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  Introduction 

 Chronic myeloid leukemia (CML) is a disease of hematopoietic 

stem cells, arising from a reciprocal translocation between 

the long arms of chromosomes 9 and 22 known as the Phila-

delphia chromosome [1]. Th is translocation causes a juxta-

position of the ABL gene from chromosome 9 and the BCR 

gene from chromosome 22 resulting in generation of the 

BCR/ABL fusion gene that encodes the BCR/ABL oncopro-

tein, which has constitutive oncogenic tyrosine kinase acti-

vity and undergoes cytoplasmic relocalization [2]. For many 

years CML was treated with imanitib, which is a selective 

tyrosine kinase inhibitor, for fi rst-line therapy. Imatinib was 

the fi rst tyrosine kinase inhibitor to show a strong activity 

in chronic and accelerated phases against BCR/ABL, while 

it is less eff ective in the blast phase of CML [3]. Its continuous 

administration was associated with the development of 

resistance, especially in the advanced phase or blast crisis 

[4]. In order to overcome imatinib resistance, more potent 

second-generation ABL kinase inhibitors were developed 

and have been used in clinical practice [5,6]. 

 Nilotinib is one of the most commonly used second-

generation tyrosine kinase inhibitors, and is a very eff ec-

tive drug in the treatment of sensitive or imatinib-resistant 

patients in the clinic [5]. Nilotinib was methodically and 

rationally designed to create a better topological fi t in the 

ABL kinase domain of BCR/ABL, resulting in enhanced 

BCR/ABL inhibition. It is an aminopyrimidine derivative 

of imatinib, structurally changed to eliminate two energeti-

cally unfavorable hydrogen bonds with replacement of the 

 N -methylpiperazine ring of imatinib by a trifl uoromethyl-

substituted phenyl group [7,8]. Unlike imatinib, nilotinib 

binds not only to the inactive conformation of ABL but also 

to the active conformation of ABL. On the other hand, unlike 

imatinib, nilotinib does not inhibit Src kinases [7]. 

 Although very high hematologic and cytogenetic 

responses have been obtained in nilotinib-treated patients, 

recent resistance observed in patients is a problem [9,10]. 

Multidrug resistance mechanisms are responsible for the 

overall poor effi  cacy of chemotherapy in CML [11]. 

 Th e main objectives of the present study were fi rst to deter-

mine the responsible mechanisms underlying resistance to 

nilotinib and to increase the sensitivity of cells resistant to 

nilotinib in order to defi ne new therapeutic targets for more 

eff ective treatment of CML.   

 Materials and methods  

 Reagents 
 Nilotinib was a gift from Novartis (Switzerland). It was 

dissolved in dimethylsulfoxide (DMSO) and 10 mM stock 

solution was prepared and stored at  �    20 ° C. The final 

concentration of DMSO did not exceed more than 0.1% in 
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culture. Primers were obtained from Eurofins (Germany). 

RPMI-1640, heat-inactivated fetal bovine serum (FBS), 

penicillin – streptomycin and trypsin-ethylenediaminetet-

raacetic acid (EDTA) were obtained from Biological 

Industries (Israel). An RNA isolation kit was obtained from 

Macherey-Nagel (Bethelem, PA). A DNA Gel Extraction 

Kit, Long PCR Enzyme Mix and Taq DNA Polymerase were 

obtained from Fermentas (Glen Burnie, MD). A dNTP set 

and DNA ladder were obtained from AMRESCO (Solon, 

OH). A caspase-3 colorimetric assay kit was obtained from 

BioVision (Mountain View, CA). An APO LOGIX JC-1 mito-

chondrial membrane potential detection kit was obtained 

from Cell Technology (Mountain View, CA). Bradford dye, 

Coomassie Blue, bovine serum albumin (BSA), trypan blue 

solution,  β -mercaptoethanol, DMSO and agarose were all 

obtained from Sigma (St Louis, MO).   

