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This article proposes a systematic approach for validating the trajectories generated
by a motion planning method in presence of obstacles for parallel manipulators having
less than 6 degrees of freedom (d.o.f.s). The planning algorithm is based on combining
a quick random search algorithm together with an optimization method, which aims to
obtain feasible and reliable trajectories. The validation approach uses a probabilistic
method, which includes Kalman filtering of experimental data. Experimental tests have
been carried out by operating a Cassino Parallel Manipulator (CaPaMan) prototype
at LARM in Cassino. Results are reported and discussed to show the effectiveness of
the proposed approach to generate and validate suitable collision-free trajectories for
parallel manipulators.
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1. INTRODUCTION

Autonomous precise manipulation among obstacles is a great challenge
and represents a valuable tool for numerous tasks. For instance, surgical robot
applications will benefit from the development of manipulators capable of avoiding
collision with different elements involved in surgery (Lueth and Bier, 1999).
Considerable research activity has been carried out in order to obtain optimal paths
with serial robots, and the corresponding literature is very rich (Barraquand and
Latombe, 1991; Berenson et al., 2009; Bohlin and Kavraki, 2000; Ceccarelli et al.,
1996; Da Graça et al., 2010; Fang and Dissanayake, 1998; Gu and Ceccarelli,
2012; Khatib, 1986; Lahouar et al., 2006; Lin et al., 1983; Ong and Gilbert, 1998;
Saramago and Valder, 2001; Saramago and Ceccarelli, 2004; Savavanan et al., 2008;
Shin and Mckay, 1986; Simeon et al., 2000).

For instance, a procedure to determine a cubic polynomial joint trajectory
through an algorithm for minimizing the traveling time, subject to physical
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constraints on joint velocities, accelerations, and jerks has been proposed in
Lin et al. (1983). A solution to the problem of minimizing the power consumption
of moving a serial robotic manipulator along a specified end-effector path subject
to input torque/force constraints, by taking into account the dynamics of the
manipulator has been presented in Shin and Mckay (1986). A neural network-
based method for time-optimal trajectory planning has also been considered in
Fang and Dissanayake (1998). In Saramago and Ceccarelli (2004), a path planning
strategy that takes into account actuating energy has been developed. In Savavanan
et al. (2008), an evolutionary algorithm is applied in order to obtain collision-
free trajectories for the end effector. An evolutionary computation for the motion
planning of a redundant manipulator has been considered in Da Graça et al. (2010).
In Berenson et al. (2009), a random search algorithm for a 3 degree of freedom
(d.o.f.s) serial robot has been described. Similarly, attempts have been made to
address the path planning of robots having parallel architecture (Carbone et al.,
2008; Dash et al., 2005; Dasgupta and Mruthyunjaya, 2000; Merlet, 2001; Sen et al.,
2003). Nevertheless, it is still missing a systematic approach to generate optimal
collision-free trajectories for parallel manipulators with less than 6 d.o.f.s. In fact,
these types of manipulators have a very narrow workspace. Additionally, there
might be singularities within the workspaces that are not reachable or must be
carefully avoided due to control problems (Ceccarelli, 2004; Castelli et al., 2008; Itu
and Pisla, 2009; Liua and Maa, 2010; Merlet, 2000; Pisla et al., 2012).

This article proposes a systematic approach for validating the trajectories
generated by a motion planning method that provides collision-free optimal paths
for parallel robots having less than 6 d.o.f.s in presence of obstacles. After that,
validation test have been implemented by taking into account the values measured
by set of sensors. In validation tests, values of outstanding variables are not directly
available and it is necessary to estimate them from the data provided by sensors.
But, sensors and/or the input signals are affected by a significant uncertainty so that
deterministic techniques do not provide enough tools to estimate the system state
(Maybeck, 1979). Therefore, it is necessary to use probabilistic approaches. Several
probabilistic methods have been developed to cope with these problems (Grewal
and Andrews, 2002; Gomez-Bravo et al., 2007; Kalman, 1960; Schiele and Crowley,
1994). The most known technique is the Kalman Filter (KF) (Kalman, 1960) and
the Extended Kalman Filter (EKF) (Gordon et al., 1993; Ribeiro, 2004). The KF
provides an optimal estimation of the system state, but only when linear systems and
Gaussian noises are involved. For nonlinear systems, the EKF can be used, which
approximates the system by its first order linearization.

