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Comparison of stochastic search
optimization algorithms for the laminated
composites under mechanical and
hygrothermal loadings

Levent Aydin and H. Secil Artem

Abstract

The aim of the present study is to design the stacking sequence of the laminated composites that have low coefficient of

thermal expansion and high elastic moduli. In design process, multi-objective genetic algorithm optimization of the

carbon fiber laminated composite plates is verified by single objective optimization approach using three different

stochastic optimization methods: genetic algorithm, generalized pattern search, and simulated annealing. However,

both the multi- and single-objective approaches to laminate optimization have been used by considerably few authors.

Simplified micromechanics equations, classical lamination theory, and MATLAB Symbolic Math toolbox are used to obtain

the fitness functions of the optimization problems. Stress distributions of the optimized composites are presented

through the thickness of the laminates subjected to mechanical, thermal, and hygral loadings.
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Introduction

Laminated composites are widely used in aerospace,
mechanics, and other branches of engineering applica-
tions due to their inherent tailorability. The materials
used in aerospace structures like antenna, satellites, and
missiles should have such features as low density, high
stiffness and low coefficients of thermal and moisture
expansions.1 Carbon fiber reinforced polymer compos-
ite materials can satisfy these requirements with an
appropriate stacking sequence.2 In order to optimally
design laminated composite materials with such a
stacking sequence, it is necessary to perform some of
the optimization methods. Design and optimization of
the laminated composite materials are one of the most
interesting subject of engineering because of that tradi-
tional optimization techniques may not be applied to
composites or may be used only in limited cases. A
detailed discussion of various optimization methods
and algorithms can be found in3 for general application
and in4 for composite design problems. Due to the com-
plexity of the composite design and optimization prob-
lems, the use of stochastic optimization methods such

as genetic algorithm (GA) and simulated annealing (SA)
algorithm are appropriate. There are a few papers con-
sidering comparison of stochastic search algorithms in
structural mechanics5,6 and review of optimization meth-
ods in composites.7,8 Optimization of laminated compos-
ite materials for only some specific problems have been
studied by many researchers by using multi-objective9

,–12

or single objective approaches.13
,–21 However, Costa

et al.22 have considered both of multi-objective and
single-objective approaches to laminate optimization
problems.

Genetic algorithm is the most frequently used opti-
mization method for composite design problems when
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compared to other stochastic search techniques.9
,–16 A

methodology for the multi-objective optimization of
laminated composite materials has been proposed by
Pelletier and Vel.10 A multi-objective genetic algorithm
has been used to obtain Pareto-optimal designs for the
model problems. They have found that non-linearities in
the shape of the Pareto-optimal front enable to perform
trade-off studies when choosing a particular design.
Aydin and Artem12 have considered multi-objective
optimal design of the laminated composites using genetic
algorithms. MATLAB Genetic Algorithm and Direct
Search Toolbox is used to obtain Pareto-optimal
design for three different model problems. The objectives
of the problems are to maximize the Young’s moduli
and minimize the coefficient of thermal expansion
(CTE) simultaneously for 8- and 16-layered carbon/
epoxy composites. Apalak et al.13 have studied layer
optimization for maximum fundamental frequency of
laminated composite plates under any combination of
the three classical edge conditions by means of genetic
algorithm. They used an artificial neural network model
in order to reduce the time searching for the optimal lay-
up sequence. The problem for adjustment of residual
stresses in unsymmetric composites has been studied
by Hufenbach et al.14 The new laminate design method
has been verified by exemplary experiments and numer-
ical calculations on unsymmetric glass and carbon fiber-
reinforced plastics. The method has been applied to the
design of multi layered curved hybrid structures.

Another stochastic optimization method used in
composite design is simulated annealing. A constant
thickness optimization of laminated composite has
been presented by Deng et al.17 The edging stress of a
composite plate is the objective function for the SA
algorithms and an efficient use of SA in the optimum
stacking sequence of a composite laminate plate has
been accomplished. The optimization of laminated
and sandwich plates with respect to buckling load and
thickness has been performed by Di Sciuva et al.18

Genetic algorithm and simulated annealing methods
have been employed and algorithms have provided
almost the same results. In the study carried out by
Erdal and Sonmez,19 they have attempted to develop
a procedure that can locate global optimum designs of
composite laminates with minimum liability to buck-
ling even in quite a large design space. They have
adopted an improved version of SA for buckling opti-
mization of composite. Reliability of the algorithm has
been investigated in different load ratios.

Generalized pattern search algorithm (GPSA) is a
mostly local search algorithm16 and the use of the
method in composite optimization is considerably
few. GPSA has been used for optimal stacking sequence
of a 64-layer composite plate made of graphite epoxy
by Karakaya and Soykasap.16 The optimization

implementation has been done using MATLAB
Genetic Algorithm and Direct Search Toolbox. They
have concluded that the genetic algorithm is expensive
but more effective in finding distinct global optima than
generalized pattern search algorithm.

Since moisture and temperature cause some changes
on mechanical properties of the polymer matrix com-
posites, dimensional change induced by moisture and
temperature is a significant feature in design of the com-
posites.23 Therefore, some researchers2,12,20,21 have con-
sidered investigation of moisture and temperature
effects on composite materials. For example, Le Rich
and Gaudin2 have investigated design of dimensionally
stable composite laminates as space materials account-
ing for thermal, hygral, and mechanical constraints. In
the context of composite materials, dimensional stabil-
ity can be defined as the ability of a material to retain
its dimensions when subjected to environmental effects
such as temperature/moisture changes. Thermal expan-
sion of composites is of primary importance to the
dimensional stability of many structures. The ply ori-
entation of laminated composite influences the linear
CTE of a resin matrix composite. Therefore, using
fiber orientation angles as design variables are
appropriate.24

The purpose of the present study is to design dimen-
sionally stable ð��1 = � �2Þs eight-layered laminated
composite plate. In-plane design of symmetric and bal-
anced carbon/epoxy composite satisfying the condi-
tions of low CTE in longitudinal and high elastic
moduli in longitudinal and/or transverse directions
have been considered. In this work, the design has
two main parts: mechanical analysis and optimization.

