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Abstract. Longitudinal natural vibration frequencies of rods (or bars) with variable cross-sections are obtained from the exact
solutions of differential equation of motion based on transformation method. For the rods having cross-section variations as
power of the sinusoidal functions of ax + b, the differential equation is reduced to associated Legendre equation by using the
appropriate transformations. Frequency equations of rods with certain cross-section area variations are found from the general
solution of this equation for different boundary conditions. The present solutions are benchmarked by the solutions available in
the literature for the special case of present cross-sectional variations. Moreover, the effects of cross-sectional area variations of
rods on natural characteristics are studied with numerical examples.
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1. Introduction

Rods with variable cross-sections are structuralmembers designed for many different systems used in aeronautical,
civil, mechanical, and other engineering applications. Since the governing differential equation of motion of such
types of rods has variable coefficients due to the variable cross-sectional area, exact analytical solution of this equation
of motion is only possible for particular cross-sectional area functions. Therefore, exact longitudinal vibration
characteristics of non-uniform rods are covered in quite a few vibration books [1,2]. Graff [1] noticed that the
equation of motion for rods with conical cross-sections is the form of spherical wave equation. Elishakoff [2] treated
closed-form solutions for vibration of inhomogeneous rods considering polynomial variations in the longitudinal
rigidity and the inertial coefficient, independently.

Exact analytical longitudinal vibration characteristics of non-uniform rods are studied rarely. Raman [3] reported
the general solutions available for particular cross-sectional area variations of rods such as cos(x), sin(x), exp(-x2).
Eisenberger [4] presented exact element method for the title problem with polynomial variation in the cross-sectional
area. Bapat [5] proposed an exact approach as the combination of closed form solution and transfer matrix method
for the longitudinal vibration of conical, exponential, and catenoidal rods. Abrate [6] showed that equation of motion
for the non-uniform rods with area variation of the form A(x) = A0[1 + α(x/L)]2 can be transformed into classical
wave equation. Kumar and Sujith [7] obtained exact analytical solutions for the longitudinal vibration of rods with
cross-sectional area variations given by A(x) = (a + bx)n and A(x) = A0 sin2(ax + b). Horgan and Chan [8]
provided exact solutions for the vibration of rods whose cross-section varies as A(x) = A0[1 + α(x/l)]n for the
case n = −1, 1, 2 and A(x) = A0 exp(−α x/l). Li et al. [9] presented exact analytical solutions for longitudinal
vibration of non-uniform rods with concentrated masses coupled by translational springs. In their study, cross-
sectional area variations are selected as follows: A(x) = a exp(−bx/l) and A(x) = a (1 + bx)c. Li [10] dealt
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with the longitudinal vibrations of non-uniform rods under the assumption that the mass distribution of a rod is
arbitrary, and the distribution of longitudinal stiffness is expressed as a functional relation with the mass distribution
and vice versa. Raj and Sujith [11] determined cross-sectional area variations of rods as A(x) = kxn exp(bx2),
A(x) = kxn exp(bx), and A(x) = k exp(bx) exp(n exp(mx)) that give Kummer’s hypergeometric function as
solution.

In this paper, exact analytical solutions for longitudinal vibrations of non-uniform rods with area variations of the
form A(x) = A0 sinn(ax + b) and A(x) = A0 cosn(ax + b) are found in terms of associated Legendre functions
by using the appropriate successive transformations applied to governing differential equation. Then, frequency
equations are obtained for clamped-clamped, clamped-free, and free-free end conditions. The present solutions are
benchmarked by the solutions given by Kumar and Sujith [7] for A(x) = A0 sin2(ax + b). Furthermore, the effects
of the parameters regarding the cross-sectional area variations of the rods on natural frequencies are studied with
numerical examples. The results are presented in tabular form.

