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Abstract— In this work, we propose a new robust adaptive
controller for a class of multi–input multi–output nonlinear
systems subject to uncertain state delay. The proposed method
is proven to yield semi–global asymptotic tracking despite
the presence of additive input and output disturbances and
parametric uncertainty in the system dynamics. An adaptive
desired system compensation in conjunction with a continuous
nonlinear integral feedback component is utilized in the design
of the controller and Lyapunov–based techniques, are used to
prove that the tracking error is asymptotically driven to zero.
Numerical simulation results are presented to demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

Adaptive control of nonlinear systems subject to structured

and unstructured uncertainties with unknown/uncertain state

delay has received noteworthy attention over the last several

years [1]. As a result, various robust adaptive controllers,

based on different model assumptions and stability results,

have been proposed. To name a few, in [2], Zhang and Ge

proposed an adaptive neural controller for a class of uncertain

multi–input multi–output (MIMO) nonlinear systems in a

triangular control structure with unknown state delay. The

design was based on the principle of sliding mode control and

the unknown time–varying delays were compensated by the

use of appropriate Lyapunov-Krasovskii functionals. In [3],

[4], [5], researchers have proposed adaptive neural network

based tracking controllers for nonlinear time delay systems.

A discontinuous adaptive controller for a class of nonlinear

systems with unknown time delay was proposed in [6]. In

[7], Zheng et al. designed an adaptive robust controller for

uncertain linear systems with multiple state delays. Hua et

al., in [8], studied adaptive backstepping control of a class

of nonlinear time delay systems with triangular structure.

Tong and Sheng [9] proposed an adaptive fuzzy backstepping

controller for a class of nonlinear systems with unknown time

delay and unmeasured states. One drawback of the studies

in [2]–[9], however, were the uniform ultimate bounded sta-

bility results. Furthermore, there are singularity issues in the

controllers of [4] and [6]. In [10], Wu designed an adaptive

robust controller for uncertain nonlinear systems subject to

nonlinear delayed state perturbations. However, while the

perturbations were assumed to be unknown with a bounded
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magnitude, the rest of the system dynamics was assumed

to be known exactly. In [11], Mirkin and Gutman proposed

an output feedback model reference adaptive control scheme

for a class of MIMO linear dynamic systems with unknown

state delay and additive disturbance, and obtained semi–

global asymptotic tracking result. Recently, in [12] (and its

preliminary version in [13]), Sharma et al. presented a robust

adaptive controller for the same class of systems in [6] where

the robust integral of the sign of the error term in [14] was

utilized in the controller design and obtained semi–global

asymptotic tracking.

Review of the relevant literature highlights the fact that

most of the proposed controllers for uncertain nonlinear

systems with state delay fails to guarantee asymptotic sta-

bility result and additionally, almost all of the above papers

(see [12] and [15]) considered the input gain matrix to be

constant. Motivated by this fact, in this work we propose

a continuous robust adaptive controller that can achieve

asymptotic stability for a class of uncertain nonlinear systems

i) subject to additive bounded input and output disturbances,

ii) with a state–dependent input gain matrix, and iii) with

an unknown state delay. However, since the delay value is

considered to be unknown, the delay dependent terms with

structured uncertainties can not be utilized in the design of

the regressor matrix. In [12], Sharma et al. dealt with this

challenging issue by segregating the appropriate terms when

forming the linearly parameterizable function and a delay–

free regressor matrix was obtained. Inspired by this, in our

work, a similar segregation is utilized to obtain a delay–free

regressor matrix. Also to design a robust adaptive controller

that is applicable to a wider class of nonlinear systems, the

robust control structure in [14] is utilized along with an adap-

tive component. Another novelty of our work is removing the

need for the upper bound of the unstructured uncertainties

by introducing a novel adaptive gain term. Lyapunov based

stability analysis is provided that is fused with a Lyapunov–

Krasovkii functional to remove time delayed terms and semi–

global asymptotic tracking is achieved.

The rest of the paper is organized in the following manner:

The system model and problem statement are presented in

Section II. Controller formulation and development is given

in Section III while the stability analysis is presented in

Section IV. Simulation studies are presented in Section V

and Section VI contains some concluding remarks.
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II. SYSTEM MODEL & PROBLEM STATEMENT

Consider the following class of nonlinear systems1

ẋ1 = x2

...

