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their endless support and patience throughout this process.

I would like to thank my friends who are closer than brothers or sisters to me; İlter
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ABSTRACT

ROBUST CONTROL DESIGN FOR MECHATRONIC SYSTEMS HAVING
NON–SYMMETRIC INPUT GAIN MATRIX

Their highly uncertain and complex structures make the control problem of mecha-

tronic systems a challenging task. This problem becomes more challenging when some

special cases that make the input gain matrix of these systems non–symmetric are taken

into account. Solving this problem is the main motivation of this dissertation. To realize

this purpose, a robust controller that is independent from the structure of the input gain

matrix is designed. Since, mechatronic systems are modeled as multi–input multi–output

nonlinear systems, this design is realized for a broader class of these type of systems.

Asymptotic stability of the designed controller is proven via Lyapunov–based arguments.

Since, control gain adjusting process is one of the most restrictive and most important as-

pects of this design, designed controller is supported by proposing a self–tuning method.

After completing the control design process by proposing this self–tuning method, three

fundamentally different mechatronic systems are utilized to demonstrate the effectiveness

of the designed controller in conjunction with the proposed self–tuning method. Position

and orientation control of dynamically positioned surface vessel and unactuated surface

vessel manipulated by 6 uni–directional tugboats under the influence of added mass ef-

fects, and attitude control of small–scaled unmanned helicopter are ensured by utilizing a

lower order version of the designed controller. Each of these mechatronic systems consti-

tutes an example of different cases that make input gain matrix non–symmetric. Perfor-

mance of the designed controller and proposed self–tuning method are demonstrated via

simulations and experiments.
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ÖZET

BAKIŞIMLI OLMAYAN GİRİŞ KAZANÇ MATRİSİNE SAHİP MEKATRONİK
SİSTEMLER İÇİN GÜRBÜZ DENETLEYİCİ TASARIMI

Yüksek oranda belirsiz ve karmaşık yapıları, mekatronik sistemlerin denetim

problemini zor bir iş haline getirmektedir. Bu problem, belirtilen sistemlerin giriş kazanç

matrislerini bakışımsız hale getiren bazı özel durumlar hesaba katıldığında daha da zor-

layıcı hale gelmektedir. Bu problemi çözmek, bu tezin ana motivasyonudur. Bu amacı

gerçekleştirmek için, giriş kazanç matrisinin yapısından bağımsız olan bir gürbüz denet-

leyici tasarlanmıştır. Mekatronik sistemler çok giriş çok çıkışlı doğrusal olmayan sis-

temler olarak modellendiğinden, bu tasarım belirtilen tipteki sistemlerin daha geniş bir

sınıfı için gerçekleştirilmiştir. Tasarlanan denetleyicinin asimptotik kararlılığı, Lyapunov

temelli argümanlar aracılığıyla ispatlanmıştır. Denetim kazançlarının ayarlanma süreci,

bu tasarımın en kısıtlayıcı ve en önemli yönlerinden biri olduğundan, tasarlanan denet-

leyici bir öz ayarlama yöntemi önerilerek desteklenmiştir. Denetleyici tasarımı tamam-

landıktan sonra, tasarlanan denetleyicinin öz ayarlama yöntemi ile birlikte verimliliğinin

gösterilmesi amacıyla, temelde farklı üç adet mekatronik sistemden faydalanılmıştır. Di-

namik olarak konumlandırılmış deniz aracının ve altı adet tek yönlü römork ile yön-

lendirilen eyleyicisiz deniz aracının eklenmiş kütle etkisi altındaki konum ve yönelim

denetimi ve küçük ölçekli insansız helikopterin davranış denetimi, denetleyicinin daha

düşük dereceli sürümünden faydalanılarak, sağlanmıştır. Bu mekatronik sistemlerin her

biri, giriş kazanç matrisini bakışımsız hale getiren farklı durumlar için örnek oluşturmak-

tadır. Tasarlanan denetleyicinin ve önerilen öz ayarlama yönteminin başarımı benzetimler

ve deneyler aracılığıyla ortaya konulmuştur.
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CHAPTER 1

INTRODUCTION

Mathematical models of several mechatronic systems obtained via Lagrangian

have the general form of inertia matrix times the acceleration added to other dynami-

cal effects (such as centripetal and Coriolis, gravitational, frictional effects/terms) and

equating to the control input vector. In cases when the control input is not directly applied

on the mechatronic system, pre–multiplication with some matrix is essential. Input gain

matrix is defined as the pre–multiplication matrix of the vector of control inputs when the

highest order term left alone in the equation of motion Zhang et al. (2005).

During the review of the modeling literature on mechatronic systems, some as-

pects about modeling approaches have been encountered and they can be summarized

as:

• They have complex and highly nonlinear structures along with modeling uncertain-

ties.

• They are modeled as second order multi–input multi–output (MIMO) nonlinear

systems.

• Non–symmetric structure of the input gain matrix is a critical situation that must be

included in the system model for some mechatronic systems.

In the modeling literature of mechatronic systems, cases that make the input gain

matrix non–symmetric can be examined under three sub–classes:

• Non–symmetry may appear in the inertia matrix of the system.

• Non–symmetry may be due to the pre–multiplication of the control input with a

non–symmetric matrix.

• Non–symmetry may appear as a result of both of the above situations.

The first type of non–symmetry is generally caused from external or internal effects that

change the center of mass of the mechatronic system. This change may be seen as a

non–symmetric effect on the system and this non–symmetric behavior is reflected to the

system model via the inertia matrix. The second type of non–symmetry is caused from
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the structure of the system. In some mechatronic systems, control input vector is pre–

multiplied with a configuration matrix. This matrix may lose its symmetry as a result of

the structure of some mechatronic systems. As a result of either or both of these situations,

input gain matrix may become non–symmetric.

One of the most important examples of above mentioned situations can be encoun-

tered in unmanned surface vessels. Unmanned surface vessels constitute a good example

for the sub–class of general systems considered in this dissertation where non–symmetry

appears in the inertia matrix of the system. The effect namely as added mass is encoun-

tered during the cruise and it may cause a non–symmetric inertial behavior. Added mass

is considered as an effect that is caused from the motion of flow. During the motion, it is

considered that this flow is seen as an additional mass that occurs as different vibrations at

different parts of the surface vessel. Added mass affects the surface vessel at acceleration

level. Since the motion of the surface vessel may be dramatically affected by the flow,

effects of the added mass must be taken into account in the modeling phase. In addition

to these, this flow vary in different parts of the surface vessel and as a result of this it can

be easily said that its effects can also be changed for different parts of these vehicles and

this situation shows up as a non–symmetric inertia matrix in the system model Fossen and

Strand (1999), Skjetne et al. (2004).

Small–scaled unmanned helicopters constitute a good example for the second sub–

class of the general systems considered in this dissertation where the non–symmetry is due

to pre–multiplication of the control input with a non–symmetric matrix. For modeling

of small–scaled unmanned helicopters, rigid body dynamics and the rotor dynamics are

combined by expressing the input torque as a function of actual control inputs namely as

elevator servo input, aileron servo input and rudder servo input. To obtain the input torque

in terms of actual control inputs, some reasonable simplifications for the rotor model

under the hovering flight conditions are utilized. As a result of these simplifications, the

input torque is expressed by pre–multiplying control input vector with a non–symmetric

matrix Fantoni and Lozano (2002), Liu et al. (2014).

An unactuated surface vessel whose position and orientation are provided via 6

uni–directional tugboats is another mechatronic system that is considered in this disserta-

tion. These systems are unmanned surface vessels and has a similar modeling approach

Fossen (1994), Fossen (2002), Skjetne et al. (2004), Arrichiello et al. (2006), Ihle et al.

(2006), Fossen (2011). Providing their position and orientation via uni–directional thrust

forces of tugboats instead of the control input torque is the main difference between them

and dynamically positioned surface vessels. This situation is modeled by the control in-
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put of the system model as pre–multiplication of vector of thrust forces provided by the

tugboats with a thrust configuration matrix which is a function of the angles and distances

between the surface vessel and the tugboats. However, the communication between tug-

boats appears as an important problem that needs to be addressed. To solve this situation,

in the literature, the problem is transformed into positioning of an unactuated surface

vessel with 3 bi–directional tugboats by utilizing a specified initial conditioning for the

tugboats. As a result of this rearrangement, thrust configuration matrix becomes a 3 × 3

non–symmetric matrix so these systems constitute another example for the sub–class of

the general systems considered in this dissertation where the non–symmetry is due to a

pre–multiplication of the control input with a non–symmetric matrix. In addition to these,

since these systems are surface vessels, they also constitute an example for the sub–class

of general systems considered in this dissertation where non–symmetry appears in inertia

matrix of the system due to added mass effect.

Control problem of the mechatronic systems is usually encountered as tracking of

a desired/reference trajectory. This problem is a more challenging task when the non–

symmetric structure of the input gain matrix is taken into account. Researchers have

ignored this non–symmetric behavior and based their designs on the assumption that the

input gain matrix being symmetric. From a control theory perspective, the symmetric

nature of the inertia matrix is extremely useful as it is utilized in a quadratic term in the

Lyapunov function. As a natural result of these, in the control literature, for mechatronic

systems, there are several available control designs that assume symmetric input gain

matrix. At the same time, these controllers and/or the accompanying stability analysis

are strictly dependent to the symmetry of the input gain matrix. Although these control

designs are really valuable and applicable to systems that do not have non–symmetry

in their dynamics, it is not wrong to say that for some mechatronic systems this effect

constitutes a really important problem that needs to be addressed. Solving this problem

has become the main motivation of this dissertation. As a result of these, designing a

robust controller that is also independent from the structure of the input gain matrix for a

broader class of MIMO nonlinear systems was considered as a good starting point.

1.1. Robust Control Design for MIMO Nonlinear Systems

Motivated by the need for a controller for the mechatronic systems having non–

symmetric input gain matrix, this dissertation focuses on the tracking control problem for

MIMO nonlinear uncertain systems which also include the special class of mechatronic

3



systems. In the literature, a generalized solution, that covers all nonlinear systems for

the aforementioned problem is not available. However, for special cases, there seems to

be a great deal of results presented in the literature. To name a few, an adaptive back-

stepping method for strict feedback systems was utilized in Krstic et al. (1995) with the

assumption that the input gain matrix premultiplying the control input is known. In Kos-

matopoulos and Ioannou (2002), a general procedure for the design of switching adap-

tive controllers including feedback linearizable and parametric–pure feedback systems

have been proposed. An adaptive neural network controller for MIMO systems having a

block–triangular form was proposed in Gee and Wang (2004).

For nonlinear uncertain systems, especially when the system uncertainties are un-

structured, robust type controllers are preferred. However, prior to the introduction of

“smooth” robust controllers, most robust controllers were either make use of discontinu-

ous feedback or unnecessarily high controller gains to achieve stability. The first smooth,

that is continuous and asymptotically stable, robust controller was designed in Qu and

Xu (2002) for a class of single–input single–output (SISO) nonlinear systems. The ex-

tensions to MIMO nonlinear systems were then presented in Xian et al. (2003) and Xian

et al. (2004). As opposed to the standard sliding mode controllers that utilize sign of

the tracking error, this controller formulation makes use of the integral of the sign of the

tracking error. Probably due to aforementioned structure, the controller formulations us-

ing this type of feedback are also referred as RISE (acronym RISE, which is short for

Robust Integral of Sign of Error, was first mentioned in Patre et al. (2008).) feedback and

it has been applied to various nonlinear dynamic systems including underwater vehicle

control Fischer et al. (2011), aerial vehicle control MacKunis et al. (2010), Shin et al.

(2012b), mobile robot control Dierks and Jagannathan (2009), and for control of special

classes of nonlinear systems Wang et al. (2010), Sharma et al. (2010), Wang and Behal

(2011) since then.

Recently, in Wang et al. (2010), Wang et al. (2011), and Wang and Behal (2011),

researchers have proposed robust and adaptive type controller formulations for the MIMO

nonlinear systems of the form

x(n) = H
(
x, ẋ, · · · , x(n−1)

)
+G

(
x, ẋ, · · · , x(n−2)

)
τ (1.1)

where x(i) (t) ∈ Rm i = 0, · · · , n, are the states with (·)(i) denoting the ith derivative

with respect to time, H (·) ∈ Rm and G (·) ∈ Rm×m are uncertain functions with G (·)
being an input gain matrix with non–zero leading principal minors, and τ (t) ∈ Rm is

the control input. Specifically, in Wang et al. (2010), authors have extended the work of

Zhang et al. (2004) by redesigning the controller of Chen et al. (2006) by removing an
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algebraic loop and potential singularity in their previous design and obtained a globally

uniformly ultimately bounded (UUB) tracking error performance. In Wang et al. (2011),

an adaptive controller that ensures asymptotic tracking has been proposed. Recently,

a continuous robust controller achieving semi–global asymptotic tracking performance

for uncertain MIMO systems of the form (1.1) with two degrees of freedom (dof) was

proposed in Wang and Behal (2011).

In this dissertation, the mathematical model of the special mechatronic systems

mandates considering a broader class of uncertain MIMO nonlinear systems than that of

(1.1) which has the following form

x(n) = h
(
x, ẋ, · · · , x(n−1)

)
+ g

(
x, ẋ, · · · , x(n−1)

)
τ (1.2)

where x(i) (t) ∈ Rm i = 0, · · · , n, are the states, h (·) ∈ Rm is an uncertain function,

g (·) ∈ Rm×m is an uncertain real matrix with non–zero leading principal minors, and

τ (t) ∈ Rm is the control input.

It is important to highlight that when compared to (1.1), the dependence of g (·)
on x(n−1) complicates the control design, and in the literature, there are only a few works

on this model.

In Xu and Ioannou (2003), a robust adaptive control scheme for the class of MIMO

nonlinear systems described by (1.2) subject to unknown nonlinearities was presented.

The design in the mentioned paper was based on assumptions that h (·) and g (·) are

continuous and a sufficient condition for controllability is satisfied. To ensure the adaptive

structure of this design, the estimate of g (·) was replaced by the estimate of a scalar

function. A new continuous switching function was then used by the adaptive laws to

guarantee closed–loop system stability and convergence of the tracking error even in the

case where the estimated plant loses controllability. Closed–loop stability and robustness

with respect to modeling errors was guaranteed for the MIMO case by utilizing a dead

zone technique incorporated in the adaptive law. Semi global stability of the closed–loop

system and convergence of the tracking error to a residual set whose size depends on

design parameters that can be chosen a priori was guaranteed by the proposed scheme.

This control approach provides a procedure for choosing the design parameters to meet

the tracking error bound for any given desired upper bound of the steady state value of

the tracking error.

In Xian et al. (2004), a full–state feedback tracking controller for a class of uncer-

tain MIMO nonlinear systems was presented. Specifically, tracking control of the class of

higher–order MIMO nonlinear systems in (1.2) was examined. A robust controller con-

taining the integral of the signum of the error term was designed. Semi–global asymptotic
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tracking was ensured under the assumptions that h (·) and g (·) are second–order differ-

entiable, and g (·) is a positive–definite symmetric matrix. Uncertainties associated with

h (·) and g (·) with limited assumptions with regard to the structures of the nonlinearities

were compensated by the control approach.

More recently in Chen et al. (2008), a continuous robust tracking controller was

developed for the class of higher–order MIMO nonlinear systems given in (1.2). It was

considered that the leading principal minors of the input gain matrix are non–zero and

their signs are known. The controller was designed by using the availability of these signs

and UUB tracking was obtained while unstructured uncertainties in the input gain matrix

were compensated.

In this dissertation, under similar restrictions as in Chen et al. (2008), a new con-

tinuous robust controller is designed for the class of nonlinear systems described by (1.2).

Specifically, by applying a similar formulation to that of Xian et al. (2004), which is a non-

linear proportional integral controller fused with integral of the sign of the error feedback,

asymptotic tracking can be achieved as opposed to the UUB tracking result of Chen et al.

(2008). From this perspective, it might be said that this work extends the results given in

Xian et al. (2004) to a broader class of nonlinear systems. It would like to be highlighted

that, due to the nature of the nonlinearities and uncertainties in the system given by (1.2),

extending the results given in Xian et al. (2004) is not a straightforward task. Explicitly,

Xian et al. (2004) considered the case where the input gain matrix g (·) being positive defi-

nite, while it is considered that the case where g (·) has non–zero leading principal minors

in this dissertation. The results in Xian et al. (2004) can be considered as special cases of

the results presented in this dissertation. The stability analysis is conducted in four steps.

Firstly, an initial Lyapunov function is introduced to prove the boundedness of all the

signals under the closed–loop operation. Secondly, after utilizing the boundedness of the

error signals, an integral inequality is obtained. Thirdly, a novel Lyapunov–like function

is constructed and, via the use of the integral inequality, its non–negativeness is proven.

Finally, after fusing this Lyapunov–like function with the initial Lyapunov function that

was utilized to prove boundedness, asymptotic stability is proven.

1.2. Self–tuning Method for Adjusting Control Gains

Although the designed controller can be seen as a feasible solution for the control

problem of mechatronic systems having non–symmetric input gain matrix, the control

gain tuning process requires some specific lower bound conditions to be satisfied. These
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conditions are utilized for the stability analysis and can be seen as restricting aspects of

this approach. Since it directly affects the performance of the system, control gain ad-

justing process is one of the important tasks for the designed robust controller. Adjusting

the control gains via trial–and–error method by considering these specific conditions is a

hard and time consuming process. In addition to these, during experimental studies, an

inappropriate selection of the control gains may be harmful for the experimental setup.

As a result of these, studies were devoted to designing a self–tuning methodology that can

be used for the robust controllers. A RISE type control design was utilized to propose a

self–tuning methodology that can be used for the control gain adjustment process of the

robust controllers.

While utilizing the integral of the sign of the error feedback in the controller for-

mulation removes the need of using discontinuous feedback, similar to the previous vari-

able structure type robust controllers, RISE type controllers still suffer from a high gain

condition. The stability analysis presented for RISE type feedback controller dictates that

a high controller gain, which needs to be larger than sum of the upper bounds of the

overall system uncertainties and their time derivatives, is required to achieve asymptotic

stability. Unfortunately, when the upper bounds of the uncertainties are not available,

applying unnecessary higher gains usually results in a higher control effort. To reduce

the heavy control effort caused by high control gains, some part of the relevant past re-

search was devoted to fusing adaptive Patre et al. (2008) or neural network based Patre

et al. (2007), Dierks and Jagannathan (2009) techniques with RISE feedback. While some

other past research focused on designing time–varying gains for controllers utilizing RISE

feedback. In Yang et al. (2011), a time–varying adaptive uncertainty compensation gain

was designed for a neural network based controller utilizing RISE feedback. However, the

boundedness of the time–varying adaptive gain was not ensured due to lack of L1 bound-

edness of the tracking error. In Zhang et al. (2014), a time–varying Nussbaum gain was

proposed for controllers utilizing RISE feedback. However, for the design of the adaptive

gain, the proposed methodology makes use of a term that is usually not available.

In this dissertation, the need of prior knowledge of upper bounds of the vector

containing the desired system dynamics plus uncertainties (and their derivatives) for the

control gain selection of controllers utilizing RISE feedback is removed via the use of an

adaptive uncertainty compensation gain formulation. The use of an adaptive uncertainty

compensation gain reduces the heavy control effort and therefore eliminates the need of

extra feedforward compensation methods. Along with the adaptive uncertainty compen-

sation gain, the proposed methodology also provides a time–varying feedback gain which
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eases the overall gain tuning process for robust controllers utilizing RISE feedback. The

stability analysis given in this dissertation ensures L1 boundedness of the tracking error

utilized in the design of the time–varying gains which is then utilized to guarantee bound-

edness and convergence of the time–varying gains. As a result, a fully self tuning RISE

feedback formulation has been obtained in this dissertation.

After completing the control design process by proposing this self–tuning method,

three fundamentally different mechatronic systems were utilized to demonstrate the effec-

tiveness of the designed controller fused with the proposed self–tuning method.

1.3. Compensating for Added Mass Terms in Dynamically

Positioned Surface Vessels

Mostly because of its importance in marine industry, control of marine vehicles,

especially control of slowly moving surface vessels, is a popular research topic. Opera-

tions such as towing, laying cables to the bottom of the ocean, and most of the operations

related to the offshore oil industry usually provide a sufficiently smooth and a slow trajec-

tory to be tracked. Researchers/engineers are required to design controllers/auto–pilots to

obtain satisfactory tracking performance.

Several aspects of the above control problem was investigated and can be found

in the literature Fossen (1994), Fossen (2002), Fossen (2011). There are linear con-

trol designs such as proportional integral derivative (PID) controllers in cascade with a

low–pass filter Balchen et al. (1976). Optimal control laws in conjunction with Kalman

filtering techniques Grimble et al. (1980), Sørensen et al. (1996) can be considered as

other examples of linear control designs. Basically, the aforementioned control formula-

tions linearize the system dynamics about a set of pre–specified yaw angles Fossen and

Grøvlen (1998). On the other hand, there are several nonlinear robust and/or adaptive

control designs that take the nonlinear ship dynamics into account in order to overcome

the problems inherited by linearization Fjellstad and Fossen (1994), Wit et al. (1998),

Fossen and Grøvlen (1998), Fang et al. (2004), Skjetne et al. (2004). In Fjellstad and

Fossen (1994), a class of nonlinear control laws for position regulation were developed

without guaranteeing their robustness against parametric uncertainties, and in Wit et al.

(1998), a robust nonlinear control law using singular perturbation theory that takes para-

metric uncertainties and external disturbances into account was presented. Some other

past research has focused on designing output feedback control algorithms Fossen and
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Grøvlen (1998), Fang et al. (2004), Wondergem et al. (2011). In Fossen and Grøvlen

(1998), a nonlinear output feedback controller utilizing an observer backstepping method

was designed. An observer based output feedback tracking controller for fully actuated

ships was presented in Wondergem et al. (2011). Review of the relevant literature high-

lights the fact that while several controllers were designed almost all of the past control

designs considered the inertia matrix of the ship to be symmetric and positive definite,

and laid their analysis and designs down on this assumption.