 Cell lines and culture conditions 
 K562 human CML cells were obtained from the German 

Collection of Microorganisms and Cell Cultures (Germany). 

Th e cells were cultured in RPMI-1640 growth medium contain-

ing 15% fetal bovine serum and 1% penicillin – streptomycin 

at 37 ° C in 5% CO 2 . Medium was refreshed every 3 days.   

 Generation of nilotinib-resistant K562 cells 
 Th e generation of resistant sub-lines was carried out in our 

research laboratory as described previously [12]. Briefl y, 

K562 human CML parental cells were maintained in liquid 

cultures and exposed to stepwise increasing concentrations 

of nilotinib, starting with a concentration of 1 nM. As a fi nal 

dose, 50 nM nilotinib was applied to cells, and subpopula-

tions of cells that were able to grow in the presence of 50 nM 

nilotinib were referred to as K562/NIL-50.   

 Measurement of changes in caspase-3 activity 
 A caspase-3 colorimetric assay kit (BioVision, Mountain 

View, CA) was used for the detection of caspase-3 activity. 

Th e activity assay was performed as described by the manu-

facturer. Briefl y, 1    �    10 6  cells were seeded in a six-well plate in 

2 mL growth medium in the absence or presence of increas-

ing concentrations of nilotinib for 72 h. Th en, drug treated 

and untreated cells were collected by centrifugation in a Fal-

con tube at 1000 rpm for 10 min. Th e supernatant was gently 

removed and discarded while the cell pellet was lysed by the 

addition of 100  μ L of cold lysis buff er for each sample. Th e 

cell lysate was incubated on ice for 10 min before centrifuga-

tion at 14 000 rpm for 1 min. Th en, the supernatant was trans-

ferred to a new microcentrifuge tube. Th e enzymatic reaction 

for caspase activity was carried out in a 96-well fl at bottom 

microplate that could be read with a microplate reader. For 

each reaction, 20  μ L of assay buff er (5 � ), 25  μ L of sample, 

50  μ L of sterilized water and 5  μ L of caspase-3 colorimetric 

substrate (DEVD-pNA) were mixed and incubated for 2 h 

at 37 ° C. Th e samples were read under a 405 nm wavelength 

by an enzyme linked immunosorbent assay (ELISA) reader 

(Multiskan Spectrum; Th ermo Electron Corporation, Fin-

land). After measuring protein concentrations by Bradford 

assay, enzyme activity levels were normalized to protein 

concentrations.   

 Detection of loss of mitochondrial membrane potential 
 Th e mitochondrion has a crucial role in the induction of 

intrinsic apoptosis via the loss of mitochondrial membrane 

potential (MMP). During this process, the electrochemical 

gradient across the mitochondrial membrane collapses. Th e 

reason for this collapse is thought to be the formation of pores 

in the mitochondria by dimerized Bax or activated Bid, Bak 

or Bad proteins. Activation of these pro-apoptotic proteins 

causes the release of cytochrome c into the cytoplasm. An APO 

LOGIX JC-1 Assay Kit (Cell Technology) was used to measure 

the loss of mitochondrial membrane potential in both K562 

and K562/NIL-50 cells as described by the manufacturer. 

 Briefl y, cells that had been induced to undergo apopto-

sis were collected by centrifugation at 1000 rpm for 10 min. 

Supernatants were removed, and 500  μ L of JC-1 dye (1%) 

was added onto the pellets. After incubation of cells for 

15 min at 37 ° C in 5% CO 2 , they were centrifuged at 1000 rpm 

for 5 min. Th en, 2 mL of assay buff er was added onto the 

pellets, and they were centrifuged for 5 min at 1000 rpm. 

