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ABSTRACT

In this paper, we suggest averaging lateration estimates obtained using overlapped subgroups of distance
measurements as opposed to obtaining a single lateration estimate from all of the measurements directly
if a redundant number of measurements are available. Least squares based closed form equations are
used in the lateration. In the case of Gaussian measurement noise the performances are similar in
general and for some subgroup sizes marginal gains are attained. Averaging laterations method becomes
especially beneficial if the lateration estimates are classified as useful or not in the presence of outlier
measurements whose distributions are modeled by a mixture of Gaussians (MOG) pdf. A new modified
trimmed mean robust averager helps to regain the performance loss caused by the outliers. If the
measurement noise is Gaussian, large subgroup sizes are preferable. On the contrary, in robust averaging
small subgroup sizes are more effective for eliminating measurements highly contaminated with MOG
noise. The effect of high-variance noise was almost totally eliminated when robust averaging of estimates
is applied to QR decomposition based location estimator. The performance of this estimator is just 1 cm
worse in root mean square error compared to the Cramér-Rao lower bound (CRLB) on the variance both
for Gaussian and MOG noise cases. Theoretical CRLBs in the case of MOG noise are derived both for time
of arrival and time difference of arrival measurement data.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Localization is an important problem encountered in a diverse
area of applications such as finding the employees or utilities in
a working area, location aware services supplied to mobile phone
users, bioinstrumentation and communicating toys [1,2]. A popu-
lar method of localization is lateration where measured distances
from sensors to the point to be localized are used [3]. Some of the
lateration based methods require solving a set of nonlinear equa-
tions what is usually performed by some iterative procedures as
in the case of nonlinear least squares type algorithms in [4-6].
On the other hand, there are some other lateration based meth-
ods which reduce the original nonlinear problem into a linear one
making a closed form solution easily obtainable such as the least
squares-time difference of arrival (LS-TDOA) [7], least squares-time
of arrival (LS-TOA) [8,9] and the so-called ordinary least squares-
time of arrival (OLS-TOA) [5] location estimators. Another closed
form location estimator is based on Cayley-Menger determinants
and uses the geometric properties of tetrahedrons whose corners
are defined by the unknown location and three known locations
[10]. Some of the closed form location estimators reduce the non-
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linear problem partially to a linear system of equations whose
solution is obtained in terms of another unknown which is found
solving a quadratic equation. One of the resulting two solutions of
this quadratic equation is easily eliminated and substituting the so-
lution into the linear system of equations the location is estimated.
The time of arrival (TOA) based location estimator in [11], its QR
decomposition based version in [4] and another one able to uti-
lize more than necessary distance measurements [12,13] which is
in contrast with the former two estimators, belong to this class
of estimators. Although these methods have some performance
inferiority with respect to the iterative nonlinear methods, their
computational simplicity make them preferable in some applica-
tions where limited computational power is available.

One type of location estimation scenarios may supply more
than necessary distance measurements. In that case either all of
the measurements can be used at once to obtain a single loca-
tion estimate or subgroups of measurements can be selected to
obtain many estimates. In the latter, the final location estimate is
found as the average of the estimates. We will call this approach
as averaging laterations while the former one will be called as sin-
gle lateration. The Divide-And-Conquer (DAC) approach of [14] uses
averaging laterations with subgroups of distance measurements
which might overlap or not. Non-overlapping subgroups necessi-
tate a large number of measurements which property is not shared
by the choice of overlapping subgroups [8,15]. In [8], TOA-based


http://dx.doi.org/10.1016/j.dsp.2013.09.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:mustafaaltinkaya@iyte.edu.tr
http://dx.doi.org/10.1016/j.dsp.2013.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2013.09.004&domain=pdf

M.A. Altinkaya / Digital Signal Processing 24 (2014) 52-62 53

averaging laterations method with overlapping subgroups of size
three was given as an alternative to LS algorithm in finding an
unknown location in two dimensions. Recently, in [15], the QR de-
composition based TOA method of [4] was applied in regular or
robust versions of averaging with overlapping subgroups of mea-
surements. In fact, for fairness in overlapping subgroups, every
possible combination of total measurements with the chosen group
size is considered in [15] which is also the adopted method in this
work. On the other hand, every lateration-based location estimator
utilizing LS algorithm can operate in single lateration mode with
any redundant number of measurements. However, for estimators
which cannot handle excessive number of measurements which is
more than their nominal number such as the estimators of [11,4],
the adopted averaging laterations mode of operation seems to be
the best candidate in utilizing all of the available measurements
while assuring fairness among them.

In order to compare averaging and single lateration modes of
operation, a location estimator which can utilize both nominal
or more than nominal number of measurements is required. We
name this property as the scalability of the estimator. A good
example for non-scalable location estimators is the QR decompo-
sition based lateration technique in [4] which always uses three
distance measurements. Many of the location estimators having
closed form solutions are scalable such as LS solutions of TOA
and TDOA type problem formulations. In general, iterative loca-
tion estimators mainly solving nonlinear equations are scalable too.
However, closed form solution producing methods which trans-
form the nonlinear equation systems partially to a linear system of
equations, are not scalable with the exception of the methods in
[12,13]. Even though iterative methods are scalable, they are not
considered for averaging laterations since they are both computa-
tionally demanding already and their optimality will be disturbed
unless whole data is considered. So, in the first part of our study
we chose two TOA based and one time difference of arrival (TDOA)
based least squares (LS) estimators for investigating averaging es-
timates.