As detailed in Fossen (1994), Fossen and Strand (1999), Fossen (2002) and Skjetne

et al. (2004), during the cruise, all the flow is effected by the motion of the ship and as

a result of this, vibrations with different amplitudes occur on different parts of the flow.

This situation results as pressure effects and moments acting on different parts of the ship

which causes additional force and has influence on the acceleration of the ship. This

effect, referred as added mass, should be represented in the dynamic model. There are

different conventions Fossen and Strand (1999), Skjetne et al. (2004) on how to represent

the added mass effects in the dynamic model. In Fossen and Strand (1999), after using

inertial velocity as the velocity state, the added mass effects are represented via the inertia

matrix.

The significance of added mass effects is due to its non–symmetric nature which

causes the inertia matrix to lose its symmetry and when not appropriately dealt with,

this may cause reduction in performance and even instability. In the literature, there

are only a few control designs that considered non–symmetric added mass in the inertia

matrix, such as adaptive and robust type controllers designed in Lee et al. (2008a) and

Lee et al. (2008b), respectively. The aforementioned controllers were designed based on

Lyapunov–type analysis methods, and were able to achieve only the ultimate boundedness

of the tracking errors.

In this dissertation, robust control of surface vessels with added mass effect is dis-

cussed. The added mass terms are considered to be affecting the system dynamics at the

acceleration level (i.e., inertial velocity was chosen as the velocity state). Furthermore, the

added mass effects are assumed to be non–symmetric, which results in a non–symmetric

inertia matrix in vessel dynamics. In addition, the dynamic model is subject to unstruc-

tured uncertainties. In the control design, the mathematical model of the surface vessel

is first converted into a compact form where neither symmetry nor positive definiteness

of the input gain matrix is known. A matrix decomposition is then applied to the input

gain matrix to obtain a symmetric and positive definite matrix that a filtered version of

the tracking error is multiplied with. However, this decomposition results in the control
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input to be premultiplied first with a known diagonal matrix with entries +1 or −1, and

next with an uncertain unity upper triangular matrix (a unity upper triangular matrix is

an upper triangular matrix with ones on the main diagonal). Then, a lower order form of

the robust controller designed in Chapter 2 is proposed. The stability of the closed–loop

system and the convergence of the tracking error are demonstrated via Lyapunov–type

methods similar to Chapter 2. Numerical simulations are performed to demonstrate the

performance of the robust controller.

1.4. Robust Control Design for an Unmanned Helicopter

Helicopters are versatile aerial vehicles that can perform hover and vertical take–

off and landing maneuvers. Due to the aforementioned versatility, helicopters are useful

for both military and civilian applications. However the corresponding flight dynamics

are highly nonlinear and contains uncertainties associated with the dynamical terms. In

addition to these, strong coupling effects and natural instability of their system dynamics

make the controller design problem a challenging task. In general, the control system

of the unmanned helicopters can be divided into two parts; namely as inner–loop level

control and outer–loop level control. These parts are related with attitude and position

control, respectively. Since position tracking can be ensured via inner–loop control, de-

signing a controller for attitude control of helicopters is considered as the main control

objective in this dissertation.

A review of some of the relevant past works on attitude control of helicopter sys-

tems is given. In Sakamato et al. (2006), after considering a linearized dynamic models

of a helicopter, a PID controller was designed for attitude tracking control where simi-

lar approaches were realized with linear quadratic regulator control in Liu et al. (2013),

output regulation in Nao et al. (2003) and feedback linearization in Kagawa et al. (2005).

H∞ control Gadewadikar et al. (2008), Kato et al. (2003) and sliding mode control Xian

et al. (2015) are other approaches for attitude control of linearized dynamics. In Suzuki

et al. (2011), a quartenion based adaptive attitude controller was designed for a small un-

manned helicopter by using backstepping technique. In Tee et al. (2008), a robust adaptive

neural network controller was presented for helicopters in vertical flight, with dynamics

in SISO nonlinear nonaffine form. In Shin et al. (2010), a position tracking controller was

developed for a rotorcraft–based unmanned aerial vehicle using RISE feedback in con-

junction with neural network feedforward terms. In Liu et al. (2014), a nonlinear robust

attitude tracking controller was developed for a small–scaled unmanned helicopter under
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input constraints. In addition to these, neural network based control Shin et al. (2012a)

and fuzzy control Kadmiry and Driankov (2004) are other approaches that were used for

attitude control of helicopters.

In this dissertation, attitude tracking control of a small–scaled unmanned heli-

copter has been provided by designing a lower order form of the robust controller designed

in Chapter 2. This design is based on the actual inputs namely the elevator servo input,

the aileron servo input and the rudder servo input. The stability of the closed–loop system

and the convergence of the tracking error are demonstrated via Lyapunov–type methods

similar to Chapter 2. The performance of the designed controller is then demonstrated via

numerical simulations.

1.5. Robust Dynamic Positioning of Surface Vessels via Multiple

Uni–directional Tugboats

Position control of large surface vessels like barges, offshore platforms and unac-

tuated ships, throughout a narrow canal or in crowded harbors is an extremely delicate

and important application as these large vessels usually are not designed, or not able

to generate the necessary control effort to maneuver in these circumstances. Manipula-

tion with multiple tugboats is a feasible solution for maneuvering these type of surface

vessels. The motion objective is realized via a group of tugboats that are strategically

positioned along the vessel’s hull. When this operation is performed manually, due to

the radio communication between all involved tugboats, the overall control performance

is affected dramatically. Although the communication performance is increased with ad-

vanced global positioning systems, control of these type of systems is still challenging

due to possible problems that may arise in the communication system during the manip-

ulation. As a result, positioning of unactuated surface vessels has attracted attention of

control community.

In the last decade, different types of automatic controller designs have been pro-

posed for these type of applications. Recently, in Vlachos and Papadopoulos (2013),

modeling of a novel triangle–shaped floating marine vessel was presented along with the

design of a feedback linearization controller. The proposed controller required accurate

model knowledge and achieved ultimately bounded position tracking result. In Feemster

et al. (2006), orientation tracking control of an unactuated vessel through the utilization

of a swarm of vehicles operating in a decentralized fashion was achieved via a robust
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control strategy. In this design, the influence of other swarm vehicles was treated as a

force disturbance acting on system dynamics. In Smith et al. (2007), an exact model

knowledge position and orientation tracking controller was proposed for an unactuated

surface vessel. In Feemster and Esposito (2011), a tracking controller subject to control

saturation due to the limitations of the tugboats was designed where accurate knowledge

of the dynamic model of the unactuated surface vessel was utilized in the control de-

sign. In Braganza et al. (2007), an adaptive position control strategy that does not require

the location of the tugboats about the vessel hull was proposed. The adaptive controller

proposed in Braganza et al. (2007) did not require a communication link between the

tugboats as well. Another adaptive control strategy was presented in Bui et al. (2010)

that took the uncertainty of system parameters into account. In Esposito et al. (2008), an

optimization based force/torque allocation was employed and compared against a com-

mutation based force/torque allocation strategy. In Bui and Kim (2011), position tracking

control of ship berthing with assistance of autonomous tugboats was provided by using

sliding mode control approach, while, a robust approach was presented in Ji et al. (2013).

Recently, in Tran and Im (2012), artificial neural networks were utilized to address the

same problem. While several control aspects of the problem were researched, most of the

above mentioned works required poses of the tugboats relative to the center of mass of

the unactuated surface vessel to remain unchanged (i.e., static positioning was assumed)

which is usually not the case due to several disturbances. An attempt to relax the static

positioning of the tugboats was discussed in Topp and Feemster (2010) for a simple one

dof scenario. Unfortunately, the extension of the result to manipulation of an unactuated

surface vessel with multiple tugboats problem was not straightforward.

In this dissertation, a robust controller is proposed for the position tracking control

of a large surface vessel manipulated by 6 uni–directional tugboats. For this design, the

dynamic model of the surface vessel is considered to be uncertain and it was also con-

sidered to be under the influence of added mass effects. The control problem is further

complicated by the lack of accurate positions and orientations of the tugboats. First, the

dynamic model of a 3 dof unactuated surface vessel manipulated by 6 uni–directional

tugboats is given. Upon specification of the initial configurations of the uni–directional

tugboats, the control is considered to be performed by 3 bi–directional tugboats where a

force decomposition and commutation strategy is employed. Next, the open-loop error

system is obtained where an uncertain input gain matrix, which includes uncertain inertia

matrix of the surface vessel and uncertain thrust configuration matrix including uncertain

possibly time–varying positions and orientations of tugboats, is obtained. A matrix de-
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composition is applied to initiate the control design. A lower order form of the robust

controller designed in Chapter 2 is then proposed. Stability analysis is presented where

asymptotic tracking is ensured. Numerical simulations are performed where the positions

and orientations of the tugboats are perturbed with sinusoidal disturbances are presented

to illustrate the performance of the proposed method.

The rest of this dissertation is organized in the following manner. Control design is

given with its detailed analysis in Chapter 2. Self–tuning method is proposed in Chapter 3.

In Chapter 4, mechatronic systems are introduced and the designed controller is adopted

for these systems. Efficiency of the proposed methods are demonstrated via numerical

results in Chapter 5. Finally, conclusions and possible future works are given in Chapter

6.

The main contributions of this dissertation are:

• Novel continuous robust controller for a class of MIMO nonlinear systems that

contain unstructured uncertainties in their drift vectors and input matrices was de-

signed. The proposed controller compensates uncertainties in the system dynamics

and achieves asymptotic tracking while requiring only the knowledge of the sign of

the leading principal minors of the input gain matrix. In assistance of its input gain

matrix independent structure, proposed controller became an appropriate design for

the mechatronic systems that have non–symmetric input gain matrix.

• A self–tuning method for adjusting the control gains of the designed robust con-

troller is proposed. It is the first time that a self–tuning methodology is proposed

for these type of controllers.

• Performance of the designed controller in conjunction with the proposed self–tuning

method is demonstrated via simulation and experimental results.

• Position tracking control of a dynamically positioned surface vessel is ensured via

the proposed controller. Dealing with the non–symmetric effects of added mass

appear in the vessel dynamics is the main novelty of this design.

• Attitude control of a small–scaled unmanned model helicopter is guaranteed via

the proposed controller. Considering a non–symmetric matrix pre–multiplying the

control input vector caused from the rotor dynamics of helicopter and dealing with

this are the main novelties of this design.

• Position tracking control of a large surface vessel manipulated by 6 uni–directional

tugboats is addressed. Considering non–symmetric inertial added mass effects in
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addition to the non–symmetric and time–varying thrust configuration matrix and

dealing with these are the main novelties of this design.

The results in this dissertation are presented in the following publications:

• Bidikli B., Tatlicioglu E., Bayrak A. and Zergeroglu E. (2013). A New Robust

’Integral of Sign of Error’ Feedback Controller with Adaptive Compensation Gain.

In Proc. of IEEE Conference on Decision and Control, Firenze, Italy, pp. 3782–

3787.

• Bidikli B., Tatlicioglu E. and Zergeroglu E. (2014). A Self Tuning RISE Controller

Formulation. In Proc. of American Control Conference, Portland, OR, USA, pp.

5608–5613.

• Bidikli B., Tatlicioglu E. and Zergeroglu E. (2014). A Robust Tracking Controller

for Dynamically Positioned Surface Vessels with Added Mass. In Proc. of IEEE

Conference on Decision and Control, Los Angeles, CA, USA, pp. 4385–4390.

• Bidikli B., Tatlicioglu E. and Zergeroglu E. (2015). Robust Control Design for

Positioning of an Unactuated Surface Vessels. In Proc. of IEEE International Con-

ference on Intelligent Robots and Systems, Hamburg, Germany, pp. 1071–1076.

• Bidikli B., Tatlicioglu E. and Zergeroglu E. (2016). Robust Dynamic Positioning

of Surface Vessels via Multiple Unidirectional Tugboats. Ocean Engineering 113,

pp. 237–245.

• Bidikli B., Tatlicioglu E., Zergeroglu E. and Bayrak A. (2016). An Asymptotically

Stable Robust Controller Formulation for a Class of MIMO Nonlinear Systems with

Uncertain Dynamics. International Journal of Systems Science 47(12), pp. 2913–

2924.

• Bidikli B., Tatlicioglu E., Zergeroglu E. and Bayrak A. (2016). A Self Tuning

Robust Integral of Sign of Error (RISE) type Feedback Controller Formulation for

a Class of Nonlinear Uncertain Systems. IEEE Transactions on Automatic Control,

under review.

• Bidikli B., Tatlicioglu E., Zergeroglu E. and Bayrak A. (2016). Compensating of

Added Mass Terms in Dynamically Positioned Surface Vehicles: A Continuous

Robust Control Approach. Ocean Engineering, under review.

14



• Bidikli B., Tatlicioglu E. and Zergeroglu E. (2016). Robust Control Design for

an Unmanned Helicopter: A Full-state Feedback Approach. In Proc. of The 20th

World Congress of the International Federation of Automatic Control, Toulouse,

France, under review.

15



CHAPTER 2

CONTROL DESIGN FOR MIMO NONLINEAR SYSTEMS

In this chapter, the design of a continuous robust controller for a class of MIMO

nonlinear systems that contains unstructured uncertainties in their drift vectors and input

matrices is presented. The proposed controller compensates uncertainties in the system

dynamics and achieves asymptotic tracking while requiring only the knowledge of the

sign of the leading principal minors of the input gain matrix. A Lyapunov–based argument

backed up with an integral inequality is applied to prove the asymptotic stability of the

closed–loop system.

The rest of the chapter is organized as follows. Section 2.1 introduces the error

system development while the controller development is presented in Section 2.2. Stabil-

ity of the closed–loop system under the proposed method is investigated in Section 2.3.

Finally, conclusions are given in Section 2.4.

2.1. Open–Loop Error System Development

The uncertain functions h (·) and g (·) of (1.2) are assumed to be at least second–

order differentiable (i.e., h (·), g (·) ∈ C2). Based on the assumption that g (·) being a real

valued matrix with non–zero leading principal minors, the following matrix decomposi-

tion is utilized Morse (1993), Costa et al. (2003)

g = S(X)DU(X) (2.1)

where X (t) ,
[
xT ẋT · · ·

(
x(n−1)

)T ]T ∈ Rmn is the combined state vector,

S (X) ∈ Rm×m is a symmetric, positive definite matrix, D ∈ Rm×m is a diagonal matrix

with entries being ±1, and U (X) ∈ Rm×m is a unity upper triangular matrix. Similar to

Costa et al. (2003) and Chen et al. (2008), it is assumed that D is available for control

design. It would like to be noted that since the leading principal minors of g (X) are non–

zero, g−1 (X) exists and following expression can be obtained by pre–multiplying (1.2)

with g−1 (X)

τ = g−1
(
x(n) − h

)
. (2.2)

Taking the time derivative of the system model in (1.2) and then substituting into
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(2.2) yields

x(n+1) = ϕ+ SDUτ̇ (2.3)

where (2.1) was utilized, and ϕ
(
X, x(n)

)
∈ Rm is an auxiliary function defined to have

the following form

ϕ , ḣ+ ġg−1
(
x(n) − h

)
. (2.4)

Multiplying both sides of (2.3) with S−1 (X) results in

S−1x(n+1) = S−1ϕ+DUτ̇ (2.5)

and after defining M (X) , S−1 ∈ Rm×m and f
(
X, x(n)

)
, S−1ϕ ∈ Rm, it is obtained

that

Mx(n+1) = f +DUτ̇. (2.6)

It is noted that M (X) satisfies following inequalities

m ‖χ‖2 ≤ χTM (X)χ ≤ m̄ (X) ‖χ‖2 ∀χ ∈ Rm (2.7)

withm ∈ R is a positive bounding constant, and m̄ (X) ∈ R is a positive, non–decreasing

function.

Main control objective is to ensure that the system output x (t) tracks a given

smooth desired trajectory while ensuring all signals within the closed–loop system remain

bounded. In order to quantify the tracking control objective, the output tracking error

denoted by e1 (t) ∈ Rm, is defined to have the following form

e1 , xr − x (2.8)

where xr (t) ∈ Rm is the desired trajectory satisfying

xr (t) ∈ Cn+1 , x(i)
r (t) ∈ L∞ , i = 0, 1, · · · , (n+ 1) . (2.9)

In the controller development, a full state feedback approach will be utilized (i.e., the

combined state vector X (t) is available).

To facilitate the control design, auxiliary errors, denoted by ei (t) ∈ Rm, i =

2, · · · , n, are defined as follows

e2 , ė1 + e1 (2.10)

e3 , ė2 + e2 + e1 (2.11)
...

en , ėn−1 + en−1 + en−2. (2.12)
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A general expression for ei (t), i = 2, · · · , n, in terms of e1 (t) and its time derivatives

can be obtained as

ei =
i−1∑
j=0

ai,je
(j)
1 (2.13)

where ai,j ∈ R are known positive constants, generated via a Fibonacci number series

Xian et al. (2004). Proposed controller development also requires the definition of an

auxiliary error term, denoted by r (t) ∈ Rm, which has the following form

r , ėn + αen (2.14)

where α ∈ Rm×m is a constant, positive definite, diagonal gain matrix. It should further

be noted that the auxiliary error terms in (2.10)–(2.14) are introduced to obtain a stability

analysis where only first order time derivatives are utilized.

After differentiating (2.14) and pre–multiplying the resulting equation withM (X),

following expression can be derived

Mṙ = M

(
x(n+1)
r +

n−2∑
j=0

an,je
(j+2)
1 + αėn

)
− f −DUτ̇ (2.15)

where (2.6), (2.8), (2.13), and the fact that an,(n−1) = 1 were utilized. After defining an

auxiliary function, N
(
X, x(n), t

)
∈ Rm, as follows

N ,M

(
x(n+1)
r +

n−2∑
j=0

an,je
(j+2)
1 + αėn

)
− f + en +

1

2
Ṁr (2.16)

the expression in (2.15) can be reformulated to have the following form

Mṙ = −1

2
Ṁr − en −DUτ̇ +N. (2.17)

Furthermore, the error dynamics in (2.17) can be rearranged as

Mṙ = −1

2
Ṁr − en −D (U − Im) τ̇ −Dτ̇ + Ñ + N̄ (2.18)

whereDτ̇ (t) was added and subtracted to the right–hand side, Im ∈ Rm×m is the standard

identity matrix, and N̄ (t), Ñ (t) ∈ Rm are auxiliary functions defined as follows

N̄ , N |
X=Xr,x(n)=x

(n)
r

(2.19)

Ñ , N − N̄ (2.20)

with Xr (t) ,
[
xTr ẋTr · · ·

(
x

(n−1)
r

)T ]T
∈ Rmn being a combination of the desired

trajectory and its time derivatives. The main idea behind adding and subtracting Dτ̇ (t)
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term to the right–hand side of (2.18) is to make use of the fact that U (X) is unity upper

triangular, and thus (U − Im) is strictly upper triangular.

Throughout this dissertation, the notation (̄·) is preferred to denote a function that

depends on the desired trajectory and its time derivatives, and (̃·) denotes a function that

can be upper bounded by functions of the error terms.

2.2. Controller Design

Based on the open–loop error system in (2.18) and the subsequent stability analy-

sis, the control input τ (t) is designed in the following form

τ = DK

[
en (t)− en (t0) + α

∫ t

t0

en (σ) dσ

]
+DΠ (2.21)

where the auxiliary term Π (t) ∈ Rm is generated according to the following update rule

Π̇ = βSgn (en) with Π (t0) = 0m. (2.22)

In (2.21) and (2.22), K, β ∈ Rm×m are constant, positive definite, diagonal gain matrices,

0m ∈ Rm is a vector of zeros and Sgn(·) ∈ Rm is the vector signum function. Notice that,

for i = n in (2.13), en (t) and thus τ (t) depend on x (t), ẋ (t), · · · , x(n−1) (t), and not

x(n) (t). The control gain is designed as

K = Im + kpIm + diag {kd,1, · · · , kd,(m−1), 0
}

(2.23)

where kp, kd,i ∈ R are constant, positive, control gains, and diag {·} is used to represent

the entries of a diagonal matrix. Finally, after substituting the time derivative of (2.21)

into (2.18), the closed–loop error system for r (t) is obtained as

Mṙ = −1

2
Ṁr − en −Kr + Ñ + N̄ −D (U − Im)DKr −DUDβSgn (en) (2.24)

where the fact that DD = Im was utilized.

Before proceeding with the stability analysis, last two terms of (2.24) will be in-

vestigated separately.

Note that, after utilizing the fact that (U − Im) being strictly upper triangular, the

term D (U − Im)DKr is rewritten as

D (U − Im)DKr =

[
Λ + Φ

0

]
(2.25)
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where Λ (t), Φ (t) ∈ Rm−1 are auxiliary functions with their entries Λi (t), Φi (t) ∈ R,

i = 1, · · · , (m− 1), being defined as

Λi , di

m∑
j=i+1

djkjŨi,jrj (2.26)

Φi , di

m∑
j=i+1

djkjŪi,jrj (2.27)

with Ūi,j (Xr), Ũi,j (t) ∈ R are defined as

Ūi,j , Ui,j|X=Xr (2.28)

Ũi,j , Ui,j − Ūi,j (2.29)

where Ui,j (X) ∈ R are the entries of U (X). Notice from (2.25) that the last entry of

the term D (U − Im)DKr is equal to 0, and its ith entry depends on the (i+ 1)th to mth

entries of the control gain matrix K.

