RESEARCH ARTICLE - MATHEMATICS

Rafail Alizade · Sultan Eylem Toksoy

Cofinitely Supplemented Modular Lattices

Received: 24 October 2010 / Accepted: 6 March 2011 / Published online: 12 August 2011 \odot King Fahd University of Petroleum and Minerals 2011

Abstract In this paper it is shown that a lattice L is a cofinitely supplemented lattice if and only if every maximal element of L has a supplement in L. If a/0 is a cofinitely supplemented sublattice and 1/a has no maximal element, then L is cofinitely supplemented. A lattice L is amply cofinitely supplemented if and only if every maximal element of L has ample supplements in L if and only if for every cofinite element a and an element b of L with $a \lor b = 1$ there exists an element c of b/0 such that $a \lor c = 1$ where c is the join of finite number of local elements of b/0. In particular, a compact lattice L is amply supplemented if and only if every maximal element of L has ample supplements in L.

Keywords Cofinite element · Ample supplement · Amply supplemented lattice · Cofinitely supplemented lattice

Mathematics Subject Classification (2010) 06CXX · 16D10

الملخص

1 Introduction

Throughout *L* denotes an arbitrary complete modular lattice with smallest element 0 and greatest element 1. A sublattice of the form $b/a = \{x \in L \mid a \le x \le b\}$ is called a *quotient sublattice* [3]. An element *a* of a

R. Alizade (🖂)

Department of Mathematics, Yaşar University, Selçuk Yaşar Campus, Üniversite Caddesi, No: 35–37, Ağaçlı Yol, 35100 Bornova, Izmir, Turkey E-mail: rafail.alizade@yasar.edu.tr

S. E. Toksoy Department of Mathematics, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey E-mail: eylemtoksoy@iyte.edu.tr

lattice *L* is said to be *small* if $a \lor b \neq 1$ holds for every $b \neq 1$. It is denoted by $a \ll L$. We will write a < b if $a \leq b$ and $a \neq b$. We have the following properties of small elements:

Lemma 1.1 [3, Lemmas 7.2, 7.3 and 12.4] Let a < b be elements in a lattice L.

- (1) If $a \ll b/0$, then $a \lor c \ll (b \lor c)/c$ for every $c \in L$.
- (2) $b \ll L$ if and only if $a \ll L$ and $b \ll 1/a$.
- (3) Let $c' \ll c/0$ and $d' \ll d/0$. Then $c' \lor d' \ll (c \lor d)/0$.

An element *a* of *L* is called a *supplement* of an element *b* if $a \lor b = 1$ and *a* is minimal with respect to this property. Equivalently, an element *a* is a supplement of *b* in *L* if and only if $a \lor b = 1$ and $a \land b \ll a/0$ [3, Proposition 12.1]. A lattice *L* is said to be *supplemented* if every element *a* of *L* has a supplement in *L*. An element *a* of a lattice *L* is said to be *cofinite* in *L* if the quotient sublattice 1/a is compact, that is $1 = \bigvee_{i \in I} x_i$ for some elements $x_i \ge a$ implies that $1 = \bigvee_{i \in F} x_i$ for some finite subset *F* of *I*. A lattice *L* is said to be *cofinitely supplemented* if every cofinite element of *L* has a supplement in *L*. In Section 2 we prove that a lattice *L* is cofinitely supplemented if and only if every maximal element of *L* has a supplement in *L*. Using this we show that if a lattice *L* is an arbitrary join of cofinitely supplemented elements a_i with $a_i/0$ cofinitely supplemented, then *L* is cofinitely supplemented. Also we prove that *L* is cofinitely supplemented if a/0 is a cofinitely supplemented sublattice and 1/a has no maximal elements.

An element *a* of a lattice *L* has *ample supplements* in *L* if for every element *b* of *L* with $a \lor b = 1, b/0$ contains a supplement of *a* in *L*. A lattice *L* is said to be *amply supplemented* if every element *a* of *L* has ample supplements in *L*. In Section 3 we generalize some properties of amply supplemented modules to amply supplemented lattices. Also we study *amply cofinitely supplemented* lattices, that is lattices whose cofinite elements have ample supplements. A lattice *L* is said to be *local* if the set of elements different from 1 has a largest element. An element *l* is called a *local element* if the quotient sublattice l/0 is local. We show in Theorem 3.9 that a lattice *L* is amply cofinitely supplemented if and only if every maximal element of *L* has ample supplements in *L*. Moreover in this situation for every cofinite element *a* and an element *b* of *L* with $a \lor b = 1$ there exists an element *c* of b/0 such that $a \lor c = 1$ where *c* is the join of finite number of local elements of b/0. In particular, a compact lattice *L* is amply supplemented if and only if every maximal element of *L* has ample supplements in *L*.