Simulation experiments in our study show that generally av-
eraging the estimates obtained with partial sensor data achieves
similar performance compared to the case of using whole data in
obtaining a single estimate when the measurements contain Gaus-
sian disturbances. However, when some of the measurements are
very noisy, the performance of a single lateration based estima-
tor deteriorates significantly. Such measurements which are sub-
stantially different from the other measurements are many times
called as outliers. The disturbing effect of outlier measurements
can be eliminated by a robust location estimator [16,17]. Robust
location estimators can be classified into two groups: outlier de-
tection based or robust estimation based [17]. Outlier detection
based methods eliminate detected outliers completely whereas ro-
bust estimation methods lessen their weights in the estimation.
For a detailed comparison of these methods, one can refer to [17].
As a robust estimation example, recently in [18], the least me-
dian of squared errors obtained in a TDOA based LS solution is
minimized over the set of every possible subgroup combination
of measurements. An outlier elimination procedure is applied in
[19] in order to eliminate outlier estimates obtained with mini-
mal subgroups of measurements and with an iterative nonlinear
LS solution based on first order Taylor series expansion of non-
linear localization equation. Then the final estimate is obtained as
the median of the qualified estimates. Still some other robust es-
timation solutions exist such as the genetic algorithm based TDOA
solution in [19] and the location estimate in [20] obtained by uti-
lizing the expectation maximization algorithm for removing outlier
distance measurements iteratively.

The main idea of this paper is to promote averaging laterations
as opposed to single lateration. Additionally, it is demonstrated that

the averager can be easily transformed into a robust version which
can handle outlier measurements. The averaging laterations ap-
proach in this paper can be considered as an extension of the
work in [8] of subgroups with three measurements for TOA based
lateration in two dimensions to any possible subgroup size of mea-
surements for lateration in three dimensions. For the localization
scenario with outlier measurements, the proposed robust method
can be classified as an outlier detection based location estima-
tor like one of the methods in [19] and the new robust averager
used for detecting outliers resembles to the modified trimmed
mean (MTM) averager defined in [21] which will be described
in Section 4. However in this work varying subgroup sizes for
measurements are investigated which was not considered before.
The outlier statistics was a general mixture model in [19]. Here
the statistics of measurement noise with outliers is modeled by a
mixture of Gaussians (MOG) distribution. Other than the formerly
described TOA and TDOA based LS location estimators, the non-
scalable QR decomposition based lateration technique in [4] is also
used in the investigation with MOG sensor noise. Furthermore, the
performances of TOA and TDOA based location estimators were
also compared to the theoretical performance bounds. Theoretical
Cramér-Rao lower bounds (CRLB) for TOA and TDOA based loca-
tion estimation with MOG sensor noise are derived.

The remaining part of the paper is organized as follows. In Sec-
tion 2, the linearized TOA and TDOA based LS location estimators
and the QR decomposition and TOA based location estimator [4]
are described. In Section 3, the averaging laterations method of
location estimation is described and its performance is investi-
gated by simulation studies. Section 4 considers location estima-
tion when the distance measurements have MOG noise contamina-
tion. In this section, first a robust version of averaging laterations
is proposed then the performance of this method is compared to
simple averaging laterations and single lateration. Section 5 in-
cludes a discussion on the proposed averaging technique, draws
conclusions from the work and suggests directions of further study.
Lastly, in Appendices A-C the derivations of CRLB both for the
cases of Gaussian and MOG sensor noise and both for TOA and
TDOA measurement data, are given.

2. The localization problem and some linearized estimators

We define a localization setup which will emphasize the main
motivation in the paper. So, let us assume that we have N sensors
located uniformly on a circle placed at the ceiling and the location
to be determined is placed on the floor. Note that this hypothet-
ical placement of the objects does not disturb the applicability of
the method in a problem of determining the position of an air-
craft using the distance measurements from several base stations
like in [11] or determining the location of employees in an office
environment like in [22].

The true distance from the ith sensor to the unknown location,
P = (Px, Dy, pz)T, can be given as

dy = 1D —aill =/ (px — X2 + (y —y2 + (pz—20? (1)

where a; = (x;, yi,z;)T is the location of the ith sensor and (-)T
denotes the transposition operation. The measurement is modeled
as

di =d, + 0i€; (2)

where €; is a zero mean Gaussian random variable with unity vari-
ance and oj is a constant. From a geometrical point of view three
and four measurements are required for 2-dimensional (2-D) and
3-D localization, respectively. The distance measurements are gen-
erally obtained indirectly, computing the distance traveled by an
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electromagnetic or acoustic wave between the sensor and the un-
known location in a measured time. In some cases, these time
measurements contain a common unknown time shift since the
common TOA or the common time of departure of the traveling
wave is not known. Then, the TDOA is known which in turn corre-
sponds to difference of distance measurements defined as

djj =d; —dj. (3)
2.1. TOA-based LS location estimation

Most of the linear location estimators are essentially based on
squaring (1) for two different values of i and subtracting one of
them from the other. So, when absolute distances that is distances
from the sensors to the unknown location are available, as an ex-
ample one can obtain

df —d? =2(xi —x1). (yi—y1). @i —z1))p+ajai—aja;  (4)
and defining the squared length of the sensor vectors as
ki=ala; fori=1,2,....N,

the linear TOA estimate of location can be obtained solving the LS
equation as

PLs-ToA = (ATA)_ll\Tb (5)
where

x1—x2) V1—Yy2) (z1—22)
A ) ) )

(x1 —xN) (Y1 —YN) (21 —2N)
2 —d?—ky+k

dlzv — d% —kn +kq
2.2. TDOA-based LS location estimation

When relative distances of the sensors to the unknown location
that is the differences of their distances relative to the distance of a
reference point, e.g. the first sensor, are known, one can construct
a set of N — 1 equations discarding the noise components in the
measurements as

(di1 +di,)* =di. (8)

Then one way of obtaining a linear estimate of location is first
to solve an LS equation to find an estimate in terms of the refer-
ence point and later using the constraint (1) in order to obtain the
unconditional location estimate [7,23].