2. The equation of motion

A non-uniform cross-sectioned rod is considered. The governing partial differential equation for the longitudinal
vibration of a rod with varying cross-section can be written as [12, p.447]

∂

∂x

[
E A (x)

∂u(x, t)
∂x

]
= ρA(x)

∂2u(x, t)
∂t2

on L1 < x < L2 (1)

where u(x, t) is the axial displacement of the rod at distance x and time t. E, A(x), and ρ are Young’s modulus,
cross-sectional area and density of the rod, respectively. If the rod is clamped at the end x = L1 and free at the end
x = L2, the boundary conditions are

u(L1, t) = 0 (2)

EA(x)
∂u(x, t)

∂x

∣∣∣∣
x=L2

= 0 (3)

The boundary conditions for a clamped-clamped or free-free rod can be written considering Eqs (2) or (3). If the
boundary conditions of the rod are homogeneous as in Eqs (2) and (3), the solution of Eq. (1) is assumed as

u(x, t) = U(x)T (t) (4)

where U(x) is displacement as function of x and T (t) = exp(iω t) in which ω is the circular natural frequency of
the harmonic vibrations. Eq. (1) is reduced to following ordinary differential equation for U(x) by using Eq. (4)

d

dx

[
E A (x)

dU(x)
dx

]
+ ω2ρ A(x)U(x) = 0 (5)

For the sake of clarity, Eq. (5) is written in open-form as

d2U(x)
dx2

+
1

A(x)
dA(x)

dx

dU(x)
dx

+ β2 U(x) = 0 (6)

where

β2 = ω2 ρ

E
(7)

Since Eq. (6) has variable coefficient, its exact analytical solution can be found only for particular area functions.
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3. General solutions for the selected cross-sectional area functions

Cross-sectional area variation of the rod is selected as

A(x) = A0 sinn(ax + b) (8)

Having an inspiration from the functional transformation ξ = sin(x) given by Polyanin and Zaitsev [13,
Eq. (2,1,6,29)] for a differential equation which corresponds to Eq. (6) with A(x) = A0 cosn(x), the functional
transformation for the present case is considered as

ξ = cos(ax + b) (9)

By using the transformation written in Eq. (9), Eq. (6) along with Eq. (8) is reduced to

a2(1 − ξ2)
d2U(ξ)

dξ2
− a2(1 + n)ξ

dU(ξ)
dξ

+ β2 U(ξ) = 0 (10)

The following form is assumed for the solution of Eq. (10)

U(ξ) = f(ξ)g(ξ) (11)

Substituting Eq. (11) into Eq. (10), the following equation is obtained:

(1 − ξ2)
d2f(ξ)

dξ2
−

[
(1 + n) ξ + 2(ξ2 − 1)

1
g(ξ)

dg(ξ)
dξ

]
df(ξ)
dξ

(12)

+
[

β2

a2
− (1 + n) ξ

1
g(ξ)

dg(ξ)
dξ

− (ξ2 − 1)
1

g(ξ)
dg2(ξ)
dξ2

]
f(ξ) = 0

Now, the problem is reduced to find g(ξ), in order to write Eq. (12) as the associated Legendre differential
equation [14–16] expressed for the function f(ξ) in the following form,

(1 − ξ2)
d2f(ξ)

dξ2
− 2ξ

df(ξ)
dξ

+
[
l(l + 1) − m2

1 − ξ2

]
f(ξ) = 0 (13)

By equating the coefficient of df(ξ)/dξ in Eqs (12) and (13), g(ξ) is found as

g(ξ) = (ξ2 − 1)
1−n

4 (14)

Then, equating the coefficient of f(ξ) in Eqs (12) and (13) along with Eq. (14), l and m in Eq. (13) are obtained as

l =
−a +

√
a2n2 + 4β2

2a
(15)

m =
n − 1

2
(16)

Solution of Eq. (13) is available in the literature [14–16] as

f(ξ) = C1P
m
l (ξ) + C2Q

m
l (ξ) (17)

where Pm
l (ξ) and Qm

l (ξ) are associated Legendre functions of the first and second kind, respectively. Therefore,
substituting Eqs (14) and (17) into Eq. (11), the general solution of Eq. (10) is obtained as