The term DUDβSgn (en) is rewritten as

DUDβSgn (en) =

[
Ψ

0

]
+ Θ (2.30)

where Ψ (t) ∈ Rm−1 and Θ (t) ∈ Rm are auxiliary functions defined as[
Ψ

0

]
, D

(
U − Ū

)
DβSgn (en) (2.31)

Θ , DŪDβSgn (en) (2.32)

where Ū (Xr) , U |X=Xr ∈ Rm×m is a function of desired trajectory and its time deriva-

tives. The terms Ψi (t) ∈ R, i = 1, · · · , (m− 1) and Θi (t) ∈ R, i = 1, · · · ,m, are

defined as

Ψi , di

m∑
j=i+1

djβjŨi,jsgn (en,j) (2.33)

Θi , di

m∑
j=i

djβjŪi,jsgn (en,j) . (2.34)

The Mean Value Theorem in Khalil (2002) can be utilized to develop the following

upper bounds ∥∥∥Ñ (t)
∥∥∥ ≤ ρÑ (‖z‖) ‖z‖ (2.35)∥∥∥Ũi,j (t)
∥∥∥ ≤ ρi,j (‖z‖) ‖z‖ (2.36)
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where ‖·‖ denotes the standard Euclidean norm, ρÑ , ρi,j ∈ R are non–negative, globally

invertible, non–decreasing functions of their arguments, and z (t) ∈ R(n+1)m is defined

by

z ,
[
eT1 eT2 · · · eTn rT

]T
. (2.37)

It can be seen from (2.9), (2.16), (2.19) that N̄ (t) and Ūi,j (t) can be upper bounded in

the sense that ∣∣N̄i (t)
∣∣ ≤ ζN̄i

(2.38)∣∣Ūi,j (t)
∣∣ ≤ ζŪi,j

∀t (2.39)

where ζN̄i
, ζŪi,j

∈ R are positive bounding constants. Based on (2.26), (2.27), (2.33) and

(2.34), following upper bounds can be obtained

|Λi| ≤ ρΛi
(‖z‖) ‖z‖ (2.40)

|Φi| ≤
m∑

j=i+1

kjζŪi,j
|rj| ≤ ζΦi

‖z‖ (2.41)

|Ψi| ≤ ρΨi
(‖z‖) ‖z‖ (2.42)

|Θi| ≤
m∑
j=i

βjζŪi,j
≤ ζΘi

(2.43)

where (2.35)–(2.39) were utilized. From (2.43), it is easy to see that ‖Θ (t)‖ ≤ ζΘ ∀t
is satisfied for some positive bounding constant ζΘ ∈ R, and from (2.40)–(2.42), the

following inequality can be obtained

|Λi|+ |Φi|+ |Ψi| ≤ ρi (‖z‖) ‖z‖ (2.44)

where ρi (‖z‖) ∈ R i = 0, 1, · · · , (m− 1), are non–negative, globally invertible, non–

decreasing functions satisfying

ρΛi
+ ρΨi

+ ζΦi
≤ ρi. (2.45)

As a result of the fact that Ū (t) being unity upper triangular, Θ (t) in (2.32) can

be rewritten as

Θ = (Im + Ω) βSgn (en) (2.46)

where Ω (t) , D
(
Ū − Im

)
D ∈ Rm×m is a strictly upper triangular matrix. Since it

is a function of the desired trajectory and its time derivatives, its entries, denoted by

Ωi,j (t) ∈ R, are bounded in the sense that

|Ωi,j (t)| ≤ ζΩi,j
∀t (2.47)
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where ζΩi,j
∈ R are positive bounding constants.

At this point, the stability analysis of the proposed robust controller can be pro-

ceeded.

2.3. Stability Analysis

In this section, the stability of the closed–loop system is presented in the following

order:

• First, the boundedness of all terms including the error terms will be proven under

the closed–loop operation.

• After utilizing the boundedness result, a lemma will be presented with which an

upper bound for the integral of the absolute values of the entries of ėn (t) will be

obtained.

• This upper bound will then be utilized in another lemma to prove the non–negativity

of a Lyapunov–like function.

• Then, this Lyapunov–like function will be used in the final analysis to prove asymp-

totic stability of the tracking error.

Theorem 2.3.1 For the uncertain MIMO system of (1.2), the controller in (2.21) and

(2.22) guarantees the boundedness of all the closed–loop terms including the error terms

in (2.8), (2.10)–(2.12) and (2.14) provided that the control gains kd,i and kp are chosen

large enough compared to the initial conditions of the system and the following condition

is satisfied

λmin (α) ≥ 1

2
(2.48)

where the notation λmin (α) denotes the minimum eigenvalue of α.

Proof The non–negative function V1 (z) ∈ R is defined as

V1 ,
1

2

n∑
i=1

eTi ei +
1

2
rTMr. (2.49)

By utilizing (2.7), (2.49) can be bounded in the following manner

1

2
min {1,m} ‖z‖2 ≤ V1 (z) ≤ 1

2
max {1, m̄ (‖z‖)} ‖z‖2 (2.50)
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where z(t) was defined in (2.37), and the terms m , m̄ (‖z‖) were defined in (2.7). Using

(2.8) and (2.10)–(2.12) in (2.50), it can be shown that ‖(x, ẋ, · · · , xn−1)‖ ≤ ψ (‖z‖) for

some positive function ψ (·). Thus, m̄ (x, ẋ, · · · , xn−1) ≤ m̄ (‖z‖).

Taking the time derivative of (2.49) yields

V̇1 =
n∑
i=1

eTi ėi + rTMṙ +
1

2
rTṀr. (2.51)

The first term in the above expression can be written as follows

n∑
i=1

eTi ėi = eT1 (e2 − e1) + eT2 (e3 − e2 − e1) + eT3 (e4 − e3 − e2)

+...+ eTn−1 (en − en−1 − en−2) + eTn (r − αen)

= −
n−1∑
i=1

eTi ei + eTn−1en + eTnr − eTnαen (2.52)

where (2.10)–(2.12), (2.14) were utilized. Substituting (2.24)–(2.27), (2.30)–(2.32) and

(2.52) into (2.51) results in

V̇1 = −
n−1∑
i=1

eTi ei + eTn−1en + eTnr − eTnαen + rT
(
−1

2
Ṁr − en −Kr + Ñ + N̄

)

−rT
[

Λ + Φ

0

]
− rT

[
Ψ

0

]
− rTΘ +

1

2
rTṀr (2.53)

which, after substituting the control gain matrix K, can be rewritten as

V̇1 = −
n−1∑
i=1

eTi ei + eTn−1en − eTnαen − rT r +
[
rT Ñ − kprT r

]
+

[
−

m−1∑
i=1

ri (Λi + Ψi + Φi)−
m−1∑
i=1

kd,ir
2
i

]
+ rT N̄ − rTΘ. (2.54)

After completing the squares in bracketed terms, utilizing
∥∥N̄ (t)

∥∥ ≤ ζN̄ , ‖Θ (t)‖ ≤ ζΘ

and eTn−1en ≤ 1/2 ‖en−1‖2 + 1/2 ‖en‖2, the following inequality is obtained

V̇1 ≤ −
n−2∑
i=1

‖ei‖2 − 1

2
‖en−1‖2 −

(
λmin (α)− 1

2

)
‖en‖2 − rT r +

ρ2
Ñ

(‖z‖)
4kp

‖z‖2

+
m−1∑
i=1

ρ2
i (‖z‖)
4kd,i

‖z‖2 + ζN̄ ‖r‖+ ζΘ ‖r‖ (2.55)

which can be rearranged as

V̇1 ≤ −

(
λ1 −

ρ2
Ñ

(‖z‖)
4kp

−
m−1∑
i=1

ρ2
i (‖z‖)
4kd,i

)
‖z‖2 + δε2 (2.56)
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where λ1 , min

{
1

2
, λmin (α)− 1

2
, 1− 1

4δ

}
, δ ∈ R is a positive bounding constant that

is constituted by utilizing a definition and an upper bound given as ε , ζN̄ + ζΘ and

ε ‖r‖ ≤ 1

4δ
‖r‖2 + δε2, respectively. Provided that the controller gains kd,i and kp are

selected sufficiently large (larger than functions of the initial values of the norm of z (t)),

it can be ensured that the terms in parenthesis on the right hand side of (2.56) remain

positive. After utilizing (2.50), the following inequality can then be obtained

V̇1 ≤ −µ1V1 + δε2 (2.57)

where µ1 ∈ R is a positive constant. From (2.49) and (2.57), it can be concluded that

V1 (t) ∈ L∞, therefore ei (t), i = 1, · · · , n, and r (t) are uniformly ultimately bounded.

Standard signal chasing arguments can then be utilized to prove that all the terms remain

bounded under the closed–loop operation.

Lemma 2.3.2 Provided that en (t) and ėn (t) are bounded, the following expression for

the upper bound of the integral of the absolute value of the ith entry of ėn (t), i =

1, · · · ,m, can be obtained

t∫
t0

|ėn,i (σ)| dσ ≤ γ1 + γ2

t∫
t0

|en,i (σ)| dσ + |en,i (t)| (2.58)

where γ1, γ2 ∈ R are some positive bounding constants.

Proof While the proof is similar to that of the one given in Stepanyan and Kurdila (2009),

it is presented for the sake of completeness. First, it should be noted that if en,i(t) ≡ 0 on

some interval, then ėn,i(t) ≡ 0 on the same interval, and the inequality (2.58) yields this

qualification. Therefore, without loss of generality, it is assumed that en,i (t) is absolutely

greater than zero on the interval of [t0, t]. Let T ∈ [t0, t) be the last instant of time when

ėn,i (t) changes sign. Then, on the interval [T, t], ėn,i (t) has a constant sign, hence∫ t

T

|ėn,i (σ)| dσ =

∣∣∣∣∫ t

T

ėn,i (σ) dσ

∣∣∣∣ = |en,i (t)− en,i (T )| . (2.59)

From the boundedness of ėn,i(t), it follows that there exists a constant γ > 0 such that

|ėn,i (t)| ≤ γ, therefore ∫ T

t0

|ėn,i (σ)| dσ ≤ γ (T − t0) . (2.60)

On the other hand, the following equality is obtained after applying the Mean Value The-

orem in Khalil (2002) ∫ T

t0

|en,i (σ)| dσ = en,i∗ (T − t0) (2.61)
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where en,i∗ is some constant value of |en,i(t)| on the interval [t0, T ]. By assumption, en,i∗
is bounded away from zero. Therefore, by using inequality (2.60) and equality (2.61), it

can be concluded as ∫ T

t0

|ėn,i (σ)| dσ ≤ γ2

∫ T

t0

|en,i (σ)| dσ (2.62)

where γ2 , γ/en,i∗ . Combining the relationships in (2.59) and (2.62), it can be written

that ∫ t

t0

|ėn,i (σ)| dσ ≤ |en,i (T )|+ γ2

∫ T

t0

|en,i (σ)| dσ + |en,i (t)| (2.63)

which, after defining γ1 , sup |en,i (T )| yields the inequality (2.58). At this point it

should be stated that sup |·| denotes the supremum function.

Lemma 2.3.3 Consider the term

L , rT
(
N̄ − (Im + Ω) βSgn (en)

)
(2.64)

where Ω (t) introduced in (2.46) is a strictly upper triangular matrix that is a function of

desired trajectory and its time derivatives. Provided that the entries of the control gain β

are chosen to satisfy

βm ≥ ζN̄m

(
1 +

γ2

αm

)
(2.65)

βi ≥

(
ζN̄i

+
m∑

j=i+1

ζΩi,j
βj

)(
1 +

γ2

αi

)
,i = (m− 1) , · · · , 1 (2.66)

then it can be concluded that
t∫

t0

L (σ) dσ ≤ ζL (2.67)

where ζL ∈ R is a positive bounding constant defined as

ζL , γ1

m−1∑
i=1

m∑
j=i+1

ζΩi,j
βj + γ1

m∑
i=1

ζN̄i
+

m∑
i=1

βi |en,i (t0)| . (2.68)
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Proof Analysis is started by integrating (2.64) in time from t0 to t

t∫
t0

L (σ) dσ =

t∫
t0

eTn (σ)αT
(
N̄ (σ)− βSgn (en (σ))

)
dσ

−
t∫

t0

eTn (σ)αTΩ (σ) βSgn (en (σ)) dσ

+

t∫
t0

ėTn (σ) N̄ (σ) dσ

−
t∫

t0

ėTn (σ) Ω (σ) βSgn (en (σ)) dσ

−
t∫

t0

ėTn (σ) βSgn (en (σ)) dσ (2.69)

where (2.14) was utilized. To ease the presentation, each term on the right–hand side of

(2.69) will upper bounded separately. The first term:

t∫
t0

eTn (σ)αT
(
N̄ (σ)− βSgn (en (σ))

)
dσ

=

t∫
t0

m∑
i=1

αien,i (σ)
(
N̄i (σ)− βisgn (en,i (σ))

)
dσ

≤
m∑
i=1

αi
(
ζN̄i
− βi

) t∫
t0

|en,i (σ)| dσ. (2.70)

The second term:

−
t∫

t0

eTn (σ)αTΩ (σ) βSgn (en (σ)) dσ

= −
t∫

t0

m−1∑
i=1

αien,i (σ)
m∑

j=i+1

βjΩi,j (σ) sgn (en,j (σ)) dσ

≤
m−1∑
i=1

m∑
j=i+1

αiβjζΩi,j

t∫
t0

|en,i (σ)| dσ. (2.71)
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The third term:

t∫
t0

ėTn (σ) N̄ (σ) dσ =

t∫
t0

m∑
i=1

ėTn,i (σ) N̄i (σ) dσ

≤
m∑
i=1

ζN̄i

t∫
t0

|ėn,i (σ)| dσ

≤
m∑
i=1

ζN̄i

γ1 + γ2

t∫
t0

|en,i (σ)| dσ + |en,i (t)|

 . (2.72)

The fourth term:

−
t∫

t0

ėTn (σ) Ω (σ) βSgn (en (σ)) dσ

= −
t∫

t0

m−1∑
i=1

ėn,i (σ)
m∑

j=i+1

βjΩi,j (σ) sgn (en,j (σ)) dσ

≤
m−1∑
i=1

m∑
j=i+1

βjζΩi,j

t∫
t0

|ėn,i (σ)| dσ

≤
m−1∑
i=1

m∑
j=i+1

βjζΩi,j

γ1 + γ2

t∫
t0

|en,i (σ)| dσ + |en,i (t)|

 . (2.73)

The fifth term:

−
t∫

t0

ėTn (σ) βSgn (en (σ)) dσ = −
t∫

t0

m∑
i=1

βiėn,i (σ) sgn (en,i (σ)) dσ

= −
m∑
i=1

βi

t∫
t0

sgn (en,i (σ)) d (en,i)

= −
m∑
i=1

βi

t∫
t0

d (|en,i|)

= −
m∑
i=1

βi |en,i (t)|+
m∑
i=1

βi |en,i (t0)| . (2.74)

It is noted that, the result of Lemma 2.3.2 was utilized to obtain the last lines of (2.72)
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and (2.73). After combining the upper bounds in (2.70)–(2.74), it is obtained that

t∫
t0

L (σ) dσ ≤
m−1∑
i=1

αi

[(
1 +

γ2

αi

)(
ζN̄i

+
m∑

j=i+1

ζΩi,j
βj

)
− βi

] t∫
t0

|en,i (σ)| dσ

+αm

[(
1 +

γ2

αm

)
ζN̄m
− βm

] t∫
t0

|en,m (σ)| dσ

+ (ζN̄m
− βm) |en,m (t)|

+
m−1∑
i=1

(
ζN̄i

+
m∑

j=i+1

ζΩi,j
βj − βi

)
|en,i (t)|

+γ1

m−1∑
i=1

m∑
j=i+1

ζΩi,j
βj + γ1

m∑
i=1

ζN̄i
+

m∑
i=1

βi |en,i (t0)| . (2.75)

Based on (2.75), βm is firstly chosen to satisfy (2.65) to make second and third lines

on the right–hand side negative, and then βi is selected by starting from (m− 1) with a

decreasing order to satisfy (2.66), and finally, the definition of ζL in (2.68) was utilized to

obtain (2.67), thus completing the proof of Lemma 2.3.3.

Theorem 2.3.4 Given the uncertain MIMO nonlinear system of the form (1.2), the con-

troller of (2.21) and (2.22) ensures that the tracking error and its time derivatives con-

verge to zero asymptotically in the sense that∥∥∥e(i)
1 (t)

∥∥∥→ 0 as t→ +∞ , ∀i = 0, · · · , n

provided that α is chosen to satisfy (2.48), the entries of β are chosen to satisfy (2.65) and

(2.66), and kd,i and kp are chosen large enough compared to the initial conditions of the

system.

Proof Let the auxiliary function P (t) ∈ R be defined as follows

P , ζL −
∫ t

t0

L (σ) dσ (2.76)

where the terms L (t) and ζL were defined in (2.64) and (2.68), respectively. Provided

that the entries of the control gain matrix β are chosen to satisfy (2.65), from the proof of

Lemma 2.3.3, it can be concluded that P (t) is non–negative.

Consider the Lyapunov function, denoted by V (s, t) ∈ R, defined as follows

V , V1 + P (2.77)

where s (t) ∈ R(n+1)m+1 is defined as

s ,
[
zT
√
P
]T

(2.78)
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and V1(t) ∈ R was defined in (2.49). By utilizing (2.7), (2.77) can be upper and lower

bounded in the following form

W1 (s) ≤ V (s, t) ≤ W2 (s) (2.79)

where W1 (s), W2 (s) ∈ R are defined as

W1 , λ2 ‖s‖2 , W2 , λ3 (‖s‖) ‖s‖2 (2.80)

with λ2 ,
1

2
min {1,m} and λ3 , max

{
1,

1

2
m̄ (‖z‖)

}
.

Taking the time derivative of V (t), utilizing the time derivative of (2.67), cancel-

ing common terms and following similar steps to that of proof of Theorem 2.3.1 yields

V̇ = −
n−1∑
i=1

eTi ei + eTn−1en − eTnαen − rT r +
[
rT Ñ − kprT r

]
+

[
−

m−1∑
i=1

ri (Λi + Ψi + Φi)−
m−1∑
i=1

kd,ir
2
i

]
(2.81)

which can be rearranged to have the following form

V̇ ≤ −
n−2∑
i=1

‖ei‖2 − 1

2
‖en−1‖2 −

(
λmin (α)− 1

2

)
‖en‖2 − rT r +

ρ2
Ñ

(‖z‖)
4kp

‖z‖2

+
m−1∑
i=1

ρ2
i (‖z‖)
4kd,i

‖z‖2

≤ −

(
λ4 −

ρ2
Ñ

(‖z‖)
4kp

−
m−1∑
i=1

ρ2
i (‖z‖)
4kd,i

)
‖z‖2 (2.82)

where λ4 , min

{
1

2
, λmin (α)− 1

2

}
. When the controller gains kp and kd,i for i =

1, · · · , (m− 1) are selected large enough such that the regions defined byDz , {z : ‖z‖
≤ R} and Ds , {s : ‖s‖ ≤ R} withR defined as

R = min

{
ρ−1

Ñ

(
2

√
kp

1− µ
m

)
, ρ−1

1

(
2

√
kd,1

1− µ
m

)
, · · · , ρ−1

m−1

(
2

√
kd,2

1− µ
m

)}
(2.83)

are non–empty, from (2.82) and the definition of s, one can restate

V̇ ≤ −µ ‖z‖2 = −W (s) ,∀s ∈ Ds (2.84)

where µ ∈ R is a positive constant that satisfies 0 ≤ µ < 1.

From (2.77) and (2.84), it is obvious that V (t) ∈ L∞, and from the proof of The-

orem 2.3.1, it was concluded that all terms in the closed–loop error system are bounded
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and furthermore, from the boundedness of Ẇ (s), it can be stated W (s) is uniformly

continuous.

Based on the definition of Ds, another region, S, can be defined in the following

form

S ,

s ∈ Ds : W2 (s) < λ3

(
ρ−1

Ñ

(
2

√
kp

1− µ
m

))2


∩

s ∈ Ds : W2 (s) < λ3

(
ρ−1

1

(
2

√
kd,1

1− µ
m

))2


∩ ...

∩

s ∈ Ds : W2 (s) < λ3

(
ρ−1

(m−1)

(
2

√
kd,(m−1)

1− µ
m

))2
 .

(2.85)

A direct application of Theorem 8.4 in Khalil (2002) can be used to prove that

‖z (t)‖ → 0 as t → +∞ ∀s (t0) ∈ S . Based on the definition of z (t), it is easy to show

that ‖ei (t)‖ , ‖r (t)‖ → 0 as t → +∞ ∀s (t0) ∈ S, i = 1, · · · , n. From (2.14), it is clear

that ‖ėn (t)‖ → 0 as t → +∞ ∀s (t0) ∈ S. By utilizing (2.13) recursively, it can be

proven that
∥∥∥e(i)

1 (t)
∥∥∥→ 0 as t→ +∞, i = 1, · · · , n ∀s (t0) ∈ S . Note that the region of

attraction can be made arbitrarily large to include any initial conditions by choosing the

controller gains kp and kd,i, i = 1, · · · , (m− 1). This fact implies that the stability result

obtained by the proposed method is semi–global.

2.4. Conclusions

In this chapter, the design of a continuous nonlinear robust controller for a class of

uncertain MIMO nonlinear systems was presented. The designed controller required only

the knowledge of the sign of leading principal minors of the input gain matrix and did

not require accurate knowledge of the system dynamics. As a result, different from the

existing results in the literature, neither symmetry nor positive definiteness of the input

gain matrix was imposed on the system dynamics. The asymptotic stability of the closed–

loop system was investigated via a four step stability analysis based on Lyapunov–type

arguments.

The proposed controller in this chapter is now compared with some of the closest

robust control works in the literature. After considering the same class of uncertain MIMO
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nonlinear systems and imposing the same assumptions on the system model, the results

in Chen et al. (2008) were extended to asymptotic as opposed to their UUB result. At this

point, the differences of the Lyapunov function used in Theorem 2.3.4 and the one given

in equation (22) of Chen et al. (2008) are highlighted. While the structure of both are

similar and the summation of the norm squares of the error signals ei (t), i = 1, · · · , n,

are same, the second terms are fundamentally different (i.e., see (2.14) in this dissertation

and (8) in Chen et al. (2008)). Similarly, in Xian et al. (2004), the same system model was

considered. The results in Xian et al. (2004) were also extended by relaxing the positive

definiteness of the input gain matrix requirement. After this, the results in Xian et al.