Another way of solution is to obtain a joint LS estimate for the
unknown location and its distance to the reference point. Follow-
ing an easy manipulation a linear set of equations can be obtained

as follows [24]:
x1—=x2) V1—y2) (@1—2z2) da;
. . . . p
[dﬁ }

(x1 —xn) (y1—YN) (Z1—2n) dng

——
p/
A/
kz — k1 — d% 1
1 ,
= — : . 9
: (9)

kN — k] — dlz\]']

b

Then

N -1

Pls oo = (ATA) AT (10)
2.3. An alternative TOA-based LS location estimator

A modified version of TOA-based location estimate can be
obtained by using the mid-point of the sensor locations found
by averaging the coordinates of the sensors defined by a; =
(Xavs Yav, za)T as a reference point [5]. We form an N x 1 column
vector s whose ith component is given by
g:lw —d?)

2 1,av 1
where d; and d; 5y denote the measured distance from the ith sen-
sor to p and to a,y, respectively. Afterwards an N x 3 data matrix
D is formed as

X1 —Xav) (Y1 —Ya) (z1—2zav)
(%2 —Xav) (Y2 —Yav) (22— zav)

D= ) . ) . (11)
(XN —Xay) (YN —Yav) (2N —Zav)

The ordinary LS (OLS) estimate of p [5] is obtained as
N -1
Pos = (D'D)” D's, (12)

where s, =s + Dagy.
2.4. QR decomposition and TOA-based location estimator

Now, we consider the partially linearized TOA-based location
estimator in [4] which utilizes QR decomposition (QRD). Actually
this method is aimed for finding the intersection of n hyperspheres
in R". Since our observations are in R3 only the locations of 3
sensors can be used at each estimation. So, we start with

—N=Q[R} (13)
OT

where A is as defined in (6) with only three sensor positions. In
(13), Q R and 07 are a 3 x 3 orthogonal matrix, the 2 x 2 upper-
triangular coefficient matrix and a 1 x 2 zero vector, respectively.
Consequently, the location will be found as

pzq[§]+m (14)

where y is a 2-vector and z is a scalar. Since this translation and
rotation/reflection operations preserve the Euclidean length, the
distances of sensors to the unknown location become

ly—rjll5+2°=d3, j=2,3, (15)
and
Iyl + 2% = d (16)

where r; is the jth column of the matrix, R. Substituting the dis-
tance of the first sensor to the unknown location given by (16) into
(15) the linear system of equations

i 2L
r2 2 ||y2] |

is obtained where rj; is the (i, j)th element of R and, y; and y>
are the corresponding elements of the vector, y. Here c1 and c, are
given as
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1 .
c,-:i(d%—d%nrjn%), j=1,2. (18)

After solving the linear system in (17), the last coordinate of the
unknown location in the transformed system will be found as the
solution to the quadratic equation in (16) given as:

z=4,/d? — |yl3. (19)

Only one of the solutions above is valid. This solution can be easily
chosen using the constraints on (14) defined by the localization
problem.

3. The averaging method

When more than necessary distance measurements are avail-
able either all of the measurements can be used at once to obtain
a single location estimate as described in the previous section or
overlapping subgroups of measurements can be used to obtain
many estimates. In the latter, the final location estimate is found
as the average of those intermediate estimates

1 M
ﬁav = M Z 13;(7'11) (20)
m=1

where the available N distance measurements are used to obtain
overlapping subgroups with n members. Then, the total number of
estimates to be used in averaging, M, will be found as the number
of n combinations out of N given by [25]:

M:C,’f:(N):L. (21)
n (N —n)n!

This was also mentioned in [8] for location estimation in two di-
mensions where n = 3. Whether the subgroups of measurements
do overlap or not is of great importance and overlapping assures
the symmetry in selecting the measurements. Additionally, the to-
tal number of measurements is usually not large enough to make
selection without replacement possible.

3.1. Simulation study

Scalable closed form location estimators described in Sec-
tions 2.1, 2.2 and 2.3 are used to compare the performances of
the single lateration and averaging laterations methods of location
estimation defined in Section 1. Since obtaining general results is
desirable, one should consider random placement of sensors with
respect to the location to be estimated. This randomness can be
assured either moving the sensors randomly or changing the lo-
cation to be estimated. In this study, we preferred moving the
location to be estimated on a plane and keeping the location of
the sensors which are placed on some higher altitude, e.g. at the
ceiling, constant. Secondly, the structure of the sensor locations is
to be chosen if a structure in sensor placement is wanted. Real-
izing that an arbitrary placement of sensors would produce only
particular results, a structured sensor placement is preferred. Fur-
thermore since measurements from more sensors are wanted, for
any number of sensors, a fair placement which will assure an even
contribution from each measurement can be attained if the sensors
are placed on a circle.

The OLS and LS-TOA location estimators will successfully esti-
mate the location if the rank of the matrices A and D are three, re-
spectively. Correspondingly, the LS-TDOA location estimator needs
a rank of four for the matrix A’ since it needs to find one more
unknown parameter. For that reason none of the subgroups of the
sensor locations must be on a plane. Otherwise an uncertainty in
the estimation of the height coordinate would be present for any
method of location estimation; one estimate being on the floor and

the other one above the ceiling. This requirement of the model will
be ensured by introducing a random perturbation to the height of
the sensor locations.

In our simulations, the sensors are placed on a circle at the
ceiling which is 3 m high. The radius of the circle is 2 m. The
coordinate of the ith sensor is

a; = (xi, 4—xi2,3+}7,-)T (22)

where 7; is a zero mean Gaussian random variable with standard
deviation of 2 m. The standard deviation of the Gaussian noise in
the distance measurements is 5 cm. Actually, it is not true that
the sensors are placed on a circle because of the large variance in
their z-coordinates. But this fact does not affect the generality of
the selected sensor points. On the contrary, the estimation prob-
lem would be easier if the sensors were planary located. With a
slight modification in the algorithms for linearized LS estimators,
their 2-D versions can be obtained. In that case, firstly the x and y
coordinates of the unknown location will be estimated. After that
a quadratic equation is solved in order to find two z coordinates
where the one being below the plane of the sensors is chosen as
the true solution.