In this article, the general collision-free motion planning and its basic
characteristic are described in Section 2. Section 3 reports a case of study of
the proposed path planning procedure to obtain collision-free optimal trajectories
for the parallel manipulator Cassino Parallel Manipulator (CaPaMan) that has
been designed and built at Laboratory of Robotics and Mechatronics (LARM) in
Cassino (Ceccarelli, 1997, 2010; Hernandez-Martinez et al., 2010; Liang et al., 2009).
Section 4 proposes a systematic approach for validating the computed collision-free
trajectories as based on a suitable Kalman filtering in order to decrease the sensors
uncertainty. Moreover, Section 5 describes the experimental set-up and tests that
have been carried out by operating CaPaMan parallel manipulator. Experimental
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data have been processed by means of the proposed systematic approach. Finally,
theoretical and experimental data are compared.

2. COLLISION-FREE MOTION PLANNING

A systematic approach for computing collision-free optimal trajectories for
parallel robots needs to take into account different aspects, such as presence, size,
and shape of obstacles; number of d.o.f.s that can be controlled at same time;
movable ranges, maximum reachable velocities, accelerations, and jerks; control
speed (clock rate), safety issues (Brancati et al., 2007; Yan et al., 2010).

The technique applied in this article presents specifics peculiarities when
comparing with other similar approaches. Thus, different to the method proposed
in Savavanan et al. (2008), where the collision test takes only into account the end-
effector trajectory, the method applied in this article considers possible collision of
the whole manipulator. In Da Graça et al. (2010), the collision test is implemented
in the workspace, however, only 2D simulated representation are considered.
On the contrary, in this approach realistic 3D models are considered and real
experiments have been performed. In Berenson et al. (2009), a random search in the
configuration space is developed, but no optimization procedure is implemented.

The proposed motion-planning algorithm focuses attention on obtaining
collision-free trajectories in the joint space �. The dimension of � will be equal to
the manipulator d.o.f.s. The proposed method attempts to increase the reliability
of the trajectories by optimizing the distance to the obstacles and the length of
the path, both in the configuration space. At the same time, the trajectory has
to accomplish the constraints imposed by the mechanical characteristics of the
manipulator.

The solution addressed in this article is based on the assumption that the
manipulator will evolve in a known scenario. The task of the robot will be specified
as a set of configurations (the task configurations – T.C.s) that the tool carried by
the manipulator has to reach (position and orientation of a target). Additionally,
the scenario will be described as a set of obstacles distributed along the Cartesian
workspace of the robot. The proposed approach has to determine the collision-free
sub-space ��f ∈ ��, i.e., the set of configurations in which no collision exists. Thus,
the planning method has to provide a sequence of joint configurations (a joint path)
�, accomplishing � ∈ �f .

This procedure can be suitable, for instance, for surgery applications.
However, the requirements and limitations in the operating surgical field will depend
on the type of procedure as it is stated, for example, in Bozovic (2008); Rosen et al.
(2011). Then, the proposed technique can be applied in those situations in which
the scenario (the patient and the surgical instrument positions) can be defined prior
to the operation. Additionally, no changes in the obstacles distribution are expected
and an optimal motion is desired. If that is the case, T.C.s would represent different
points over the patient that the tool would have to reach in order to perform the
surgical task. Then, considering the inverse kinematics model, the T.C.s are turned
to a set of task-points (T.P.s) in the joint space that the manipulator has to reach.
After that, a controller will make the manipulator joints follow the joint path so
that the robot accomplishes the predefined task. The flow-chart in Fig. 1 illustrates
the above-mentioned general procedure.
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Figure 1 Flow chart of the general planning/control approach.