ẋn−1 = xn

ẋn = f1 (X) + δ1 (X) + f2 (Xτ )

+δ2 (Xτ ) + b (X) (u+ d1) + d2 (1)

where xi (t) ∈ R
m, i = 1, ..., n, are the system states,

X (t) =
[

xT
1 xT

2 · · · xT
n

]T ∈ R
mn, τ ∈ R is

an unknown constant arbitrarily large time delay, f1 (X),
f2 (Xτ ) ∈ R

m and b (X) ∈ R
m×m are linearly parameteri-

zable uncertain nonlinear functions, δ1 (X), δ2 (Xτ ) ∈ R
m

are unknown functions, d1 (t) , d2 (t) ∈ R
m are unknown

additive nonlinear disturbances, and u (t) ∈ R
m is the control

input. Notice that the system model in (1) can be rewritten

in the following compact form

Mx
(n)
1 = h1 +Mf2τ + u+ d1 +Mδ (2)

where M (X) ∈ R
m×m, h1 (X), δ (X,Xτ , t) ∈ R

m are

explicitly defined as

M , b−1 , h1 , Mf1 (3)

δ , δ1 (X) + δ2 (Xτ ) + d2. (4)

The system model given in (2), is assumed to satisfy the

following assumptions:

Assumption 1: The nonlinear function b is symmetric,

positive definite, and its inverse M satisfies the inequalities

m ‖ξ‖2 ≤ ξTM (·) ξ ≤ m̄ (·) ‖ξ‖2 ∀ξ ∈ R
m (5)

where m̄ (X) ∈ R is a positive, globally invertible, non–

decreasing function of its argument and m ∈ R is a positive

bounding constant.

Assumption 2: The nonlinear functions, f1, f2, δ1, δ2
and b, are continuously differentiable up to their second

derivatives (i.e., f1, f2, δ1, δ2, b ∈ C2).

Assumption 3: The nonlinear functions, f1, f2 and M , are

affine in uncertain parameters.

Assumption 4: The additive disturbances, d1 (t) and

d2 (t), are assumed to be continuously differentiable and

bounded up to their second derivatives (i.e., di (t) ∈ C2 and

di (t) , ḋi (t) , d̈i (t) ∈ L∞, i = 1, 2).

Our main control objective is, given a smooth desired

reference trajectory xr (t) ∈ R
m satisfying

xr (t) ∈ Cn , x(i)
r (t) ∈ L∞ , i = 0, 1, ..., (n+ 2) . (6)

ensure that the output of the system, x1(t), converges to the

desired reference signal asymptotically. To provide a means

of quantifying the control objective, we define the output

tracking error signal e1 (t) ∈ R
m as

e1 , xr − x1. (7)

1Throughout the paper, a time dependent delayed function is denoted
as x (t − τ) or xτ and a time dependent function without time delay is
denoted as x (t) or x.

To further ease the presentation of the subsequent analysis,

a combination of the reference trajectory and its time deriva-

tives is defined as

Xr (t) =

[

xT
r ẋT

r · · ·
(

x
(n)
r

)T
]T

∈ R
mn. (8)

In the next section, we will present the development of a full

state (the system state vector X (t) with all its components

are measurable) robust adaptive control law that ensures
∥

∥

∥e
(i)
1 (t)

∥

∥

∥ → 0 as t→ ∞, i = 0, ..., (n− 1), with all signals

remain bounded within the closed–loop system.

