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In this paper, we apply the method of iterative operator splitting on the Korteweg–de Vries
(KdV) equation. The method is based on first, splitting the complex problem into simpler
sub-problems. Then each sub-equation is combined with iterative schemes and solved
with suitable integrators. Von Neumann analysis is performed to achieve stability criteria
for the proposed method applied to the KdV equation. The numerical results obtained by
iterative splitting method for various initial conditions are compared with the exact
solutions. It is seen that they are in a good agreement with each other.
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1. Introduction

Nonlinear wave equations are widely used to describe complex phenomena in various sciences such as fundamental par-
ticle physics, plasma and fluid dynamics, statistical mechanics, protein dynamics, condensed matter, biophysics, nonlinear
optics, quantum field theory, see [14,3,1,6]. The wide applicability of these equations is the main reason why they have at-
tracted so much attention from many mathematicians. However, they are usually very difficult to solve, either numerically
or analytically.

During the past four decades, both mathematicians and physicists have devoted considerable effort to the study of exact
and numerical solutions of the nonlinear partial differential equations corresponding to the nonlinear problems. Many pow-
erful methods have been presented, for instance, Darboux transformation method [9], Adomians decomposition method
[15,11], He’s perturbation method [16], Operator splitting method [10], Iterative splitting method [7].

In this paper, we consider the nonlinear Korteweg–de Vries (KdV) equation
ut þ 6uux þ uxxx ¼ 0; ð1Þ
which was found to admit soliton solutions and be able to model the propagation of solitary wave on water surface. Its phe-
nomena was first discovered by Russell in 1834 [13] and Korteweg–de Vries formulated the mathematical model equation to
provide explanation of the phenomena. In [11,16,2], KdV equation has been solved with Adomain’s decomposition (ADM),
He’s perturbation method (HPM) and a particle method (based on diffusion-velocity method) analytically and numerically.
Here, we use iterative operator splitting method to study on the nonlinear KdV equation.

The iterative splitting is a recent popular technique which is based on first splitting the complex problem into simpler
differential equations. Then each sub-equation is combined with the iterative schemes, each of which is efficiently solved
with suitable integrators [5,4,8,7].

Furthermore, this study explicitly derives the stability criteria for iterative splitting method using Fourier analysis, which
based on KdV equation [12].
. All rights reserved.
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The structure of the paper is as follows: In Section 2, outline of the iterative splitting method is given. Stability analysis of
the method which based on KdV equation is derived in Section 3. In Section 4, applications of the method on KdV equation is
done. Finally, we have numerical results and conclusion part.

2. Outline of the method

Consider the abstract Cauchy problem
u0ðtÞ ¼ ðAþ BÞuðtÞ; t 2 ½0; T�; ð2Þ

uð0Þ ¼ u0; ð3Þ
where A and B are bounded linear operators and u0 is initial condition. For such problem, the exact solution can be given as
uðtÞ ¼ expððAþ BÞÞu0; t 2 ½0; T�: ð4Þ
The method is based on iteration by fixing the splitting discretization step size Dt on time interval [tn, tn+1]. The following
algorithms are then solved consecutively for i = 1,3, . . . ,2m + 1.
u0iðtÞ ¼ AuiðtÞ þ Bui�1ðtÞ with uiðtnÞ ¼ un; ð5Þ

u0iþ1ðtÞ ¼ AuiðtÞ þ Buiþ1ðtÞ with uiþ1ðtnÞ ¼ un; ð6Þ
where un is the known split approximation at time level t = tn and u0 � 0 is the initial guess. The split approximation at the
time-level t = tn+1 is defined as un+1 = u2m+2(tn).