We give proofs of the results for lattices when the proofs are different from those in the module case. All definitions and related properties not given here can be found in [3,4].

2 Cofinitely Supplemented Lattices

An element *c* of *L* is said to be *compact*, if for every subset $X = \{x_i \mid i \in I\}$ of *L* with $c \leq \bigvee_{i \in I} x_i$ there exists a finite subset *F* of *I* such that $c \leq \bigvee_{i \in F} x_i$. A lattice *L* is said to be *compact* if 1 is compact and *compactly generated* (or *algebraic*) if each of its elements is a join of compact elements [6]. For compactly generated compact lattices a supplement of an element is compact [3, Proposition 12.2 (2)]. In the following proposition we show that for an arbitrary lattice *L* a supplement of a cofinite element is compact:

Proposition 2.1 Let a be a cofinite element of a lattice L and b be a supplement of a. Then b/0 is compact.

Proof Since *b* is a supplement of *a* in *L*, $a \vee b = 1$ and *b* is minimal with respect to this property. Let $b = \bigvee_{i \in I} b_i$ for some $b_i \leq b$.

$$1 = a \lor b = a \lor \left(\bigvee_{i \in I} b_i\right) = \bigvee_{i \in I} (a \lor b_i).$$

Since a is cofinite, 1/a is compact, there exists a finite subset F of I such that

$$1 = \bigvee_{i \in F} (a \lor b_i) = a \lor \left(\bigvee_{i \in F} b_i\right).$$

Then $b = \bigvee_{i \in F} b_i$ by minimality of b. So b is compact.

Recall that a lattice L is said to be *local* if the set of elements different from 1 has a largest element.

Lemma 2.2 [1, Lemma 2.9] Let $\{l_i/0\}_{i \in I}$, $I = \{1, ..., n\}$ be a finite collection of local sublattices of a lattice *L* and *a* be an element of *L* such that $a \lor (\bigvee_{i \in I} l_i)$ has a supplement *b* in *L*. Then there exists a subset *J* of *I* such that $b \lor (\bigvee_{i \in I} l_i)$ is a supplement of *a* in *L*.

Proof Induction on *n*. For n = 1, *b* is a supplement of $a \lor l_1$, i.e. $b \lor (a \lor l_1) = 1$ and $b \land (a \lor l_1) \ll b/0$. Put $c = (a \lor b) \land l_1$. If $c = l_1$, then $l_1 \le a \lor b$. So $1 = b \lor (a \lor l_1) = a \lor b$ and $b \land a \le b \land (a \lor l_1) \ll b/0$. Thus *b* is a supplement of *a* in *L*. If $c \ne l_1$, then $(a \lor b) \land l_1 = c \ll l_1/0$. Therefore, l_1 is a supplement of *c* in $l_1/0$. By [3, Lemma 12.3] and Lemma 1.1 (3) the following holds:

$$a \wedge (b \vee l_1) \leq [b \wedge (a \vee l_1)] \vee [l_1 \wedge (a \vee b)] \ll (b \vee l_1)/0.$$

So $b \lor l_1$ is a supplement of *a*. Suppose that n > 1 and *b* is a supplement of $a' \lor (\bigvee_{i=2}^n l_i)$ in *L* where $a' = a \lor l_1$. By the induction hypothesis there is a subset *I'* of $\{2, ..., n\}$ such that $b' = b \lor (\bigvee_{i \in I'} l_i)$ is a supplement of $a' = a \lor l_1$, by the case n = 1 either *b'* or $b' \lor l_1$ is a supplement of *a* in *L*. This completes the proof.

Lemma 2.3 [3, Lemma 12.5 (b)] In a lattice L let m be a maximal element. If l is a supplement of m, then l/0 is local. Moreover, $l \land m$ is the largest element of l/0 different from l.