In order to decide what kind of simulations to conduct consider
the preliminary simulation results obtained with LS-TOA, OLS-TOA
and LS-TDOA location estimators given in Tables 1, 2 and 3, respec-
tively. In these tables results both with Gaussian and MOG mea-
surement noise are given. The tabulated results correspond to the
most advantageous unknown location which is p; = (0,0, 07 m
and p2 = (2,0,0)" m for LS-TOA and OLS-TOA and for LS-TDOA
location estimators, respectively. The tables also depict the CRLBs
which can be obtained using the procedures described in appen-
dices. As an example consider Table 1 and the results in it ob-
tained with Gaussian measurement noises. Although theoretically
four measurements are enough for obtaining an LS-TOA location
estimate, only with five or more measurements valid estimates
are obtained. This means that for comparing single and averaging
laterations methods at least a total of six distance measurements
are needed in order to have the minimum number of five mea-
surements in a subgroup. Furthermore, the subgroup size, n, also
affects the performance. As N gets large, averaging becomes more
advantageous compared to single lateration. In order to investigate
the dependence on the subgroup size more measurements than
the minimum applicable number are needed. In the sequel we
adopted using ten distance measurements for assessing that de-
pendence.

The results in Table 2 with OLS-TOA estimator are very simi-
lar to the ones in Table 1, obtained with LS-TOA method. For the
LS-TDOA method, the results in Table 3, depict both some simi-
lar and some dissimilar behaviors when compared to LS-TOA and
OLS-TOA estimators. With a subgroup size of n =N — 1 a similar
behavior is observed which means that as N gets large, the aver-
aging method becomes more advantageous, starting being superior
to single lateration at N = 11. On the other hand, its performance
with a nominal subgroup size of six measurements is still consid-
erably worse than the performance of single lateration even for the
very large number of measurements, N = 15, for which value the
total number of estimates in averaging, M, is very large already.
This number in turn is proportional to the increase in computa-
tional requirement. This means that with LS-TDOA estimator the
benefits to be obtained with averaging laterations method is not
worth of the required additional computational burden. So, we
preferred not using that estimator in the subsequent simulation
studies.

3.1.1. Performance of single lateration OLS estimator with 6 sensors
Firstly, OLS based laterations are performed with six sensors.
For this simulation only, the standard deviation of the Gaussian
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Table 1
RMSE of LS-TOA estimator (cm).
N Gaussian noise MOG noise
Single Averaging CRLB Single Robust averaging CRLB
n=N-1 n=>5 n=4 n=>5 n==6 n=7
4 4102 - - 8.87 4150 - - - - 8.98
5 41.25 1267 - 7.99 64.05 74.11 - - - 8.08
6 16.54 18.38 18.38 7.25 33.51 47.46 34.89 - - 7.36
7 12.72 12.52 15.09 6.68 26.99 36.53 25.95 27.52 - 6.79
8 11.19 10.85 11.82 6.30 25.36 31.04 20.33 25.76 25.71 6.41
9 10.42 10.02 10.74 5.89 24.45 30.99 16.43 23.60 25.71 6.00
10 9.84 9.44 9.43 5.60 22.66 27.96 11.45 17.24 23.25 5.71
11 9.36 9.00 8.76 5.35 21.32 23.94 9.51 12.80 19.39 5.47
12 9.05 8.70 8.14 5.12 20.75 18.72 8.41 10.38 15.13 5.24
Table 2
RMSE of OLS-TOA estimator (cm).
N Gaussian noise MOG noise
Single Averaging CRLB Single Robust averaging CRLB
n=N-1 n==6 n=4 n=>5 n==6 n=7
4 4102 - - 8.87 4150 - - - - 8.98
5 42.03 1267 - 7.99 62.68 74.11 - - - 8.08
6 15.30 18.08 18.08 7.25 32.15 47.46 33.83 - - 7.36
7 11.74 12.00 14.96 6.68 24.88 36.53 25.69 25.74 - 6.79
8 10.11 10.16 11.66 6.30 22.91 31.04 20.85 25.08 23.51 6.41
9 9.19 9.17 10.54 5.89 22.16 30.99 16.67 23.29 24.33 6.00
10 8.48 8.45 9.31 5.60 18.99 27.96 11.62 16.89 21.88 5.71
11 7.88 7.86 8.68 5.35 17.75 23.94 9.56 13.08 18.91 5.47
12 7.48 7.46 8.09 5.12 16.79 18.72 8.46 10.64 15.14 5.24
Table 3
RMSE of LS-TDOA estimator (cm).
N Gaussian noise MOG noise
Single Averaging CRLB Single Robust averaging CRLB
n=N-1 n=>5 n=>5 n==6 n=7 n=38
5 2765 - - 11.05 3019 - - - - 11.22
6 170.1 17750 - 10.00 227 289.3 - - - 10.16
7 74.06 97.52 97.52 9.20 97.40 167.8 98.98 - - 9.35
8 49.42 51.44 66.50 8.62 78.35 139.7 80.03 78.06 - 8.79
9 41.92 42.45 55.69 8.03 75.94 119.4 75.55 76.01 75.78 8.18
10 36.92 37.02 49.66 7.60 70.82 117.3 67.35 71.34 70.87 7.77
11 32.53 32.51 43.67 7.32 65.79 110.7 58.51 66.35 67.60 7.49
12 28.87 28.88 40.23 6.97 66.20 108.1 52.84 61.09 68.39 7.15
13 27.03 26.96 37.53 6.62 61.70 104.8 47.68 53.60 62.58 6.80
14 24.89 24.85 36.39 6.41 62.64 102.8 44.04 48.48 58.14 6.60
15 23.38 23.27 34.89 6.19 59.33 103.9 41.69 44.22 51.30 6.37

perturbation in (22) is 1 m. The locations to be estimated is a grid
of square shape with an edge-length of 4 m. The localization ex-
periment is repeated for 100000 different realizations of sensor
heights and distance measurements.