III. CONTROL DEVELOPMENT

We begin our analysis by defining, error signals, denoted

by ei (t) ∈ R
m, i = 2, 3, ..., n, as follows

e2 , ė1 + e1 (9)

e3 , ė2 + e2 + e1 (10)

...

en , ėn−1 + en−1 + en−2. (11)

A general expression for ei (t), i = 2, 3, ..., n in terms of

e1 (t) and its time derivatives can be obtained as

ei =

i−1
∑

j=0

ai,je
(j)
1 (12)

where the known constant coefficients ai,j ∈ R are generated

via a number series [14]. To facilitate the control develop-

ment, filtered error signal, denoted by r (t) ∈ R
m, is defined

by

r , ėn + Λen (13)

where Λ ∈ R
m×m is a constant, diagonal, positive definite,

gain matrix. After differentiating (13) and premultiplying the

resulting equation with M , and applying some mathematical

manipulations, the following expression can be derived

Mṙ = −1

2
Ṁr − en − u̇+ Ñ +Nr + ψ (14)

where (7), (12), the first time derivative of (2), and the fact

that an,(n−1) = 1 were utilized and the auxiliary functions,

Nr (t), Ñ (X, t), ψ (t) ∈ R
m and N (X, t) ∈ R

m are

explicitly defined in the following manner

N , M



x(n+1)
r +

n−2
∑

j=0

anje
(j+2)
1 + Λėn



 + en

+Ṁ

(

x
(n)
1 +

1

2
r

)

− ḣ1 − Ṁf2 −Mḟ2 (15)

Nr , N |X=Xr,Ẋ=Ẋr

(16)

Ñ ,

(

N − d

dt
(M (δ + f2τ − f2))

)

−
(

Nr −
d

dt
(Mr (δr + f2τr − f2r))

)

(17)

ψ , −ḋ1 −
d

dt
(Mr (δr + f2τr − f2r)) (18)



in which the terms Mr (t) ∈ R
m×m and δr (t), f2r (t),

f2τr (t) ∈ R
m are given as follows

Mr , M |X=Xr

(19)

δr , δ1 (Xr (t)) + δ2 (Xr (t− τ)) + d2 (t) (20)

f2r = f2 (Xr (t)) (21)

f2τr = f2 (Xr (t− τ)) . (22)

Note that the N (·) term defined in (15), does not explicitly

depend on τ . Also the auxiliary signals of (16), (17) and (18)

are constructed such that:

Remark 1: From a direct application of the Mean Value

Theorem [16] (along with Assumptions 2 and 4 ), the norm

of Ñ (X, t) can be upper bounded in the form
∥

∥

∥Ñ (·)
∥

∥

∥ ≤ ρ1 (‖z‖) ‖z‖ + ρ2 (‖zτ‖) ‖zτ‖ (23)

where ρ1 (·), ρ2 (·) ∈ R are non–negative, globally invertible,

non–decreasing functions of their arguments and z (t) ∈
R

(n+1)m×1 is defined by

z ,
[

eT
1 eT

2 ... eT
n rT

]T
. (24)

Remark 2: From (6), Assumption 4, (15), (16), and (18),

it can be concluded that ψ (t), Nr (t), ψ̇ (t) Ṅr (t) ∈ L∞.

Remark 3: The term Nr (t) does not depend on the un-

known time delay τ , and from Assumption 3, it can be

linearly parameterized in the sense that

Nr = Wrθ (25)

where θ ∈ R
p is the unknown parameter vector and

Wr (t) ∈ R
m×p denotes the known regressor matrix which

is a function of only xr (t) and its time derivatives, and does

not depend on the delay.

Based on the open–loop error system in (14) and the

linearly parameterized term in (25), the control input is

designed as

u = (K + Im)

[

en (t) − en (t0) + Λ

∫ t

t0

en (σ) dσ

]

+

∫ t

t0

Wr (σ) θ̂ (σ) dσ + Π (26)

where the auxiliary signal Π(t) ∈ R
m is generated according

to the following update law

Π̇ = (C̄1 + C2)Sgn (en) ,Π(t0) = 0m×1 (27)

and θ̂ (t) ∈ R
p denotes the parameter estimate vector and is

generated via

θ̂ = Γ

∫ t

t0

WT
r (σ) Λen (σ) dσ − Γ

∫ t

t0

ẆT
r (σ) en (σ) dσ

+ΓWT
r (t) en (t) − ΓWT

r (t0) en (t0) . (28)