3. Stability analysis of iterative splitting method on KdV equation via von Neumann

In this section, we will investigate the stability analysis of iterative splitting method for KdV equation via von Neumann
approach. Consider again the KdV equation of the form
ut þ 6uux þ uxxx ¼ 0: ð7Þ
Firstly, split Eq. (7) into two parts
ut ¼ �uxxx and ut ¼ �6uux ð8Þ
and apply iterative splitting schemes, then have the following algorithms:
u0i ¼ �ðuiÞxxx þ 6ui�1ðui�1Þx; ð9Þ

u0iþ1 ¼ �ðuiÞxxx þ 6uiðuiþ1Þx; ð10Þ
where i = 1,3, . . . ,2m + 1.
Note that, in this approach, it is not necessary to specify a spatial discretization technique.
Rearrangement of algorithms (19) and (20) with a linearization about steady state 6ui�1 = k1, 6ui = k2 yields
u0i ¼ L1ui þ k1L2ui�1; ð11Þ

u0iþ1 ¼ L1ui þ k2L2uiþ1; ð12Þ
where L1 ¼ � @3

@x3 ; L2 ¼ � @
@x and i = 1,3, . . . ,2m + 1.

Secondly, combine algorithms (11) and (12) with the second order midpoint rule then have
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where Dt is the time step on [tn, tn+1] interval.
Finally, Eq. (13) can be put in the following matrix form
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by taking the fourier transform according to the formula
ûðwÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

Z
R

e�iwxuðxÞdx: ð15Þ
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The eigenvalues of eA are k1 ¼
1þDt

2 w3 i

1�Dt
2 w3 i

, k2 ¼
1�Dt

2 k2wi

1þDt
2 k2wi

and for stability eigenvalues must be jkij 6 1, i = 1, 2. One can easily deduce

that jk1j = jk2j = 1, however this holds for any choice of Dt, w and k2. Hence the method is unconditionally stable. Note that
this approach gives advantage since the nonlinear problem can be analyzed as a linear problem. The consistency of the
method can be seen in [7].

4. Application

Example 4.1. For purpose of illustration of the iterative splitting method for solving KdV Eq. (1), consider the following
initial boundary value problem
ut þ 6uux þ uxxx ¼ 0; uðx; 0Þ ¼ 1
2

sech2 1
2

x
� �

; x 2 ðl1; l2Þ; ð16Þ
uðx; tÞjl1 ¼ 0; uðx; tÞjl2 ¼ 0; t 2 ð0; T�; ð17Þ
where the analytic solution is
uanalyðx; tÞ ¼
1
2

sech2 1
2
ðx� tÞ

� �
: ð18Þ
After splitting and applying iterative schemes, we have the iterative splitting algorithms as in Section 3:
u0i ¼ �ðuiÞxxx þ 6ui�1ðui�1Þx; ð19Þ

u0iþ1 ¼ �ðuiÞxxx þ 6uiðuiþ1Þx; ð20Þ
where i = 1,3, . . . ,2m + 1. To solve these iterative schemes, we need to discretize the initial and boundary conditions: For ini-
tial condition we have
um ¼
1
2

sech2 1
2

xm

� �
; 1 6 m 6 N þ 1 ð21Þ
and for boundary conditions (17) we have
u1 ¼ 0; 0 6 t; ð22Þ
uNþ1 ¼ 0; 0 6 t; ð23Þ
where m, N define the spatial discretization step and number.
We derive the second order discretization for uxxx term and central difference expansion is taken into account for ux term

as follows:
@3u
@x3
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¼ 1
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and
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¼ 1
2h
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where h is the spatial stepping and m = 1,2, . . . ,N + 1.
After assembling the unknowns of (24) and (25) for each m, we have the following systems of equations in matrix form as

follows:
uxxx ¼ Au; ux ¼ Bu: ð26Þ
We fix the nonlinear term u ’ ~u at each discretization points m = 1,2 . . . ,N + 1 and have
~u ¼
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Redefining Eqs. (19) and (20) we have
u0i ¼ �Aui � 6~ui�1Bui�1; ð27Þ
u0iþ1 ¼ �Aui � 6~uiBuiþ1; ð28Þ
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then solve Eqs. (27), (28) by using the second order midpoint method on each subinterval [tn, tn+1], n = 0,1, . . . ,M. Thus algo-
rithms can be read as:
Fig. 1.
and (17
(18).
unþ1
i ¼ I þ Dt