The first step of the proposed technique involves generating the joint matrix �
that contains information about the regions of the joint space that will not present
collision with the obstacles of the scenario (i.e., �f ). Then, the information on
collisions is transferred from the Cartesian to the joint space. At first, the proposed
algorithm uses a mechanism for collision detection based on a discrete description
of the Cartesian space and manipulator geometry. The manipulator is described
by means of a set of prisms defined by surfaces and edges. At a later time, points
regularly spaced will represent those edges and surfaces (the cluster points Cp). In
this way, the manipulator will get defined by a spotted set of Cp being defined by
three Cartesian coordinates. At same time, a grid matrix for the Cartesian space (the
Cartesian matrix � ) is defined. Each element of this matrix represents a portion of
the space, whose value is defined according to

�ijk = ���x� y� z	� =
{
1 if �x� y� z	 is occupied by an obstacle

0 otherwise
(1)

Given a manipulator’s configuration, �h, the collisions detection can be
performed by applying the equations of the direct kinematics to each one of the Cp.
Using these equations, it is possible to know the Cartesian clusters’s positions at the
joint configuration �h�

hCp�x� y� z	). Then, the following free collision configuration
condition can be derived.

2.1. Collision-Free Configuration Condition

Let a manipulator be geometrically defined by k cluster points Cp, let �h be
a configuration of a 
-grid representation of the manipulator’s joint space �, and
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� the Cartesian matrix of the manipulator’s environment. Then, �h accomplishes
�h ∈ �f if and only if

k∑
l=1

��hCp�x� y� z	l� = 0 (2)

The collision detection can be implemented by checking the cells of the
Cartesian matrix associated to each of the robot cluster position. From (2), if only
one hCp is located in an occupied area, it means that this configuration presents a
collision. Thus, it is possible to use � to determine �. An iterative algorithm has
been implemented, testing each configuration against collision. The flow chart in
Fig. 2 illustrates the above-mentioned steps.

Figure 2 Flow chart describing the Joint Matrix generation procedure.
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Once the joint matrix � has been obtained, and considering the T.P.s as
via-points, the optimum-planning algorithm will provide an optimum feasible path
(Fig. 1). The planning algorithm is based on generating optimal joint paths by
means of a random generation’s algorithm (LaValle and Kuffner, 1999), represented
by the “Rapidly Exploring Random Trees” (RRT), along with an optimization
method provided by Genetics Algorithms (G.A.).

The general idea is to built a initial population of nonoptimal free collision
trajectories provided by RRT, and apply the G.A. in order to provide a solution
that improves a fitness function (Gomez-Bravo et al., 2009). The G.A. apply the
typical procedures of this technique (cross, mutation, evaluation, and selection) over
the initial population. The fitness function that has been proposed for evaluating a
joint path � = ��1� � � � � �m
 is:

J��� = �+
m∑
i=1

d��i��i+1�+ ki · � (3)

The first component � has the mission of penalizing the existence of collision
in accordance with (1):

� =
{
� if ���	 > 0

0 otherwise
(4)

Thus, if one of the configurations presents collision, the joint path will be
discarded. The second component of the fitness function is the summation of
two terms for the m configurations that composes the evaluated trajectory. The
term d��i��i+1� represents the Euclidean distances between each two consecutive
configurations. The term ki weights the proximity to the obstacles using the
following expression:

ki =
{
1 if �i > �

0 otherwise
(5)

where �i is the distance from the configuration �i to the nearest collision
configuration. Then, the fitness function will increments a value of � each time a
configuration lays too close of a possible collision (i.e., when �i is lower than ��.

According to this fitness function, the algorithm will supply the shorter
trajectory that is far enough to the obstacles, both in the joint space. It is worth
highlighting that, shorter path in the joint space represent less effort and energy
consumption as the motion of the actuator are shorter. Likewise, being far from the
obstacles in � means that not only the end effector but also the whole manipulator
is taken into account for avoiding collision.