Proof l is a supplement of *m* if and only if $l \lor m = 1$ and $l \land m \ll l/0$. Let $x \in l/0$ and $x \neq l$. If $x \leq m$, then $x \leq l \land m$. If $x \not\leq m (x \not\leq l \land m)$, then since *m* is maximal $x \lor m = 1$.

$$l = l \land 1 = l \land (x \lor m) = x \lor (l \land m).$$

Since $l \wedge m \ll l/0$, x = l. This is a contradiction. Thus $l \wedge m$ is the largest element $(\neq l)$ of l/0.

Theorem 2.4 [5, Theorem 5.3.33] A lattice L is a cofinitely supplemented lattice if and only if every maximal element of L has a supplement in L.

Proof (\Rightarrow) Let *m* be a maximal element of *L*. Then there are only two elements of 1/m: 1, *m*. So *m* is cofinite. Since *L* is cofinitely supplemented, *m* has a supplement in *L*.

(\Leftarrow) Let the join of local elements of *L* be denoted by Loc(*L*). Let *m* be a maximal element in 1/Loc(*L*). Then *m* is a maximal element of *L*. By assumption *m* has a supplement *b* in *L*. By Lemma 2.3, *b*/0 is a local sublattice; therefore, *b* is a local element. Then $b \leq \text{Loc}(L) \leq m$ and so $1 = m \lor b = m$. This is a contradiction. So there is no maximal element in 1/Loc(L). Let *a* be a cofinite element of *L*. Then $a \lor \text{Loc}(L)$ is cofinite in *L*. Since there is no maximal element in 1/Loc(L), $1/(a \lor \text{Loc}(L))$ has no maximal element, but by [3, Lemma 2.4], if $a \lor \text{Loc}(L) \neq 1$, then $1/(a \lor \text{Loc}(L))$ has at least one maximal element ($\neq 1$). So $a \lor \text{Loc}(L) = 1$. Since 1/a is compact for some local elements l_1, \ldots, l_n of *L*

$$a \lor (l_1 \lor \cdots \lor l_n) = 1.$$

0 is a supplement of $a \lor (l_1 \lor \cdots \lor l_n) = 1$ in L. Thus by Lemma 2.2, a has a supplement in L.

Using Theorem 2.4 we prove that if a lattice L is an arbitrary join of cofinitely supplemented principal ideals, then L is cofinitely supplemented.

Theorem 2.5 Let $\{a_i/0\}_{i \in I}$ be a collection of cofinitely supplemented sublattices of L with $1 = \bigvee_{i \in I} a_i$. Then L is a cofinitely supplemented lattice.

Proof Let *m* be any maximal element of *L*. If $a_i \leq m$ for all $i \in I$, then $1 = \bigvee_{i \in I} a_i \leq m$ which is a contradiction. So there exists a $j \in I$ such that $a_j \nleq m$. Then $1 = a_j \lor m$. Since $a_j/(a_j \land m) \cong (a_j \lor m)/m = 1/m$, the element $a_j \land m$ is maximal in $a_j/0$. By hypothesis there is a supplement *c* of $a_j \land m$ in $a_j/0$, i.e. $(a_j \land m) \lor c = a_j$ and $a_j \land m \land c \ll c/0$. If $c \leq m$, then $a_j = (a_j \land m) \lor c \leq m$, a contradiction. So $c \nleq m$. Therefore, $1 = m \lor c$ and $m \land c = a_j \land m \land c \ll c/0$. Thus *c* is a supplement of *m* in *L*. By Theorem 2.4, *L* is a cofinitely supplemented lattice.

Theorem 2.4 is also used in the proof of the following theorem which gives a new result for modules:

Theorem 2.6 If a/0 is a cofinitely supplemented sublattice of L and 1/a has no maximal element, then L is also a cofinitely supplemented lattice.

Proof Let *m* be a maximal element of *L*. If $a \le m$, then *m* is a maximal element of 1/a, but 1/a has no maximal element. So $a \le m$; therefore $a \lor m = 1$ and $a/(a \land m) \cong (a \lor m)/m = 1/m$. Since *m* is a maximal element of *L*, $a \land m$ is a maximal and therefore a cofinite element of a/0. Then there is a supplement *c* of $a \land m$ in a/0, that is $(a \land m) \lor c = a$ and $(a \land m) \land c \ll c/0$. Since *c* is in $a/0, c \land m = c \land (a \land m) \ll c/0$. $c \lor m = c \lor (a \land m) \lor m = a \lor m = 1$. So *c* is a supplement of *m* in *L*. By Theorem 2.4, *L* is a cofinitely supplemented lattice.