(2004) can now be considered as a special case of the controller presented in this chapter

(i.e., when DU (X) is an identity matrix).
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CHAPTER 3

SELF–TUNING METHOD FOR ADJUSTING CONTROL

GAINS

Controller formulations utilizing RISE type feedback have been successfully ap-

plied to a variety of nonlinear systems over the past decade. The main drawbacks of RISE

type feedback controllers are the need of prior knowledge of the upper bounds of the sys-

tem uncertainties and the absence of a proper gain tuning methodology. This drawback

is also valid for the controller proposed in Chapter 2. Specifically, the entries of the gain

matrix β should be greater than the absolute value of the entries of uncertain matrices and

vectors according to (2.65) and (2.66). Since these modeling matrices and vectors are un-

certain usually a trial and error method is preferred. However, in real world applications,

it is not easy to adjust the control gains. To tackle the aforementioned weaknesses, in this

chapter, a fully self tuning RISE type feedback controller formulation has been presented.

The proposed controller formulation makes use of a time–varying compensation gain to

cope for the need of upper bound of the system uncertainties and a time–varying feedback

control gain to achieve self gain adjustment. Lyapunov based arguments are utilized to

ensure asymptotic stability and convergence of the time–varying gains to constant final

values.

3.1. System Model and Error System Development

In this section, the system model and the error system are presented. To ease the

presentation, a SISO system model is considered. However, extension to MIMO systems

is straightforward where numerical simulations and experimental studies are conducted to

demonstrate the performance of application to second order MIMO systems. Also, since

the proposed work aims to extend the previous findings in Xian et al. (2004), the notation

in Xian et al. (2004) is borrowed for a better comparison.

Following SISO nonlinear system is considered in Xian et al. (2004)

mst

(
x, ẋ, · · · , x(n−1)

)
x(n) + fst

(
x, ẋ, · · · , x(n−1)

)
= τ (3.1)

where x(i) (t) ∈ R i = 0, ..., n are system states, mst (·), fst (·) ∈ R are uncertain nonlin-
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ear functions, and τ (t) ∈ R is the control input. The standard assumption that the sign

of the uncertain function mst being known is made and without loss of generality, it is

considered to be positive (i.e., mst > 0) with the following bounds being satisfied

m ≤ mst (x) ≤ m (3.2)

where m, m
(
|x| , |ẋ| , · · · ,

∣∣x(n−1)
∣∣) ∈ R are a positive bounding constant and a positive

non–decreasing function of its arguments, respectively. The uncertain functions mst and

fst are assumed to be continuously differentiable up to their second order time derivatives.

The output tracking error, denoted by e1 (t) ∈ R, is defined as

e1 , xr − x (3.3)

where xr (t) ∈ R is the bounded desired trajectory with bounded continuous time deriva-

tives (i.e., x(i)
r (t) ∈ L∞ for i = 0, · · · , (n+ 2)). The main control objective is to ensure

that e1 (t)→ 0 via the design of a continuous robust control law under full–state feedback

(i.e., x(i), i = 0, · · · , (n− 1) are available). The other objective is to design time–varying

control gains that are functions of error terms and converge to constant final values during

the control process (i.e., self–tuning control gains).

To facilitate the control design, auxiliary errors, denoted by ei (t) ∈ R, i =

2, · · · , n, are defined in the following manner

e2 , ė1 + e1 (3.4)
...

en , ėn−1 + en−1 + en−2 (3.5)

where all of which can alternatively be obtained in terms of output tracking error e1 (t)

and its time derivatives as

ei =
i−1∑
j=0

ai,je
(j)
1 (3.6)

where ai,j ∈ R are known positive constant coefficients with an,(n−1) = 1. Another

auxiliary error, denoted by r (t) ∈ R, is defined as

r , ėn + αen (3.7)

with α ∈ R being a positive constant gain.

To obtain the open–loop dynamics for r (t), the time derivative of (3.7) is multi-

plied with mst, the second time derivative of (3.6) for i = n, and the time derivative of

(3.1) are then substituted

mstṙ = −1

2
ṁstr − en − τ̇ +N (3.8)
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where N
(
x, · · · , x(n), e1, · · · , en, r, x(n+1)

r

)
∈ R is an auxiliary function defined as

N , mst

[
x(n+1)
r +

n−2∑
j=0

an,je
(j+2)
1 + αėn

]
+ ṁst

(
1

2
r + x(n)

)
+ ḟst + en. (3.9)

The above auxiliary function is segregated as sum of two auxiliary terms which are de-

noted by N̄
(
xr, · · · , x(n)

r

)
, Ñ

(
x, · · · , x(n), e1, · · · , en, r, x(n+1)

r

)
∈ R and are defined

as

N̄ , N |
x=xr,··· ,x(n)=x

(n)
r

(3.10)

Ñ , N − N̄ . (3.11)

It should be noted that since both N̄ (t) and ˙̄N (t) are functions of the desired trajectory

and its time derivatives, they are bounded functions of time (i.e., N̄ (t), ˙̄N (t) ∈ L∞). On

the other hand, since the auxiliary term N defined in (3.9) is continuously differentiable,

Mean Value Theorem in Khalil (2002) can be utilized to demonstrate that Ñ can be upper

bounded as ∣∣∣Ñ ∣∣∣ ≤ ρ (‖z‖) ‖z‖ (3.12)

where ρ ∈ R is some globally invertible, non–decreasing function of its argument and

z (t) ∈ Rn+1 is the combined error defined as

z , [e1, · · · , en, r]T . (3.13)

Based on the subsequent stability analysis, the following continuous robust con-

troller is proposed

τ (t) = k (t) en (t)− k (t0) en (t0) + α

∫ t

t0

k (σ) en (σ) dσ +

∫ t

t0

β̂ (σ) sgn (en (σ)) dσ

(3.14)

where β̂ (t) ∈ R is a subsequently designed time–varying (uncertainty compensation)

control gain, sgn (·) is the standard signum function, and k (t) ∈ R is a time–varying

control gain updated according to

k (t) = 1 + kc +
1

2
e2
n (t) + α

∫ t

t0

e2
n (σ) dσ (3.15)

with kc ∈ R being its positive constant part. The constant term k (t0) en (t0) is utilized

in the construction of the controller to ensure τ (t0) = 0. The time–varying control gain

β̂ (t) has the following structure

β̂ (t) = β̂1 (t) + β2 (3.16)
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where β̂1 (t) ∈ R is its time–varying part and β2 ∈ R is its positive constant part (i.e.,

β2 > 0). The time–varying part of the control gain is updated according to

β̂1 (t) = |en (t)| − |en (t0)|+ α

∫ t

t0

|en (σ)| dσ (3.17)

where β̂1 (t0) = 0.

Substituting the time derivative of the control input in (3.14) into the open–loop

error system in (3.8) yields the below closed–loop error system for r (t)

mstṙ = −1

2
ṁstr − en − kr − k̇en −

(
β̂1 + β2

)
sgn(en) + N̄ + Ñ . (3.18)

A comparison of the development thus far and the corresponding part of Xian

et al. (2004) is now given. While the error system development and the open–loop error

dynamics are similar, the controller in (3.14) is fundamentally different than that of the

controller in Xian et al. (2004). Specifically, the controller formulation in Xian et al.

(2004) has the form

τ (t) = K

[
en (t)− en (t0) + α

∫ t

t0

en (σ) dσ

]
+ β

∫ t

t0

sgn (en (σ)) dσ

where K and β are constant control gains. It is clear that, the main difference between

these two controllers is that the controller gains in the design presented in this dissertation

are time–varying where they were constant in Xian et al. (2004). This is a novel departure

from the existing controllers utilizing RISE feedback.

3.2. Stability Analysis

In this section, the stability of the tracking error and its time derivatives and the

convergence of the time–varying control gains are investigated. Firstly, two lemmas are

stated where both of which will later be utilized in the proof of the first theorem.

Lemma 3.2.1 The auxiliary function, denoted by L1 (t) ∈ R, is defined as

L1 , r
(
N̄ − χ1sgn (en)

)
(3.19)

where χ1 ∈ R is a positive constant. Provided that χ1 satisfy

χ1 ≥
∥∥N̄ (t)

∥∥
L∞

+
1

α

∥∥∥ ˙̄N (t)
∥∥∥
L∞

(3.20)

where ‖·‖L∞ denotes infinity norm, then∫ t

t0

L1 (σ) dσ ≤ ζb1 (3.21)

where ζb1 ∈ R is a positive constant.
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Proof After substituting (3.7) into (3.19) and then integrating in time, the following ex-

pression is obtained∫ t

t0

L1 (σ) dσ = α

∫ t

t0

en (σ)
[
N̄ (σ)− χ1sgn (en (σ))

]
dσ

+

∫ t

t0

den (σ)

dσ
N̄ (σ) dσ − χ1

∫ t

t0

den (σ)

dσ
sgn (en (σ)) dσ. (3.22)

After integrating the second integral on the right–hand side by parts and evaluating the

third integral Krstic (2009), following expression is obtained∫ t

t0

L1 (σ) dσ = α

∫ t

t0

en (σ)
[
N̄ (σ)− χ1sgn (en (σ))

]
dσ

+en (σ) N̄ (σ) |tt0 −
∫ t

t0

en (σ)
dN̄ (σ)

dσ
− χ1 |en (σ)| |tt0

= α

∫ t

t0

en (σ)

[
N̄ (σ)− 1

α

dN̄ (σ)

dσ
− χ1sgn (en (σ))

]
dσ

+en (t) N̄ (t)− en (t0) N̄ (t0)− χ1 |en (t)|+ χ1 |en (t0)| .(3.23)

The right–hand side of (3.23) can be upper bounded as∫ t

t0

L1 (σ) dσ ≤ α

∫ t

t0

|en (σ)|
(∣∣N̄ (σ)

∣∣+
1

α

∣∣∣∣dN̄ (σ)

dσ

∣∣∣∣− χ1

)
dσ

+ |en (t)|
(∣∣N̄ (t)

∣∣− χ1

)
+ χ1 |en (t0)| − en (t0) N̄ (t0) . (3.24)

From (3.24), it is easy to see that if χ1 satisfies (3.20), then (3.21) holds with

ζb1 , χ1 |en (t0)| − en (t0) N̄ (t0) . (3.25)

In Lemma 3.2.1, a constant parameter, namely χ1, is introduced. This constant

parameter is required to satisfy the condition in (3.20) but it is not utilized in the controller

in (3.14). On the other hand, in Xian et al. (2004), a similar constant parameter was

utilized in the controller design. This difference is an important novelty of this work

when compared to Xian et al. (2004) which is removing the need for the knowledge of

the upper bounds of the uncertain function and its time derivative.

Lemma 3.2.2 The auxiliary function, denoted by L2 (t) ∈ R, is defined as

L2 , −χ2ėnsgn (en) . (3.26)

Provided that χ2 > 0 then ∫ t

t0

L2 (σ) dσ ≤ ζb2 (3.27)

where ζb2 ∈ R is a positive constant.

36



Proof After integrating (3.26) in time, following steps can be obtained Krstic (2009)∫ t

t0

L2 (σ) dσ = −χ2

∫ t

t0

ėn (σ) sgn (en (σ)) dσ

= −χ2

∫ t

t0

sgn (en) d (en)

= −χ2

∫ t

t0

d (|en|)

= −χ2 (|en (t)| − |en (t0)|)

≤ χ2 |en (t0)| . (3.28)

From (3.28), it is easy to see that if χ2 is chosen as positive, then (3.27) holds with

ζb2 , β2 |en (t0)| . (3.29)

In this study, different from the stability analysis in Xian et al. (2004), a new

lemma (i.e., Lemma 3.2.2) is presented. In the proof of Lemma 3.2.2, the constant β2 is

only required to be positive and no additional constraints are imposed. While β2 is in the

controller in (3.14) (via being the positive constant part of the time–varying control gain

β̂ (t) as introduced in (3.16)), it being positive suffices.

The tracking result will now be proven via the following theorem.

Theorem 3.2.3 The controller in (3.14) with the time–varying gains in (3.16) and (3.17)

ensures semi–global asymptotic convergence of the tracking error and its time derivatives

in the sense that
∣∣∣e(i)

1 (t)
∣∣∣→ 0 as t→∞ provided that α is selected to satisfy α >

1

2
, and

β2 is chosen to be positive.

Proof Following Lyapunov function, denoted by V (y, t) ∈ R, is defined

V ,
1

2

n∑
j=1

e2
j +

1

2
mr2 +

1

2
β̃2

1 + P1 + P2 (3.30)

where P1 (t), P2 (t) ∈ R are defined as

P1 , ζb1 −
∫ t

t0

L1 (σ) dσ (3.31)

P2 , ζb2 −
∫ t

t0

L2 (σ) dσ (3.32)

and β̃1 (t) ∈ R is defined as

β̃1 , χ1 − β̂1 (3.33)

and y (t) ∈ Rn+4 is defined as

y ,
[
zT , β̃1,

√
P1,
√
P2

]T
(3.34)
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where z (t) was defined in (3.13).

From the proofs of Lemmas 3.2.1 and 3.2.2, it is clear that P1 (t) and P2 (t) are

non–negative and thus V (y, t) is also non–negative. The Lyapunov function in (3.30) can

be bounded as

1

2
min {1,m} ‖y‖2 ≤ V ≤ max

{
1

2
m (‖y‖) , 1

}
‖y‖2 (3.35)

where (3.2) was utilized.

When compared with the Lyapunov function in (33) of Xian et al. (2004), (3.30)

includes two additional terms (i.e.,
1

2
β̃2

1 (t) and P2 (t)). The first new term is added as

a direct consequence of the time–varying nature of the uncertainty compensation gain

β̂ (t). On the other hand, the P2 (t) term is introduced to prove L1 boundedness of en (t)

(as will be demonstrated subsequently). This is required to prove the boundedness and

the convergence of the time–varying gains β̂ (t) and k (t) to constant final values. While

proving the boundedness of β̂ (t) is a significant improvement over the similar results in

Yang et al. (2011) where boundedness was not ensured, a novel approach will be utilized

to achieve convergence of the time–varying gains.

After taking the time derivative of (3.30) and substituting (3.5), (3.7) and (3.18),

following expression can be obtained

V̇ = −
n−1∑
j=1

e2
j − αe2

n + en−1en − r2 − kr2 + rÑ − αβ2 |en| − k̇ren (3.36)

where (3.19) and (3.26) were also utilized. By using the fact that en−1en ≤
1

2

(
e2
n−1 + e2

n

)
,

an upper bound on (3.36) can be obtained as

V̇ ≤ −min

{
1

2
, α− 1

2

}
‖z‖2 +

ρ2 (‖z‖)
4kc

‖z‖2 − αβ2 |en| − k̇ren (3.37)

where (3.12) was utilized. Provided that α is selected to satisfy α >
1

2
, from (3.37),

following expression is stated

V̇ ≤ −γ ‖z‖2 − αβ2 |en| − r2e2
n ≤ −γ ‖z‖

2 − αβ2 |en| (3.38)

where the time derivative of (3.15) is substituted and γ ∈ R is some positive constant.

From (3.30), (3.35) and (3.38), it is clear that V (y, t) ∈ L∞ and thus e1 (t), · · · , en (t),

r (t), β̃1 (t), P1 (t), P2 (t) ∈ L∞. Boundedness of en (t) and r (t) can be utilized along

with (3.7) to show that ėn (t) ∈ L∞. These boundedness statements can be utilized along

with (3.4)–(3.6) to prove that ė1 (t), · · · , ėn−1 (t) ∈ L∞. From the time derivative of

(3.14), it can easily be concluded that τ̇ (t) ∈ L∞. The boundedness of the auxiliary errors
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and their time derivatives can be utilized along with (3.6) to conclude that e(i)
1 (t) ∈ L∞

i = 1, · · · , n, which can then be utilized along with (3.3) and its time derivatives to prove

that x(i) (t) ∈ L∞ i = 1, · · · , n. The above boundedness statements can be utilized along

with m (·), fst (·) ∈ C2, to prove that mst (·), fst (·), ṁst (·), ḟst (·) ∈ L∞. From (3.18), it

is concluded that ṙ (t) ∈ L∞.

After integrating (3.38) in time from initial time to infinity, following expression

can be obtained

γ

∫ ∞
t0

‖z (σ)‖2 dσ + αβ2

∫ ∞
t0

|en (σ)| dσ ≤ V (t0)− V (∞) (3.39)

and since V (∞) ≥ 0 following expressions are valid∫ ∞
t0

‖z (σ)‖2 dσ ≤ V (t0)

γ
and

∫ ∞
t0

|en (σ)| dσ ≤ V (t0)

αβ2

. (3.40)

From (3.40), it is clear that z (t) ∈ L2 and en (t) ∈ L1. Since en (t) ∈ L1 ∩ L∞,

from (3.17), it is concluded that β̂1 (t) ∈ L∞, and since r (t) ∈ L∞, then from the time

derivative of (3.17), it is clear that ˙̂
β1 (t) ∈ L∞. Since en (t) ∈ L2 ∩ L∞, from (3.15),

it is clear that k (t) ∈ L∞. Standard signal chasing arguments can be utilized to prove

that all the remaining signals remain bounded under the closed–loop operation. Since

z (t) ∈ L2 ∩L∞ and ż (t) ∈ L∞, Barbalat’s Lemma in Krstic et al. (1995) can be utilized

to prove that ‖z (t)‖ → 0 as t → ∞, and from its definition in (3.13), it is clear that the

tracking error and its time derivatives asymptotically converge to zero.

One concern of the controllers with time–varying gains (including dynamic adap-

tive update rules) is their convergence. The following theorem investigates the conver-

gence analysis of the time–varying gains.

Theorem 3.2.4 There exist constants β̂∞ and k∞ ∈ R such that

β̂ (t)→ β̂∞ and k (t)→ k∞ as t→ +∞. (3.41)

Proof Applying the limit operation to (3.17) yields

lim
t→∞

β̂1 (t) = − |en (t0)|+ α lim
t→∞

[∫ t

t0

|en (σ)| dσ
]

(3.42)

where en (t) → 0 was utilized. Since, from the proof of Theorem 3.2.3, en (t) ∈ L1,

the existence of limt→∞

[∫ t
t0
|en (σ)| dσ

]
is ensured via Theorem 3.1 of Krstic (1996). In

view of this, from (3.42), it is easy to see that (3.41) is obtained.

Similarly, taking the limit of (3.15) results in

lim
t→∞

k (t) = kc + α lim
t→∞

[∫ t

t0

e2
n (θ) dθ

]
(3.43)
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where en (t)→ 0 was utilized. Since en (t) ∈ L2, from Theorem 3.1 in Krstic (1996), the

existence of limt→∞

[∫ t
t0
e2
n (σ) dσ

]
is ensured from which the result in (3.41) follows.

3.3. Conclusions

In this chapter, the need of prior knowledge of the upper bounds of the system

uncertainties and the absence of a proper gain tuning methodology weaknesses of con-

trollers utilizing RISE type feedback were tackled by proposing a self–tuning method to

adjust their control gains. To realize this objective, a self-tuning RISE feedback controller

formulation with a time–varying feedback gain and an adaptive uncertainty compensation

gain were utilized. Semi–global tracking was ensured via Lyapunov–type analysis and the

convergence of the time–varying gains to constant final values was also proven.

The result presented in this chapter is the only design that addresses the self–

tuning of the gains for controllers utilizing RISE feedback. The time–varying con-

troller gains designed in this chapter can be utilized in conjunction with the robust con-

troller designed in Chapter 2.
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CHAPTER 4

CONTROL DESIGN FOR MECHATRONIC SYSTEMS

Main purposes of this chapter can be summarized as:

• A tracking controller formulation is provided for dynamically positioned surface

vessels subject to non–symmetric added mass terms effecting the system dynamics

at the acceleration level.

• The robust attitude tracking control problem for small–scaled unmanned helicopters

is focused by considering the rotor dynamics. These dynamics are reflected to the

dynamic model by premultiplying the vector that contains actual system inputs,

namely the elevator servo input, the aileron servo input and the rudder servo input,

with a non–symmetric matrix.

• Problem of accurate positioning of an unactuated surface vessel by using multiple

uni–directional tugboats is investigated.

The control design process is divided into two parts. Initially, the problems are

transformed into second order systems with an uncertain non–symmetric input gain ma-

trix. Then, novel robust controllers are proposed by utilizing the general control design

in Chapter 2. Since these mechatronic systems are second order nonlinear systems with 3

inputs and 3 outputs, control design given in this chapter is a special case of the general

control design given in Chapter 2 for n = 2 and m = 3. As a result of these, design steps

are similar to Chapter 2. However, all steps of synthesis and analysis are provided for the

sake of completeness.

The rest of this chapter is organized as follows. A brief information about dynamic

models and model properties of dynamically positioned surface vessel, small–scaled un-

manned helicopter and unactuated surface vessel manipulated by multiple uni–directional

tugboats are presented in Sections 4.1, 4.2 and 4.3, respectively. Then, control design to

these systems is presented in Section 4.4.
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4.1. System Model and Properties of Dynamically Positioned Surface

Vessel

The mathematical model for a dynamically positioned fully actuated 3 dof surface

vessel is commonly represented by Fossen (1994), Fossen (2002), Skjetne et al. (2004),

Ihle et al. (2006), Fossen (2011)

Msv̇ + Csv +Dsv = τ (4.1)

ẋ = Rv (4.2)

where x(t) , [xp, yp, ψs]
T ∈ R3 is the position vector that contains translational po-

sitions xp (t), yp (t) ∈ R in X– and Y– directions, respectively, and the yaw angle of a

surface vessel ψs (t) ∈ R, v(t) =
[
u, v, ψ̇s

]T
∈ R3 includes body–fixed linear and angu-

lar velocities. Also in (4.1),Ms (ψs), Cs(v, vr),Ds(v, vr) ∈ R3×3 represent inertia matrix,

centripetal and Coriolis forces, hydrodynamic damping terms, respectively, vr(t) ∈ R3 is

the relative velocity between the fluids and the vessel, and the control input torque vector

is represented by τ(t) ∈ R3. It is noted that, in 6 dof modeling approach for dynamically

positioned surface vessels, there are 3 translational positions in X–, Y– and Z– directions

as well as yaw, pitch and roll angles of the vessel. On the other hand, while obtaining a

3 dof model, translational position in Z– direction and pitch and roll angles are not taken

into account. Although they are in different frames, translational positions in X– and Y–

directions and the yaw angle are commonly expressed in 3 dof modeling approach by uti-

lizing rotation matrix denoted by R(ψs) ∈ SO(3) Fossen (1994), Fossen (2002), Fossen

(2011). The rotation matrix has the form

R (ψs) =


cos (ψs) − sin (ψs) 0

sin (ψs) cos (ψs) 0

0 0 1

 . (4.3)

While the mathematical model in (4.1) and (4.2) is utilized in almost all past

works, as detailed in Fossen (1994), Fossen and Strand (1999), Fossen (2002) and Skjetne

et al. (2004), during the cruise, the motion of the surface vessel effects all the flow, re-

sulting in vibrations with different amplitudes to occur on various parts of the flow. It is

important to note that motion in one direction causes forces not only in the same direc-

tion but also in other directions Newman (1977), Lewis (1989). This situation results as

pressure effects and moments acting on different parts of the surface vessel which causes

additional force and thus has an influence on the acceleration of the surface vessel. For
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precise control design, this effect, referred as the added mass, is required to be represented

in the dynamic model. There are different conventions in the literature on how to repre-

sent the added mass effects in the dynamic model Fossen and Strand (1999), Skjetne et al.