All pellets were resuspended with 500  μ L assay buff er, and 

150  μ L from each of them was added into black 96-well 

plates in triplicate. Th e aggregate red form has absorption/

emission maxima of 585/590 nm, and the green monomeric 

form has absorption/emission maxima of 510/527 nm. Th e 

plate was read in these wavelengths by fl uorescence ELISA 

reader (Varioskan Spectrum; Th ermo Scientifi c, Finland). 

Finally, green/red (510/585) values were calculated to 

determine the changes in MMP.   

 Nucleotide sequence analyses of ATP binding site 
of ABL kinase domain in K562 and K562/NIL-50 cells 
 To determine whether a point mutation in the BCR/ABL 

adenosine triphosphate (ATP)-binding domain was respon-

sible for the resistance to nilotinib in K562/NIL-50 cells, 

the cDNA portion corresponding to the entire ABL kinase 

domain was sequenced. Total RNAs, isolated from K562 

and K562/NIL-50 cells, were converted to cDNA by reverse 

transcriptase enzyme. Th en, to amplify the ABL kinase 

domain of the BCR/ABL allele with forward primer BCR-F 

(5 ′ -TGACCAACTCGTGTGTGAAACTC-3 ′ ) and reverse 

primer ABL-R (5 ′ -TCCACTTCGTCTGAGATACTGGATT-3 ′ ), 

a long polymerase chain reaction (PCR) method was 

used. ABL-F (5 ′ -CGCAACAAGCCCACTGTCT-3 ′ ) as forward 

primer and ABLkinase-R as reverse primer were used for a 

second-stage PCR. After that, the fi nal PCR products were 

run on a 1% agarose gel at 90 V for 1 h and the ABL band was 

isolated from the gel by using a DNA Gel Extraction Kit as 

described by the manufacturer. Th e entire kinase domain was 

sequenced in the forward and reverse directions (Applied 

Biosystems 3130xl). Finally, the region including 863 bases 

was compared to the c-ABL known sequence (Gene Bank 

accession number: M14752).   

 Total RNA isolation and reverse transcriptase-PCR 
 Th e expression levels of ceramide synthase genes (CerS1 – 6), 

sphingosine kinase-1 (SK-1) gene and glucosyl ceramide 

synthase (GCS) gene were examined in K562 and K562/

NIL-50 cells. Total cellular RNAs were isolated using the RNA 

isolation kit (Macherey-Nagel). Th e recovered RNA con-
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centration was measured by Nanodrop ND-1000 (260/280 

and 260/230 ratios). One microgram of total RNA was 

reverse transcribed into cDNA using reverse transcriptase 

enzyme (Moloney Murine Leukemia Virus Reverse Tran-

scriptase; Fermentas). After 60 min incubation at 42 ° C, the 

reactions were stopped at 70 ° C for 10 min. Th e resulting 

total cDNA was used in a PCR to measure the mRNA levels 

of CerS1 – 6, SK-1, GCS, apoptosis genes, transporter genes, 

BCR/ABL and  β -actin as an internal positive control. Prod-

ucts of the PCR reactions were visualized under ultraviolet 

(UV) light after running them on 2% agarose gel electro-

phoresis including ethidium bromide at 90 V for 1 h. Primer 

sequences are shown in Table I.    

 Results  

 Involvement of mitochodria and caspase-3 activity 
in nilotinib resistance 
 As we demonstrated previously, K562/NIL-50 cells showed 

more than 10-fold resistance to nilotinib as compared to the 

parental sensitive counterpart. Th e inhibitory concentration 

value (IC 50 ) of nilotinib that inhibits growth by 50% in these 

cells was 35 nM and 386.5 nM for K562 and K562/NIL-50 

cells, respectively [12]. 

 In order to demonstrate the role of apoptotic cell death in 

nilotinib resistance, we performed apoptotic assays to detect 

the loss of mitochondrial membrane potential and changes 

in caspase-3 activity. 