For a module K over a ring the *radical* Rad K of K is the intersection of all maximal submodules of K, so Rad K = K if K has no maximal submodules.

Corollary 2.7 Let M be a module, N be a cofinitely supplemented submodule of M. If $\operatorname{Rad}(M/N) = M/N$, then M is cofinitely supplemented.

3 Amply Supplemented Lattices

A homomorphic image of a small element under a lattice morphism need not be small unlike the module case [2, Example 2.1]. Nevertheless, we will show that the quotient sublattices 1/a of an amply supplemented lattice is amply supplemented by using properties of small elements given in Lemma 1.1.

Proposition 3.1 If a lattice L is amply supplemented, then for every element a of L the quotient sublattice 1/a is amply supplemented.

Proof Let x be an element of 1/a. If $x \lor y = 1$ for some $y \in 1/a$, then x has a supplement $y' \le y$ in L because L is amply supplemented, i.e. $x \lor y' = 1$ and $x \land y' \ll y'/0$. Then $x \lor (y' \lor a) = 1$. By modular law, $x \land (y' \lor a) = a \lor (x \land y')$ and since $x \land y' \ll y'/0$, $a \lor (x \land y') \ll (y' \lor a)/a$ by Lemma 1.1 (1). So $y' \lor a$ is a supplement of x in 1/a with $y' \lor a \le y$.

Proofs of Proposition 3.2 and 3.4 are similar to the proofs of [7, 41.7(1)] and [7, 41.8].

Proposition 3.2 If L is an amply supplemented lattice, then for every supplement a of an element of L, a/0 is amply supplemented.

If $a \lor a' = 1$ and $a \land a' = 0$ for elements a and a' of L, then we use the notation $a \oplus a' = 1$ and call this a *direct sum*. In this case a and a' are called *direct summands* of 1.

Corollary 3.3 [7,41.7(2)] If L is amply supplemented, then for a direct summand a of L, the quotient sublattice a/0 is amply supplemented.

Proposition 3.4 Let $a, b \in L$ with $a \lor b = 1$. If a and b have ample supplements in L, then $a \land b$ has also ample supplements in L.

Given elements $a \le b$ of L, the inequality $a \le b$ is called *cosmall* in L if $b \ll 1/a$. One can easily modify the proofs of [8, Proposition 2.1] and [4, 20.24] to prove the following proposition:

Proposition 3.5 *The following are equivalent for a lattice L:*

- (a) L is amply supplemented.
- (b) Every element a of L is of the form $a = x \lor y$ with x/0 supplemented and $y \ll L$.
- (c) For every element a of L, there is an element $x \le a$ such that the quotient sublattice x/0 is supplemented with the inequality $x \le a$ cosmall in L.

Corollary 3.6 *If the quotient sublattice a/0 is supplemented for every element a of a lattice L, then L is amply supplemented.*

Proposition 3.7 Let L be an amply cofinitely supplemented lattice. Then for every $a \in L$, 1/a is amply cofinitely supplemented.

Proof Let *b* be a cofinite element of 1/a. Then 1/b is compact. So *b* is a cofinite element of *L*. Suppose $b \lor c = 1$ for some $c \in 1/a$. Since *L* is amply cofinitely supplemented, c/0 contains a supplement *x* of *b* in *L*, i.e. $b \lor x = 1$ and $b \land x \ll x/0$. Then $b \lor (x \lor a) = 1 \lor a = 1$ and by Lemma 1.1 (1),

$$(a \lor x) \land b = (b \land x) \lor a \ll (x \lor a)/a,$$

i.e. $x \lor a$ is a supplement of b in 1/a. Since $a \le c$ and $x \le c$, we have $a \lor x \le c$. Hence, 1/a is amply cofinitely supplemented.

Lemma 3.8 If a is a cofinite element of a lattice L, then there exists a maximal element m of L such that $a \le m$.

Proof Since *a* is a cofinite element of *L*, by [3, Lemma 2.4] there is a maximal element *m* in 1/a. So *m* is a maximal element of *L* containing *a*.

The following theorem generalizes [1, Theorem 2.10] to lattices:

Theorem 3.9 *The following are equivalent for a lattice L:*

- (a) L is amply cofinitely supplemented.
- (b) Every maximal element of L has ample supplements in L.
- (c) For every cofinite element a and an element b of L with $a \lor b = 1$ there exists an element $c = \bigvee_{i \in F} l_i$ where F is a finite set and each l_i is a local element of b/0 such that $a \lor c = 1$.