(2004). In Fossen and Strand (1999), after using inertial velocity as the velocity state,

the added mass effects are represented as part of the inertia matrix of the surface vessel.

Following the convention given in Fossen and Strand (1999), in this work, the added mass

terms are considered to be affecting the dynamics of the surface vessel at the acceleration

level (i.e., inertial velocity is chosen as the velocity state). As a result, the inertia matrix

of the surface vessel in (4.1) is obtained as Fossen (1994)

Ms = MRB +MA (4.4)

where MRB(ψs) ∈ R3×3 represents the positive definite, symmetric rigid body inertia

matrix and MA(ψs) ∈ R3×3 represents the added mass inertia matrix. The entries of

added mass inertia matrix represented by MAij
denote the mass associated with a force

on the body in the ith direction due to a unit acceleration in the jth direction Techet (2015).

As noted in Fossen (1994), the inertia matrix due to added mass is not necessarily

symmetric. It is also considered that the added mass term does not lead to a rank defi-

ciency in Ms (i.e., Ms is full rank). After summed the inertia matrix due to added mass

with the symmetric MRB(ψs), the overall inertia matrix Ms(ψs) of the system loses its

symmetry. The non–symmetric inertia matrix, when not appropriately dealt with, may

result in degradation of the controller performance, and even instability. Therefore, the

main problem caused by added mass effects are due to its non–symmetric nature. From a

control design perspective, the symmetric nature of the inertia matrix is extremely useful

especially when constructing quadratic terms in the Lyapunov function.

In an attempt to obtain a compact representation of the mathematical model of the

surface vessel in (4.1) and (4.2), the time derivative of (4.2) is taken

ẍ = Ṙv +Rv̇ (4.5)

which includes the time derivative of the rotation matrix that can be obtained as

Ṙ = RS3 (4.6)

with S3

(
ψ̇s

)
∈ R3×3 being a skew–symmetric matrix defined as

S3 , ψ̇s


0 −1 0

1 0 0

0 0 0

 . (4.7)
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After substituting (4.1) and (4.6) into (4.5), it is easy to obtain

ẍ = RM−1
s τ −R

[
M−1

s (Cs +Ds)− S3

]
RT ẋ. (4.8)

In order to ease the presentation of the subsequent development, the right–hand side of

(4.8) can be rewritten as

ẍ = h+ gτ (4.9)

where h (x, ẋ) ∈ R3 and g (x, ẋ) ∈ R3×3 are defined as

h , −R
[
M−1

s (Cs +Ds)− S3

]
RT ẋ (4.10)

g , RM−1
s . (4.11)

Since Ms (ψs) is full rank then g (x, ẋ) is a real matrix with non–zero leading principle

minors.

4.2. System Model and Properties of Small–scaled Unmanned

Helicopter

The dynamic model of a small–scaled unmanned helicopter is expressed as Fan-

toni and Lozano (2002)

Mhẍ+ Chẋ+Gh = τh (4.12)

where x (t), ẋ (t) and ẍ (t) ∈ R3 position, velocity and the acceleration vector while

the three Euler angles are contained by the position vector that is expressed as x =[
φ θ ψ

]T
. From these Euler angles, φ (t) ∈ R is the yaw angle, θ (t) ∈ R is the

roll angle, and ψ (t) is the pitch angle. The inertia matrix, the centripetal and Coriolis

forces matrix and vector of conservative forces are denoted by Mh (x), Ch (x, ẋ) ∈ R3×3

andGh (x) ∈ R3, respectively, while the torque input vector is represented by τh (t) ∈ R3.

The torque input τh (t) is expressed as Mettler (2003), Cai et al. (2011)

τh = S−Th (Aυc +B) (4.13)

where Sh (t) ∈ R3×3 denotes the velocity transformation matrix from the body frame to

the inertia frame and defined as

Sh ,


1

sin (φ) sin (θ)

cos (θ)

cos (φ) sin (θ)

cos (θ)

0 cos (φ) − sin (φ)

0
sin (φ)

cos (θ)

cos (φ)

cos (θ)

 . (4.14)
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At this point, it should be noted that cos (θ) term appearing in the denominator of some

terms of velocity transformation matrix does not cause indefiniteness of these terms be-

cause of the feasible interval of θ. More detailed explanations about the feasible intervals

of yaw, roll and pitch angles along with the dynamic model parameters can be found in

modeling studies Fantoni and Lozano (2002), Mettler (2003), and Cai et al. (2011). In

(4.13), υc (t) ∈ R3 is a vector that is expressed as υc =
[
a b TT

]T
where a (t),

b (t) ∈ R are the flapping angles and TT (t) ∈ R is the tail rotor thrust. In addition to

these, A ∈ R3×3 and B ∈ R3 are a constant invertible matrix and a constant vector, re-

spectively. A simplified model for flapping angles and the tail rotor thrust at hovering

flight condition can be expressed as Mettler (2003)

a = Abb− Alonδlon

b = −Baa+Blatδlat

TT = Kped0δped (4.15)

where Ab, Alon, Ba, Blat and Kped0 ∈ R are constant parameters that are related with the

helicopter dynamics. As a result, a simplified rotor model can be expressed as

τh = S−Th (ACδτ +B) (4.16)

where the matrix Cδ ∈ R3×3 is defined as

Cδ ,


− Alon
AbBa + 1

AbBlat

AbBa + 1
0

Blat

AbBa + 1

BaAlon
AbBa + 1

0

0 0 Kped0

 (4.17)

and τ =
[
δlon δlat δped

]T
denotes the actual control input that contains the elevator

servo input δlon (t) ∈ R, the aileron servo input δlat (t) ∈ R, and the rudder servo input

δped (t) ∈ R. In view of (4.16), the dynamic model given in (4.12) can be re–arranged in

the form given in (4.9) where h (x, ẋ) ∈ R3 and g (x) ∈ R3×3 are defined as

h , M−1
h

(
S−Th B − Chẋ−Gh

)
(4.18)

g , M−1
h S−Th ACδ. (4.19)
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4.3. System Model and Properties of an Unactuated Surface Vessel

Manipulated by 6 Uni–directional Tugboats

The dynamic model of a 3 dof unactuated surface vessel manipulated by 6 uni–

directional tugboats can be written as Fossen (1994), Fossen (2002), Skjetne et al. (2004),

Arrichiello et al. (2006), Ihle et al. (2006), Fossen (2011)

Mtν̇ +Dtν = F (4.20)

ẋ = Rν (4.21)

where F = [Fx, Fy,Mz]
T ∈ R3 represents the total forces and moments applied to and

acting on the center of mass of the vessel provided by the tugboats. The inertia matrix,

denoted by Mt (ν) ∈ R3×3, is given as Fossen (1994)

Mt = MRB +MA (4.22)

where MRB (ν) ∈ R3×3 denotes the positive definite, symmetric rigid body part of the

inertia matrix while the effects due to added mass are represented by MA (ν) ∈ R3×3.

It should be noted that MA is not necessarily symmetric, resulting in a possibly non–

symmetric Mt Fossen (1994). It is considered that the added mass term does not lead

to a rank deficiency in Mt (i.e., Mt is full rank). The matrix Dt (ν) ∈ R3×3 denotes the

hydrodynamic damping terms while x (t) = [xp, yp, ψ]T ∈ R3 represents the composite

inertial position xp (t), yp (t), and heading ψ (t) of the vessel while body fixed linear

and angular velocity signals are represented by ν (t) =
[
u (t) , v (t) , ψ̇ (t)

]T
∈ R3. The

rotation matrix is denoted by R (ψ) ∈ SO (3) and has the following form

R (ψ) =


cos (ψ) − sin (ψ) 0

sin (ψ) cos (ψ) 0

0 0 1

 . (4.23)

4.3.1. Force Decomposition and Commutation Strategy

The unactuated vessel is moved via thrust inputs provided from 6 uni–directional

tugboats in contact with the vessel’s hull as illustrated in Figure 4.1. Accordingly, F in

(4.20) is a result of the combined efforts provided from 6 uni–directional tugboats and is

expressed as
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Figure 4.1. System description showing the vessel frames

F = B1τ1 (4.24)

where τ1 (t) = [u1a, u1b, u2a, u2b, u3a, u3b]
T ∈ R6 denotes a thrust input vector from 6

uni–directional tugboats while the thrust configuration matrix is shown by B1 ∈ R3×6

and has the following structure

B1 =



cos (α1a) sin (α1a) Ly1a cos (α1a)− Lx1a sin (α1a)

cos (α1b) sin (α1b) Ly1b cos (α1b)− Lx1b sin (α1b)

cos (α2a) sin (α2a) Ly2a cos (α2a)− Lx2a sin (α2a)

cos (α2b) sin (α2b) Ly2b cos (α2b)− Lx2b sin (α2b)

cos (α3a) sin (α3a) −Ly3a cos (α3a) + Lx3a sin (α3a)

cos (α3b) sin (α3b) −Ly3b cos (α3b) + Lx3b sin (α3b)



T

. (4.25)

The opposite tugboats can then be placed as

α1b = α1a + π Lx1b = Lx1a Ly1b = Ly1a

α2b = α2a + π Lx2b = Lx2a Ly2b = Ly2a

α3b = α3a − π Lx3b = Lx3a Ly3b = Ly3a

(4.26)

47



which allows the force equation in (4.24) to be rewritten as

F = Bτ (4.27)

where τ (t) = [u1, u2, u3]T ∈ R3 is the combined bi–directional control efforts from the

opposing uni–directional tugboats with ui = uia − uib, ∀i = 1, 2, 3 and B ∈ R3×3 is the

thrust configuration matrix obtained as

B =


cos (α1a) sin (α1a) Ly1a cos (α1a)− Lx1a sin (α1a)

cos (α2a) sin (α2a) Ly2a cos (α2a)− Lx2a sin (α2a)

cos (α3a) sin (α3a) −Ly3a cos (α3a) + Lx3a sin (α3a)


T

. (4.28)

It is remarked that, similar to Braganza et al. (2007), the tugboats are considered to

be placed according to the configurations in (4.26). In this dissertation, unlike Braganza

et al. (2007), it is considered that the configurations in (4.26) are the initial configurations

and they may vary after the motion starts. This relaxes the static positioning assumption

in the literature including Braganza et al. (2007) and is an important novel departure from

the existing literature.

In the subsequent sections, the control input τ (t) will be designed to obtain satis-

factory tracking performance. The following commutation strategy can then be applied to

τ (t) to specify uni–directional thrust effects to be provided by the bi–directional tugboats

de Queiroz and Dawson (1996)

uia =
1

2

(
ui +

√
u2
i + ε20

)
(4.29)

uib =
1

2

(
−ui +

√
u2
i + ε20

)
(4.30)

for i = 1, 2, 3 and where ε0 denotes a positive controller parameter selected to obtain

non–zero uia (t) and uib (t) to prevent the tugboats from losing contact with the vessel.

The time derivative of (4.21) is taken to obtain

ẍ = Ṙν +Rν̇ (4.31)

which contains the time derivative of R (ψ) that can be obtained as a result of the special

orthogonal structure of the rotation matrix in the following manner

Ṙ = RS3 (4.32)

where S3

(
ψ̇
)
∈ R3×3 is a skew–symmetric matrix defined as

S3 , ψ̇


0 −1 0

1 0 0

0 0 0

 . (4.33)

48



After substituting (4.32) into (4.31), the right–hand side of (4.31) can be re–arranged as

ẍ = −R
(
M−1

t Dt − S3R
T ẋ
)

+RM−1
t Bτ (4.34)

where (4.20) and (4.27) were utilized. A more compact form of the above model is

obtained as given in (4.9) with the functions h (x, ẋ) ∈ R3 and g (x, ẋ) ∈ R3×3 defined in

the following form

h , −R
(
M−1

t Dt − S3R
T ẋ
)

g , RM−1
t B. (4.35)

At this point, it should be stated that, the subsequent control design will utilize

only the knowledge of a constant diagonal matrix that is obtained from the decomposition

of g which can be an identity matrix for some mechatronic systems. The remaining terms

are considered as uncertain for all three mechatronic systems.

4.4. Control Design for Mechatronic Systems

Since all three mechatronic systems are rearranged in a form that is compatible

with (1.2) where all of them are second order MIMO nonlinear systems with three inputs

and three outputs, steps of the control design and stability analysis are similar. These steps

are examined for the sake of completeness and are presented in the following subsections

of this chapter.

4.4.1. Open–Loop Error System Development

At this point, it should be noted that since g is a real matrix with non–zero leading

principal minors, the following matrix decomposition is possible Morse (1993), Costa

et al. (2003)

g = SDU (4.36)

where S (x, ẋ) ∈ R3×3 represents a symmetric, positive definite matrix, D ∈ R3×3 is a

diagonal matrix with entries being±1 and U (x, ẋ) ∈ R3×3 unity upper triangular matrix.

While the entries of D are constant, uncertain terms are injected in S and U , thus these

matrices are not precisely known. As a result of applying the above matrix decomposition

to the models that are available in the literature, D came out to be an identity matrix.
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Despite this, the derivations given in this study will be presented for the general case

where it is assumed that D is available for control design (see Costa et al. (2003) and

Chen et al. (2008) for the precedence of this type assumption).

After taking the time derivative of (4.9), following expression is obtained

...
x = ϕ+ SDUτ̇ (4.37)

where (4.9) and (4.36) were utilized, and ϕ (x, ẋ, ẍ) ∈ R3 is an auxiliary term defined as

ϕ , ḣ+ ġg−1 (ẍ− h) . (4.38)

At this point, the inverse of S is designed as M (x, ẋ) ∈ R3×3. It is remarked that

M is symmetric and positive definite because of symmetry and positive definiteness of S.

In addition to this, the following bounds are valid for M (x, ẋ)

m ‖χ‖2 ≤ χTM (x, ẋ)χ ≤ m̄ ‖χ‖2 ∀χ ∈ R3 (4.39)

where m ∈ R and m̄ (x, ẋ) ∈ R denote a positive bounding constant and a positive

non–decreasing bounding function, respectively.

Following expression can be obtained after multiplying both sides of (4.37) with

M

M
...
x = f +DUτ̇ (4.40)

where f (x, ẋ, ẍ) ,Mϕ ∈ R3.

Ensuring a good tracking performance for the mechatronic systems and guarantee-

ing boundedness of all the terms under the closed–loop operation constitute main control

objectives. The subsequent control design is based on the availability of x (t) and ẋ (t)

(i.e., full–state feedback).

To quantify the tracking control objective, the output tracking error, denoted by

e1 (t) ∈ R3, is defined as

e1 , xd − x (4.41)

where xd (t) ∈ R3 is a smooth desired trajectory that is chosen in the sense that

xd (t) ∈ C3 and x(i)
d (t) ∈ L∞, i = 0, 1, 2, 3. (4.42)

In order to eliminate the higher order time derivatives from the subsequent Lyapu-

nov–based stability analysis, auxiliary errors, denoted by e2 (t) ∈ R3 and r (t) ∈ R3, are

defined as follows

e2 , ė1 + e1 (4.43)

r , ė2 + αe2 (4.44)
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where α ∈ R3×3 denotes a constant, positive–definite, diagonal gain matrix. The follow-

ing expression is obtained by taking the time derivative of (4.44) and premultiplying the

resulting expression with M

Mṙ = M (
...
xd + ë1 + αė2)− f −DUτ̇ (4.45)

where (4.40), and the time derivatives of (4.41) and (4.43) were utilized. The right–hand

side of (4.45) can be re–arranged as

Mṙ = −1

2
Ṁr − e2 −DUτ̇ +N (4.46)

where N (x, ẋ, ẍ, xd, ẋd, ẍd,
...
xd, t) ∈ R3 is an auxiliary term defined as

N ,M (
...
xd + ë1 + αė2)− f + e2 +

1

2
Ṁr. (4.47)

The auxiliary function N can be partitioned as sum of two auxiliary terms denoted by

N̄ (t), Ñ (t) ∈ R3. These auxiliary terms are defined as

N̄ , N |x=xd,ẋ=ẋd,ẍ=ẍd
(4.48)

Ñ , N − N̄ . (4.49)

After substituting the above definitions, the final form of open–loop error system can be

obtained as follows

Mṙ = −1

2
Ṁr − e2 −DUτ̇ + Ñ + N̄ . (4.50)

4.5. Controller Formulation

Motivated by the subsequent stability analysis and based on the open–loop error

system in (4.50), the control input τ (t) is designed as

τ = DK

[
e2 (t)− e2 (t0) + α

∫ t

t0

e2 (σ) dσ

]
+DΠ (4.51)

where the auxiliary term Π (t) ∈ R3 is generated according to the update law

Π̇ (t) = βSgn (e2 (t)) with Π (t0) = 03. (4.52)

In (4.51) and (4.52), K, β ∈ R3×3 denote constant, positive definite, diagonal gain ma-

trices while a vector of zeros is represented by 03 ∈ R3 and Sgn(·) ∈ R3 is the vector

sign function. The control gain is chosen as K = I3 + kpI3 + diag {kd,1, kd,2, 0} where
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kp, kd,1, kd,2 ∈ R are constant, positive controller gains, the notation diag {·} represents

a diagonal matrix, and I3 ∈ R3×3 is the standard identity matrix. Before continuing with

the closed–loop error system, the required measurements from the system are clarified

by examining all terms of the proposed controller in (4.51) closely. The control design

requires the measurements of the auxiliary error e2. From its definition in (4.43) and the

definition of tracking error in (4.41), it is clear that measurements of the position and the

velocity of the mechatronic systems are required. Since the control design is based on the

full–state feedback assumption these measurements are available.

The following closed–loop error system is obtained by substituting the time deriva-

tive of (4.51) into (4.50) and then adding and subtracting DKr (t)

Mṙ = −1

2
Ṁr − e2 −Kr + Ñ + N̄D (U − I3)DKr −DUDβSgn (e2) (4.53)

where (4.52) and the fact that DD = I3 were utilized.

Before presenting the accompanying stability analysis, a more detailed examina-

tion of the last two terms of (4.53) are given. The D (U − I3)DKr term can be rewritten

as

D (U − I3)DKr =


Λ1

Λ2

0

+


Φ1

Φ2

0

 (4.54)

where the auxiliary terms Λ1 (t), Λ2 (t), Φ1 (t), Φ2 (t) ∈ R are defined as

Λ1 , d1d2k2Ũ1,2r2 + d1d3k3Ũ1,3r3 (4.55)

Λ2 , d2d3k3Ũ2,3r3 (4.56)

Φ1 , d1d2k2Ū1,2r2 + d1d3k3Ū1,3r3 (4.57)

Φ2 , d2d3k3Ū2,3r3 (4.58)

with the following definitions of Ū1,2 (t), Ū1,3 (t), Ū2,3 (t), Ũ1,2 (t), Ũ1,3 (t), Ũ2,3 (t) ∈ R
as

Ūi,j , Ui,j|x=xd,ẋ=ẋd (4.59)

Ũi,j , Ui,j − Ūi,j (4.60)

where Ui,j (x, ẋ) ∈ R represents the (i, j)–th entry of U (x, ẋ). From (4.56), it can be

seen that Λ2 (t) depends on k3, and from (4.55), it is clear that, Λ1 (t) depends on k3 and

k2. From (4.57) and (4.58), it can also seen that Φ1 (t) depends on k3 and k2 while Φ2 (t)

depends on k3.
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On the other hand, the following decomposition can be applied to DUDβSgn (e2)

term

DUDβSgn (e2) =
[
ΨT , 0

]T
+ Θ (4.61)

where two auxiliary terms, denoted by Ψ (t) ∈ R2 and Θ (t) ∈ R3, have the following

forms [
Ψ

0

]
, D

(
U − Ū

)
DβSgn (e2) (4.62)

Θ , DŪDβSgn (e2) (4.63)

where Ū (xd, ẋd) , U |x=xd,ẋ=ẋd ∈ R3×3 is a function of desired trajectory and its time

derivative, and Ψi (t) ∈ R, i = 1, 2 and Θi (t) ∈ R, i = 1, 2, 3, are defined as

Ψi , di

3∑
j=i+1

djCjŨi,jsgn (e2,j) (4.64)

Θi , di

3∑
j=i

djCjŪi,jsgn (e2,j) . (4.65)

The following upper bounds can be developed by utilizing the Mean Value Theo-

rem in Khalil (2002) ∥∥∥Ñ∥∥∥ ≤ ρÑ (‖z‖) ‖z‖ (4.66)∥∥∥Ũi,j∥∥∥ ≤ ρi,j (‖z‖) ‖z‖ (4.67)

where ρÑ , ρi,j ∈ R are non–negative, globally invertible, non–decreasing functions of

their arguments, and z (t) ∈ R9 is defined as

z ,
[
eT1 eT2 rT

]T
. (4.68)

It can be seen from (4.48) and (4.59) that the entries of N̄ (t) and Ūi,j (t) can be upper

bounded as ∣∣N̄i (t)
∣∣ ≤ ζN̄i

(4.69)∣∣Ūi,j (t)
∣∣ ≤ ζŪui,j

(4.70)

where ζN̄i
, ζŪui,j

∈ R are positive bounding constants. Based on (4.55)–(4.58), (4.64),

(4.65), following upper bounds can be obtained

|Λi| ≤ ρΛi
(‖z‖) ‖z‖ (4.71)

|Φi| ≤ ζΦi
‖z‖ (4.72)

|Ψi| ≤ ρΨi
(‖z‖) ‖z‖ (4.73)
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for i = 1, 2 and the following upper bound can also be obtained

|Θi| ≤ ζΘi
(4.74)

for i = 1, 2, 3 where (4.66)–(4.70) were utilized. From (4.74), it is clear that ‖Θ‖ ≤ ζΘ

is provided for some positive bounding constant ζΘ ∈ R, and from (4.71)–(4.73), the

following expression is obtained

|Λi|+ |Φi|+ |Ψi| ≤ ρi (‖z‖) ‖z‖ (4.75)

where ρi (‖z‖) ∈ R i = 1, 2, are non–negative, globally invertible, non–decreasing func-

tions satisfying

ρΛi
+ ρΨi

+ ζΦi
≤ ρi. (4.76)

After this point, boundedness and convergence analysis of the closed–loop sys-

tems can be proceeded.