 Treatment with 10 nM nilotinib for 72 h caused a signifi -

cant loss of MMP (about fi ve-fold), as measured by increased 

accumulation of the cytoplasmic monomeric form of JC-1, 

in parental K562 (Figure 1), but not in resistant K562/NIL-50 

cells (Figure 2). Moreover, there was only a 1.21-fold increase 

in loss of MMP in K562/NIL-50 cells in response to 50 nM 

nilotinib, while the same concentration of nilotinib induced 

a 20.9-fold increased loss of MMP in K562 cells. 

 Th e activation of pro-caspase-3 in parental and resistant 

K562 cells was measured using the caspase-3 activity assay. 

Treatment of K562 and K562/NIL-50 cells for 72 h with 10 nM 

nilotinib resulted in 1.24- (Figure 3) and 1.06-fold (Figure 4) 

increases in caspase-3 activity. In parallel with these results, 

50 nM nilotinib increased caspase-3 activity by 1.79- and 

1.30-fold in K562 and K562/NIL-50 cells, respectively. Th us, 

these data confi rmed that K562/NIL-50 cells exert signifi cant 

resistance to nilotinib-induced loss of MMP and caspase-3 

activation.   

 Expression levels of BCR/ABL in K562 
and K562/NIL-50 cells 
 Epression levels of BCR/ABL were determined in K562 and 

K562/NIL-50 cells by reverse transcriptase (RT)-PCR. Indeed, 

the data revealed that there was a signifi cant increase in 
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  Figure 2.      Percent changes in loss of MMP in K562/NIL-50 cells treated 
with nilotinib. Error bars represent standard deviations, and when not 
seen, they are smaller than the thickness of the lines on the graphs. 
MMP assays were performed in at least three independent experiments. 
Statistical signifi cance was determined using two-way analysis of 
variance, and  p     �    0.05 was considered signifi cant.  

  Figure 1.      Percent changes in loss of MMP in K562 cells treated with 
nilotinib. Error bars represent standard deviations, and when not 
seen, they are smaller than the thickness of the lines on the graphs. 
MMP assays were performed using triplicate samples in at least three 
independent experiments. Statistical signifi cance was determined using 
two-way analysis of variance, and  p     �    0.05 was considered signifi cant.  

  Table I. Primer sequences.  

 β -Actin-forward 5 � -CAGAGCAAGAGAGGCATCCT-3 �   

 β -Actin-reverse 5 � -TTGAAGGTCTCAAACATGAT-3 �   
GCS-forward 5 � -ATGACAGAAAAAGTA-3 �   
GCS-reverse 5 � -GGACACCCCTGAGTG-3 �   
SK-1-forward 5 � -CCGACGAGGACTTTGTGCTAAT-3 �   
SK-1-reverse 5 � -GCCTGTCCCCCCAAAGCATAAC-3 �   
CerS1-forward 5 � -CTATACATGGACACCTGGCGCAA-3 �   
CerS1-reverse 5 � -TCAGAAGCGCTTGTCCTTCACCA-3 �   
CerS2-forward 5 � -GCTGGAGATTCACAT-3 �   
CerS2-reverse 5 � -GAAGACGATGAAGAT-3 �   
CerS4-forward 5 � -TGCTGTCCAGTTTCAACGAG-3 �   
CerS4-reverse 5 � -GAGGAAGTGTTTCTCCAGCG-3 �   
CerS5-forward 5 � -TCCTCAATGGCCTGCTGCTG-3 �   
CerS5-reverse 5 � -CCCGGCAATGAAACTCACGC-3 �   
CerS6-forward 5 � -CTCCCGCACAATGTCACCTG-3 �   
CerS6-reverse 5 � -TGGCTTCTCCTGATTGCGTC-3 �   
Bax-forward 5 � -ACCAAGAAGCTGAGCGAGTGT-3 �   
Bax-reverse 5 � -ACAAACATGGTCACGGTCTGC-3 �   
Bcl-xL-forward 5 � -GGAGCTGGTGGTTGACTTTCT-3 �   
Bcl-xL-reverse 5 � -CCGGAAGGTTCATTCACTACT-3 �   
Caspase-3-reverse 5 � -GGTTAACCCGGGTAAGAATGTGCA-3 �   
Caspase-3-forward 5 � -CTCGGTCTGGTACAGATGTCGATG-3�
BcL-2-forward 5 � -AGATGTCCAGCCAGCTGCACCTGAC-3 �   
BcL-2-reverse 5 �   -AGATAGGCACCCAGGGTGATGCAAGCTT-3 �   
LRP-forward 5 � -CGCTGCTTGATTTTGAGGAT-3 �   
LRP-reverse 5 � -CGAGAATCACGCAGTAGTTG-3 �   
MRP1-forward 5 � -TAGAGGACTTCGTGTCAGCC-3 �   
MRP1-reverse 5 � -GTCCATGATGGTGTTGAGCC-3 �   
MDR1-forward 5 � -TACAGTGGAATTGGTGCTGGG-3 �   
MDR1-reverse 5 � -CCCAGTGAAAAAATGTTGCCA-3 �   
BCRP-forward 5 � -TACAGTTCTCAGCAGCTCTTCG-3 �   
BCRP-reverse 5 � -CAACTTGAAGATGGAATATCGAG-3 �   
BCR/ABL, 