In the whole investigated area the estimates are generally un-
biased and the magnitude of the bias is smaller than 0.7 mm. So,
variance is more effective in the mean square error (MSE). That is
why the root MSE (RMSE) is chosen as the performance measure
for the estimates. In Fig. 1, the RMSE of location estimates obtained
with the single lateration method is plotted. The minimum RMSE
is obtained for a point which is approximately under the center of
the circle on which the sensors are located uniformly at the cir-
cumference. This minimum RMSE is 15.04 cm and the maximum
RMSE is 18.66 cm which is obtained at a point which is approx-
imately 2.83 m away from the projection of the mid-point of the
sensors on the floor.

Fig. 1 depicts that the RMSE performance of the single later-
ation location estimator is a function of the distance from the
projection of the mid-point of the sensors on the floor. This be-
havior is shared by the averaging laterations location estimator

which is not shown. So, in the sequel 2-D graphics is utilized
for comparing the performances of estimators. In the simulations,
the y-coordinate of the unknown location is set to zero and the
RMSE values of the estimators are plotted as a function of the
x-coordinate of the unknown location. The CRLB for the estimation
which can be found following the procedures in the appendices
are also shown in the subsequent figures.

3.1.2. Comparing performances of single lateration and averaging
laterations

The case of 6 distance measurements In Fig. 2 the performances of
single and averaging laterations are plotted when there are six
sensors. The RMSE of averaging laterations is approximately 2.6
cm larger than the one of single lateration. The handicap of the
averaging laterations method in this simulation was that the sub-
space gain in moving from N =5 to N =6 is very large compared
to the variance reduction of using the average of six different es-
timates. Since this effect is expected to be large below a critical
subspace size, increasing the number of measurements beyond a



M.A. Altinkaya / Digital Signal Processing 24 (2014) 52-62 57

RMSE (cm)

020020, %%
QRLRTATr>
SRR XXREIRHLAIRAL KL
S e s
‘sgs::\:.:o\:.‘;“ S R e e

<
SRR
SRS
SRS
SRR
IR, 0‘\:‘::

S % 5 5
17.0 S B
16.0
R -2.0
20 -1.5
0.5
1.0 15 1.0
unknown y-coordinate (m) 15 20 20 unknown x-coordinate (m)
- -2.0
20 15
1.0 S -2 15 1.0
. 15 . _ i
unknown y-coordinate (m) 20" 2.0 unknown x-coordinate (m)

Fig. 1. RMSE of OLS location estimate (6 distance measurements, 100000 noise re-
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Fig. 2. RMSE of OLS location estimate versus the x-coordinate of the unknown loca-
tion (py =0 m, 6 distance measurements, 10000 noise realizations).

critical value is important in order to make a fair comparison of
the single and averaging laterations methods.

The case of 10 distance measurements In order to investigate the situ-
ation when there is a sufficiently large number of measurements in
the sense of available subspace dimension, the number of sensors
is increased to ten. In this case, there are more than one possi-
ble ways of averaging. The averaging can be performed among the
estimates obtained with five-tuples, six-tuples, seven-tuples, eight-
tuples or nine-tuples of distance measurements. We can give the
number of estimates used in averaging by n combinations out of
10, C), defined in (21), where n=5,...,9. In Fig. 3, the RMSE
performances of the single and averaging laterations are plotted

0.12
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Fig. 3. RMSE of OLS location estimate versus the x-coordinate of the unknown loca-
tion (py =0 m, 10 distance measurements, 10000 noise realizations).

as a function of the x-coordinate of the unknown location. The
figure depicts that averaging OLS lateration estimates of five sen-
sors and six sensors result in larger RMSE values compared to the
case of single lateration with ten sensors. However, starting with
the average of OLS estimates with seven distance measurements,
the averaging slightly improves the estimation performance. The
best performance is obtained for a subgroup size of eight measure-
ments. Increasing the size of the subgroups to nine decreases the
performance slightly which is still better than the estimate with
single lateration.

4. Non-Gaussian distance noise and robust averaging

Sometimes the noise component in the distance measurements
can diverge from Gaussianity. This event can be a consequence of a
contemporary failure of a certain sensor or a disturbance in mea-
surements or an erroneous transfer of the measurements. One way
of modeling such an outlier is to adopt a MOG noise model for the
distance measurement:

di =dy, + (1 — q)oi€i +q(Loy)é; (23)

where ¢; and §; are zero mean Gaussian random variables with
unity standard deviation, q is a positive real number which is
much smaller than one and L is a large number, e.g. 100. Then the
distance measurement will have a Gaussian contamination with
a nominal standard deviation oj. Occasionally, the additive noise
will come from a Gaussian distribution of much higher standard
deviation compared to the nominal one. In such a scenario, any es-
timator which is a function of a measurement vector containing a
large error in one or more components will produce a more noisy
location estimate compared to the estimators relying on purely
nominal Gaussian noise contaminated vectors. When multiple lo-
cation estimates obtained with subgroups of total measurements
are available, the estimates that are based on subgroups containing
an outlier will be highly erroneous. On the other hand, the esti-
mates that are based on purely nominal Gaussian noise contam-
ination will exhibit nominal errors. Instead of simple arithmetic
averaging, a robust averaging operation which discards the out-
liers of the estimates can attain approximately the performance of
the final location estimates obtained when no outliers are present.
Robust methods are known for offering successful results in the
case of data with outliers [16].
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In this work, we adopt an outlier detection based robust
method and for that we suggest a robust averager that follows
the steps below in order to decide whether to use a particular
estimate in averaging or not:

1. Obtain simple arithmetic average of estimates;

2. Order the estimates according to their distance from the aver-
age;

3. Discard the estimates whose distances are farther away from
the average compared to a certain multiple of the median dis-
tance.