4.6. Stability Analysis

Proving the boundedness of the errors under the closed–loop operation is the first

purpose of this section. Then, by making use of the boundedness result a lemma will be

presented to obtain an upper bound for the integral of the absolute values of the entries

of the time derivative of e2 (t). This upper bound will be utilized in another lemma to

prove the non–negativity of a Lyapunov–like function. Finally, asymptotic stability of the

overall closed–loop system will be proven by using the results of this lemma.

Theorem 4.6.1 The controller in (4.51) and (4.52) guarantees the boundedness of the

closed–loop system including the errors in (4.41), (4.43), (4.44) provided that the con-

troller gains kd,1, kd,2 and kp are chosen large enough compared to the initial conditions

of the system and the following condition is satisfied

λmin (α) ≥ 1

2
(4.77)

where λmin (α) is the minimum eigenvalue of the gain matrix α.

Proof The non–negative function V1 (z) ∈ R is defined as

V1 ,
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
rTMr. (4.78)
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The Lyapunov function in (4.78) can be lower and upper bounded as follows by utilizing

(4.39)

λ1 ‖z‖2 ≤ V1 (z) ≤ λ2 ‖z‖2 (4.79)

with λ1 ,
1

2
min {1,m} and λ2 , max

{
1,

1

2
m̄ (‖z‖)

}
and the terms m, m̄ (‖z‖) were

defined in (4.39) and z(t) was defined in (4.68). The following inequality is obtained by

taking the time derivative of (4.78), making necessary substitutions, and then performing

straightforward mathematical manipulations and grouping

V̇1 ≤ −µ1V1 + δ1 (4.80)

where µ1, δ1 ∈ R denote positive constants. The boundedness of V1 (t) can be obtained

from (4.78) and (4.80) (i.e., V1 (t) ∈ L∞), therefore e1 (t), e2 (t) and r (t) are UUB.

Making use of standard signal chasing arguments allows that to prove the boundedness of

all remaining terms under the closed–loop operation.

Lemma 4.6.2 Provided that e2 (t) and ė2 (t) are bounded, the following expression for

the upper bound of the integral of the absolute value of the ith entry of ė2 (t) i = 1, 2, 3

can be obtained
t∫

t0

|ė2,i (σ)| dσ ≤ γ1 + γ2

t∫
t0

|e2,i (σ)| dσ + |e2,i (t)| (4.81)

where γ1, γ2 ∈ R are some positive bounding constants.

Proof First, it is noted that if e2,i(t) ≡ 0 on some interval, then ė2,i(t) ≡ 0 on the

same interval, and the inequality (4.81) yields this qualification. Therefore, without loss

of generality, it is assumed that e2,i (t) is absolutely greater than zero on the interval of

[t0, t]. Let T ∈ [t0, t) be the last instant of time when ė2,i (t) changes sign. Then, on the

interval [T, t], ė2,i (t) has a constant sign, hence∫ t

T

|ė2,i (σ)| dσ =

∣∣∣∣∫ t

T

ė2,i (σ) dσ

∣∣∣∣ = |e2,i (t)− e2,i (T )| . (4.82)

From the boundedness of ė2,i(t), it follows that there exist a constant κ > 0 such that

|ė2,i (t)| ≤ κ, therefore ∫ T

t0

|ė2,i (σ)| dσ ≤ γ (T − t0) . (4.83)

On the other hand, the following equality is obtained from the application of the Mean

Value Theorem in Khalil (2002)∫ T

t0

|e2,i (σ)| dσ = e2,i∗ (T − t0) (4.84)
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where e2,i∗ is some constant intermediate value of |e2,i(t)| on the interval [t0, T ]. By

assumption, e2,i∗ is bounded away from zero. Therefore, by using inequality (4.83) and

equality (4.84), it can be concluded as follows∫ T

t0

|ė2,i (σ)| dσ ≤ γ2

∫ T

t0

|e2,i (σ)| dσ (4.85)

where γ2 , γ/e2,i∗ . Combining the relationships in (4.82) and (4.85), it can be written∫ t

t0

|ė2,i (σ)| dσ ≤ |e2,i (T )|+ γ2

∫ T

t0

|e2,i (σ)| dσ + |e2,i (t)| (4.86)

which after defining γ1 , sup |e2,i (T )| yields (4.81). At this point it should be stated that

sup |·| denotes the supremum function.

Following decomposition is essential for the proof of Lemma 4.6.3.

Notice that, as a result of the fact that Ū (t) being unity upper triangular, Θ (t) in

(4.63) can be rewritten as

Θ = (I3 + Ω) βSgn (e2) (4.87)

where Ω (t) , D
(
Ū − I3

)
D ∈ R3×3 is a strictly upper triangular matrix. Since it is a

function of the desired trajectory and its time derivatives, its entries, denoted by Ωi,j (t) ∈
R, are bounded in the sense that

|Ωi,j| ≤ ζΩi,j
(4.88)

where ζΩi,j
∈ R are positive bounding constants.

Lemma 4.6.3 Consider the term

L , rT
[
N̄ − (I3 + Ω) βSgn (e2)

]
. (4.89)

Provided that the entries of the control gain matrix β are chosen to satisfy the following

in an orderly fashion

β3 ≥ ζN̄3

(
1 +

γ2

α3

)
(4.90)

β2 ≥
(
ζN̄2

+ ζΩ2,3β3

)(
1 +

γ2

α2

)
(4.91)

β1 ≥
(
ζN̄1

+ ζΩ1,2β2 + ζΩ1,3β3

)(
1 +

γ2

α1

)
(4.92)

where αi for i = 1, 2, 3 denotes the ith diagonal entry of α, then it can be concluded that

t∫
t0

L (σ) dσ ≤ ζL (4.93)
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where ζL ∈ R is a positive bounding constant defined as

ζL , γ1

2∑
i=1

3∑
j=i+1

ζΩi,j
βj + γ1

3∑
i=1

ζN̄i
+

3∑
i=1

βi |e2,i (t0)| . (4.94)

Proof The analysis is started by integrating (4.89) in time from t0 to t

t∫
t0

L (σ) dσ =

t∫
t0

eT2 (σ)αT
(
N̄ (σ)− βSgn (e2 (σ))

)
dσ

−
t∫

t0

eT2 (σ)αTΩ (σ) βSgn (e2 (σ)) dσ

+

t∫
t0

ėT2 (σ) N̄ (σ) dσ

−
t∫

t0

ėT2 (σ) Ω (σ) βSgn (e2 (σ)) dσ

−
t∫

t0

ėT2 (σ) βSgn (e2 (σ)) dσ (4.95)

where (4.44) was utilized. To ease the presentation, each term on the right–hand side of

(4.95) will be considered separately. The first term:

t∫
t0

eT2 (σ)αT
(
N̄ (σ)− βSgn (e2 (σ))

)
dσ

=

t∫
t0

3∑
i=1

αie2,i (σ)
(
N̄i (σ)− βisgn (e2,i (σ))

)
dσ

≤
3∑
i=1

αi
(
ζN̄i
− βi

) t∫
t0

|e2,i (σ)| dσ. (4.96)

The second term:

−
t∫

t0

eT2 (σ)αTΩ (σ) βSgn (e2 (σ)) dσ

= −
t∫

t0

2∑
i=1

αie2,i (σ)
3∑

j=i+1

βjΩi,j (σ) sgn (e2,j (σ)) dσ

≤
2∑
i=1

3∑
j=i+1

αiβjζΩi,j

t∫
t0

|e2,i (σ)| dσ. (4.97)
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The third term:

t∫
t0

ėT2 (σ) N̄ (σ) dσ =
3∑
i=1

t∫
t0

ėT2,i (σ) N̄i (σ) dσ

≤
3∑
i=1

ζN̄i

t∫
t0

|ė2,i (σ)| dσ

≤
3∑
i=1

ζN̄i

γ1 + γ2

t∫
t0

|e2,i (σ)| dσ + |e2,i (t)|

 . (4.98)

The fourth term:

−
t∫

t0

ėT2 (σ) Ω (σ) βSgn (e2 (σ)) dσ

= −
t∫

t0

2∑
i=1

ė2,i (σ)
3∑

j=i+1

βjΩi,j (σ) sgn (e2,j (σ)) dσ

≤
2∑
i=1

3∑
j=i+1

βjζΩi,j

t∫
t0

|ė2,i (σ)| dσ

≤
2∑
i=1

3∑
j=i+1

βjζΩi,j

γ1 + γ2

t∫
t0

|e2,i (σ)| dσ + |e2,i (t)|

 . (4.99)

The fifth term:

−
t∫

t0

ėT2 (σ) βSgn (e2 (σ)) dσ = −
3∑
i=1

t∫
t0

βiė2,i (σ) sgn (e2,i (σ)) dσ

= −
3∑
i=1

βi

t∫
t0

sgn (e2,i (σ)) d (e2,i)

= −
3∑
i=1

βi

t∫
t0

d (|e2,i|)

= −
3∑
i=1

βi |e2,i (t)|+
3∑
i=1

βi |e2,i (t0)| . (4.100)

It is noted that, the result of Lemma 4.6.2 was utilized to obtain the last lines of (4.98) and

(4.99). After combining the upper bounds in (4.96)–(4.100), the following expression is
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obtained

t∫
t0

L (σ) dσ ≤
2∑
i=1

γi

[(
1 +

γ2

αi

)(
ζN̄i

+
3∑

j=i+1

ζΩi,j
βj

)
− βi

] t∫
t0

|e2,i (σ)| dσ

+α3

[(
1 +

γ2

α3

)
ζN̄3
− β3

] t∫
t0

|e2,3 (σ)| dσ

+ (ζN̄3
− β3) |e2,3 (t)|

+
2∑
i=1

(
ζN̄i

+
3∑

j=i+1

ζΩi,j
βj − βi

)
|e2,i (t)|

+γ1

2∑
i=1

3∑
j=i+1

ζΩi,j
βj + γ1

3∑
i=1

ζN̄i
+

3∑
i=1

βi |e2,i (t0)| . (4.101)

Based on (4.101), β3 is firstly chosen to satisfy (4.90) to make second and third lines on

the right–hand side negative, next β2 and β1 are chosen according to (4.91) and (4.92),

respectively to satisfy (4.90) to make first and fourth lines on the right–hand side negative,

and finally, the definition of ζL in (4.94) is utilized to obtain (4.93), thus completing the

proof of Lemma 4.6.3.

Theorem 4.6.4 The controller of (4.51) and (4.52) ensures the convergence of the track-

ing error e1 (t) asymptotically to the origin in the sense that

‖e1 (t)‖ → 0 as t→ +∞ (4.102)

provided that α is chosen to satisfy (4.77), the entries of β are chosen to satisfy (4.90)–

(4.92), and kp, kd,1, kd,2 are chosen large enough.

Proof The auxiliary function P (t) ∈ R is defined as

P , ζL −
∫ t

t0

L (σ) dσ. (4.103)

where the terms ζL and L(t) were defined in (4.89) and (4.94), respectively. When the

entries of the control gain matrix β are chosen to satisfy (4.90)–(4.92), from the proof of

Lemma 4.6.3, it can be concluded that P (t) is non–negative.

At this stage, consider the Lyapunov function V2 (z, t) ∈ R defined as

V2 , V1 + P (4.104)

where V1 (z) ∈ R was defined in (4.78) and s (t) ∈ R10 is defined as

s ,
[
zT
√
P
]T
. (4.105)

59



After utilizing (4.39), the Lyapunov function in (4.104) can be lower and upper bounded

as follows

W1 (s) ≤ V2 (s, t) ≤ W2 (s) (4.106)

where W1 (s), W2 (s) ∈ R are defined as

W1 , λ1 ‖s‖2 , W2 , λ2 (‖z‖) ‖s‖2 . (4.107)

Taking the time derivative of V2, utilizing the time derivative of (4.93), canceling

common terms yields

V̇2 = − eT1 e1 + eT1 e2 − eT2 αe2 − rT r +
[
rT Ñ − kprT r

]
+

[
−

2∑
i=1

ri (Λi + Ψi + Φi)−
2∑
i=1

kd,ir
2
i

]
(4.108)

which can be rearranged to have the following form

V̇2 ≤ −1

2
‖e1‖2 −

(
λmin (α)− 1

2

)
‖e2‖2 − rT r +

ρ2
Ñ

(‖z‖)
4kp

‖z‖2

+
2∑
i=1

ρ2
i (‖z‖)
4kd,i

‖z‖2

≤ −

(
λ3 −

ρ2
Ñ

(‖z‖)
4kp

−
2∑
i=1

ρ2
i (‖z‖)
4kd,i

)
‖z‖2 (4.109)

where λ3 , min

{
1

2
, λmin (α)− 1

2

}
. When the controller gains kp, kd,1, kd,2 are se-

lected large enough such that the regions defined by Dz , {z : ‖z‖ ≤ R} and Ds ,

{s : ‖s‖ ≤ R} withR being defined as

R = min

{
ρ−1

Ñ

(
2

√
kp

1− µ
3

)
, ρ−1

1

(
2

√
kd,1

1− µ
3

)
, ρ−1

2

(
2

√
kd,2

1− µ
3

)}
(4.110)

are non–empty. From (4.109), (4.110) and the definition of s, one can then restate

V̇2 ≤ −µ ‖z‖2 , W (s)∀s ∈ Ds (4.111)

where µ ∈ R is a positive constant that satisfies 0 < µ ≤ 1. From (4.104) and (4.111),

it is obvious that V2 (t) ∈ L∞, and from the proof of Theorem 4.6.1, it can be concluded

that all terms in the closed–loop error system are bounded and furthermore, from the

boundedness of Ẇ (s), it can be stated that W (s) is uniformly continuous.
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Based on the definition of Ds, another region, S, can be defined in the following

form

S ,

s ∈ Ds : W2 (s) < λ2

(
ρ−1

Ñ

(
2

√
kp

1− µ
m

))2


∩

s ∈ Ds : W2 (s) < λ2

(
ρ−1

1

(
2

√
kd,1

1− µ
3

))2


∩

s ∈ Ds : W2 (s) < λ2

(
ρ−1

2

(
2

√
kd,2

1− µ
3

))2
 .

(4.112)

A direct application of Theorem 8.4 in Khalil (2002) can be used to prove that ‖z (t)‖ →
0 as t → +∞ ∀s (t0) ∈ S . Based on the definition of z (t), it is easy to show that

‖e1 (t)‖ , ‖e2 (t)‖ , ‖r (t)‖ → 0 as t→ +∞∀s (t0) ∈ S. Note that the region of attraction

can be made arbitrarily large to include any initial conditions by choosing the controller

gains kp, kd,1 and kd,2. This fact implies that the stability result obtained by the proposed

method is semi–global.

4.7. Conclusions

At the beginning of this chapter, system models and model properties of dynami-

cally positioned surface vessel, small–scaled unmanned helicopter and unactuated surface

vessel manipulated by 6 uni–directional tugboats were introduced.

Then, novel robust controllers were proposed by utilizing the general control de-

sign in Chapter 2 to ensure the position and orientation control of dynamically positioned

surface vessel and unactuated surface vessel manipulated by 6 uni–directional tugboat

under the influence of added mass effects, and the attitude control of small–scaled un-

manned helicopter after transforming the dynamic models of these mechatronic systems

into second order systems with an uncertain non–symmetric input gain matrix.
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, effectiveness of the designed robust controllers are demonstrated

via simulation and experimental studies. During these studies, the proposed self–tuning

method was utilized to adjust the control gains. Before presenting the numerical results

some important aspects of these studies are stated as:

• Simulation studies were performed to examine the performance of the designed

controller in Chapter 2 and the self–tuning method Chapter 3. In Section 5.1.1, a

modified version of a model of a two–link robot manipulator with coupling between

the two links was utilized. Obtaining a model that is compatible with the general

system model that was utilized for the control design is the main purpose of this

modification.

• Simulations were performed for three different scenarios:

– In section 5.1.1.1, the performance of the designed controller in Chapter 2

was examined for desired trajectories that were selected as sinusoidal trajec-

tories with frequency values of 0.1, 0.5 and 1 rad/sec. The convergence per-

formance, effects of selection of different constant parts of the time–varying

control gains, and the final values of the time–varying gains were examined.

– Next, in Section 5.1.1.2 the performance of the designed controller in Chap-

ter 2 was examined for sinusoidal desired trajectories with frequency values

higher than 5 rad/sec. Since trajectories with frequency values higher than 5

rad/sec are fast varying, they are harder to follow and this is a more challeng-

ing task.

– Finally, in Section 5.1.1.3 adaptation performance of the proposed self–tuning

method were examined for two different scenarios. First, the desired trajec-

tory was selected as a sinusoidal desired trajectory that contains different fre-

quency components and then it was selected as a combination of sinusoidal

and step desired trajectories. In addition to these, an additive sinusoidal dis-

turbance with the amplitude value of 0.025 and frequency value of 10 rad/sec

was applied to the outputs for these simulations to see the robustness of the

designed controller against an additive disturbance.
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• Experiments were also performed to demonstrate the performance of the designed

controller in Chapter 2. These results are presented in Section 5.1.2 in a detailed

manner.

• Integral of the square of the norm of the tracking error
∫ t
t0
‖e1 (σ)‖2 dσ and the

control input
∫ t
t0
‖τ (σ)‖2 dσ were observed and recorded as performance measures.

These values are demonstrated in the related tables.

• Simulations of mechatronic systems are presented in the following sections of this

chapter. Simulations were performed for dynamically positioned surface vessel,

small–scaled unmanned helicopter and unactuated surface vessel manipulated by 6

uni–directional tugboats in Sections 5.2, 5.3 and 5.4, respectively. In these sections,

first the system models are introduced which are followed by numerical results.

• For all simulation and experimental studies, figures of actual and desired trajectories

and the tracking errors are given to clarify the tracking results. Required control

efforts are clarified via figures of control inputs.

• In the cases that the proposed self–tuning method is utilized for adjusting the control

gains, figures of the diagonal entries of the time–varying gain matrices denoted by

β̂11 and β̂22 for β̂ (t) and k11 and k22 for K (t) are given to show their change and

constant final values.

5.1. Robotic Systems

In this section, the performances of the designed controller in Chapter 2 and pro-

posed self–tuning method in Chapter 3 are tested on modified robotic systems in simu-

lation and experimental studies. For simulation studies, modified model of a robot ma-

nipulator is utilized. Experimental studies are realized by using a robot manipulator that

is under the influence of a multiplicative input disturbance. Obtaining a structure that is

compatible with (1.2) is the main purpose of these modifications and they are explained

in Sections 5.1.1 and 5.1.2. In these studies, different scenarios are considered to examine

the performance of the designed controller in Chapter 2 and the self–tuning method in

Chapter 3 in a more detailed manner.
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5.1.1. Simulation Studies

Similar to Chen et al. (2008), the performance of the proposed controller has been

tested on a modified version of the model of a two–link robot manipulator with coupling

between the two links Slotine and Li (1991). The equations of motion are given as Chen

et al. (2008)[
q̈1

q̈2

]
=

[
M11 M12

M12 M22

]−1 [
−bq̇2 −b (q̇1 + q̇2)

−bq̇1 0

][
q̇1

q̇2

]

+

[
M11 M12

M12 M22

]−1 [
1 1

0 1

][
τ1

τ2

]
(5.1)

where q1 (t), q2 (t) ∈ R denote the positions, τ1 (t) and τ2 (t) are the control inputs and

M11, M12, M22 and b are explicitly defined as

M11 = a1 + 2a3 cos q2 + 2a4 sin q2 + a5 (cos q̇2 + sin q̇2) + a6 (cos q1 + sin q1)(5.2)

M12 = a2 + a3 cos q2 + a4 sin q2 (5.3)

M22 = a2 + a7 (cos q̇1 + sin q̇1) (5.4)

b = a3 sin q2 − a4 sin q2. (5.5)

where a1 = 4.42kgm2, a2 = 0.97kgm2, a3 = 1.04kgm2, a4 = 0.6kgm2, a5 = 0.25kgm2,

a6 = 0.2kgm2 and a7 = 0.5kgm2.

The tracking control objective is to make q1 (t) and q2 (t) follow a desired trajec-

tory chosen as

qr(t) = (1− exp(−0.3t3))

 π

6
sin (ωrt)

π

4
sin (ωrt)

 (rad) (5.6)

where ωr ∈ R denotes the frequency of the desired trajectory. During all simulation

studies, the constant gain α was chosen as α = I2 for a better comparison.

5.1.1.1. Tracking Results for Sinusoidal Desired Trajectories with

Frequency Values of 0.1, 0.5 and 1 rad/sec

For this part of the simulation studies, ωr was selected as 0.1, 0.5 and 1 rad/sec.