In the first part, simplified micromechanics expres-
sions are used to predict the stiffness and thermal
expansion coefficients of a lamina using constituent
material properties. The classical lamination theory is
utilized to determine the effective elastic modulus and
the effective thermal expansion coefficients.

In optimization part, the problems (see Table 6) are
formulated as multi-objective optimization problems
and solved using GA. Then, an alternative single objec-
tive formulations with the non-linear constraints,
obtained from multi-objective optimization, are utilized
for verification of the multi-objective approach. The
stochastic search methods GA, GPSA, and SA have
been used to solve single objective optimization prob-
lems. The effective elastic moduli and the thermal expan-
sion coefficient have been defined as fitness functions of
the optimization problems. MATLAB Optimization
Toolbox and Symbolic Math Toolbox25

,–27 are used to
obtain Pareto-optimal and best designs for 12 different
model problems.

After completing the design process, stress distribu-
tions through the thickness have been investigated for
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the optimized composites subjected to the hygral, ther-
mal, and mechanical loadings.

Comparison papers for optimization of laminated
composites are quite few in literature and therefore,
the present study fills a gap in composite design.
We have considered both multi-objective and single-
objective approaches to verify our study for the lami-
nated composite optimization problems. However,
in literature, either single-objective or multi-objective
approach have been used for composite design and
optimization.

Mechanical analysis

Macromechanical analysis

Classical lamination theory is used to analyze the infin-
itesimal deformation of thin laminated structures. In
this theory, it is assumed that laminate is thin and
wide, perfect bounding exists between laminas, there
exists a linear strain distribution through the thickness,
all laminas are macroscopically homogeneous, and they
behave in a linearly elastic manner.28 Thin laminated
composite structure subjected to in plane loadingsNx,Ny

is shown in Figure 1. Cartesian coordinate system x, y,
and z define global coordinates of the layered material.
A layer-wise principal material coordinate system is
denoted by 1, 2, and 3, and fiber direction is oriented at
angle � to the x axis. Representation of laminate conven-
tion for the n-layered structure with total thickness h is
given in Figure 2. In order to generalize the total strains
including mechanical, thermal, and hygral effects, the
following strain expression can be used:
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where ["], ["M], ["T], ["H] are total, mechanical, thermal,
and hygral strains, respectively.

Based on the classical lamination theory, the stress–
strain relation for the k-th layer of a composite plate
can be written in the following form

�Mx
�My

�Mxy

2
64

3
75

k

¼

Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

2
64

3
75

k

"ox
"oy
"oxy

2
64

3
75þ z

�x

�y

�xy

2
64

3
75

0
B@

�

�x

�y

�xy

2
64

3
75

k

�T�

�x

�y

�xy

2
64

3
75

k

�C

1
CA ð2Þ

where [Qij]k are the elements of the transformed
reduced stiffness matrix, ["o] is the mid-plane strains,
[�] is curvatures, �T,�C are temperature and moisture
changes, and [�]k, [�]k are the coefficients of thermal
and moisture expansions.

In-plane normal force resultants (force per unit
width) NM

x ,NM
y and shear force resultant NM

xy on a lam-
inate have the following relations:

NM
x

NM
y

NM
xy

2
64

3
75¼

A11 A12 A16

A12 A22 A26

A16 A26 A66

2
64

3
75

"ox
"oy
�oxy

2
64

3
75

þ

B11 B12 B16

B12 B22 B26

B16 B26 B66

2
64

3
75

�x

�y

�xy

2
64

3
75�

NT
x

NT
y

NT
xy

2
64

3
75�

NC
x

NC
y

NC
xy

2
64

3
75
ð3Þ

The matrices [A] and [B] appearing in Equation (3) can
be defined as

Aij ¼
Xn
k¼1

ðQijÞkðhk � hk�1Þ ð4Þ

Bij ¼
1

2

Xn
k¼1

ðQijÞkðh
2
k � h2k�1Þ ði, j ¼ 1, 2, 6Þ ð5Þ

Figure 1. A thin fiber reinforced laminated composite sub-

jected to in plane loading. Figure 2. Laminate convention.
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and ½NT�, ½NC� are the resultant thermal and hygral
forces, respectively:
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In macromechanical analysis, it is also convenient to
introduce the effective elastic properties of symmetric
balanced or symmetric cross-ply laminated plates sub-
jected to in-plane loading. The effective thermal and
moisture expansion coefficients and elastic moduli can
be calculated using the following relations28:
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where ½A�� ¼ ½A��1, h is total thickness of the
composite.

Micromechanical analysis

Simplified micromechanical expressions2 used to pre-
dict the stiffness and coefficient of thermal expansion
of a lamina using constituent material properties (given
in Table 1) are as follows:
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where subscripts 1 and 2, f and m appearing in above
equations denote the longitudinal and transverse direc-
tions, fiber and matrix properties, respectively. Vf rep-
resents the fiber volume fraction of the lamina, G is the
shear modulus. In these formulations, fibers are
assumed to be transversely isotropic.