In (26)–(28), K , C2 ∈ R
m×m and Γ ∈ R

p×p are constant,

diagonal, positive definite, gain matrices, Im ∈ R
m×m is

the identity matrix, Sgn(·) ∈ R
m is the vector signum

function, and C̄1 (t) ∈ R
m×m is a piece–wise time–varying

continuous diagonal control gain matrix with its diagonal

entries being defined as

C̄1i (t) = |eni (t)| − |eni (t0)| + Λi

∫ t

t0

|eni (σ)| dσ (29)

where the subscript i = 1, · · · ,m denotes the ith element of

the vector or the diagonal matrix. It should be noted that

u (t0) = 0m×1, θ̂ (t0) = 0p×1 and C̄1i(t0) = 0 where

0p×1 ∈ R
p and 0m×1 ∈ R

m are vectors of zeros. Based

on the structure of (26)–(29), the following are obtained

u̇ = (K + Im) r +Wr θ̂ + (C̄1 + C2)Sgn (en) (30)

˙̂
θ = ΓWT

r r (31)

˙̄C1i = risgn (eni) , i = 1, · · · ,m (32)

where (13) was utilized. At this stage, substituting (30) into

(14), the following closed–loop error system for r (t) is

obtained

Mṙ = −1

2
Ṁr − en − (K + Im) r +Wr θ̃ −

(C̄1 + C2)Sgn (en) + Ñ + ψ (33)

where the parameter estimation error signal θ̃ (t) ∈ R
p is

defined as

θ̃ , θ − θ̂. (34)

IV. STABILITY ANALYSIS

Before introducing the stability result, we would like to

present two preliminary lemmas, where the output of both

will later be utilized in the proof of our main result.

Lemma 1: Let the auxiliary function L1 (t) ∈ R be

defined as follows

L1 , rT (ψ − C1Sgn (en)) (35)

where C1 ∈ R
m×m is a constant, diagonal, positive definite,

bounding matrix. If the entries of C1 are selected to satisfy

the following sufficient condition

C1i > ‖ψi (t)‖
L∞

+
1

Λi

∥

∥

∥ψ̇i (t)
∥

∥

∥

L∞

(36)

then the following inequality is satisfied
∫ t

t0

L1 (τ) dτ ≤ ζb1 (37)

where ζb1 ∈ R is a positive bounding constant.

Proof: A similar proof can be found in [14].

Remark 4: It is highlighted that the bounding matrix in

(35) (i.e., C1) was not utilized in the control design (see

(26)–(28)). Instead, the update rule given in (29) was utilized

in the controller. This is a novel departure from the similar

existing results in the literature. Specifically, in [12] and [13],

Sharma et al. used a similar term to that of (27) but with

a constant control parameter (which should be greater than

the uncertainty bounds). In this study, different from [12]

and [13], the term in (27) is designed with a piece-wise

time-varying continuous control gain matrix which does not

require the knowledge of the uncertainty bounds.



Lemma 2: The auxiliary function L2 (t) ∈ R is defined as

L2 , −C2ėnsgn (en) . (38)

Provided that C2 is positive definite then
∫ t

t0

L2 (σ) dσ ≤ ζb2 (39)

where ζb2 ∈ R is a positive constant.

Proof: See Appendix I.

We are ready to propose the following Theorem:

Theorem 1: The control law (26), (27), with the update

law (28), and the time–varying gain introduced in (29) ensure

the boundedness of all closed–loop system signals and the

convergence of the error signals in the sense that

lim
t→∞

∥

∥

∥e
(i)
1 (t)

∥

∥

∥ = 0 for i = 0, . . . , n (40)

provided that

λmin (Λ) >
1

2
, (41)

and the entries of the controller gain matrix K defined in

(26) selected sufficiently large relative to the system initial

conditions.

Proof: We begin our proof by defining the following

non–negative scalar function, denoted by V (s(t), t) ∈ R, as

V ,
1

2

n
∑

i=1

eT
i ei +

1

2
rTMr +

1

2
θ̃T Γ−1θ̃

+P1 + P2 + P3 + P4 (42)

where P1 (t), P2 (t), P3 (t), P4 (t) ∈ R are explicitly defined

in the following manner

P1 , ζb1 −
∫ t

t0

L1 (σ) dσ (43)

P2 ,
1

2Kmin

t
∫

t−τ

ρ2
2 (‖z (σ)‖) ‖z (σ)‖2

dσ (44)