B2B-forward
5 � -ACAGAATTCGCTGACCATCAATAAG-3 �   

BCR/ABL, 
CA3-reverse

5 � -TGTTGACTGGCGTGATGTAGTTGCTTGG-3 �   
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in expression levels of Bax gene in K562/NIL-50 cells as 

compared to the parental sensitive counterparts. However, 

there were no changes in expression levels of Bcl-2, Bcl-xL 

and Caspase-3 genes. Quantifi cation analysis of the expres-

sion levels of genes was conducted using the Quantitive1 

program. Th e results demonstrated that there were 2%, 3% 

and 25% decreases in K562/NIL-50 cells in the expression 

of Bcl-2, Bcl-xL and Bax genes, respectively, as compared to 

parental counterpart cells (Figure 7).   

 Expression levels of ceramide metabolizing genes 
in K562 and K562/NIL-50 cells 
 In order to determine the involvement of ceramide metab-

olizing genes in nilotinib resistance, expression levels of 

GCS, SK-1 and CerS family genes were analyzed. Th e data 

showed that there were signifi cant increases in expression 

levels of GCS and SK-1 genes in K562/NIL-50 cells when 

compared to parental sensitive counterparts, whereas 

there was no signifi cant change in expression levels of CerS 

genes (Figure 8). Th ere were 2.45- and 2.04-fold increases 

in expression levels of antiapoptotic GCS and SK-1 genes 

in K562/NIL-50 cells, respectively, as compared to parental 

sensitive cells (Figure 8).   

 Expression levels of transport family genes 
in K562 and K562/NIL-50 cells 
 In order to determine the role of transporter genes in nilotinib 

resistance, expression levels of MDR1, MRP1, BCRP and LRP 

genes were examined in K562 and K562/NIL-50 cells by RT-

PCR. Th e data showed that there were slight increases in expres-

sion levels of the MRP1 gene in K562/NIL-50 cells as compared 

to the parental sensitive counterparts (Figure 9). Interestingly, 

expression levels of BCR/ABL in K562/NIL-50 cells as com-

pared to their parental sensitive counterparts [Figure 5(A)]. 

Quantifi cation analysis of BCR/ABL gene expression was 

conducted using the Quantitive1 program, and the results 

showed that there was 3.85-fold increase in expression of the 

BCR/ABL gene in K562/NIL-50 cells, as compared to paren-

tal K562 cells [Figure 5(B)].   