This averager resembles to the MTM averager defined in [21]
and later also formulated in [26]. Adopting the formulation in [26]
we can express our robust averager as:

M A
N) YN Embyy

rob-av — an\le £ (24)
where
Em:{l if ym < 6 median(y;) forie1... .M (25)
0 else
and
v = o —pav |-

Here 6 denotes a user defined constant factor which determines
whether or not a particular estimate will be counted in the robust
average when multiplied by the median distance from the centroid
of estimates. Instead of the centroid the original MTM in [21,26]
was using the median of 1-D location parameter values.

4.1. Simulations with non-Gaussian data

In the simulations with MOG distance noise the nominal stan-
dard deviation of the Gaussian noise in the distance measurements
is 5 cm as before but with 0.01 probability this standard deviation
becomes 1 m.

Again some preliminary results with LS-TOA, OLS-TOA and LS-
TDOA location estimators in the case of MOG measurement noise
are given in Tables 1, 2 and 3, respectively. These tables show that
again a minimum number of five measurements are needed for
reasonable estimates for TOA based estimators whereas this num-
ber is six for LS-TDOA based location estimator. These minimum
subgroup sizes are also important for the tabulated results of ro-
bust averaging. Since a smaller subgroup size is more advantageous
as will be explained in Section 4.1.2, the smallest RMSE values in
the case of LS-TOA, OLS-TOA and LS-TDOA estimators are obtained
for these minimum subgroup sizes. Considering the last line of Ta-
ble 1, LS-TOA based estimator with the proposed robust averaging
attains an RMSE of 8.41 cm which is only 3.17 cm larger than the
CRLB when N =12 and n = 5. OLS-TOA exhibits similar perfor-
mance and LS-TDOA based estimator achieves its best performance
in the case of N =15 and n = 6. Note that CRLB values in the
MOG noise cases are only slightly larger than the case of Gaussian
noise. However, the performance of the estimators significantly de-
teriorate with single lateration and averaging laterations methods
utilizing ordinary arithmetic averaging. The subsequent simulation
studies investigate appropriate choices to regain this performance
loss with robust averaging applied in averaging laterations.

4.1.1. Comparison of simple and robust averaging

In Fig. 4, RMSE results of LS-TOA location estimator are plotted.
Without averaging the minimum RMSE is smaller than 10 cm in
the Gaussian noise case and it increases to 22 ¢cm in the MOG case.
The simple arithmetic averaging of (20) brings no good. However

0.3 T T T T T

€ 0.2} | —*+— Gaussian, single i
~ —&— MOG, single

) —— MOG, av. 5

= —&— MOG, rob.av.5, med X1

@ 0.15} J

—<— CRLB h
[M/B/E/E/

0-1’w’

‘ ‘ N4 i i
0 0.5 1 15 2 2.5 3
x—coordinate of the unknown location (m)

Fig. 4. RMSE of LS-TOA location estimate versus the x-coordinate of the unknown
location (Gaussian, MOG, MOG averaging with 5 sensors and robust MOG averaging
with 5 sensors median times trimming factor one, py, =0 m, 10 distance measure-
ments, 10000 noise realizations).

the robust averager makes the estimator attain a minimum RMSE
value which is smaller than 12 cm, a performance only 2 cm worse
than the one in pure Gaussian noise contamination. The CLRB for
Gaussian measurement noise which is 5.60 cm for the coordinate
p1=(0,0,0)T m is also plotted in this figure. The difference of the
CRLBs for Gaussian and MOG noises is indistinguishable as shown
in Tables 1, 2 and 3. So, only one of the CRLB curves is plotted in
the figures for the sake of clarity of the illustration.

4.1.2. Dependence on the size of subgroups

The effects of subgroup size are investigated next. Firstly, let us
define the probability P(H;) as the probability that i of the mea-
surements come from the Gaussian pdf of high variance. Then

P(Ho) = C}°(1 — 9)'°¢° = 0.99'° ~ 0.9, (26)
and
P(H1)=C}°1-q)%9=10x0.99"" x 0.1~0.1. (27)

Given the condition that one of the ten measurements comes from
the Gaussian pdf of high variance, the number of five-tuples which
does not contain that sample is Cg. Since the total number of five-
tuples is C;O. the probability that a subgroup contains the sample
having high variance, given that one of the measurements comes
from the pdf with high variance, can be given as

Cs
P(Rs | Hy) = (1 - W) =05 (28)
CS

where the event {R;} corresponds to the case that subgroups of
size j contain the sample having the high variance. Similarly, one
can find the corresponding conditional probabilities for subgroups
of size 6 and 7, as 0.6 and 0.7, respectively.

In Fig. 5 the RMSE curves of LS-TOA location estimator with
different subgroup sizes in robust averaging are shown. The best
performance is achieved with a subgroup size of 5 distance mea-
surements which attains an RMSE value of less than 12 cm, only
less than 2 cm worse compared to the case of Gaussian sen-
sor noise and single lateration. With a subgroup size of 6 and 7
measurements, the lowest RMSE values are 17 cm and 23 cm, re-
spectively. Note that, with subgroup size of 7 measurements, the
performance is even worse than the one of the single lateration
estimator. These performances are in accordance with the order of
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Fig. 5. RMSE of LS-TOA location estimate versus the x-coordinate of the unknown
location (Gaussian, MOG, MOG robust median times trimming factor of one with 5,
6, 7 sensor averaging, py =0 m, 10 distance measurements, 10000 noise realiza-
tions).
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Fig. 6. RMSE of LS-TOA location estimate versus the x-coordinate of the unknown
location (Gaussian, MOG, MOG robust median with 5 sensor averaging and median
trimming factor of 1, 1.5 and 2, 10 distance measurements, 10000 noise realiza-
tions).

the calculated probabilities of the subgroups containing one dis-
tance measurement of high variance.