In Section 4, the previously mentioned general procedure is implemented with
a specific case of study by referring to the parallel manipulator CaPaMan.
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3. PROBABILISTIC TECHNIQUES FOR EXPERIMENTAL VALIDATION

3.1. Probabilistic Approach

The state estimation problem using probabilistic techniques can be formulated
according to Ribeiro (2004). If (9) is the model of a non-linear and time-variant
system,

Xk+1 = f�Xk� uk� wk�
(6)

Zk = h�Xk� vk�

where

• k denotes the time instant
• X is the state vector.
• f�� � �� defines the system dynamics.
• u is the inputs vector.
• w is the vector that models the system error sources.
• Z is the sensor measurements vector.
• h�� � �� defines the sensor model.
• v is the vector that models the sensor measurement error sources.

The problem consists in obtaining the best estimation of Xk that minimizes the
error for some given criteria.

From the Bayesian point of view, the system propagates the probability
density function (PDF) of the state vector, conditioned on the sensor measurement
data. That is, a function that defines the probability of a specific state vector being
the real state of the system given the data provided by the sensor. More formally,
the PDF can be specified by

P�Xk �Z1 � � � Zk� u0 � � � uk−1� (7)

This expression defines the likelihood of being X, the real state at the time instant
t = k, knowing the sensor measurement until t = k and the system inputs until
t = k− 1. Given this PDF, the state estimation is calculated by minimizing some
criteria, as the mean, the mode, or the median (Ribeiro, 2004). Usually (Grewal and
Andrews, 2002), linear relations have been used for modeling the evolution of the
measurement provided by a sensor. In this case, a traditional Linear Time Invariant
(LTI) representation is considered as

Xk+1 = AXk + Buk +Gwk
(8)

Zk+1 = CXk + vk+1

where wk is a matrix representing the uncertainty of the model and vk is a matrix
modeling the natural noise of the sensor. Both will be modeled as zero mean
Gaussians variables, with covariance matrices R and Q, respectively.

These equations are a particular case of Eq. (6), when linear relation
are involved. This model will be completely observable due to the sensor
measurements (Z).
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3.2. Kalman Filtering

The Kalman Filter (KF) (Kalman, 1960) is a set of mathematical equations
that supplies a computationally efficient state estimation of a linear system exposed
to Gaussian noise and uncertainties. This estimation minimizes the mean quadratic
error using the state system model and the sensor measurements. The filter
algorithm is divided in two phases: prediction and correction. In the first one, the
evolution of system state is predicted at time instant k+ 1 using the data (state,
input, and covariance matrices) available at instant k. In the second one, this
prediction is corrected with the sensor measurement at time instant k+ 1.

The following equations denote the prediction phase

X̂∗
k+1 = AX̂k + BUk

(9)
P̂∗
k+1 = AP̂kA

T +GQGT

where X̂∗
k+1 is the predicted value of the estate at the time instant k+ 1, P̂k is the

covariance matrix of the estate components estimated at the time instant k, and P̂∗
k+1

is the predicted covariance matrix at the time instant k+ 1.
The following equations represent the correction phase

Kk+1 = P̂∗
k+1C

T�CP̂∗
k+1C

T + R�−1

X̂k+1 = X̂∗
k+1 + Kk+1�Zk+1 − CX̂∗

k+1� (10)

P̂k+1 = �I − Kk+1C�P̂
∗
k+1

where Kk+1 is known as the optimal Kalman gain, that allow obtaining the estimated
value X̂k+1. Likely, P̂k+1, the final estimated covariance matrix, is also calculated
from Kk+1.

The KF is only optimal when the equations in (9) are linear. For nonlinear
systems the EKF can be used, but it is necessary to linearize the system (Grewal
and Andrews, 2002) and the estimate is not optimal.

