zi .0� i � 8/ to zero, and solving the resulting system of nonlinear algebraic equations simultaneously, we get the relations

dD 0, a3 D�
2

k

r
�
ı3

3˛
, a1 D�

2

k

s
˛�2 � �

˛
, 3

�
ı2C

ˇı1

�2 � 4˛2�2

�2

D 16ı3

�
� � ˛�2

�
, a0 D 0, a2 D 0, (41)

dD 0, a3 D
2

k

r
�
ı3

3˛
, a1 D�

2

k

s
˛�2 � �

˛
, 3

�
ı2C

ˇı1

�2 � 4˛2�2

�2

D 16ı3

�
� � ˛�2

�
, a0 D 0, a2 D 0, (42)7

2
0

Copyright © 2012 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 716–722
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where all other constants remain arbitrary. Hence, Equation (10) becomes

y2C

0
@�2

k

s
˛�2 � �

˛
z�

2

k

r
�
ı3

3˛
z3

1
A y �

ı3

3k2˛
z6˙

2
q
ı3
�
� � ˛�2

	
p

3k2˛
z4C

˛�2 � �

k2˛
z2 D 0, (43)

y2C

0
@�2

k

s
˛�2 � �

˛
zC

2

k

r
�
ı3

3˛
z3

1
A y �

ı3

3k2˛
z6�

2
q
ı3
�
� � ˛�2

	
p

3k2˛
z4C

˛�2 � �

k2˛
z2 D 0, (44)

which are first integrals of Equation (28). Solving Equations (43) and (44) for y, respectively, we get

y D
1
p

3k

r
�ı3

˛
z3˙

1

k

s
˛�2 � �

˛
z, (45)

y D�
1
p

3k

r
�ı3

˛
z3˙

1

k

s
˛�2 � �

˛
z. (46)

Combining the first equation of (28) with Equations (45) and (46), solving the resulting equations by quadratures, and changing to the
original variables, we obtain

Observation 3
The generalized Zakharov system (23) admits traveling wave solutions of the form

u.x, t/D
ˇ

4˛2�2 � �2
 .�/2 , v.x, t/D  .�/� exp .i .�x � "t// , � D kx � 2k˛� tC �0, � ¤�2˛� , (47)

where

 .�/D�

0
B@

3
k

q
�2 � �

˛

cosh
�

2
k

q
�2 � �

˛ �
�
� sinh

�
2
k

q
�2 � �

˛ �
�
� 1

k

q
� 3ı3
˛

1
CA

1=2

, (48)

or

 .�/D�

0
B@

3
k

q
�2 � �

˛

cosh
�

2
k

q
�2 � �

˛ �
�
C sinh

�
2
k

q
�2 � �

˛ �
�
� 1

k

q
� 3ı3
˛

1
CA

1=2

, (49)

in which 3
�
ˇı1C

�
�2 � 4˛2�2

	
ı2
	2
D 16

�
� � ˛�2

	 �
�2 � 4˛2�2

	2
ı3 , while all involved constants remain arbitrary.

Remark 2
Other cases are not possible for if deg A1 .z/ D k > 3, then we deduce that deg B .z/ D k � 1 and deg A0 .z/ D 2k because
Equations (33) and (34). However, the degree of the polynomial on the left side of Equation (32) is 3k � 1 while the degree of the
polynomial on the right side of Equation (32) is kC 5, which is a contradiction.

5. Conclusion

The exact solutions when they exist can help one to well understand the mechanism of the complicated physical phenomena modeled
by NEEs. In this paper, we presented two possible new applications of the first integral method for such types of equations, namely,
the negative order KdV equation and the generalized Zakharov system. First integrals are of great importance in the study of NODEs
because they reduce the problem to quadratures. It is observed that the first integral method works for NEEs, which can be converted
to a second-order ODE through a suitable transformation. The method is straightforward, concise, and its applications to other types
of NEEs are promising. It will be interesting to apply our method to other types of problems such as the ones presented in [34–36].
This will be our future research task.
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