4.1.3. Dependence on the trimming factor of robust averager

Fig. 6 shows the effect of changing the threshold on the dis-
tances from the average of the estimates in robust averaging. Again
a subgroup size of 5 is chosen for the distance measurements. The
thresholds applied to the estimators are 1, 1.5 and 2 times the dis-
tance of the median of distances. Note that a threshold factor of
1 corresponds to trimming, i.e. discarding, the estimates that are
farther away from the arithmetic average compared to the median
value of the sorted distances from the average. The higher that
factor, the farther away estimates from the arithmetic average of
estimates are taken into account. The best performance is achieved
when the trimming factor is one.

TOA-based LS estimators considered in this study were suit-
able for investigating several parameters in averaging laterations
method. But they share the property that their performance is
significantly worse compared to theoretical lower bound on the
variance of estimates. So, the performance of QRD based closed
form but non-scalable estimator is investigated next.
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Fig. 7. RMSE of QRD location estimate versus the x-coordinate of the unknown loca-
tion (Gaussian, MOG, MOG robust median with trimming factor of one, 10 distance
measurements, 10000 noise realizations).

4.1.4. Robust averaging for QRD based location estimator

The QRD based location estimator cannot use more than three
measurements at once. However, it can use subgroups of size three
formed from those measurements. So, it is inherently, an averaging
laterations type location estimator when N > 3.

The performance of the QRD location estimator is shown in
Fig. 7 for the cases of Gaussian and MOG data. In the Gaussian
noise case the estimator achieved an RMSE of smaller than 7 cm,
which is only 1 cm worse than the CRLB [28] when x-coordinate
of the unknown location is zero. The final QRD location estimate is
obtained as the average of C;O intermediate estimates. In the case
of MOG distance measurement noise its performance gets signif-
icantly worse, as much as 12 cm RMSE for x = 0. When robust
averaging is applied, it reaches nearly the performance in the case
of Gaussian noise which is approximately 6.6 cm RMSE at x=0 m
and 8.6 cm RMSE at x =3 m. In this figure also the CRLB curves
in the cases of Gaussian and MOG noises are shown. The CRLB
when the noise in distance measurements comes from a MOG
distribution is only slightly larger than the CRLB in the Gaussian
case. However, Figs. 4-7 show that the effect of MOG noise on
the performance of considered estimators is significant unless it is
mitigated with a suitable technique such as the considered robust
averaging.

In [15], for the same problem the QRD based location estimator
with standard o-trimmed-mean («-TM) averaging was used. That
robust averager was discarding % of estimates farthest away from
the arithmetic average or centroid of them. Note that for 50% of
trimming, which means keeping the estimates with distances that
are smaller than or equal to the median distance from the centroid,
that averager is equivalent to the MTM robust averager in (24) with
0=1.

Calculation of the CRLB for the Gaussian and MOG contamina-
tion of distance measurements are given in Appendices A and B.

5. Discussion and conclusion

In order to consider averaging in lateration based location es-
timation, the first requirement is that the size of the subgroups
formed from the measurements should be large enough that a fur-
ther increase in that size brings little subspace gain compared to
the variance reduction which will be offered by averaging esti-
mates. In the simulations with TOA-based LS estimators, averaging
estimates formed by five measurements performed significantly
worse than the single lateration estimate of six measurements, but
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starting with a subgroup size of seven measurements, the contri-
bution of subspace gain was smaller which made averaging advan-
tageous.

When the noise in measurements was Gaussian with a reason-
able variance, the gain offered by averaging was limited. However
obtaining a group of estimates offer the possibility of classifying
those estimates easily as being useful or not. This type of clas-
sification is more difficult for sensor measurements. In particular,
when some of the measurements can contain a noise component
of high variance, single lateration methods and simple arithmetic
averaging of lateration estimates are severely affected, increasing
the RMSE from 10 cm in Gaussian noise case to 22 cm in the MOG
noise case used for modeling occasional high variance of the mea-
surement noise. On the contrary, the proposed robust averaging of
lateration estimates method was very effective in eliminating that
occasional noise, making the RMSE as low as 12 cm.

In the MOG noise case a smaller subgroup size of estimates
was more successful, which was required in order to have a large
proportion of subgroups not contaminated by a noise component
of high variance. The non-scalable QRD-based location estimator
which is more successful compared to the considered TOA-based
LS location estimator was utilized for comparing simple arithmetic
and robust averaging in the Gaussian and MOG noise cases. The
performance of that estimator in MOG noise with robust averaging
was indistinguishable from its performance in Gaussian noise with
simple averaging, both of which were just 1 cm worse than the
CRLB. This behavior is expectable since the CRLBs in the Gaussian
noise case and in the MOG noise case which are derived in Appen-
dices A and B, respectively, are not distinguishable for all practical
purposes.

Now, let us discuss the computational complexities of the es-
timators in this work. For an overdetermined linear system of m
equations and n unknowns, the complexity of the LS algorithm is
about order of 0 (mn?) [27] which means that for 3-D location es-
timation by lateration using N sensors the LS-TOA and OLS-TOA
methods have a complexity of O(9N) whereas the complexity of
LS-TDOA based estimator is O (16N), neglecting the decrease in the
number of equations due to subtracting equations and assuming
that N is sufficiently large. On the other hand, the complexity with
QRD is approximately O(2mn?). So, the complexity of the QRD
based method in (13) is CQ’O(54). For the LS-TOA and OLS-TOA
methods where averaging laterations lead to similar performance
as single lateration when N = 10 and subgroup size is seven, we
have a computational complexity at the order of C}OO(Q x 7) and
for the robust averaging with N =10 and subgroup size n =5, the
computational complexity is about C;OO(Q x 5).