Optimization

Essentially, optimization of a structure can be defined
as finding the best design or elite designs by minimizing
the specified single or multi-objectives that satisfy all
the constraints. Single- and multi-objective optimiza-
tions are the main approaches used in structural
design problems. In single objective approach, an opti-
mization problem consists of a single objective func-
tion, constraints, and bounds. However, the design of
practical composite structures often requires the maxi-
mization or minimization of multiple, often conflicting,
two or more objectives, simultaneously. In such a case,
multi-objective formulation is used and a set of solu-
tions are obtained with different trade-off called Pareto
optimal. Only one solution is to be chosen from the set

Table 1. Constituent material properties

Fiber properties Matrix properties

E1f ¼ 550:2 GPa E1m ¼ 4:34 GPa

E2f ¼ 9:52 GPa E2m ¼ 4:34 GPa

G12f ¼ 6:9 GPa G12m ¼ 1:59 GPa

�12f ¼ 0:2 �12m ¼ 0:37

�1f ¼ �1:35: 10�6=oC �1m ¼ 43:92: 10�6=oC

�2f ¼ 6:84: 10�6=oC �2m ¼ 43:92: 10�6=oC

�1f ¼ — �1m ¼ 2000:10�6=%M

�2f ¼ — �2m ¼ 2000:10�6=%M
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of solutions for practical engineering usage. There is no
such thing as the best solution with respect to all objec-
tives in multi-objective optimization.10

Optimization techniques can be classified as tradi-
tional and non-traditional. Traditional optimization
techniques, such as constrained variation and lagrange
multipliers, are analytical and find the optimum solution
of only continuous and differentiable functions.3 Since
composite design problems generally have discrete
search spaces, the traditional optimization techniques
cannot be used. In these cases, the use of stochastic opti-
mization methods such as genetic algorithms (GA), gen-
eralized pattern search algorithm (GPSA), and simulated
annealing (SA) are appropriate.

Optimization Toolbox of MATLAB has been used
to solve the design optimization problems. MATLAB
Optimization Toolbox includes a few routines for solv-
ing optimization problems using Direct Search (DS),
GA, and SA methods. All of these methods have
been used in the design of composite materials by
many researchers.9

,–19 DS functions include two DS
algorithms called the Generalized Pattern Search
Algorithm and the Mesh Adaptive Search (MADS)
algorithm. The Toolbox has optimization solvers ga,
simulannealbnd, and patternsearch for single objectives
and gamultiobj for multi objectives. The multi-objective
GA function gamultiobj uses a variant of NSGA-II.
Parameters for the solvers are given in Tables 2–5.

Single-objective optimization

A standard mathematical formulation of the single-
objective optimization consists of an objective function,
equality and/or inequality constraints, and design

Table 2. Genetic algorithm parameters for multi-objective

approach used in the model problems 1a, 2a, and 3a

Population type Double vector

Population size 40

Initial range [�90 �90 ; 90 90]

Selection function Tournament

Cross-over fraction 0.8

Mutation function Adaptive feasible

Cross-over function Intermediate; Ratio¼ 1.0

Migration direction Both; Fraction¼ 0.2, Interval¼ 20

Initial penalty 10

Penalty factor 100

Hybrid function None

Stopping criteria Generation¼ 100;

stall generation¼ 50;

function tolerance¼ 10—6

Table 3. Genetic algorithm parameters for single-objective

approach used in model problems 1b, 2b, and 3b

Population type Double vector

Population size 20

Creation function Use constraint dependent

Initial population [ ]

Initial scores [ ]

Initial range [�300; �100]

Scaling function Top, quantity¼ 12

Selection function Tournament; Tournament size¼ 7

Elite count 2

Cross-over fraction 0.6

Mutation function Use constraint Dependent

Cross-over function Scattered

Migration direction Both; fraction¼ 0.2, interval¼ 20

Initial penalty 10

Penalty factor 100

Hybrid function None

Stopping criteria Generation¼ 100;

stall generation¼ 50;

function tolerance¼ 10�6

Table 4. Generalized pattern search algorithm (GPSA) para-

meters for single-objective approach used in model problems 1c,

2c, and 3c

Poll method GPS positive basis 2N

Complete poll Off

Polling order Consecutive

Complete search Off

Search method None

Mesh initial size 1.0

Mesh max size Infinity

Mesh accelerator Off

Mesh rotate On

Mesh scale On

Mesh expansion

factor

2.0

Contraction factor 0.5

Initial penalty 1.0

Penalty factor 100

Bind tolerance 10^-3

Stopping criteria Mesh tolerance¼ 10�6;

Max iterations ¼

200 * number of variables;

Max function evaluations¼

2000 * number of variables;

Time limit¼ infinity � tolerance¼ 10�6;

Function tolerance¼ 10�6;

Non-linear constraint tolerance¼ 10�6.

Aydin and Artem 1201



variables. In our study, the single-objective optimiza-
tion problem with fiber orientation angles
�1, �2, . . . , :, �n can be stated as follows:

minimize f ð�1, �2, . . . , �nÞ
such that gið�1, �2, . . . , �nÞ � 0 i ¼ 1, 2, . . . , r

pj ð�1, �2, . . . , �nÞ ¼ 0 j ¼ 1, 2, . . . ,m

where f is objective function, �1, �2, . . . , �n are the
design variables, and g, p are the constraints of the
problem. In composite design and optimization prob-
lems mass, stiffness, displacements, residual stresses,
thickness, vibration frequencies, buckling loads, and
cost are used as objective functions.4 In this study, elas-
tic modulus Ex is considered as objective function of
the single-objective optimization problems.

Multi-objective optimization

A multi-objective optimization problem can be stated
as follows:

minimize f1ð�1, �2, . . . , �nÞ, f2ð�1, �2, . . . , �nÞ, . . . ,
ftð�1, �2, . . . , �nÞ

such that gið�1, �2, . . . , �nÞ � 0 i ¼ 1, 2, . . . , r
pj ð�1, �2, . . . , �nÞ ¼ 0 j ¼ 1, 2, . . . ,m

where f1, f2, . . . , ft represent the objective functions to
be minimized simultaneously.3

The main difficulties in multi-objective optimiza-
tion problems are to minimize the distance of the
generated solutions to the Pareto set and to maximize
the diversity of the developed Pareto set. Detailed
analysis of multi-objective optimization can be found
in.29

Stochastic optimization algorithms

Stochastic optimization methods are optimization algo-
rithms based on probabilistic elements, either in the
objective function with the constraints or in the algo-
rithm itself or both of them.30 Genetic algorithm, par-
ticle swarm optimization, ant colony optimization,
simulated annealing, tabu search, harmony search,
and generalized pattern search algorithm are examples
of the stochastic search techniques used in engineering
applications. In composite laminate design problems,
derivative calculations or their approximations are
impossible to obtain or is often costly. Therefore, sto-
chastic search methods have the advantage of requiring
no gradient information of the objective functions and
the constraints. In this paper, only GA, GPSA, and SA
have been considered and used without any modifica-
tion for design of the laminated composites. In the fol-
lowing subsections, steps of the algorithms are briefly
overviewed.