P3 , ζb2 −
∫ t

t0

L2 (σ) dσ (45)

P4 ,
1

2

m
∑

i=1

(

C1i − C̄1i

)2
(46)

with Kmin ∈ R being the minimum eigenvalue of K and

s (t) ∈ R
[(n+1)m+4+p]×1 is defined as

s =
[

zT
√
P1 θ̃T

√
P2

√
P3

√
P4

]T
. (47)

Note that, after utilizing (5), (42) can be bounded in the

following way

λ1 ‖s‖2 ≤ V (s, t) ≤ λ2 (‖s‖) ‖s‖2
(48)

where λ1, λ2 (·) ∈ R are defined as

λ1 =
1

2
min

{

1,m, λmin

(

Γ−1
)}

,

λ2 = max

{

1,
1

2
m̄ (‖s‖) , 1

2
λmax

(

Γ−1
)

}

. (49)

Taking the time derivative of (42), utilizing

n
∑

i=1

eT
i ėi = eT

1 (e2 − e1) + eT
2 (e3 − e2 − e1) + . . .

+eT
n−1 (en − en−1 − en−2) + eT

n (r − Λen)

= −
n−1
∑

i=1

eT
i ei + eT

n−1en + eT
nr − eT

nΛen (50)

and substituting for (31), (33), (35), (38) then cancelling the

cross terms, we obtain

V̇ = −
n−1
∑

i=1

eT
i ei − eT

nΛen + eT
n−1en − rT r

+rT Ñ − rTKr +
1

2Kmin
ρ2
2 (‖z‖) ‖z‖2

− 1

2Kmin
ρ2
2 (‖zτ‖) ‖zτ‖2 − eT

nΛC2Sgn(en)(51)

which can be upper bounded in the following way

V̇ ≤ −λ3 ‖z‖2
+ ‖r‖ ρ1 (‖z‖) ‖z‖ + ‖r‖ ρ2 (‖zτ‖) ‖zτ‖

−Kmin ‖r‖2
+

1

2Kmin
ρ2
2 (‖z‖) ‖z‖2

− 1

2Kmin
ρ2
2 (‖zτ‖) ‖zτ‖2 −

m
∑

i=1

ΛiC2i |eni| . (52)

Utilizing

‖r‖ ρ2 (‖zτ‖) ‖zτ‖ ≤ Kmin

2
‖r‖2

+
1

2Kmin
ρ2
2 (‖zτ‖) ‖zτ‖2

(53)

‖r‖ ρ1 (‖z‖) ‖z‖ ≤ Kmin

2
‖r‖2

+
1

2Kmin
ρ2
1 (‖z‖) ‖z‖2

(54)

we can further upper bound (52) as

V̇ ≤ −
(

λ3 −
ρ (‖z‖)
2Kmin

)

‖z‖2 −
m

∑

i=1

ΛiC2i |eni| (55)

where λ3 , min
{

1
2 , λmin (Λ) − 1

2

}

and ρ (‖z‖) ,

ρ2
1 (‖z‖) + ρ2

2 (‖z‖).
Provided that the minimum eigenvalue of the controller

gain, Kmin, is selected according to satisfy

Kmin ≥ ρ (‖z‖)
2λ3

or ‖z‖ ≤ ρ−1 (2λ3Kmin) (56)

the upper bound of V̇ (t) given in (55) can be formulated to

have the following form

V̇ ≤ −β0 ‖z‖2 −
m

∑

i=1

ΛiC2i |eni| (57)

where β0 ∈ R is a positive constant. From the structure

of (42) and (57), we can conclude that V (s, t) ∈ L∞ when

(56) is satisfied. And since V (s, t) is a decreasing function it

should have its maximum value at V (s(t0), t0). This enables

us to further update the gain condition to have the following

form

Kmin ≥ 1

2λ3
ρ





√

λ2 (‖s (t0)‖)
λ1

‖s (t0)‖



 . (58)