Finally, let us mention some possible directions for future re-
search which can focus on outlier detection procedures together
with or separately from studies on the measurement noise nature.
In this work, the parameter 6 defining the distance threshold from
the centroid for rejecting the outliers was chosen empirically to as-
sure good rejection performance in a worst case scenario. A future
study can be optimizing the value of this parameter for a given
MOG noise statistic. Another possible research direction might be
to consider tracking of an object. In that case, more severely con-
taminated measurements can be tolerable while detecting the tar-
get and this will affect the outlier detection procedure and require
a corresponding adaptation.

Appendix A. The CRLB for TOA model with Gaussian noise in
distance measurements

When N measured distances obey (1) and (2), assuming in-
dependence of the measurements and identical variance, o2, the
joint probability density function (pdf) of distance measurements
conditioned on the unknown location is given as [7]:

1 \N 1 & 5
f(dlp)=<ﬁ> exp[—w—Z;(d,-—np—a,-n) } (A1)

For finding the CRLB the partial derivative of the natural logarithm
of this pdf with respect to the components of p will be found. One
finds

dIn(f(d 1 N (di — de.
W) 1ot

oD ) (A2)

i=1 ti

The other partial derivatives are found similarly. So, the Fisher in-
formation matrix (FIM) [28] can be given as:

- E[(alnmd | p))><31n<f<d|p)>>T]
= .
op ap

The CRLB for the variance of the location estimate will be found
as:

(A3)

3
var(p) > Y [l (A.4)

i=1

Appendix B. The CRLB for TOA model with MOG noise in distance
measurements

When N measured distances obey (1) and (23), assuming inde-
pendent and identical pdf for the distance measurements with the
same nominal Gaussian variance, o2, the pdf of distance measure-
ments conditioned on the unknown location will be given by:

1-¢q
V2o
q 1
V2rlo { 2(L0)2(
Since the noise components of the distance measurements are
independent, their joint pdf conditioned on the unknown location

is obtained as the product of the individual conditional pdfs and
one can obtain

din(f@d|p) _ (@i [p) , , dIn(fd|p)

fdilp) =

1
exp{—zg—z(di— ||p—ai||)2}

+ di — ||p—3i||)2}- (B.1)

dDpx 0Px dDpx (B2)
Let us express (B.1) as
i1 =— [(1 —q)exp{—i(di - ||P_ai||)2]
\/ﬁo’ 202
Aia
+d p{——z(di—np—ainf”. (B.3)
L 2(Lo)

Then one can find

dIn(f(d; | p))
0px

_ 1 A Ai,2 di _dti ) (B4
" (Ai1+Ai)o? [( i+ ?>( d, >(px _Xl)]' 4

We use this result in (B.2) and then using (A.3) the FIM is obtained.
The CRLB follows easily putting FIM into (A.4).
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Appendix C. CRLB for TDOA under MOG measurement noise
Let us assume that there are N measurements but due to an
unknown common constant in each of these measurements, the

differences of distances are known obeying

di —dy =dy; — di, + (1 — q)oi€i +q(Lo7)5;

— (1 - o161 — q(Lo1)dy. (c1)
Define

d=[(d—d) (d3—dy) (dy—dn]" (C2)
and

d =[d, —de,) (s —dr,) (dey —de)]" (€3)

where {d;, i=1,...,N} and {d;, i=1,..., N} denote noisy and
noiseless distance measurements defined in (1) and (2), respec-
tively. Since each measurement comes from a MOG distribution,
each element of the vector d’ is the sum of two variables with
MOG pdf. However a more advantageous representation of the
same vector is a mixture of multivariate Gaussian pdfs. So, the like-
lihood function can be given as

2N
F@p) =Y mo(@n"TK)™?
1=0
x exp[—%(d/ —d) K (d — d;)}. (C4)

A particular mixture probability 7 (I) can be obtained by counting
the number of ones in the binary representation of the number L.
I =0 corresponds to the case that all measurement noises come
from the nominal Gaussian pdf with variance o2, and | =5 means
that d; and d3 have variance 202, Denoting the number of ones
in the binary representation of [ as ny, the probability 7 (I) is given
by:

() =Q1-gN g,

As an example, 7(0) = (1 — q)N and 7 (3) = (1 — q)N2¢2. Again,
for finding the CRLB the partial derivative of the natural logarithm
of this pdf with respect to the components of p will be found. One
finds
dIn(f(d" |p)

dpx

N_ / - x—Xi X
X hO@ — )T (B - )

(C.5)
N_
=0 hO)
where
1
h() = w11~ exp{—g(d’ —d)) "1 (d - dé)}
and
2N 1 -1
B— Yo h(DK,
= ? .

=0 h)
The other partial derivatives are found similarly leading to:
al d

op

where

DPx—X2 _ Px—X1 Dx—XN _ Px—X1
(", a, ) (G d, )

_ by—Y2 _ Py—»1 Py—YN _ Py—)1
G=|( di, dey ) ( dey dey )
Pz—23 _ pz—21 . z—ZN __ Pz—Z1
(°a, a, ) S )

Substituting (C.6) into (A.3) one finds FIM as
I, = E[GB(d' —d})(d' —d,) B'G]

and CRLB is obtained as in (A.4). Note that for Gaussian measure-
ment noises B reduces to

N-1 -1 - -1

-1 (N-1

K1= (C.7)

: - . -1
-1 -1 (N=1)
and FIM becomes
I, = E[GK ' (d —d)(d —d)) ' K'G"].

If the random component in the z-coordinates of the sensors are
removed FIM reduces to

I =GK'G"

which is the same as the FIM found in [7].
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