Genetic algorithm

The GA is a stochastic optimization and search tech-
nique that allows obtain alternative solutions for some
of the complex engineering problems such as increasing
composite strength, developing dimensionally stable
and light-weight structures, etc. GA method utilizes
the principles of genetics and natural selection. This
method is simple to understand and uses three simple
operators: selection, crossover, and mutation. GA
always considers a population of solutions instead of
a single solution at each iteration. It has some advan-
tages in parallelism and robustness of genetic algo-
rithms. It also improves the chance of finding the
global optimum point and helps to avoid local station-
ary point. However, GA is not guaranteed to find the
global optimum solution to a problem. GA has been
applied to the design of a variety of composite struc-
tures ranging from simple rectangular plates to complex
geometries.

Generalized pattern search algorithm

GPSA has been defined for derivative-free uncon-
strained optimization of functions by Torczon31 and
later extended to take non-linear constrained optimiza-
tion problems into account. GPSA is a direct search
method which finds a sequence of points that approach
the optimal point. Each iteration is divided into two
phases: the search phase and the poll phase. In the
search phase, the objective function is evaluated at a
finite number of points on a mesh. The main task of the
search phase is to find a new point that has a lower
objective function value than the best current solution

Table 5. Simulated annealing solver parameters for single-

objective approach used in model problems 1d, 2d, and 3d

Annealing function Fast annealing

Reannealing interval 100

Temperature update

function

Exponential temperature

update

Initial temperature 100

Acceptance probability

function

Simulated annealing

acceptance

Data type Double

Stopping criteria Max iterations¼ infinity;

Max function evaluations¼

3000 * number of variables;

Stall iterations¼

500 * number of variables;

Function tolerance¼ 10�6

1202 Journal of Reinforced Plastics and Composites 30(14)



which is called the incumbent. In the poll phase, the
objective function is evaluated at the neighboring mesh
points, so as to see whether a lower objective function
value can be obtained.32 GPSA has some collection of
vectors that form the pattern and has two commonly
used positive basis sets; the maximal basis with 2N vec-
tors and the minimal basis with N + 1 vectors.

In order to clarify the algorithm, a laminated
composite plate optimization problem including two
independent variables �1 and �2 in the objective func-
tion has been considered. In this case, pattern consists
of the vectors v1 ¼ ½ 1 0 �, v2 ¼ ½ 0 1 �, v3 ¼ ½�1 0 �,
v4 ¼ ½ 0 �1 � for the positive basis 2N or v1 ¼ ½ 1 0 �,
v2 ¼ ½ 0 1 �, v3 ¼ ½�1 �1 � for the positive basis N +
1. The pattern search begins at a provided initial point
vector �0. In this example problem, �0 ¼ ½ 10 50 �, the
mesh size �m ¼ 5 and positive basis 2N are taken into
account. At the first iteration, the following mesh
points can be calculated as

½ 1 0 � � 5þ ½ 10 50 � ¼ ½ 15 50 �

½ 0 1 � � 5þ ½ 10 50 � ¼ ½ 10 55 �

½ �1 0 � � 5þ ½ 10 50 � ¼ ½ 5 50 �

½ 0 �1 � � 5þ ½ 10 50 � ¼ ½ 10 45 �

and the algorithm computes the objective function at
these mesh points before polls.16,30,33 If the algorithm
finds an objective function value which is smaller than
the value at �0 ¼ ½ 10 50 �, the poll at corresponding
iteration is called as ‘successful.’ Supposing the vector
½ 10 55 � satisfies the condition, the algorithm sets the
next point in the sequence equal to �1 ¼ ½ 10 55 �.
After obtaining a successful poll, the algorithm multi-
plies the current mesh size by expansion factor. For
example, if the expansion factor is taken as 2, the
mesh size for the second iteration becomes 5 � 2 ¼ 10
and the mesh at the second iteration is to be:

½ 1 0 � � 10þ ½ 10 55 � ¼ ½ 20 55 �

½ 0 1 � � 10þ ½ 10 55 � ¼ ½ 10 65 �

½ �1 0 � � 10þ ½ 10 55 � ¼ ½ 0 55 �

½ 0 �1 � � 10þ ½ 10 55 � ¼ ½ 10 45 �

Now, suppose that �2 ¼ ½ 0 55 � produce smaller objec-
tive function value than the value at �1 ¼ ½ 10 55 �.
This procedure repeats until none of the mesh points
has a smaller objective function value than the value at
last (say n) successful poll iteration. This poll is called
‘unsuccessful’ in the corresponding iteration. In this
case, the algorithm does not change the current point
at the next iteration as:

�nþ1 ¼ �n ð20Þ

In such a case, the algorithm multiplies the current
mesh size by given contraction factor and the algorithm
then polls with a smaller mesh size. The algorithm stops
when any of the stopping criteria conditions occurs.