Control performances were examined for different values of constant parts of control

gains (i.e., kc in (3.15) and β2 in (3.16)).
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Simulation results for ωr = 0.1 rad/sec can be seen in Figures 5.1–5.5. For the

results given in these figures, the constant parts of the control gains were selected as

β2 = kc = 10−6I2. For these selections, actual and desired positions are shown in Figure

5.1, while the tracking errors are given in Figure 5.2. From these figures, it is seen that the

tracking control objective was met. Control inputs are shown in Figure 5.3. In addition to

these, entries of the time–varying gain matrices β̂ (t) and K (t) are shown in Figures 5.4

and 5.5, respectively. From these figures, it can be seen that time–varying control gains

converged to the constant final values that were obtained as K∞ = diag {1.018, 1.005}
and β̂∞ = diag {0.2415, 0.0373}.

Numerical simulations were then performed by selecting the constant parts of the

control gains as β2 = kc = 10−3I2. In these simulations, while meeting the tracking

control objective, it was observed that control gains converged approximately to same

constant final values. Then, simulation was performed without using self–tuning method

where constant final values of the control gains were utilized and the tracking control

objective was also met.

Finally, simulation studies were performed by selecting the constant parts of the

time–varying gain matrices as kc = 0.1I2 and β2 = diag {0.75, 0.5}. In these simulations,

while the tracking control objective was met control gains converged to higher constant

final values as a result of increasing their constant parts.

All of these results are summarized in Tables 5.1, 5.2 and 5.3. In the first and

second columns of Table 5.1, constant parts of the time–varying gains are given while the

constant final values they converged to are given in the third and fourth columns. Integral

of the square of the norm of the tracking error and the control input measures are shown

in the third and fourth columns of Table 5.2. Performance measures that were obtained

by using constant control gains are given in Table 5.3.

65



0 5 10 15 20 25
0

0.5

1
q 1

v
s
q r

1
[r
ad

]

 

 

actual
desired

0 5 10 15 20 25
0

0.5

1

q 2
v
s
q r

2
[r
ad

]

Time [sec]

Figure 5.1. Positions for ωr = 0.1 rad/sec and for β2 = kc = 10−6I2
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Figure 5.2. Tracking errors for ωr = 0.1 rad/sec and for β2 = kc = 10−6I2
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Figure 5.3. Control inputs for ωr = 0.1 rad/sec and for β2 = kc = 10−6I2
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Figure 5.4. Entries of the time–varying gain matrix β̂ (t) for ωr = 0.1 rad/sec and for
β2 = kc = 10−6I2
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Table 5.1. Constant parts of time–varying control gains (1st and 2nd columns) and final
values of control gains (3rd and 4th columns) for ωr = 0.1 rad/sec

kc β2 K∞ β̂∞
10−6I2 10−6I2 diag {1.018, 1.005} diag {0.2415, 0.0373}
10−3I2 10−3I2 diag {1.018, 1.005} diag {0.2415, 0.0373}
0.1I2 diag {0.75, 0.5} diag {1.121, 1.097} diag {0.9670, 0.4520}

Table 5.2. Performance measures for ωr = 0.1 rad/sec with time–varying gains

kc β2

∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

10−6I2 10−6I2 0.083 1.315
10−3I2 10−3I2 0.083 1.315
0.1I2 diag {0.75, 0.5} 0.063 2.598

Table 5.3. Performance measures for ωr = 0.1 rad/sec with constant gains (i.e., with-
out using self–tuning method)

K β
∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

diag {1.018, 1.005} diag {0.2415, 0.0373} 0.103 1.312

Simulation results for ωr = 0.5 rad/sec can be seen in Figures 5.6–5.10. For

the results given in these figures, the constant parts of the control gains were selected as

β2 = kc = 10−3I2. For these selections, actual and desired positions are shown in Figure

5.6, while the tracking errors are given in Figure 5.7. From these figures, it is seen that the

tracking control objective was met. Control inputs are shown in Figure 5.8. In addition to

these, entries of the time–varying gain matrices β̂ (t) and K (t) are shown in Figures 5.9

and 5.10, respectively. From these figures, it can be seen that, time–varying control gains

converged to the constant final values that were obtained as K∞ = diag {1.63, 1.21} and

β̂∞ = diag {2.13, 0.585}.

Numerical simulations were then performed by selecting the constant parts of the

control gains as β2 = kc = 0.1I2. In these simulations, while meeting the tracking control

objective, it was observed that control gains converged approximately to same constant

final values. Then, simulation was performed without using self–tuning method where
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constant final values of the control gains were utilized and the tracking control objective

was met.

Finally, simulation studies were performed by selecting the constant parts of the

time–varying gain matrices as kc = diag {1.2, 0.5} and β2 = diag {3.25, 1.25}. In these

simulations, while the tracking control objective was met control gains converged to

higher constant final values as a result of increasing their constant parts.

All of these results are summarized in Tables 5.4, 5.5 and 5.6. In the first and

second columns of Table 5.4, constant parts of the time–varying gains are given while the

constant final values they converged to are given in the third and fourth columns. Integral

of the square of the norm of the tracking error and the control input measures are shown

in the third and fourth columns of Table 5.5. Performance measures that were obtained

by using constant control gains are given in Table 5.6.

Table 5.4. Constant parts of time–varying control gains (1st and 2nd columns) and final
values of control gains (3rd and 4th columns) for ωr = 0.5 rad/sec

kc β2 K∞ β̂∞
10−3I2 10−3I2 diag {1.589, 1.129} diag {2.190, 0.555}
0.1I2 0.1I2 diag {1.630, 1.210} diag {2.130, 0.585}

diag {1.2, 0.5} diag {3.25, 1.25} diag {2.472, 1.525} diag {4.204, 1.391}

Table 5.5. Performance measures for ωr = 0.5 rad/sec with time–varying gains

kc β2

∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

10−3I2 10−3I2 0.388 81.09
0.1I2 0.1I2 0.340 79.16

diag {1.2, 0.5} diag {3.25, 1.25} 0.111 83.06

Simulation results for ωr = 1 rad/sec can be seen in Figures 5.11–5.15. For

the results given in these figures, the constant parts of the control gains were selected

as β2 = kc = 0.1I2. For these selections, actual and desired positions are shown in

Figure 5.11, while the tracking errors are given in Figure 5.12. From these figures, it
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Table 5.6. Performance measures for ωr = 0.5 rad/sec with constant gains (i.e., with-
out using self–tuning method)

K β
∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

diag {1.63, 1.21} diag {2.13, 0.585} 0.252 79.62

is seen that the tracking control objective was met. Control inputs are shown in Figure

5.13. In addition to these, entries of the time–varying gain matrices β̂ (t) and K (t) are

shown in Figures 5.14 and 5.15, respectively. From these figures, it can be seen that,

time–varying control gains converged to the constant final values that were obtained as

K∞ = diag {4.868, 1.672} and β̂∞ = diag {6.535, 1.876}.

Numerical simulations were then performed by selecting the constant parts of the

control gains as β2 = kc = 0.5I2. In these simulations, while meeting the tracking control

objective, it was observed that control gains converged approximately to same constant

final values. Then, simulation was performed without using self–tuning method where

constant final values of the control gains were utilized and the control objective was met.

Finally, simulation studies were performed by selecting the constant parts of the

time–varying gain matrices as kc = diag {4.881, 1.873} and β2 = diag {6.512, 1.855}. In

these simulations, while the tracking control objective was met control gains converged

to higher constant final values as a result of increasing their constant parts.

All of these results are summarized in Tables 5.7, 5.8 and 5.9. In the first and

second columns of Table 5.7, constant parts of the time–varying gains are given while the

constant final values they converged to are given in the third and fourth columns. Integral

of the square of the norm of the tracking error and the control input measures are shown

in the third and fourth columns of Table 5.8. Performance measures that were obtained

by using constant control gains are given in Table 5.9.

Results can be summarized as:

• For the selections of the constant parts of time–varying control gains kc < 1 and

β2 < 1, time–varying gains converged approximately to same constant values. The

final constant values of time–varying control gains increase when their constant

parts increase. This situation may yield to an increased control effort.

• For ωr ≤ 1, control objective was met by using constant final values of the con-
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Table 5.7. Constant parts of time–varying control gains (1st and 2nd columns) and final
values of control gains (3rd and 4th columns) for ωr = 1 rad/sec

kc β2 K∞ β̂∞
0.1I2 0.1I2 diag {4.868, 1.672} diag {6.535, 1.876}
0.5I2 0.5I2 diag {4.881, 1.873} diag {6.512, 1.855}

diag {6.5, 1.5} diag {10, 5} diag {7.816, 2.489} diag {10.87, 4.897}

Table 5.8. Performance measures for ωr = 1 rad/sec with time–varying gains

kc β2

∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

0.1I2 0.1I2 1.763 552.4
0.5I2 0.5I2 1.524 556.8

diag {6.5, 1.5} diag {10, 5} 0.128 433.0

trol gains as constant control gains (i.e., not utilizing the self–tuning method). This

situation can be considered as the demonstration of switch off and switch on mech-

anism of the proposed self–tuning method. It means that, the self–tuning method

can be switched off when the control objective is met. Then, if the desired trajectory

or other conditions change during the control process it can be switched on again to

self tune the control gains. This situation may be useful for experimental studies to

avoid unnecessarily high control gains.

• Since the tracking error converges to zero faster, tracking performance improves

while the constant parts of the time–varying gains are increased. However, high

control gains may cause high control performances that can not be provided by the

actuators.
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Table 5.9. Performance measures for ωr = 1 rad/sec with constant gains (i.e., without
using self–tuning method)

K β
∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

diag {4.881, 1.873} diag {6.512, 1.855} 0.548 502.2
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Figure 5.5. Entries of the time–varying gain matrix K (t) for ωr = 0.1 rad/sec and for
β2 = kc = 10−6I2
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Figure 5.6. Positions for ωr = 0.5 rad/sec and for β2 = kc = 10−3I2
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Figure 5.7. Tracking errors for ωr = 0.5 rad/sec and for β2 = kc = 10−3I2
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Figure 5.8. Control inputs for ωr = 0.5 rad/sec and for β2 = kc = 10−3I2
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Figure 5.9. Entries of the Time–varying gain matrix β̂ (t) for ωr = 0.5 rad/sec and for
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Figure 5.10. Entries of the time–varying gain matrix K (t) for ωr = 0.5 rad/sec and for
β2 = kc = 10−3I2
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Figure 5.11. Positions for ωr = 1 rad/sec and for β2 = kc = 0.1I2
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Figure 5.12. Tracking errors for ωr = 1 rad/sec and for β2 = kc = 0.1I2
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Figure 5.13. Control inputs for ωr = 1 rad/sec and for β2 = kc = 0.1I2
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Figure 5.14. Entries of the time–varying gain matrix β̂ (t) for ωr = 1 rad/sec and for
β2 = kc = 0.1I2
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Figure 5.15. Entries of the time–varying gain matrix K (t) for ωr = 1 rad/sec and for
β2 = kc = 0.1I2
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5.1.1.2. Tracking Results for Sinusoidal Desired Trajectories with

Frequency Values Higher Than 5 rad/sec

For this part of the simulation studies, frequency values of the desired trajectory ωr

were selected higher than 5 rad/sec. During these simulations studies, it was observed that

sinusoidal desired trajectories with frequency values higher than 5 rad/sec are harder–to–

track. Demonstrating the performance of the controller in Chapter 2 for more challenging

tasks (i.e., fast varying desired trajectories) is the main purpose of this selection.

As theoretically proven in Chapter 2, tracking errors converge to zero. However,

higher control efforts are required for harder–to–track desired trajectories and these con-

trol efforts can be provided by selecting higher control gains. Results are examined for

different frequency values. Before presenting these results, another observation about

these simulation studies is mentioned. During the simulation studies it was observed that

given simulation system needs high positive constant parts of the time–varying control

gains to meet the tracking control objective in the case of using the proposed self–tuning

method. Otherwise, control gains reach to mentioned higher values in a long time and as

a natural result of this tracking errors converge to zero in a long duration. This situation

is a useless aspect for the control process. However, when the positive constant parts of

the time–varying control gains are adjusted to high values, the tracking control objective

is met in a very short time and little deviations are observed in the time–varying control

gains. Thus self–tuning method does not provide much advantage to the overall control

process. As a result of this observation, control gains were selected as constant control

gains (i.e., without using the proposed self–tuning method) for this part of the simula-

tion studies. It should be stated that, this situation is about the structure of the selected

simulation system.

For ωr = 5 rad/sec, the tracking control objective was met by selecting constant

control gains as K = 500I2 and β = 400I2 (i.e., without using self–tuning method).

Obtained results are shown in Figures 5.16–5.18. Actual and desired positions are shown

in Figure 5.16, while the tracking errors are given in Figures 5.17. From these figures, it

is seen that the tracking control objective was met. Control inputs are shown in Figure

5.18.

Simulations were also performed for higher frequency values (i.e., 5, 10, 50, 100,
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500, 1000 rad/sec) and the results are presented in Tables 5.10 and 5.11. In the second

and third columns of Table 5.10, control gains for different frequency values of desired

trajectory are given. Integral of the square of the norm of tracking error and control input

are shown in Table 5.11.
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Figure 5.16. Positions for ωr = 5 rad/sec and for constant control gains β = 400I2 and
K = 500I2
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Figure 5.17. Tracking errors for ωr = 5 rad/sec and for constant control gains β =
400I2 and K = 500I2
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Figure 5.18. Control inputs for ωr = 5 rad/sec and for constant control gains β = 400I2
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Table 5.10. Constant control gains for different frequencies

ωr K β

5 rad/sec 102 × diag {5, 5} 102 × diag {4, 4}
10 rad/sec 103 × diag {5, 5} 103 × diag {5, 5}
50 rad/sec 104 × diag {3, 3} 104 × diag {4, 3}
100 rad/sec 105 × diag {1, 2} 105 × diag {1, 1}
500 rad/sec 106 × diag {1, 1} 105 × diag {5, 8}

1000 rad/sec 106 × diag {1, 1} 106 × diag {2, 1}

Table 5.11. Performance measures for different frequencies

ωr
∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖tau (σ)‖2 dσ

5 rad/sec 0.456 9.3× 104

10 rad/sec 0.372 1.4× 106

50 rad/sec 0.453 9.1× 108

100 rad/sec 0.479 9.7× 109

500 rad/sec 0.210 3.9× 1011

1000 rad/sec 0.140 9.3× 1012

Results can be summarized as:

• From the obtained results, it can be seen that higher control efforts are required to

meet the tracking control objective for frequency values ωr ≥ 5, and higher control

efforts can be provided by selecting higher control gains.

• To reach these control gains in a shorter duration, positive constant parts of the

control gains have to be selected as high values. In the case of this selection, little

deviations are observed in the time–varying control gains and this situation makes

the proposed self–tuning method useless.

• The tracking control objective was met for these desired trajectories. However,

in applications, high control gains will cause high control efforts that may not be

provided by the system.
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5.1.1.3. Adaptation Performance of the Proposed Self–Tuning

Method

Two different desired trajectories are utilized to observe the adaptation perfor-

mance of the proposed self–tuning method. One of them is a sinusoidal desired trajectory

that contains different frequency components of the following form

qr(t) = (1− exp(−0.3t3))



[ π
6

sin (0.1t)
π

4
sin (0.1t)

]T
(rad), 0 ≤ t < 20[ π

6
sin (0.5t)

π

4
sin (0.5t)

]T
(rad), 20 ≤ t < 40[ π

6
sin (t)

π

4
sin (t)

]T
(rad), 40 ≤ t < 60

.

(5.7)

For these results, the constant parts of the control gains were selected as β2 = kc = I2 and

simulations were performed after an additive sinusoidal disturbance with the amplitude

value of 0.025 and the frequency value of 10 rad/sec had been applied to the output. Sim-

ulation results can be seen in Figures 5.19–5.23. Actual and desired positions are shown

in Figure 5.19, while the tracking errors are given in Figure 5.20. From these figures, it

is seen that the tracking control objective was met. Control inputs are shown in Figure

5.21. In addition to these, entries of the time–varying gain matrices β̂ (t) and K (t) are

shown in Figures 5.22 and 5.23, respectively. During these simulations, time–varying

control gains converged to constant final values obtained as K∞ = diag {3.577, 2.169}

and β̂∞ = diag {5.730, 1.332} and simulations were also performed by using these val-

ues as constant control gains (i.e., without using self–tuning method). These results are

summarized in Tables 5.12 and 5.13.

Table 5.12. Performance measures for the desired trajectory in (5.7) with time–varying
control gains

kc β2

∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

I2 I2 2.072 298.7
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Table 5.13. Performance measures for the desired trajectory in (5.7) with constant con-
trol gains (i.e., without using self–tuning method)

K β
∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

diag {3.577, 2.169} diag {5.730, 1.332} 1.91 321
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Figure 5.19. Positions for desired trajectory in (5.7) and for β2 = kc = I2
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Figure 5.20. Tracking errors for desired trajectory in (5.7) and for β2 = kc = I2
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Figure 5.21. Control inputs for desired trajectory in (5.7) and for β2 = kc = I2
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Figure 5.22. Entries of the time–varying gain matrix β̂ (t) for desired trajectory in (5.7)
and for β2 = kc = I2
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Other desired trajectory is a combination of sinusoidal and step desired trajectories

and selected as

qr(t) =


(1− exp(−0.3t3))

[ π
6

sin (t)
π

4
sin (t)

]T
(rad), 0 ≤ t < 30[ π

6

π

4

]T
(rad), 30 ≤ t < 60

. (5.8)

For these simulations, the constant parts of the control gains were selected as β2 = kc = I2

and simulations were performed after an additive sinusoidal disturbance with the ampli-

tude value of 0.025 and the frequency value of 10 rad/sec had been applied to the output.

Simulation results can be seen in Figures 5.24–5.28. Actual and desired positions are

shown in Figure 5.24, while the tracking errors are given in Figure 5.25. From these

figures, it is seen that the tracking control objective was met. Control inputs are shown

in Figure 5.26. In addition to these, entries of the time–varying gain matrices β̂ (t) and

K (t) are shown in Figures 5.27 and 5.28, respectively. During these simulations, time–

varying control gains converged to constant values obtained asK∞ = diag {4.048, 2.031}

and β̂∞ = diag {6.711, 1.271} and simulations were also performed by using these val-

ues as constant control gains (i.e., without using self–tuning method). These results are

summarized in Tables 5.14 and 5.15, respectively.

Table 5.14. Performance measures for the desired trajectory in (5.8) with time–varying
control gains

kc β2

∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

I2 I2 1.275 313.3

Table 5.15. Performance measures for the desired trajectory in (5.8) with constant con-
trol gains (i.e., without using self–tuning method)

K β
∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

diag {4.048, 2.031} diag {6.711, 1.271} 1.215 324.2
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Figure 5.23. Entries of the time–varying gain matrix K (t) for desired trajectory (5.7)
and for β2 = kc = I2
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Figure 5.24. Positions for desired trajectory in (5.8) and for β2 = kc = I2
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Figure 5.25. Tracking errors for desired trajectory in (5.8) and for β2 = kc = I2
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Figure 5.26. Control Inputs for desired trajectory in (5.8) and for β2 = kc = I2
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Results can be summarized as:

• Since the tracking gets harder for desired trajectories with higher frequency values,

time varying control gains converge to higher constant values.

• Designed controller can preserve its robust behavior against an additive disturbance

and can be used for meeting the tracking control objective in the presence of an

additive disturbance.

• Proposed self–tuning method can easily adapt to variations in desired trajectories.
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Figure 5.27. Entries of the time–varying gain matrix β̂ (t) for desired trajectory in (5.8)
and for β2 = kc = I2

0 10 20 30 40 50 60
0

2

4

6

k
1
1

0 10 20 30 40 50 60
1.95

2

2.05

2.1

k
2
2

Time [sec]

Figure 5.28. Entries of the time–varying gain matrixK (t) for desired trajectory in (5.8)
and for β2 = kc = I2
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5.1.2. Experimental Studies

During experimental studies, Phantom Omni haptic device which can be seen in

Figure 5.29 was used as the experimental setup. The motion of the first link of the haptic

device, labeled by θ1 in the given figure, was mechanically stopped and the joint space

control was realized for the remaining links, labeled by θ2 and θ3. Since, the haptic device

does not have a non–symmetric behavior in its dynamics, the control input was applied to

the device after multiplying it with a unity upper triangular matrix that has the following

form

MP =

 1 γp sin (t)

0 1

 (5.9)

where γp is a positive constant. As a result of this modification, structure of the exper-

imental setup became similar to (5.1). At this point, it should be stated that neither the

structure of the model nor the matrix in (5.9) are known and they were not used during the

experimental studies. The control objective is to make θ2 (t) and θ3 (t) follow a sinusoidal

desired trajectory chosen as

θr(t) =

 0.5 + 0.1 sin(0.1t)

cos(0.1t)

 (rad). (5.10)

The self–tuning method was utilized to adjust the control gains. For all experimental

studies, constant parts of time–varying control gains were selected as β2 = kc = 10−6I2

while the other control gain was selected as α = I2.

Table 5.16. Final values of control gains via self–tuning strategy for different values of
γp

γp K∞ β̂∞
0.1 diag{0.1629, 0.0906} diag{0.0013, 0.0091}
0.5 diag{0.1914, 0.0485} diag{0.0060, 0.0011}
1 diag{0.0844, 0.0916} diag{0.0079, 0.0096}
2 diag{0.1311, 0.0036} diag{0.0085, 0.0093}

Experimental results for different values of γp can be seen in Figures 5.30–5.48.

From these figures, it is clear that the tracking control objective was met while the time–
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varying gains converged to constant final values. The constant final values of the control

gains are presented in Table 5.16. Performance measures of these experimental studies

are summarized in Table 5.17.