Proof (*a*) \Rightarrow (*b*) Clear since every maximal element *m* is cofinite. (*b*) \Rightarrow (*c*) Let *a* be a cofinite element of *L*, *b* \in *L* and *a* \lor *b* = 1. Let

$$C = \left\{ c \in b/0 \mid c = \bigvee_{i \in F} l_i, F \text{ is finite, } l_i \text{ is local} \right\}.$$

Suppose that $a \lor c \neq 1$ for every $c \in C$. Let Ω denote the collection of elements x of L such that $a \leq x$ and $x \lor c \neq 1$ for every $c \in C$. Let $\Gamma = \{x_{\lambda} \mid \lambda \in \Lambda\}$ be a chain in Ω and $x = \bigvee_{\lambda \in \Lambda} x_{\lambda}$. Since $\forall \lambda, x_{\lambda} \in \Omega, a \leq x_{\lambda}$. Then $a \leq \bigvee_{\lambda \in \Lambda} x_{\lambda} = x$. So x is an upper bound for Γ . Suppose that $(\bigvee_{\lambda \in \Lambda} x_{\lambda}) \lor c = 1$ for some $c \in C$. Since 1/a is compact, there exists a finite subset F of Λ such that $x = (\bigvee_{\lambda \in \Lambda} x_{\lambda}) \lor c = 1$. Then $\bigvee_{i \in F} x_{\lambda} = x_{\lambda_0}$ for some $\lambda_0 \in F$, so $x_{\lambda_0} \lor c = 1$. This is a contradiction. Thus $x = \bigvee_{\lambda \in \Lambda} x_{\lambda} \in \Omega$. By Zorn's Lemma Ω contains a maximal element $u \neq 1$. Since a is cofinite, 1/a is compact and since $a \leq u$, 1/u is compact, i.e. u is cofinite. By Lemma 3.8, there exists a maximal element m of L such that $u \leq m$ and $m \lor b = 1$. Since m has ample supplements, there exists $y \in b/0$ such that y is a supplement of m in L. By Lemma 2.3, y/0 is local. Since $y \not\leq m$, $y \not\leq u$. Therefore, $u \neq u \lor y$. By maximality of u, there exists an element $v \in C$ such that $1 = (u \lor y) \lor v$. Since $y \lor v \leq b$ and $y \lor v$ is a finite join of local elements, $1 = u \lor (y \lor v)$, therefore $u \notin \Omega$. This is a contradiction.

 $(c) \Rightarrow (a)$ Suppose that *a* is a cofinite element and $a \lor b = 1$ for some $b \in L$. We want to show that *a* has ample supplements in b/0. By hypothesis there is an element $c = \bigvee_{i \in F} l_i$ where *F* is a finite set and each l_i is a local element of b/0 such that $a \lor c = 1$. Since 0 is a supplement of $1 = a \lor c$, there exists a subset $J \subseteq F$ such that $\bigvee_{i \in I} l_i$ is a supplement of *a* in b/0 by Lemma 2.2.

Clearly, every element of a compact lattice is a cofinite element. So we have the following corollary:

Corollary 3.10 A compact lattice *L* is amply supplemented if and only if every maximal element has ample supplements in *L*.

Acknowledgments The authors would like to thank the referees for their valuable suggestions and comments.

References

- 1. Alizade, R.; Bilhan, G.; Smith, P.F.: Modules whose maximal submodules have supplements. Commun. Algebra 29(6), 2389–2405 (2001)
- 2. Alizade, R.; Toksoy, S.E.: Cofinitely weak supplemented lattices. Indian J. Pure Appl. Math. 40(5), 337–346 (2009)
- 3. Călugăreanu, G.: Lattice Concepts of Module Theory. Kluwer, Dordrecht (2000)
- Clark, J.; Lomp, C.; Vanaja, N.; Wisbauer, R.: Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers Mathematics. Birkhäuser, Basel (2006)
- Çetindil, Y.: Generalizations of Cofinitely Supplemented Modules to Lattices. M.Sc. thesis, Izmir Institute of Technology (2005)
- 6. Stenström, B.: Radicals and socles of lattices. Arch. Math. 20, 258–261 (1969)
- 7. Wisbauer, R.: Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia (1991)
- 8. Zöschinger, H.: Komplemente als direkte Summanden. Arch. Math. 25, 241–253 (1974)