Following standard signal chasing methodologies we can

prove that all signals in the closed–loop system is bounded

when the gain condition (58) is satisfied. Furthermore from

the integral of (57) we can prove that z (t) ∈ L2 and en (t) ∈
L1. Since en (t) ∈ L1 ∩ L∞, from (29), we can conclude

that C̄1 (t) ∈ L∞, and since r (t) ∈ L∞, then from (32), it

is clear that ˙̄C1 (t) ∈ L∞. A direct application of Theorem

8.4 in [16] can be used to prove that ‖z (t)‖ → 0 when the

gain condition (58) is satisfied. Based on the definition of

z (t), it is easy to show that ‖ei (t)‖, ‖r (t)‖ → 0 as t→ ∞,

i = 1, 2, ..., n. From (13), it is clear that ‖ėn (t)‖ → 0 as

t → ∞. By utilizing (12) recursively it can be proven that
∥

∥

∥e
(i)
1 (t)

∥

∥

∥ → 0 as t→ ∞, i = 1, 2, ..., n .

Notice that, from (58), it is apparent that our proof depends

on the selection of the controller gain according to the initial

conditions of the system. Therefore the stability result is

semi–global.

V. NUMERICAL SIMULATION RESULTS

A numerical simulation was performed to demonstrate the

performance of the adaptive controller given in (26)–(29).

The class of systems in (1) with m = n = 2 is considered

with the following modeling functions

f1 = [φ3x21x12, φ4x11x22]
T

f2 = [φ5x11τx22τ , φ6 cos (x12τ )]T

b = diag{2 + cosx11

φ1
,
3 + sinx12

φ2
}

δ1 = [sin (5x21) , cos (3x12)]
T

δ2 = [0.5 (x11τx21τ + x12τx22τ ) , sin (2x11τ )]
T

d1 = [cos (2t) + exp (−0.5t) , sin (3t) + exp (−0.5t)]T

d2 = [sin (2t) + exp (−0.5t) , cos (3t) + exp (−0.5t)]T

with x1 =
[

x11 x12

]T
and x2 =

[

x21 x22

]T
. The

reference trajectory was selected as

xr =

[

sin (t)
(

1 − exp
(

−0.2t3
))

cos (t)
(

1 − exp
(

−0.5t3
))

]

.

During simulation studies the initial conditions were set to

x1 (t0) =
[

−1 −1
]T

, x2 (t0) =
[

0 0
]T

, θ̂ (t0) =

[0.75, 0.9, 0.5, 0.6, 0.9, 0.8]T , while the controller gains were

chosen via trial and error method as Λ = 5I2, K = 10I2,

C2 = 3I2, Γ = 5I6, and τ = 10 sec. The unknown parameter

vector is formed as θ = [φ1, φ2, φ1φ3, φ1φ5, φ2φ4, φ2φ6]
T

where unknown parameters are given as φ1 = 0.5, φ2 = 0.2,

φ3 = φ6 = 2, φ4 = φ5 = 3. The tracking error e1 (t)
is presented in Figure 1. In Figures 2 and 3, the control

input u (t) and the parameter estimate θ̂ (t) are presented,

respectively. Finally, the entries of the time–varying gain

matrix C̄1 (t) are presented in Figure 4.

VI. CONCLUSION

In this work, we have developed a singularity–free robust

adaptive controller for a class of MIMO nonlinear systems

with unknown state delay which is subject to both parametric

and non–parameterizable uncertainties along with additive

input and output disturbances. An adaptive desired system

compensation in conjunction with a continuous nonlinear

integral feedback component is utilized in the design of

the controller and Lyapunov–based techniques, are used

to prove that the tracking error is asymptotically driven

to zero. Our stability analysis parallels the previous result

presented in [12] however the proposed methodology can be

applied to a wider class of nonlinear systems. Additionally,

by introducing a time–varying gain (i.e., C̄1 (t)), the need

for knowledge of the upper bounds of the unstructured

uncertainties was removed which is a novel departure from

the previous results including [12]. When compared with the

previous robust adaptive type of control for time delay sys-

tems, we considered a state–dependent input gain matrix for

the system model and the our controller controller is robust

to both matched and unmatched disturbances. A numerical

simulation was presented to demonstrate the viability and

performance of the proposed method.
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APPENDIX I

PROOF OF LEMMA 2

Proof: The integral of (38) from t0 to t is obtained as

follows [17]

∫ t

t0

L2 (τ) dτ = −C2

∫ t

t0

ėn (τ) Sgn (en (τ)) dτ

= −C2

∫ t

t0

Sgn (en) d (en)

= −C2

∫ t

t0

d (|en|)

= −C2 (|en (t)| − |en (t0)|)
≤ C2 |en (t0)| . (59)

It can be easily seen that if C2 is chosen as positive, then

the inequality in (39) holds with

ξb2 , C2 |en (t0)| . (60)

REFERENCES

[1] J.-P. Richard, “Time-delay systems: An overview of some recent
advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667–
1694, 2003.