U(ξ) = (ξ2 − 1)
1−n

4 [C1P
m
l (ξ) + C2Q

m
l (ξ)] (18)

Using the transformation expressed in Eq. (9), the general solution of Eq. (6) for the cross-sectional area variation
function defined by Eq. (8) is found as follows:

U(x) = (cos2(ax + b) − 1)
1−n

4 [C1P
m
l (cos(ax + b)) + C2Q

m
l (cos(ax + b))] (19)

Similarly, if the cross-sectional area variation of the rod is selected as

A(x) = A0 cosn(ax + b) (20)

Equation (10) is found by using the following functional transformation

ξ = sin(ax + b) (21)

In this case, general solution of Eq. (6) along with Eq. (21) is written as

U(x) = (sin2(ax + b) − 1)
1−n

4 [C1P
m
l (sin(ax + b)) + C2Q

m
l (sin(ax + b))] (22)
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4. Frequency equations for the selected cross-sectional area functions

Frequency equations of the rods with the cross-sectional area function represented by Eq. (8) is found for three
possible boundary conditions by using the general solution given by Eq. (19) as follows:

For a clamped-clamped rod, the boundary conditions are

U(L1) = 0 (23a)

U(L2) = 0 (23b)

Using the boundary conditions given in Eqs (23a) and (23b) in Eq. (19), the frequency equation is found as follows:

Pm
l (cos(aL1 + b))Qm

l (cos(aL2 + b)) − Pm
l (cos(aL2 + b))Qm

l (cos(aL1 + b)) = 0 (24)

For a clamped-free rod, the boundary conditions are

U(L1) = 0 (25a)

U ′(L2) = 0 (25b)

The prime used throughout this paper represents differentiation with respect to x. Using the boundary conditions
given in Eqs (25a) and (25b) in Eq. (19), the frequency equation is obtained as follows:

Pm
l (cos(aL1 + b))[(n − 2l − 1) cos(aL2 + b)Qm

l (cos(aL2 + b)) + 2(l + m)Qm
l−1(cos(aL2 + b))]−

(26)
Qm

l (cos(aL1 + b))[(n − 2l − 1) cos(aL2 + b)Pm
l (cos(aL2 + b)) + 2(l + m)Pm

l−1(cos(aL2 + b))] = 0

For a free-free rod, the boundary conditions are

U ′(L1) = 0 (27a)

U ′(L2) = 0 (27b)

Using the boundary conditions given in Eqs (27a) and (27b) in Eq. (19), the frequency equation is written as
follows:

[(n − 2l − 1) cos(aL1 + b)Pm
l (cos(aL1 + b)) + 2(l + m)Pm

l−1(cos(aL1 + b))]

[(n − 2l − 1) cos(aL2 + b)Qm
l (cos(aL2 + b)) + 2(l + m)Qm

l−1(cos(aL2 + b))]−
(28)

[(n − 2l − 1) cos(aL1 + b)Qm
l (cos(aL1 + b)) + 2(l + m)Qm

l−1(cos(aL1 + b))]

[(n − 2l − 1) cos(aL2 + b)Pm
l (cos(aL2 + b)) + 2(l + m)Pm

l−1(cos(aL2 + b))] = 0

Frequency equations of the rods with the cross-sectional area function represented by Eq. (20) is obtained by
changing the all cos(*) in Eqs (24), (26), and (28) with sin(*), where * represents any terms.

5. Comparisons and discussions of numerical examples

In order to demonstrate the correctness of the present solutions, numerical values of non-dimensional natural
frequencies (βL) given by Kumar and Sujith [7] for clamped-free rods with cross-sectional area variation of the form
A(x) = A0 sin2(ax+b) are used in comparisons presented in Table 1. In this study, length of the rod is described by
L = L2 −L1. It is seen from Table 1 that very small differences exist between the present results and the numerical
results provided by Kumar and Sujith [7]. On the other hand, the non-dimensional natural frequencies obtained by
using the frequency equation given by Kumar and Sujith [7] as