 Sequence analysis in nilotinib-binding site 
of ABL kinase domain in sensitive and resistant cells 
 In order to determine whether mutations on the ABL kinase 

domain aff ect the binding effi  ciency of nilotinib, sequence 

analyses of the ABL kinase region were examined in K562 

and K562/NIL-50 cells. Th e data revealed that there were 

no detectable mutations at this region on BCR/ABL in 

K562/NIL-50 cells (Figure 6).   

 Expression levels of apoptosis related genes in K562 
and K562/NIL-50 cells 
 Expression levels of Bcl-2, Bcl-xL, Caspase-3 and Bax apop-

tosis regulating genes were analyzed in K562 and K562/

NIL-50 cells by RT-PCR (Figure 7). Th ere were decreases 
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  Figure 5.      Expression analyses of BCR/ABL in parental and resistant 
CML cells by RT-PCR (A). Quantifi cation of expression analysis of BCR/
ABL gene in K562 and K562/NIL-50 cells. Error bars represent standard 
deviations (B). Expression analyses were performed in at least three 
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  Figure 3.      Fold changes in caspase-3 activity in response to nilotinib 
in K562 cells. Error bars represent standard deviations, and when not 
seen, they are smaller than the thickness of the lines on the graphs. 
Caspase-3 activity assays were performed in at least three independent 
experiments. Statistical signifi cance was determined using two-way 
analysis of variance, and  p     �    0.05 was considered signifi cant.  
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  Figure 4.      Fold changes in caspase-3 activity in response to nilotinib in 
K562/NIL-50 cells. Error bars represent standard deviations, and when 
not seen, they are smaller than the thickness of the lines on the graphs. 
Caspase-3 activity assays were performed in at least three independent 
experiments. Statistical signifi cance was determined using two-way 
analysis of variance, and  p     �    0.05 was considered signifi cant.  
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MDR1, BCRP and LRP genes were down-regulated in K562/

NIL-50 cells using the Quantitive1 program.   

 Reversal of nilotinib resistance through inhibition 
of ceramide metabolizing genes in combination 
with nilotinib in K562/NIL-50 cells 
 In order to determine whether nilotinib resistance can 

be reversed by targeting ceramide metabolizing genes in 

combination with nilotinib, cell proliferation, changes in 

caspase-3 enzyme activity, and loss of MMP were exam-

ined. As shown in Figure 10, the GCS inhibitor, PDMP, or 

SK-1 inhibitor together with increasing concentrations of 

nilotinib decreased proliferation of K562/NIL-50 cells sig-

nifi cantly in a dose-dependent manner [Figures 10(A) and 

10(B)]. In order to confi rm reversal of nilotinib resistance, 

changes in caspase-3 enzyme activity were also investigated. 

While the data showed that nilotinib in combination with 

PDMP increased caspase-3 enzyme activity dramatically as 

compared to nilotinib or PDMP alone, there was a moderate 

increase in caspase-3 enzyme activity when cells were treated 

by nilotinib in combination with SK-1 inhibitor (Figure 11). 

Moreover, there were synergistic eff ects of PDMP and nilo-

tinib in terms of inducing apoptosis, which was shown by an 

increase in loss of MMP (Figure 12). 

 Similar results were obtained with the combination of 

nilotinib and SK-1 inhibitor. Th e same concentrations of 

nilotinib (20 and 50 nM) were applied to cells together with 

SK-1 inhibitor, which triggered a signifi cant increase in loss 

of MMP (Figure 12).    

 Discussion 

 CML has been a model disease since its discovery, because 

CML was the fi rst neoplasm found to be associated with a 

chromosomal translocation, known as the Philadelphia 

chromosome. Th is feature provided the means to study the 

molecular basis of CML, with the aim of leading to targeted 

and more eff ective treatment for CML. Subsequently, the 

availability of molecular targeted therapy has profoundly 

changed the management of CML and defi ned general ideas 

regarding cancer treatment [13]. 