4. A CASE OF STUDY OF COLLISION-FREE MOTION

In the following, a case of study is presented by applying the procedures
in Figs. 1 and 2 to CaPaMan parallel manipulator. The CaPaMan prototype has
been already successfully tested for several applications, including the experimental
evaluation of earthquake effects by means of a set of 9–12 accelerometers data, as
reported in Carvalho et al. (1999); Selvi and Ceccarelli (2010). The proposed task,
defining a sequence of T.C.s is shown in Fig. 3(a). This figure illustrates CaPaMan
and the tool moving through the T.C.s T.C.1, T.C.2, T.C.3, and again T.C.1.
The T.C.s have been selected so that the tool has to move around a cylindrical
obstacle. Obviously, direct motion between the configurations will cause collisions.
In Fig. 3(b), the trajectory followed by the end of the tool in the Cartesian space
is represented with a continuous black line. It is to note, how this trajectory avoids
colliding with the obstacle. The trajectory keeps within a circle which radius is
6 cm, far from the obstacle. This proposed path planning illustrates the capability
of the proposed method for providing free collision paths even if the selected
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Figure 3 Results of collision-free motion planning for CaPaMan: (a) task configurations; (b) Cartesian
trajectory of the tool; (c) CaPaMan joint space and the joint path and (d) joint variables evolution.

T.C. lay very close to the obstacles. Figure 3(c) illustrates the joint space and the
joint path provided by the G.A. Figure 3(d) presents the evolution of the parallel
manipulator joints variables. The dashed lines show the moments in which the
correspondent T.P. is reached. The time required by the planning algorithm to
obtain this trajectory was an average of 12 sec with a 2.93GHz Intel Core i3.

5. EXPERIMENTAL VALIDATION OF THE PLANNED TRAJECTORY

A laboratory test-bed has been set-up for validating both the proposed collision-
free motion planning and the proposed validation procedure. The test-bed consists
of CaPaMan prototype together with suitable accelerometers that have been located
beneath the movable plate. In particular, four 3-axial accelerometers have been
properly installed at points P1 (P1x, P1y, and P1z), P2 (P2x, P2y, and P2z), P3 (P3x,
P3y, and P3z), and P4 (P4x, P4y, and P4z) as shown in Fig. 4. The values of the linear
accelerations can also be used for the calculation of all the components of both the
angular accelerations and angular velocities for a 3D motion of a rigid body. For
this purpose, the above redundant set of 12 linear accelerations allows a close-form
direct calculation of all the components of the accelerations and angular velocities for
a 3D motion of a rigid body, as demonstrated, for example in Peters et al. (2005) and
Zappa et al. (2001). Moreover, the proposed symmetric set-up gives the possibility to
minimize the position error in attaching the sensors to the movable plate.
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Figure 4 Location and orientation of accelerometers: (a) a scheme and (b) a photo of the sensors
installed on CaPaMan.

The previously mentioned sensors are connected to a 5V power supply and to
a National Instruments acquisition board, as described in the scheme of Fig. 5. The
controller of CaPaMan has been synchronized with the acquisition board to obtain
a synchronized measurement during the operation of CaPaMan. The control of the
CaPaMan has been achieved by writing a suitable routine in agent communication
language (ACL), a programming language that is a dedicated language of the
CaPaMan controller.

A suitable virtual instrument has been developed in Lab View environment to
manage the signals coming from the sensors. Then, the measured acceleration data
from the accelerometers have been used to estimate the accelerations of the point H
at the centre of the movable plate and the plate angular velocities.

The acceleration of a point P fixed on a rigid body with a position r can be
expressed as reported, for example, by Schopp et al. (2009), in the form.

aP = aB + �B × r+ �B × ��B × r� (11)

Figure 5 A scheme of the proposed test-bed.
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Figure 6 Point P in Frames OB and OF.

where acceleration aB, the angular velocity �B, and the angular acceleration �B
are described for the relative movement of the rigid body OB with respect to the
fixed frame OF. The terms of the equation �B × r can be described as tangential
acceleration and �B × ��B × r� as centripetal acceleration (Fig. 6).