[a/ tan(aL + b)] tan(L
√

a2 + β2) =
√

a2 + β2 (29)

are exactly the same with the present results given in Table 1. Therefore, the numerical non-dimensional natural
frequencies presented in reference [7] have some numerical errors.
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Table 1
Comparison of non-dimensional natural frequencies of clamped-free
rods with A(x) = A0 sin2(ax + b) for various values of a (L1 = 0,
L2 = 1, b = 1)

Mode a = 1 [7] a = 1 Present a = 2 [7] a = 2 Present

1 1.517638 1.517637 2.148560 2.148560
2 4.702145 4.702145 5.535762 5.535762
3 7.848311 7.848311 8.632812 8.632811
4 10.991620 10.991621 11.694640 11.694641
5 14.134120 14.134123 14.757860 14.757858
6 17.276280 17.276282 17.830600 17.830596
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Fig. 1. Graphical illustrations of sinn(ax + b) for b = 1, n = 3, and different values of the parameter a.
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Fig. 2. Graphical illustrations of sinn(ax + b) for a = π–2b, n = 3, and different values of the parameter b.

As numerical applications of the present frequency equations obtained for clamped-clamped, clamped-free, and
free-free end conditions, the truncated sinus waves shown in Figs 1–3 are determined for the functional part of the
cross-sectional area variations. Non-dimensional natural frequencies for aforementioned boundary conditions of the
rods illustrated in Figs 1–3 are found and given in Tables 2–10.

It is evident in Table 2 that when the value of a increases within the given range, non-dimensional frequencies
decrease. In Table 3, non-dimensional frequencies are found to increase with increasing b. Table 4 has the similar
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Fig. 3. Graphical illustrations of sinn(ax + b) for a = π–2b, b = 1, and different values of the parameter n.

Table 2
Non-dimensional natural frequencies of clamped-clamped rods with A(x) = A0 sin3(ax+b)
for various values of a (L1 = 0, L2 = 1, b = 1)

Mode a = 0.25π− 0.5b a = 0.5π − b a = 0.75π− 1.5b a = π− 2b

1 3.124175 3.066848 2.965843 2.821246
2 6.274524 6.246492 6.198613 6.133696
3 9.419010 9.400401 9.368810 9.326456
4 12.562046 12.548111 12.524504 12.492985
5 15.704504 15.693364 15.674510 15.649387
6 18.846674 18.837393 18.821697 18.800803

Table 3
Non-dimensional natural frequencies of clamped-clamped rods with A(x) = A0 sin3(ax+b)
for various values of b (L1 = 0, L2 = 1, a = π− 2b)

Mode b = 0.9 b = 1.0 b = 1.1 b = 1.2

1 2.693969 2.821246 2.925733 3.008704
2 6.080621 6.133696 6.180034 6.218531
3 9.292421 9.326456 9.356605 9.381897
4 12.467826 12.492985 12.515398 12.534268
5 15.629399 15.649387 15.667244 15.682303
6 18.784210 18.800803 18.815649 18.828182

Table 4
Non-dimensional natural frequencies of clamped-clamped rods with A(x) = A0 sinn(ax+b)
for various values of n (L1 = 0, L2 = 1, a = π− 2b, b = 1)

Mode n = 1 n = 2 n = 3 n = 4

1 3.033658 2.926836 2.821246 2.717003
2 6.228475 6.178607 6.133696 6.093840
3 9.388171 9.355384 9.326456 9.301424
4 12.538877 12.514409 12.492985 12.474621
5 15.685954 15.666425 15.649387 15.634849
6 18.831208 18.814955 18.800803 18.788757

tendency with Table 2 for the parameter n. Table 5 shows very complicated effects of the parameter a on non-
dimensional frequencies. It can be seen from Table 6 that when the value of b increases within the given range,
non-dimensional frequencies except first one decrease. Table 7 has the opposite tendency with Table 6. Tables 8, 9,
and 10 present opposite tendency with Table 2, 3, and 4, respectively.
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Table 5
Non-dimensional natural frequencies of clamped-free rods with A(x) = A0 sin3(ax + b)
for various values of a (L1 = 0, L2 = 1, b = 1)