2
A

� ��1

I � Dt
2

A
� �

un
i �

Dt
2
ð6~un

i�1Bun
i�1 þ 6~unþ1

i�1 Bunþ1
i�1 Þ

� �
; ð29Þ

unþ1
iþ1 ¼ I þ Dt

2
6~unþ1

i B
� ��1

ðI � Dt
2

6~un
i BÞun

iþ1 �
Dt
2

A un
i þ un

iþ1

� �� �
; ð30Þ
where Dt is time discretization step and iteration starts with i = 1, initial guess u0(t) = 0, initial conditions u1(t) = u0 and
u2(t) = u0.

Example 4.2. As a second example we present a two-soliton problem such that
ut þ 6uux þ uxxx ¼ 0; uðx; 0Þ ¼ 6sech2 ðxÞ; x 2 ðl1; l2Þ; ð31Þ

uðx; tÞjl1 ¼ 0; uðx; tÞjl2 ¼ 0; t 2 ð0; T�; ð32Þ
where the analytic solution is
uanalyðx; tÞ ¼ 12
3þ 4coshð2x� 8tÞ þ coshð4x� 64tÞ
ð3coshðx� 28tÞ þ coshð3x� 36tÞÞ2

: ð33Þ
Example 4.3. As a third example we present a double-soliton problem such that
ut þ 6uux þ uxxx ¼ 0; uðx; 0Þ ¼ 1
2

sech2 1
2

x
� �

þ 6sech2 ðxÞ; x 2 ðl1; l2Þ; ð34Þ

uðx; tÞjl1 ¼ 0; uðx; tÞjl2 ¼ 0; t 2 ð0; T�: ð35Þ
5. Numerical results and conclusion

The iterative splitting method has been successfully applied to finding the numerical solution of KdV equations with dif-
ferent initial conditions. Also, stability analysis of the method based on KdV equation was studied via von Neumann ap-
proach. It gave advantages since the nonlinear problem could be analyzed as a linear problem.

In Figs. 1 and 2, one soliton solutions were obtained at different times. The results showed that iterative splitting and
exact soliton solutions behaved in similar way. We compared the errors taken with different methods in Tables 1 and 2,
it was seen that iterative splitting method was the best one. In Fig. 3, we plotted the exact and iterative splitting two soliton
solutions at different times. Finally, we computed the double soliton collision by taking the initial condition as a sum of two
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Fig. 2. Comparision of numerical and exact solutions of KdV Eqs. (16) and (17) on �15 6 x 6 15 interval at T = 5 time.

Table 1
The errors of KdV Eqs. (16) and (17) on [�15,15] interval for h = 0.3, Dt = 0.0005 at T = 5.

errL1 errL2

Iterative splitting 0.0093 0.0288
Difference method 0.0102 0.0290

Table 2
The errors of KdV Eqs. (16) and (17) on [�15,15] interval for h = 0.3, Dt = 0.05 at T = 5.

errL1 errL2

Iterative splitting 0.0098 0.0301
Lie-Trotter splitting 0.0503 0.01434
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Fig. 3. The solutions of KdV Eqs. (31) and (32) on �15 6 x 6 12 interval at different times. The points represent the location of iterative splitting solutions.
The solid lines represent exact solution (33).
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solitons. The results were presented in Fig. 4. As one could see, the higher soliton that traveled with higher velocity, passed
through the lower soliton which traveled slower after going through a nonlinear interaction.

Finally, we can say that the iterative splitting method is extremely simple, easy to use and is accurate for solving nonlin-
ear evolution equations in various sciences. Its applications are worth further studying.
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