In order to calculate the acceleration as measured by a sensor that is attached
at position r within a body, the sensitivity axis s and the sensor’s metrological signal
offset a0 must be added in above equation

aS = sT �aB + �B × r+ �B × ��B × r��+ a0 (12)

This can be written in vector form as

aS = cz + a0 (13)

where

c =



sx
sy
sz

szry − syrz
sxrz − szrx
syrx − sxry

−�syry + szrz�
−�sxrx + szrz�
−�sxrx + syry�
sxry + syrx
sxrz + szrx
syrz + szry



and z =



aB�x
aB�y
aB�z
�B�x
�B�y
�B�z
�2

B�x

�2
B�y

�2
B�z

�B�x�B�y

�B�x�B�z

�B�y�B�z



(14)
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by using four sensors with totally 12 axis it is possible to directly compute the
quadratic terms of �B as well as aB and �B. So, the system becomes linear and can
be written in matrix vector form as

y = Mz + a0S (15)

where

y =


aS1
aS2
���

aS12

 � M =


cS1
cS2
���

cS12

 and a0�S =


a0�S1
a0�S2
���

a0�S12

 (16)

By inverting A it is possible to calculate the relative body movement held by
vector z for a given measurement vector y applying

z = M−1�y − a0S� (17)

The values obtained from the sensors are filtered by applying a KF, so that a
robust estimation of the acceleration and velocity components are obtained.

For this purpose, the filter has been conveniently configured in order to be
applied to each accelerometer. Thus, the vector state of the accelerometer i, is
composed by the values measured along each axe and the corresponding rate of
change, i.e., X1i = Pix, X2i = �amix/�t � � � , and so on. Accordingly, each state vector
has six components. The model for predicting the future values is built with the
matrices:

A =


1 �t 0 0 0 0
0 1 0 0 0 0
0 0 1 �t 0 0
0 0 0 1 0 0
0 0 0 0 1 �t
0 0 0 0 0 1

 � B = 0 (18)

As was mentioned before, the uncertainty associated to the prediction is
modeled by a zero mean Gaussian distribution, by defining the covariance matrix Q
and the matrix G:

Q =


�2
m1 �m1 · �m2 0 0 0 0

�m1 · �m2 �2
m2 0 0 0 0

0 0 �2
m1 �m1 · �m2 0 0

0 0 �m1 · �m2 �2
m2 0 0

0 0 0 0 �2
m1 �m1 · �m2

0 0 0 0 �m1 · �m2 �2
m2

 � G = I

(19)

where I is the identity matrix, and �m1 and �m2 are the standard deviations
associated to the prediction uncertainty.
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Table 1 Standard deviations

�m1 (m/s2� �m2 (m/s3� �px (m/s2� �py (m/s2� �pz (m/s2�

0.01 0.05 0.5 0.5 0.5

The uncertainty of the virtual sensor has been modeled using a zero mean
Gaussian distribution function with the covariance matrix R. Thus, the observation
model is achieved by defining C and R:

C =
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

� R =
�2

ax 0 0
0 �2

ay 0
0 0 �2

az

 (20)

where �ax, �ay, and �az are the standard deviations of the noise of each of the
accelerator axes.

The characterization of the probabilistic model of the uncertainty gave the
values in Table 1.

According to this, from each accelerometer i, a set of estimated values (aix, aiy,
and aiz� are obtained. The value of the acceleration of the point H, and the angular
velocity of the rigid body is calculated by using the equations:


−a1x − a2x

2−a1y − a2y

2−a1z − a2z

2

 =


aHx

aHy

aHz

�
�X = ±

√
1
2

(aHY − aP2Y + aHX − aP1X
r

+ aP3Z − aHZ

L

)
�Y = ±

√
1
2

(aP1X − aHX − aHY − aP2Y
r

+ aP3Z − aHZ

L

)
�Z = ±

√
1
2

(aHY − aP2Y − aHX − aP1X
r

− aP3Z − aHZ

L

)
(21)

The previously mentioned equations have been derived from the theorem of
accelerations of a rigid body and described in Eqs. (13)–(17).

Several experiments have been made in order to test the trajectories provided
by the proposed approach. In the experiments, an obstacle is placed under the
CaPaMan and motor position data needed for the trajectory avoidance is sent
to motors with the CaPaMan motor controller by using the ACL programming
language. Experiments have been made at different speeds. Twenty-one points on
the trajectory are used for the motion. Time differences between the points are
experimented as 0.09 sec, 0.45 sec, and 0.9 sec to see the motion at different speeds.
The acceleration values are collected by the accelerometers on the mobile platform
through the National instruments USB-6020 data acquisition card. Experimental
data are processed and exported as excel files.