 Imatinib was the fi rst tyrosine kinase inhibitor to show 

strong activity in the chronic and accelerated phases, while it 

is less eff ective in the blast phase of CML [3]. Unfortunately, 

the emergence of resistance is a major problem in CML 

treatment [14,15]. Th e second-generation tyrosine kinase 

inhibitors, including nilotinib, were designed to overcome 

this resistance. Nilotinib is now used as a fi rst-line treatment, 

with approval by the Food and Drug Adminsitration (FDA) 

since July 2010. However, there have been recently observed 

cases of nilotinib resistance in patients with CML. 

  Figure 6.      Nucleotide sequence analyses of ABL kinase domain of K562/NIL-50 cells.  
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An extensive search for the presence of all mutations in 

parental and resistant K562/NIL-50 cells using RT-PCR 

followed by direct sequencing failed to identify any of 

these mutations. These findings may show that resistance 

to nilotinib in these resistant human CML cells did not 

result from any mutation in the nilotinib-binding site of 

the ABL kinase domain. 

 On the other hand, BCR/ABL independent mechanisms 

have been reported as leading to resistance in various CML 

cells. Nilotinib resistance can be due to a failure to induce 

apoptosis. Signals inducing apoptosis may be blocked and/

or antiapoptotic gene overexpression can be observed in 

resistant cells. Th e Bcl-2 protein can block apoptosis induced 

by most chemotherapeutic agents [21]. Up-regulation of 

antiapoptotic Bcl-2 occurs by a Lyn-kinase-dependent 

mechanism [22]. Our results demosntrated that the apop-

totic Bax gene was relatively down-regulated, while there 

were no changes in the expression levels of Bcl-2 and Bcl-xL. 

Bax is a pro-apoptotic molecule which is responsible for the 

formation of pores on the outer mitochondrial membrane, 

resulting in a loss of mitochondrial membrane potential 

which activates caspases (-3, -7 and -9) and nucleases by 

cytochrome c release from the mitochondria [23]. Th ese 

data are in agreement with our study which showed that in 

nilotinib-treated parental human CML cells, there were sig-

nifi cant losses in MMP and increases in caspase-3 enzyme 

activity, resulting in a higher number of cells undergoing 

apoptosis. Th us, the pro-apoptotic eff ects of nilotinib may 

be explained by a rapid and sustained inhibition of BCR/

ABL, leading to induction of mitochondria-dependent 

apoptosis in parental cells. At steady state conditions, 

decreases were detected in loss of MMP and in caspase-3 

activity in resistant cells as compared to their parental sen-

sitive counterparts. Mitochondrial membrane potential and 

caspase-3 enzyme activity analyses revealed that although 

higher concentrations of nilotinib were applied, there was 

almost no loss of mitochondrial membrane potential and 

no increase in caspase-3 enzyme activity in resistant cells. 

 In addition, transporter-mediated tyrosine kinase inhibi-

tor effl  ux has been implicated as a possible mechanism 

for resistance to imatinib [24,25]. However, there has been 

signifi cant controversy in the fi eld regarding the potential 

of ABC transporters to confer drug resistance. Th ere are 

several studies showing that MDR1 and BCRP transporters 

are involved in nilotinib resistance as substrate or inhibitor 

[26,27]. One report described an interaction between nilo-

tinib and BCRP, suggesting that nilotinib is a BCRP substrate 

[27], while another study showed that at higher concentra-

tions, nilotinib reduced both MDR1 and BCRP activities [28]. 

Our results revealed that mRNA expression of MRP1 gene 

was up-regulated in K562/NIL-50 cells as compared to K562 

cells, indicating that MRP1 overexpression may be a mecha-

nism of nilotinib resistance. Although there are only a few 

reports regarding the role of MRP1 in drug resistance in the 

literature, Shen  et   al . showed that nilotinib reverses MRP7 

mediated paclitaxel resistance at a very high concentration 

(5  μ M) [29]. 