Mode a = 0.25π− 0.5b a = 0.5π − b a = 0.75π− 1.5b a = π− 2b

1 1.448094 1.410623 1.444102 1.547041
2 4.673935 4.663228 4.679553 4.743064
3 7.831015 7.824694 7.834857 7.875459
4 10.979190 10.974696 10.982032 11.011552
5 14.124430 14.120941 14.126673 14.149801
6 17.268341 17.265490 17.270189 17.289183

Table 6
Non-dimensional natural frequencies of clamped-free rods with A(x) = A0 sin3(ax + b)
for various values of b (L1 = 0, L2 = 1, a = π− 2b)

Mode b = 0.9 b = 1 b = 1.1 b = 1.2

1 1.524289 1.547041 1.560065 1.566753
2 4.771651 4.743064 4.726399 4.717714
3 7.896713 7.875459 7.863580 7.857574
4 11.027629 11.011552 11.002673 10.998220
5 14.162600 14.149801 14.142767 14.139250
6 17.299778 17.289183 17.283374 17.280475

Table 7
Non-dimensional natural frequencies of clamped-free rods with A(x) = A0 sinn(ax + b)
for various values of n (L1 = 0, L2 = 1, a = π− 2b, b = 1)

Mode n = 1 n = 2 n = 3 n = 4

1 1.568123 1.560155 1.547041 1.529023
2 4.715830 4.726102 4.743064 4.766484
3 7.856372 7.863537 7.875459 7.892108
4 10.997350 11.002678 11.011552 11.023967
5 14.138571 14.142783 14.149801 14.159624
6 17.279918 17.283392 17.289183 17.297288

Table 8
Non-dimensional natural frequencies of free-free rods with A(x) = A0 sin3(ax+ b)
for various values of a (L1 = 0, L2 = 1, b = 1)

Mode a = 0.25π–0.5b a = 0.5π–b a = 0.75π–1.5b a = π–2b

1 3.171275 3.237508 3.331630 3.470891
2 6.298229 6.333403 6.387328 6.475015
3 9.434833 9.458556 9.495522 9.557056
4 12.573918 12.591784 12.619786 12.666805
5 15.714004 15.728324 15.750829 15.788776
6 18.854591 18.866537 18.885339 18.917112

Table 9
Non-dimensional natural frequencies of free-free rods with A(x) = A0 sin3(ax+ b)
for various values of b (L1 = 0, L2 = 1, a = π− 2b)

Mode b = 0.9 b = 1.0 b = 1.1 b = 1.2

1 3.606218 3.470891 3.361601 3.276077
2 6.568999 6.475015 6.405441 6.355043
3 9.624896 9.557056 9.508098 9.473321
4 12.719210 12.666805 12.629357 12.602950
5 15.831289 15.788776 15.758539 15.737291
6 18.952812 18.917112 18.891788 18.874025
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Table 10
Non-dimensional natural frequencies of free-free rods with A(x) = A0 sinn(ax + b) for
various values of n (L1 = 0, L2 = 1, a =π–2b, b = 1)

Mode n = 1 n = 2 n = 3 n = 4

1 3.250523 3.360328 3.470891 3.582093
2 6.342610 6.406605 6.475015 6.547675
3 9.465160 9.509269 9.557056 9.608466
4 12.596870 12.630355 12.666805 12.706197
5 15.732444 15.759385 15.788776 15.820605
6 18.869993 18.892514 18.917112 18.943781

6. Conclusions

Exact analytical solutions for the free longitudinal vibration of rods with cross-sectional area variation of the
form A(x) = A0 sinn(ax + b) and A(x) = A0 cosn(ax + b) are found by transformation method. Also, frequency
equations for clamped-clamped, clamped-free, and free-free end conditions are obtained. The present results for
clamped-free non-uniformrods are verified by the results available in the literature. Also, numerical non-dimensional
frequency parameters for the rods of the some forms determined by pondering are presented in tabular form.
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