Simulated annealing algorithm

SA is a random-search technique and it is based on the
simulation of thermal annealing of heated solids to
achieve the minimum function value in a minimization
problem.3 It is possible to solve mixed-integer, discrete,
or continuous optimization problems by using SA. In
this algorithm, a new point is randomly generated at
each iteration and the algorithm stops when any of the
stopping criteria are satisfied. The distance of the new
point from the current point or the extent of the search
is based on Boltzmann’s probability distribution. The
distribution implies the energy of a system in thermal
equilibrium at temperature T. Boltzmann’s probability
distribution can be written in the following form3,33:

PðEÞ ¼ e�E=kT ð21Þ

where P(E) represents the probability of achieving the
energy level E, k is the Boltzmann’s constant, and T is
temperature.3

SA algorithm has the following steps:

1. Start with an initial vector x1 and assign a high tem-
perature value to the function.

2. Generate a new design point randomly and find the
difference in function values.

3. Determine whether the new point is better or worse
than the current point.

4. If the value of a randomly generated number is
larger than e��E=kT, accept the point xiþ1.

5. If the point xiþ1 is rejected, then the algorithm gen-
erates a new design point xiþ1 randomly.

However, it should be noted that the algorithm accepts
a worse point based on an acceptance probability.3

Model problems

Stacking sequences optimization for eight-layered sym-
metric-balanced laminated composites made of carbon/
epoxy have been considered in this study. Main objec-
tive of the study is to design ð��1 = � �2Þs laminates
satisfies the conditions: low CTE in longitudinal and
high elastic moduli in longitudinal and/or transverse
directions. The fiber orientation angles �1 and �2 are
selected as design variables and the limiting values are
�90 � �1, �2 � 90 in the continuous domain. The fiber
volume fraction and thickness of each layer are
assumed as 0.50 and 150:10�6m, respectively.
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In this study, we have considered three main prob-
lems (1a, 2a, 3a) defining in-plane designs and optimi-
zation of thin plate composites. The optimization
problems are firstly formulated based on multi-objec-
tive approach. An alternative single-objective formula-
tion including the non-linear constraints is utilized for
verification of the multi-objective optimization. Multi-
objective optimization problems (1a, 2a, 3a) aim to
minimize the CTE while simultaneously maximizing
the elastic moduli. In the single-objective representation
of the problems (1b-d, 2b-d, 3b-d), CTE obtained from
the multi-objective formulations are used to define the
non-linear constraints of the single optimization prob-
lems. This proposed approach is quite recommended
since it is possible to obtain relatively small feasible
solution space and it clarifies definition of the front.
Details of these model problems with different loading
cases,2 optimization types, objective functions, con-
straints, and bound are presented in Table 6.

The present study consists of three main parts:
(i) Micro and macro mechanical analyses, (ii)
Optimization, and (iii) Stress analysis. In the first
part, simplified micromechanics expressions are used
to predict the elastic modulus and thermal and moisture
expansion coefficients of a lamina using constituent
material properties. The classical lamination theory is
utilized to determine the effective elastic moduli, the
effective coefficient of thermal and moisture expansions
for composite laminates.4 In the second part, the

effective elastic properties, which define the fitness
functions, have been used to obtain the optimum
fiber orientation angles of each layer by stochastic
search techniques GA, GPSA, and SA. MATLAB
Optimization Toolbox solvers ga, patternsearch, simu-
lannealbnd and gamultiobj are used to obtain best
designs and Pareto-optimal designs for model prob-
lems. In the last part, optimized composites obtained
from multi-objective design have been considered for
stress analysis. Stress distributions through the thick-
ness of the composites subjected to the mechanical,
thermal, and hygral loadings have been calculated
and shown graphically in Figures 14–17.

Results and discussion

In this section, results of laminated composite optimal
design studies based on the multi- and single-objective
optimizations are presented for coefficient of thermal
expansion and elastic moduli. If the fiber orientation
angles are selected as 0

	

for all lamina, as expected,
Ex becomes maximum (Ex ¼ 277:3GPa). However,
this design is not suitable for minimum coefficient of
thermal expansion (�x ¼ �1:0:10

�6=oC). Similarly, if
all the fibers have 32	 orientation, the CTE becomes
minimum (�x ¼ �5:24:10

�6=oC), but this is again not
an appropriate design for Ex of the composite
(Ex ¼ 40:8GPa). Regarding this fact, the model prob-
lems have been optimized for the purpose of

Table 6. Model problems

Problems Loadings Optimization types Objective functions Constraints/bound

1a LC1 Multi-objective GA Ex ,�x(for multi-obj.) B1

1b Single-objective GA Ex(for single-obj.) C1

1c Single-objective GPSA

1d Single-objective SA

2a LC1 Multi-objective GA Ex , Ey ,�x(for multi-obj.) B1

2b Single-objective GA Ex(for single-obj.) C2

2c Single-objective GPSA

2d Single-objective SA

3a LC2 Multi-objective GA Ex ,�x(for multi-obj.) B1

3b Single-objective GA Ex(for single-obj.) C3

3c Single-objective GPSA

3d Single-objective SA

where

Loading Cases LC1: Fx ¼ 20kN, Fy ¼ 20kN, Fxy ¼ 0, �T ¼ �150	C, �C ¼ 0 %

LC2: Fx ¼ 50kN, Fy ¼ 1kN, Fxy ¼ 0, �T ¼ �150	C, �C ¼ 2 %

Constraints C1: �90	 � �1 � 90	, � 90	 � �2 � 90	, �x � �2:63:10�6=	C

C2: �90	 � �1 � 90	, � 90	 � �2 � 90	, �x � �2:31:10�6=	C, Ey � 9:7 GPa

Bound C3: �90	 � �1 � 90	, � 90	 � �2 � 90	, �x � �3:21:10�6=	C

B1: �90	 � �1 � 90	, � 90	 � �2 � 90	
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minimizing the CTE while maximizing the elastic
moduli, simultaneously. More reliable solutions and
the corresponding CMEs for multi-objective optimiza-
tion of the model problems (1a and 3a) are given in

Table 7. Pareto-optimal designs for the model problems 1a and

3a and the corresponding CMEs12

Design

Ex

(GPa)

�x

(10�6/	C)

�x

(10�6/%M)

�1

(Deg)

�2

(Deg)

1 115.9 �3.66 �58.8 25.9 �19

2 127.6 �3.49 �54.1 24.6 �18

3 152.7 �3.21 �46.1 20 �18

4 169.4 �2.89 �37.3 14.9 �20.5

5 188.0 �2.63 �29.9 13.8 �18.5

6 194.2 �2.44 �24.7 20.6 �10.2

7 206.9 �2.16 �17.0 4.7 �21.6

8 222.1 �1.99 �12.2 19.5 �2.6

9 239.9 �1.80 �6.8 8.1 �13.7

Figure 3. Pareto-optimal designs for maximum Ex and mini-

mum �x for model problems 1a and 3a.