 Furthermore, we examined the role of bioactive sphingo-

lipids in the regulation of nilotinib resistance in human K562 

 In this study, the possible molecular mechanisms of 

nilotinib resistance were investigated in K562/NIL-50 CML 

cells, and increasing nilotinib sensitivity was examined by 

targeting SK-1 and GCS. 

 A similar approach was applied to obtain resistance in 

leukemic cells by our group and in some other previous stud-

ies [16,17]. Mahon and co-workers were able to develop nilo-

tinib-resistant AR230, LAMA84 and K562 cells [18]. However, 

the cells they developed were only 20 nM nilotinib-resistant 

cells. In our study we were able to generate 50 nM nilotinib-

resistant K562 cells, and to our knowledge, K562/NIL-50 cells 

are the most nilotinib-resistant cells according to the current 

literature. 

 It has been well documented that the degree of BCR/ABL 

expression appears to be directly proportional to the level 

of drug resistance [16,19]. In the present study, confi rming 

previous data, BCR/ABL was overexpressed signifi cantly in 

K562/NIL-50 cells as compared to parental sensitive coun-

terparts. Besides, Mahon  et   al . showed that resistance to 

nilotinib may be mediated by up-regulated expression of 

BCR/ABL [18]. 

 Th e main mechanism responsible for the development 

of resistance in CML is related to the point mutations that 

prevent the binding of inhibitors. Th is resistance mechanism 

was due to selection of cells with mutated BCR/ABL in the 

imatinib-binding domain in various CML cell lines [20]. 
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to antiapoptotic glucosyl ceramide and sphingosine-1 

phosphate, respectively. Th ere are several reports showing 

that SK-1 is overexpressed in distinct cancer types [31 – 34]. 

Besides, GCS overexpression has been observed in imatinib-

resistant human CML cells [35]. Another study supports the 

involvement of GCS in drug resistance, showing that overex-

pression of the GCS enzyme resulted in increased resistance 

to adriamycin in drug sensitive MCF-7 tumor cells [36]. 

In our study, we demonstrated that there were synergistic 

antiproliferative and apoptotic eff ects of nilotinib in com-

bination with GCS or SK-1 inhibitors. A decrease in expres-

sion levels of CerS1 that selectively regulates the synthesis of 

C 18 -ceramide was observed, while CerS2, CerS4, CerS5 and 

cells, as another BCR/ABL independent resistance mecha-

nism. Th e bioactive sphingolipid, ceramide, is involved in 

mediating antiproliferative responses via various diff erent 

mechanisms in human cancer cells [30]. It has been well 

documented that treatment with some chemotherapeutic 

agents results in increased generation and/or accumulation 

of endogenous ceramide either via activation of a  de novo  

pathway (CerS – 6 genes), or by increased activity of SMases 

[30]. However, any role for nilotinib in inducing the genera-

tion of ceramide in human CML cells has not been previously 

described. Here, the data showed that there were signifi -

cant increases in expression levels of GCS and SK-1 genes, 

which are responsible for converting apoptotic ceramides 
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CerS6 were still up-regulated in K562/NIL-50 cells. Th ese 

data are in agreement with a study showing that when CerS1 

was overexpressed [37], imatinib resistant cells had increased 

sensitivity to imatinib, suggesting that up-regulation of cer-

amide generation might help to improve the response to 

imatinib. However, the overexpression of CerS2, CerS5 and 

CerS6 did not cause any change in imatinib resistant cells 

[33]. According to these results, a decrease in expression of 

CerS1 may also be responsible for nilotinib resistance. 

 In summary, we have developed cells resistant to nilo-

tinib at very high concentrations, up to 50 nM. More impor-

tantly, these results show that ceramide metabolizing genes 

including GCS and SK-1 may be involved in the regulation 

of nilotinib resistance in K562 cells. A strong strategy 

for designing novel therapies for the treatment of CML 

could be targeting ceramide clearence genes together with 

inhibition of BCR/ABL.                             
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