The experimental results refer to the manipulation motion described in
Section 2. Along these movements, the tool describes a closed path around an
obstacle, without presenting collision. Videos of the operation of CaPaMan have
been made and verified at slow speed to validate the operation of CaPaMan moving
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Figure 7 Snapshots of CaPaMan operation during a path to avoid a cylindrical obstacle: (a) first
configuration; (b) second configuration; (c) third configuration; (d) fourth configuration; (e) fifth
configuration; and (f) sixth configuration.

the tool along the desired path. In particular, Fig. 7 shows a photo sequence of
CaPaMan during this operation with the relative positions of the movable plate of
CaPaMan, the tool, and a cylindrical obstacle. Six significant configurations have
been identified (Fig. 7) to show how the tool can move smoothly from the initial
to the final configuration without having the tool (or the CaPaMan itself) too
close to the obstacle. Any collision with the obstacle is also avoided as planned.
Several similar tests have been carried to validate the effectiveness and engineering
feasibility of the proposed path planning strategy.

Experimental data have been acquired from the accelerometers on the mobile
platform of CaPaMan during the motion shown in Fig. 7. Figures 8 and 9 show the
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Figure 8 Acceleration components versus time for performing the planned path in 18 sec: (a) measured
acceleration along x-axis data before applying KF; (b) comparison of theoretical and measured
acceleration along x-axis data after applying KF; (c) measured acceleration along y-axis data before
applying KF; (d) comparison of theoretical and measured acceleration along y-axis data after applying
KF; (e) measured acceleration along z-axis data before applying KF; and (f) comparison of theoretical
and measured acceleration along z-axis data after applying KF.

plots of the data that have been acquired versus time. In particular, Fig. 8 presents
the components of the acceleration of the centre of the movable plate when the
path was performed in 18 sec. In Fig. 8(a), (c), and (e), the non-filtered values of
the acceleration components, calculated from Eq. (12) are represented. Figures 8(b),
(d), and (f) show the plots of the values that have been estimated with the KF
in comparison with the theoretical data. In Fig. 9(a), (c), and (e), the nonfiltered
values of the angular velocity components, calculated from Eq. (12) are represented.
In Fig. 9(b), (d), and (f), the values estimated with the KF versus the theoretical
values are illustrated. The comparison of theoretical and experimental results show
very good match of shapes and values of both accelerations and angular velocities.
These results demonstrate feasibility and usefulness of the proposed procedure for
a systematic experimental validation of the CaPaMan operation. The proposed
procedure for a systematic experimental validation can be easily extended to any
parallel manipulator provided that suitable experimental data can be made available
by means of a proper sensor set-up.
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Figure 9 Angular velocities components versus time for performing the planned path in 18 sec: (a)
measured angular velocity along x-axis data before applying KF; (b) comparison of theoretical and
measured angular velocity along x-axis data after applying KF; (c) measured angular velocity along
y-axis data before applying KF; (d) comparison of theoretical and measured angular velocity along
y-axis data after applying KF; (e) measured angular velocity along z-axis data before applying KF;
and (f) comparison of theoretical and measured angular velocity along z-axis data after applying KF.

6. CONCLUSIONS

A planning algorithm has been implemented to compute optimal collision-
free trajectories for the parallel manipulator CaPaMan. A suitable systematic
validation approach has been proposed as based on a suitable test-bed and
proper processing of experimental data. Experimental tests have been carried out
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by operating CaPaMan at LARM in Cassino. Experimental results have been
processed as based on the proposed validation procedure. Results show that suitable
collision-free trajectories have been generated for CaPaMan. The experimentally
measured trajectories very well match the trajectories that have been theoretically
computed at path planning stage in terms of positions, velocities, and accelerations.
Additionally, the proposed validation approach has been found suitable for
systematically validating the operation of CaPaMan parallel manipulator. Results
can be conveniently extended to any parallel manipulator provided that suitable
experimental data can be made available by means of a proper sensor set-up.
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