Table 8. Pareto optimal designs of the model problem 2a and

the corresponding CMEs12

Design

Ex

(GPa)

Ey

(GPa)

�x

(10�6/	C)

�x

(10�6/%M)

�1

(Deg)

�2

(Deg)

1 149. 5 9.1 �2. 90 �36. 3 13 26.5

2 159. 5 16.9 �1. 90 �9.7 1.2 34.7

3 159. 8 13.0 �2. 21 �18. 3 6.5 31.2

4 161. 3 7.4 �3. 00 �40. 5 15.5 21.2

5 170. 2 8.4 �2. 69 �31. 8 11.6 23.7

6 172. 4 11.8 �2. 20 �17. 9 3.9 29.2

7 181. 9 8. 0 �2. 57 �28. 4 10.9 22.1

8 184. 1 9. 7 �2. 31 �21. 0 5.7 25.5

9 190. 2 7. 2 �2. 60 �29. 2 13.7 18.3

10 193. 2 8. 5 �2. 34 �21. 8 7.4 22.7

11 202. 6 9. 0 �2. 15 �16. 5 1.2 23.3

12 217. 8 8. 1 �2. 04 �13. 4 2.5 20.3

13 234. 0 7. 6 �1. 85 �8. 1 2.1 17.4

14 245. 9 7. 4 �1. 67 �3. 3 0.3 15.2

Figure 4. Pareto-optimal designs for maximum Ex and mini-

mum �x for model problem 2a.

Figure 5. Pareto-optimal designs for maximum Ey and mini-

mum �x for model problem 2a.

Figure 6. Pareto-optimal designs for maximum Ex and maxi-

mum Ey for model problem 2a.
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Table 7. The set of (Pareto-optimal) solutions have
been obtained when the maximum number of genera-
tions has reached to 51. For practical engineering
use, only one of these solutions is to be chosen.
For example, if one assumes Ex � 188GPa and
�x � �2:63:10

�6=oC, design 5 is to be an appropriate

solution and therefore the stacking sequence becomes
½�13:8=
 18:5�s. Distribution of set of solutions are
also given in Figure 3. Pareto-optimal design for
model problem 2a is listed in Table 8. In model problem
2a, design 8 is to be chosen with the assumptions
Ex � 180GPa, Ey � 9:5GPa, �x � �2:30:10

�6=	C

Figure 7. Single-objective genetic algorithm (GA) results for problem 1b; (a) evolution of the fitness function, (b) average distance

between individuals, and (c) histogram for individuals.

Figure 8. Single-objective genetic algorithm (GA) results for problem 2b; (a) evolution of the fitness function, (b) average distance

between individuals, and (c) histogram for individuals.
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and therefore, the corresponding stacking sequence for
the composite becomes ½�5:7=� 25:5�s.

Distributions of Pareto-optimal solution of prob-
lem 2a are illustrated in Figures 4–6 in the objective
functions spaces, Ex � �x,Ey � �x,Ex � Ey, respec-
tively. The Pareto-optimal curves enable us to per-
form trade-off studies. It is noted that design
problems 1a–3a have been previously solved by Aydin
and Artem.12

After obtaining the multi-objective GA results, we
have performed single-objective optimization methods
such as GA, GPSA, and SA. Single-objective GA
results are given in Figures 7, 8, and 9 for problems
1b, 2b, and 3b, respectively. Evolutions of the fitness
function value for those problems are illustrated in
Figures 7a–9a. It is observed from the figures, this
value converges after 4 generations as a result of rela-
tively small feasible solution space obtained from the
multi-objective solutions. Average distances between
individuals for each generation are given in Figures
7b–9b. The fitness functions final values for problems
1b–3b has been supported by 9, 6, and 13 individuals,
respectively, and given in Figures 7c–9c.

GPSA iteration steps for problems 1c–3c are illus-
trated in Figures 10–12, respectively. As it is seen from
the figures, the optimum results are obtained after 4
iterations and decreasing mesh sizes are observed. In
SA method (Figure 13), relatively much more iteration
is obtained for the solution compared with GA and
GPSA. Table 9 gives a comparison of the results

obtained from multi-objective GA, single objective
GA, GPSA, and SA. In model problems 1a-d, maxi-
mum Ex value is obtained from single objective GPSA
and maximum corresponding Ey from multi-objective

Figure 9. Single-objective genetic algorithm (GA) results for problem 3b; (a) evolution of the fitness function, (b) average distance

between individuals, and (c) histogram for individuals.

Figure 10. Single-objective generalized pattern search algo-

rithm (GPSA) results for problem 1c; (a) iteration steps for fit-

ness function value and (b) variation of mesh size.
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GA. Another observation from the table is that, for
problems 1b-d, 2b-d, and 3b-d, by considering maximi-
zation of Ex based on single-objective algorithms, the

corresponding CTE values have been calculated using
the stacking sequences and minimum values of them are
obtained in case of SA algorithm.