[2] T. P. Zhang and S. S. Ge, “Adaptive neural control of MIMO nonlinear
state time-varying delay systems with unknown dead-zones and gain
signs,” Automatica, vol. 43, no. 6, pp. 1021–1033, 2007.

[3] B. Chen, X. Liu, K. Liu, and C. Lin, “Novel adaptive neural control
design for nonlinear MIMO time-delay systems,” Automatica, vol. 45,
no. 6, pp. 1554–1560, 2009.

[4] S. Ge, F. Hong, and T. H. Lee, “Adaptive neural network control of
nonlinear systems with unknown time delays,” IEEE Trans. Autom.

Control, vol. 48, no. 11, pp. 2004–2010, 2003.
[5] D. W. C. Ho, J. Li, and Y. Niu, “Adaptive neural control for a class

of nonlinearly parametric time-delay systems,” IEEE Trans. Neural

Netw., vol. 16, no. 3, pp. 625–635, 2005.
[6] S. Ge, F. Hong, and T. H. Lee, “Robust adaptive control of nonlinear

systems with unknown time delays,” Automatica, vol. 41, no. 7, pp.
1181–1190, 2005.

[7] F. Zheng, Q.-G. Wang, and T. H. Lee, “Adaptive robust control of
uncertain time delay systems,” Automatica, vol. 41, no. 8, pp. 1375–
1383, 2005.

[8] C. Hua, G. Feng, and X. Guan, “Robust controller design of a class of
nonlinear time delay systems via backstepping method,” Automatica,
vol. 44, no. 2, pp. 567–573, 2008.

[9] S.-C. Tong and N. Sheng, “Adaptive fuzzy observer backstepping
control for a class of uncertain nonlinear systems with unknown time-
delay,” Int. J. of Automation and Computing, vol. 7, no. 2, pp. 236–246,
2010.

[10] H. Wu, “Adaptive robust control of uncertain nonlinear systems with
nonlinear delayed state perturbations,” Automatica, vol. 45, no. 8, pp.
1979–1984, 2009.

[11] B. Mirkin and P.-O. Gutman, “Adaptive output-feedback tracking:
The case of MIMO plants with unknown, time-varying state delay,”
Systems & Control Letters, vol. 58, no. 1, pp. 62–68, 2009.

[12] N. Sharma, S. Bhasin, Q. Wang, and W. E. Dixon, “RISE–based
adaptive control of a control affine uncertain nonlinear system with
unknown state delays,” IEEE Trans. Autom. Control, vol. 57, no. 1,
pp. 255–259, 2012.

[13] ——, “RISE–based adaptive control of an uncertain nonlinear system
with unknown state delays,” in Proc. IEEE Int. Conf. Decision and

Control, Atlanta, GA, USA, 2010, pp. 1773–1778.
[14] B. Xian, D. M. Dawson, M. S. de Queiroz, and J. Chen, “A continuous

asymptotic tracking control strategy for uncertain nonlinear systems,”
IEEE Trans. Autom. Control, vol. 49, no. 7, pp. 1206–1211, 2004.

[15] B. Mirkin, P. Gutman, and Y. Shtessel, “Continuous model reference
adaptive control with sliding mode for a class of nonlinear plants with
unknown state delay,” in Proc. American Control Conf., St. Louis,
MO, USA, 2009, pp. 574–579.

[16] H. K. Khalil, Nonlinear Systems, 3rd Edition. New York, NY, USA:
Prentice Hall, 2002.

[17] M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE

Systems. Boston, MA, USA: Birkhauser, 2009.