Stress analysis

Investigation of stresses for optimized problems under
combined loading gives some additional information
about composite design. This type of information pro-
vides production of safer structures.34 For this purpose,
the through the thickness normal and shear stress dis-
tributions of the optimized (using multi-objective
approach) composite plate under the mechanical, ther-
mal and hygral loads are presented in Figures 14–17 for
model problems 1a-3a. In Figure 14, it can be observed
that maximum normal stresses occur in ply numbers

Figure 11. Single-objective generalized pattern search algo-

rithm (GPSA) results for problem 2c; (a) iteration steps for fit-

ness function value and (b) variation of mesh size.

Figure 12. Single-objective generalized pattern search algo-

rithm (GPSA) results for problem 3c; (a) iteration steps for fit-

ness function value and (b) variation of mesh size.

Figure 13. Single-objective simulated annealing (SA) algorithm

iteration steps for (a) problem 1d, (b) problem 2d, and (c) prob-

lem 3d.
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Table 9. Comparison of the results obtained from multi-objective genetic algorithm (GA), single-objective GA, generalized pattern

search algorithm (GPSA), and simulated annealing (SA)

Problem Optimization type Ex (GPa) Ey (GPa) �x (10�6/	C) �x (10�6/%M) Stacking sequence

1a Multi-objective GA12 187.90 7.3 �2.63 �29.88 ð�13:8=� 18:5Þs
1b Single-objective GA 188.93 7.1 �2.64 �30.25 ð�16:1Þ2s

1c Single-objective GPSA 189.54 7.1 �2.63 �29.99 ð�16=� 16:1Þs
1d Single-objective SA 188.26 7.1 �2.65 �30.43 ð�17=
 15:3Þs
2a Multi-objective GA12 184.22 9.6 �2.31 �20.96 ð�5:7=� 25:5Þs
2b Single-objective GA 183.48 9.7 �2.31 �21.10 ð�5:8=� 25:6Þs
2c Single-objective GPSA 183.48 9.7 �2.31 �21.20 ð�25:6=� 5:8Þs
2d Single-objective SA 182.00 9.8 �2.32 �21.38 ð�6=� 25:8Þs
3a Multi-objective GA12 152.77 7.2 �3.21 �46.08 ð�20=� 18Þs

3b Single-objective GA 152.66 7.1 �3.22 �46.38 ð�19:3=� 18:7Þs
3c Single-objective GPSA 152.65 7.1 �3.22 �46.41 ð�18:9=� 19:1Þs
3d Single-objective SA 151.01 7.2 �3.23 �46.66 ð�17:8=� 20:5Þs

Figure 14. Stress distributions of the composite subjected

to combination of mechanical and thermal loads for model

problem 1a (Nx ¼ 20 kN=m, Ny ¼ 20 kN=m, Nxy ¼ 0 kN=m
�T ¼ �150oC).

Figure 15. Stress distributions of the composite subjected

to combination of mechanical and thermal loads for model

problem 2a (Nx ¼ 20 kN=m, Ny ¼ 20 kN=m, Nxy ¼ 0 kN=m
�T ¼ �150oC).
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3–6 and shear stress in 4 and 5 when the composite
subjected to mechanical load. Applying only thermal
load, relatively lower stress values are obtained for
both normal and shear stresses. Combination of ther-
mal and mechanical loading leads to decrease the effect
of mechanical load and therefore this produces lower
values of normal and shear stresses at the plies where
the maximum stresses occur. As it is seen from Figure
15, stress distributions for model problem 2a show sim-
ilar behavior to 1a. Effects of loadings on stress distri-
butions are also presented for model problem 3a in
Figures 16 and 17. It can be seen from Figure 16,

mechanical load is significantly effective compared
to hygral and thermal loads for normal stress �x.
However, for �y, thermal load dominates the others.
It would be so due to relatively low mechanical
load along y direction. It can be concluded from
Figure 16 that it is advantageous to absorb moisture.
Unfortunately moisture degrades the strength of lami-
nates.34 Therefore, it is not really an advantage to use
the stress-relieving tendencies of moisture absorption.
The maximum values of normal stresses occur in the
interior plies of the composite subjected to both
mechanical and thermal loads (Figure 17). However,

Figure 16. Stress distributions of the composite subjected to

mechanical, thermal and hygral loads for problem 3a (Nx ¼

50 kN=m, Ny ¼ 1kN=m, Nxy ¼ 0, �T ¼ �150oC, �M ¼ 2%Þ.

Figure 17. Stress distributions of the composite subjected to

combination of mechanical, thermal and hygral loads for problem

3a (Nx ¼ 50 kN=m, Ny ¼ 1kN=m, Nxy ¼ 0, �T ¼ �150oC,

�M ¼ 2%).
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negative values for thermal stresses leads to relatively
low stresses in the exterior plies. Another observation is
that for Figure 17, shear stress distribution is more com-
plicated compared to the normal stress distributions.

Conclusion

In the present study, we have compared stochastic
search optimization algorithms GA, GPSA, and SA
for the laminated composites subjected to mechanical
and hygrothermal loadings. Single- and multi-objective
optimization approaches have been proposed to design
the carbon fiber-reinforced epoxy-laminated compos-
ites. The fiber orientations of the composites are
chosen as design variables. Simplified micromechanical
equations, classical lamination theory, and MATLAB
Symbolic Math Toolbox have been utilized in order to
obtain objective functions and constraints. MATLAB
Optimization Toolbox is used to solve the model
problems. We have concluded with the following
observations:

1. Even if the number of iterations of the algorithms
GA, GPSA, and SA are quite different, the CPU
times are approximately the same,

2. Since the constraints used in single objective
approach significantly narrows the search space, we
get the results with fewer number of iteration,

3. All the methods carried out in the present study have
produced almost the same results with different
stacking sequences,

4. Regarding mechanical analysis, shear and normal
stress distributions of the optimized composite
plates have been presented and results showed that
effect of mechanical loads dominate to hygral and
thermal loads.

Acknowledgment

This work was supported by Scientific Research Project
Division of Izmir Institute of Technology [grant number

2009IYTE16].

References

1. Mangalgiri PD. Composite materials for aerospace appli-

cations. B Mater Sci 1999; 22(3): 657–664.

2. Le Rich R and Gaudin J. Design of dimensionally stable

composites by evolutionary optimization. Compos Struct

1998; 41: 97–111.
3. Rao SS. Engineering optimization: Theory and practice,

4 ed., John Wiley & Sons, Inc, 2009.

4. Gurdal Z, Haftka RT and Hajela P. Design and optimi-

zation of laminated composite materials. John Wiley &

Sons, Inc, 1999.
5. Hasancebi O, Carbas S, Dogan E, Erdal F and Saka MP.

Comparison of non-deterministic search techniques in the

optimum design of real size steel frames. Comput Struct
2010; 88: 1033–1048.

6. Manoharan S and Shanmuganathan S. A comparison of

search mechanisms for structural optimization. Comput
Struct 1999; 73: 363–372.

7. Ghiasi H, Pasini D and Lessard L. Optimum stacking
sequence design of composite materials Part I: Constant

stiffness design. Compos Struct 2009; 90(1): 1–11.
8. Ghiasi H, Fayazbakhsh K, Pasini D and Lessard L.

Optimum stacking sequence design of composite mate-

rials Part II: Variable stiffness design. Compos Struct
2010; 93(1): 1–13.

9. Fares ME, Youssif YG and Hafiz MA. Multi-objective

design and control optimization for minimum thermal
post buckling dynamic response and maximum buckling
temperature of composite laminates. Struct Multidiscip O

2005; 30: 89–100.
10. Pelletier JL and Vel SS. Multi-objective optimization of

fiber reinforced composite laminates for strength, stiffness
and minimal mass. Comput Struct 2006; 84: 2065–2080.

11. Spallino R and Rizzo S. Multi-objective discrete optimi-
zation of laminated structures. Mech Res Commun 2002;
29: 17–25.

12. Aydin L and Artem HS. Multi-objective genetic algo-
rithm optimization of the composite laminates as a satel-
lite structure material for coefficient of thermal expansion

and elastic modulus. In: 4th International Conference on
Recent Advances in Space Technologies, RAST ’09,
Istanbul, 11–13 June 2009, pp. 114–119.

13. Apalak MK, Yildirim M and Ekici R. Layer optimiza-

tion for maximum fundamental frequency of laminated
composite plates for different edge conditions. Compos
Sci Tech 2008; 68: 537–550.

14. Hufenbach W, Gude M, Kroll L, Sokolowski A and
Werdermann B. Adjustment of residual stresses in
unsymmetric fiber-reinforced composites using genetic

algorithms. Mech Compos Mater 2001; 37(1): 216–222.
15. Park CH, Lee W, Han WS and Vautrin A. Improved

genetic algorithm for multidisciplinary optimization of

composite laminates. Comput Struct 2008; 86: 1894–1903.
16. Karakaya S and Soykasap O. Buckling optimization of

laminated composite plates using genetic algorithm and
generalized pattern search algorithm. Struct Multidiscip

O 2009; 39: 477–486.
17. Deng S, Pai PF, Lai CC and Wu PS. A solution to the

stacking sequence of a composite laminate plate with con-

stant thickness using simulated annealing algorithms. Int
J Adv Manuf Tech 2005; 26: 499–504.

18. Di Sciuva M, Gherlone M and Lomario D.

Multiconstraint optimization of laminated and sandwich
plates using evolutionary algorithms and higher order
plate theories. Comput Struct 2003; 59: 149–154.

19. Erdal O and Sonmez FO. Optimum design of composite

laminates for maximum buckling load capacity using sim-
ulated annealing. Comput Struct 2005; 71: 42–52.

20. Khalil M, Bakhiet E and El-Zoghby A. Optimum design

of laminated composites subjected to hygrothermal resid-
ual stresses. P I Mech Eng L-J Mat 2001; 215: 175–186.

21. Diaconu CG and Sekine H. Flexural characteristics and

layup optimization of laminated composite plates under

Aydin and Artem 1211



hygrothermal conditions using lamination parameters.
J Therm Stresses 2003; 26: 905–922.

22. Costa L, Fernandes L, Figueiredo L, Judice J, Leal R and

Oliveira P. Multiple and single objective approach to
laminate optimization with genetic algorithms. Struct
Multidiscip O 2004; 27: 55–65.

23. Kollar LP and Springer GS. Mechanics of composite

structures. Cambridge University Press, 2003.
24. Daniel IM and Ishai O. Engineering mechanics of compos-

ite materials. Oxford University Press, 1994.

25. The Mathworks, Inc, MATLAB Optimization Toolbox
in version R2008b.

26. The Mathworks, Inc, MATLAB Genetic Algorithm and

Direct Search Toolbox in version R2008b.
27. The Mathworks, Inc, MATLAB Symbolic Math Toolbox

in version R2008b.

28. Kaw AK. Mechanics of composite materials, 2 ed., CRC
Press Taylor & Francis Group, 2006.

29. Deb K. Multi-objective optimization using evolutionary

algorithms. John Wiley & Sons, Inc., 2001.
30. Spall JC. Introduction to stochastic search and optimiza-

tion: estimation, simulation, and control. John Wiley &
Sons, Inc., 2003.

31. Torczon V. On the convergence of pattern search algo-
rithms. Siam J Optimiz 1997; 7: 1–25.

32. Nicosia G and Stracquadanio G. Generalized pattern

search algorithm for peptide structure prediction.
Biophys J 2008; 95(10): 4988–4999.

33. Genetic Algorithm and Direct Search ToolboxTM User’s

Guide 2004–2008 by The MathWorks, Inc.
34. Hyer MW. Stress analysis of fiber reinforced composite

materials. McGraw-Hill, 1998.

1212 Journal of Reinforced Plastics and Composites 30(14)