Table 5.17. Performance measures for experimental studies

γp
∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

0.1 0.822 2.404
0.5 0.686 4.416
1 1.189 5.737
2 1.398 5.906
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Figure 5.29. Phantom Omni haptic device
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Figure 5.30. Link positions for γp = 0.1

93



0 20 40 60 80 100
−0.5

0

0.5
e 1

1
[r
ad

]

0 20 40 60 80 100
−0.5

0

0.5

1

e 1
2
[r
ad

]

Time [sec]

Figure 5.31. Link tracking errors for γp = 0.1
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Figure 5.32. Control inputs for γp = 0.1
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Figure 5.33. Entries of the time–varying gain matrix β̂ (t) for γp = 0.1
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Figure 5.34. Entries of the time–varying gain matrix K (t) for γp = 0.1

95



0 20 40 60 80 100
0

0.5

1

1.5
θ 2

v
s
θ r

1
[r
ad

]

 

 

actual
desired

0 20 40 60 80 100
−0.5

0

0.5

1

θ 3
v
s
θ r

2
[r
ad

]

Time [sec]

Figure 5.35. Link positions for γp = 0.5
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Figure 5.36. Link tracking errors for γp = 0.5
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Figure 5.37. Control inputs for γp = 0.5
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Figure 5.38. Entries of the time–varying gain matrix β̂ (t) for γp = 0.5
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Figure 5.39. Entries of the time–varying gain matrix K (t) for γp = 0.5
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Figure 5.40. Link positions for γp = 1
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Figure 5.41. Link tracking errors for γp = 1
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Figure 5.42. Control inputs for γp = 1
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Figure 5.43. Entries of the time–varying gain matrix β̂ (t) for γp = 1
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Figure 5.44. Entries of the time–varying gain matrix K (t) for γp = 1
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Figure 5.45. Link positions for γp = 2
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Figure 5.46. Link tracking errors for γp = 2
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Figure 5.47. Control inputs for γp = 2
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Figure 5.48. Entries of the time–varying gain matrix β̂ (t) for γp = 2
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Figure 5.49. Entries of the time–varying gain matrix K (t) for γp = 2
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5.2. Dynamically Positioned Surface Vessel

The mathematical model of the surface vessel in (4.1) was utilized with the inertia

matrix that have following rigid body and added mass parts

MRB =


m 0 0

0 m mXg

0 mXg Iz

 ,MA =


Ẋu 0 0

0 −Ẏv −Ẏr
0 −Ṅv Ṅr

 . (5.11)

In the above inertia matrix, constant terms Yṙ andNv̇ are selected as Yṙ = 0,Nv̇ = −1 that

yielded a non–symmetric inertia matrix. Detailed explanations about these parameters

and numerical values of dynamical model can be found in Skjetne et al. (2004). The

centripetal and Coriolis forces matrix has the following form

Cs =


0 0 c2

0 0 −c1

−c2 c1 0

 (5.12)

where its entries are given as

c1 = mu+ (−Xu̇ur)

c2 = −m(xgψ̇s + v) + Yv̇vr + 0.5(Yṙ +Nv̇)ψ̇s. (5.13)

The hydrodynamic damping matrix has the following form

Ds =


d11 0 0

0 d22 d23

0 d32 d33

 (5.14)

with its entries defined as

d11 = −Xu −X|u|u |ur| −Xuuuu
2
r

d22 = −Yv − Y|v|v |ur| − Yrv
∣∣∣ψ̇s∣∣∣

d33 = −Nr − Y|v|v |ur| − Y|r|v
∣∣∣ψ̇s∣∣∣ (5.15)

d23 = −Yr − Y|v|r |ur| − Y|r|v
∣∣∣ψ̇s∣∣∣

d32 = −Nv −N|v|v |vr| −Nrv

∣∣∣ψ̇s∣∣∣
where vr = [3, 0, 0]T . All the other system parameters are obtained from the experimental

results in Skjetne et al. (2004). It would like to be highlighted that that these model
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parameters were used only for simulation purposes and they were not utilized as part

of the control input. The surface vessel was considered to be initially at rest at x(0) =

[0.1, 1, −π
8

]T . The desired position of the surface vessel was given as

xd(t) =


10 sin(0.1t) (m)

10 cos(0.1t) (m)

−0.1t (rad)

 .
The constant parts of time–varying control gains were selected as kc = β2 = I3

and control gainsK and β were obtained via the self–tuning strategy in Chapter 3. During

the simulations they converged to following constant final values

K∞ = diag{2.9221, 3.153, 2.1997}, β̂∞ = diag{2.0389, 3.0075, 1.3873} (5.16)

and the other control gain α was selected as α = I3.

The actual and desired positions are shown in Figure 5.50, while the position

tracking errors and the control inputs are shown in Figures 5.51 and 5.52, respectively.

In addition to these, entries of the time–varying gain matrices β̂ (t) and K (t) are shown

in Figures 5.53 and 5.54, respectively. Simulation results confirm that the proposed con-

troller achieved the tracking objective.
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Figure 5.50. Tracking results for dynamically positioned surface vessel
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Figure 5.51. Tracking error e1 (t) for dynamically positioned surface vessel
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Figure 5.52. Control input torque τ (t) for dynamically positioned surface vessel

106



0 5 10 15
0

2

4

β̂
1
1

0 5 10 15
−5

0

5

β̂
2
2

0 5 10 15
0

1

2

β̂
3
3

Time [sec]

Figure 5.53. Entries of the time–varying gain matrix β̂ (t) for dynamically positioned
surface vessel

0 5 10 15
2

3

4

k
1
1

0 5 10 15
−5

0

5

k
2
2

0 5 10 15
1.5

2

2.5

k
3
3

Time [sec]

Figure 5.54. Entries of the time–varying gain matrix K (t) for dynamically positioned
surface vessel
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5.3. Small–Scaled Unmanned Helicopter

The mathematical model of the helicopter in (4.12) was utilized with the inertia

matrix that has the following form

Mh =


c0 0 0

0 c1 + c2 cos (c3ψ) c4

0 c4 c5

 . (5.17)

The centripetal and Coriolis forces matrix has the following form

Ch =


0 0 0

0 c6 sin (2c3ψ) ψ̇ c6 sin (2c3ψ) θ̇

0 −c6 sin (2c3ψ) θ̇ 0

 . (5.18)

The vector of conservative forces is given as

Gh =
[
c7 cos (φ) 0 0

]T
. (5.19)

The constant model parameters obtained from Fantoni and Lozano (2002), Mettler (2003)

and Cai et al. (2011) are given as

c0 = 7.5kg, c1 = 0.4305kgm2, c2 = 3× 10−4kgm2, c3 = −4.143,

c4 = 0.108kgm2, c5 = 0.499kgm2, c6 = 6.2× 10−4kgm2, c7 = −73.58N.(5.20)

The simplified rotor dynamics given in (4.16) has the form

A =


c8ψ̇

2 0 0

0 c11ψ̇
2 0

c12ψ̇ + c13 0 c15ψ̇
2

 , B =


c9ψ̇ + c10

0

c14ψ̇
2 + c15

 (5.21)

with the constant parameters that are given as

c8 = 3.411kg, c9 = 0.6004kgm/s, c10 = 3.679N , c11 = −0.1525kgm,

c12 = 12.01kgm/s, c13 = 105N , c14 = 1.2× 10−4kgm2, c15 = −2.64N. (5.22)

Constant values denoted by ci for i = 0, · · · , 15 are physical parameters of the dynamic

model of the 3 dof helicopter. Their detailed descriptions can be found in Table 13.3 of
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Fantoni and Lozano (2002). Following values were used as coefficients that are related

with the simplified rotor dynamics

Alon = −0.1 , Alat = 0.0313 , Ab = −0.189

Blon = 0.0138 , Blat = 0.14 , Ba = 0.368

Kped = 2.16. (5.23)

The desired position of the helicopter was given as

ηr(t) =


10 sin(0.1t) (deg)

15 sin(0.1t) (deg)

20 sin(0.1t) (deg)

 . (5.24)

The constant parts of time–varying control gains were selected as kc = β2 = I3

and control gainsK and β were obtained via the self–tuning strategy in Chapter 3. During

the simulations they converged to following constant final values

K∞ = diag{2, 1.999, 2}, β̂∞ = diag{0.994, 0.983, 0.987} (5.25)

and the other control gain α was selected as α = I3.

The actual and desired positions are shown in Figure 5.55, while the position

tracking errors and the control inputs are shown in Figures 5.56 and 5.57, respectively.

In addition to these, entries of the time–varying gain matrices β̂ (t) and K (t) are shown

in Figures 5.58 and 5.59, respectively. Simulation results confirm that the proposed con-

troller meets the tracking objective.

The limitations of the proposed controller for the given system dynamics is now

investigated. According to the identification results given in Mettler (2003), for the hover

flight conditions maximum values of control inputs δlon, δlat and δped are given as 20, 20

and 8 Nm, respectively. Simulation studies were performed by increasing the frequency

of the desired trajectory in (5.24). For all of these simulations, a self–tuning method was

utilized to adjust K and β while the other control gain α was selected as α = I3. Control

gains and performance measures of these simulations are given in Tables 5.18 and 5.19.

As a result, control objectives were met until ωr = 5 rad/sec without exceeding the given

limits of the control inputs.

For ωr = 10 rad/sec, control limits were exceeded to meet the tracking control

objective. Tracking results for this situation are given in Figure 5.60 while the control
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Figure 5.55. Tracking results for small–scaled unmanned helicopter

Table 5.18. Control gains for different frequencies

ωr K∞ β∞
0.5 rad/sec diag {2, 1.994, 2.003} diag {0.978, 0.899, 0.98}
1 rad/sec diag {2.005, 1.98, 2.04} × 103 diag {1.002, 0.822, 1.102} × 103

5 rad/sec diag {9.234, 3.28, 3.625} × 104 diag {22.67, 6.906, 7.156} × 104

inputs are given in Figure 5.61. Since it is not physically possible, simulations were

reperformed by considering the limits of control inputs. Tracking results for this situation

are given in Figure 5.62 and the control inputs are shown in Figure 5.63. From these

figures, it is clear that the tracking control objective could not be met. As a result, it

can be considered that it is not possible to meet the tracking control objective unless the

necessary control effort cannot be provided by the system.
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Figure 5.56. Tracking error e1 (t) for small–scaled unmanned helicopter

Table 5.19. Performance measures for different frequencies

ωr
∫ t
t0
‖e1 (σ)‖2 dσ

∫ t
t0
‖τ (σ)‖2 dσ

0.5 rad/sec 6.6× 10−4 0.63
1 rad/sec 0.134 3.379
5 rad/sec 1.687 18.773
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Figure 5.57. Control input torque τ (t) for small–scaled unmanned helicopter

0 5 10 15
0.95

1

1.05

β̂
1
1

0 5 10 15
0.95

1

β̂
2
2

0 5 10 15
0.95

1

β̂
3
3

Time [sec]

Figure 5.58. Entries of the time–varying gain matrix β̂ (t) for small–scaled unmanned
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Figure 5.59. Entries of the time–varying gain matrix K (t) for small–scaled unmanned
helicopter
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Figure 5.60. Tracking results for ωr = 10 rad/sec and without limiting the control inputs
for small–scaled unmanned helicopter
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Figure 5.61. Control inputs for ωr = 10 rad/sec and without limiting the control inputs
for small–scaled unmanned helicopter
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Figure 5.62. Tracking results for ωr = 10 rad/sec after limiting the control inputs for
small–scaled unmanned helicopter
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Figure 5.63. Control inputs for ωr = 10 rad/sec after limiting the control inputs for
small–scaled unmanned helicopter
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5.4. Unactuated Surface Vessel

The ship model in (4.20) was utilized with the following inertia matrix Fossen

(2002)

Mt (x) =


m+Xu̇ 0 0

0 na nd

0 nc nb

 (5.26)

where the auxiliary terms na, nb, nc and nd are defined as

na = m− Yv̇, nb = Iz −Nṙ, nc = mxg −Nv̇, nd = mxg − Yṙ. (5.27)

In the above inertia matrix, constant terms Yṙ and Nv̇ are selected as Yṙ = 0, Nv̇ =

−1 to reflect the effects of added mass which result in a non–symmetric inertia matrix.

In the other control approaches about this subject available in the literature, especially

in Braganza et al. (2007), the inertia matrix was selected as a symmetric matrix. The

hydrodynamic damping matrix has the following form

Dt(ν) =


d11 0 0

0 d22 d23

0 d32 d33

 (5.28)

with its entries defined as

d11 = −Xu + (−X|u|u |ur| −Xuuuu
2
r) (5.29)

d22 = −Yv + (−Y|v|v |ur| − Yrv
∣∣∣ψ̇∣∣∣) (5.30)

d33 = −Nr + (−Y|v|v |ur| − Y|r|v
∣∣∣ψ̇∣∣∣) (5.31)

d23 = −Yr + (−Y|v|r |ur| − Y|r|v
∣∣∣ψ̇∣∣∣) (5.32)

d32 = −Nv + (−N|v|v |vr| −Nrv

∣∣∣ψ̇∣∣∣). (5.33)

The desired vessel position was given as

xd(t) =


10 sin(0.1t) [m]

10 cos(0.1t) [m]

−0.1t [rad]

 . (5.34)

The initial positions were set x(0) = [0.1, 1, −π
8

]T and the initial velocities were

v(0) = 03. The constant parts of time–varying control gains were selected as kc = β2 =
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I3 and control gains K and β were obtained via the self–tuning strategy in Chapter 3.

During the simulations they converged to following constant final values

K∞ = diag{13.3, 20.16, 7.09}, β̂∞ = diag{7.1, 1.96, 5.03} (5.35)

and the other control gains were selected as α = I3, ε0 =
√

5.

In order to obtain a proper time–dependent nature for the tugboats’ positions with-

out losing their contact with the vessel’s hull, the tugboats were positioned at the following

locations with respect to the center of mass of the vessel

L1a = [−0.5, 0.1 sin (t)]T

L1b = [0.5, 0.2 sin (0.1t)]T

L2a = [−0.25 + 0.5 sin (t) ,−0.145]T

L2b = [−0.25 + 0.3 sin (0.2t) , 0.145]T

L3a = [0.1 sin (t) , 0.145]T

L3b = [0.2 sin (0.2t) ,−0.145]T

(5.36)

while the incident angle of each tugboat with respect to the vessel’s hull were selected as

follows
α1a =

π

180
sin (0.1t)

α1b = π − π

120
sin (t)

α2a =
π

2
+

π

180
sin (0.2t)

α2b = α2a +
π

240
sin (t)

α3a = 3π/2 +
π

180
sin (0.1t)

α3b = α3a − π +
π

90
sin (t) .

(5.37)

In (5.36) and (5.37), time–varying sinusoidal perturbations are added to demonstrate dis-

turbance effects. In these equations, their suitability to the system can be considered as

the main reason of the selection of sinusoidal perturbations. Since these type of surface

vessels have slowly varying trajectories due to their relatively high mass, slowly changing

and smooth trajectories are considered as the most appropriate movements for them. As

a result of this situation, using sinusoidal trajectories that have relatively low frequencies

are appropriate for these surface vessels.

The actual and desired positions are shown in Figure 5.64, while the position

tracking errors and the control inputs are shown in Figures 5.65 and 5.66, respectively. In

addition to these, entries of the time–varying gain matrices β̂ (t) and K (t) are shown in
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Figures 5.67 and 5.68. Simulation results confirm that the proposed controller achieved

the tracking control objective.
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Figure 5.64. Tracking results for unactuated surface vessel

5.5. Conclusions

In the first part of this chapter, the performances of the designed controller in

Chapter 2 and proposed self–tuning method in Chapter 3 were tested on modified robotic

systems in simulation and experimental studies. In these studies, the performances were

examined in a more detailed manner by utilizing different scenarios. Tracking results

were shown in the figures while performance measures were demonstrated in the related

tables.

Then, simulation studies were performed for mechatronic systems. Results of

these simulations were presented in the related figures after the system dynamics of

mechatronic systems were introduced.
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Figure 5.65. Tracking errors e1 (t) for unactuated surface vessel
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Figure 5.66. Control input torque τ (t) for unactuated surface vessel
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Figure 5.67. Entries of the time–varying gain matrix β̂ (t) for unactuated surface vessel
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Figure 5.68. Entries of the time–varying gain matrix K (t) for unactuated surface vessel
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CHAPTER 6

CONCLUSIONS AND FUTURE WORKS

In this chapter, the conclusions of the research studies realized throughout the

doctoral process are discussed. Conclusions of all chapters are examined separately to

complete this examination in a more detailed manner. First, these conclusions are pre-

sented. Then possible future works that will be important developments to the studies

investigated in this dissertation will be presented.

In Chapter 2, a continuous nonlinear robust controller was designed for a class

of uncertain MIMO nonlinear systems having non–zero leading principal minors in their

input gain matrices. The stability of the closed–loop system was investigated via the

use of Lyapunov–based arguments. Specifically, a four step analysis to prove asymptotic

stability of the output tracking error and its time derivatives was developed. The results

were also demonstrated via numerical simulations and experimental studies to illustrate

the viability and the performance of the proposed controller.

The results obtained in this chapter are compared with some of the closest robust

control works in the literature. The main novelties of this study can be summarized as:

• The same system model was considered in Chen et al. (2008). The stability result

in Chen et al. (2008) was extended to asymptotic as opposed to their UUB result.

• In Xian et al. (2004), the same system model was considered. The results in Xian

et al. (2004) were extended by relaxing the positive definiteness of the input gain

matrix requirement in the mentioned study. After this, the results in Xian et al.

(2004) can now be considered as a special case of the controller presented in this

dissertation (i.e., when DU (X) in (2.1) is an identity matrix).

For the proposed controller in Chapter 2, high gain conditions were to be satisfied

by the control gains. Specifically, entries of the uncertainty compensation gain matrix

must satisfy the conditions given in (2.65) and (2.66), and entries of the other control gain

matrix must be selected large enough compared to the initial conditions of the system. It

is also known that there is not much research in the literature that address the gain tuning
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for robust controllers. As a result of these, in Chapter 3, studies were devoted to obtain

a proper self–tuning strategy for the control gains. To realize this objective, a self–tuning

RISE feedback type controller formulation with a time–varying feedback gain and an

adaptive uncertainty compensation gain was presented. The proposed formulation does

neither need a tuning methodology nor require prior knowledge of upper bounds of the

vector containing the desired system dynamics plus functions containing uncertainties.

Via Lyapunov–type analysis semi–global tracking was ensured. The convergence of the

time–varying gains to constant final values was also proven.

When compared with the existing versions of the RISE feedback controllers, the

results in this study is the only design that addressed the self–tuning of the control gains.

The time–varying control gains can easily be applied to other RISE type controllers. One

possible way to utilize the self–tuning algorithm is to utilize it and when the convergence

to a constant value is observed, then to turn off the adaptation (as proposed in Krstic

(1996)) and then continue the simulation/experiment.

In the first part of Chapter 4, the position and orientation control problem of an

unmanned dynamically positioned surface vessel subject to added mass effects that may

lead to a non–symmetric input gain matrix was solved. This system constituted a good

example for the sub–class of general systems considered in this dissertation where non–

symmetry appears in the inertia matrix of the system. For this, the mathematical model

was rearranged to be compatible with the model that was utilized for the general control

design. Then, semi–global asymptotic convergence of the tracking error was ensured.

Next, attitude control of a small–scaled unmanned model helicopter was aimed.

When the rotor dynamics and the rigid body dynamics are combined by expressing the

input torque as a function of actual control input, vector of input torque is multiplied with a

non–symmetric matrix. This mechatronic system constitutes a good example for the other

sub–class of the general systems considered in this dissertation where the non–symmetry

is due to pre–multiplication of the control input with a non–symmetric gain matrix. To

obtain semi–global asymptotic convergence of the tracking error, the mathematical model

was rearranged to be compatible with the model that was utilized for the general control

design. Then, a lower order version of the general control design was utilized.

Finally, control of an unactuated surface vessel manipulated by 6 autonomous uni–

directional tugboats was addressed. Unlike the similar works in the literature, the surface
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vessel was considered to be under the influence of added mass effects which resulted in a

non–symmetric inertia matrix. The control problem is further complicated by the lack of

accurate positions and orientations of tugboats. As a result of these issues, the resulting

open–loop error system had an uncertain non–symmetric input gain matrix. As a result

of these arrangements, this system constituted a good example for both sub–classes of the

general systems considered in this dissertation. The stability of the closed–loop system

was investigated via detailed Lyapunov–type tools where asymptotic tracking was proven.

Main highlights of the study presented in Chapter 4 can be summarized as:

• When controlling dynamically positioned surface vessels, it is the first time global

asymptotic convergence of the tracking error was ensured when the vessel dynamics

is under the influence of non–symmetric added mass effects.

• Ensuring asymptotic attitude tracking for a small–scaled unmanned helicopter by

considering the non–symmetry of its input gain matrix with a continuous robust

controller is an important novelty.

• For an unactuated surface vessel, it is the first time global asymptotic conver-

gence of the tracking error was provided by considering and compensating non–

symmetric effects of added mass. In addition to this, solving the control problem

without using the accurate knowledge positions and orientations of tugboats is an-

other novelty.

In Chapter 5, the performances of the controller in Chapter 2 and the designed

self–tuning method in Chapter 3 were demonstrated via simulations and experiments. In

section 5.1.1, a modified version of the model of a two–link robot manipulator with cou-

pling between the two links was used as an example system for simulations. Obtaining a

structure that is compatible with the general system model that was utilized for the con-

trol design was the main purpose of this modification. Simulation studies were realized

for different scenarios to examine the performances of the designed controller and the

proposed self–tuning methodology.

Then in Section 5.1.2, the performance of the controller and the self–tuning method

were demonstrated via experiments. Phantom Omni haptic device was used as the ex-

perimental setup for these studies. Since the experimental setup does not have a non–

symmetric behavior in its natural dynamics, control input was applied by premultiplying
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with a non–symmetric matrix.

Finally, simulation studies for mechatronic systems were conducted to demon-

strate the performances of the controllers in Chapter 4. Results for dynamically positioned

surface vessels are given in Section 5.2, while the results for small–scaled unmanned heli-

copter and unactuated surface vessel manipulated by 6 uni–directional tugboats are given

in Sections 5.3 and 5.4, respectively.

There is much to be considered as extensions to the results obtained in this disser-

tation. Although the designed controller is seen as a feasible solution for tracking control

of these type of mechatronic systems, in the simulation studies, it was observed that ac-

tuator limitations may become a problem for the control process. Designing an optimal

version of the proposed controller to deal with actuator limitations is aimed. In another

attempt to deal with controller/actuator limitations, estimating the uncertain model param-

eters adaptively may be considered. Thus, an adaptive version of the proposed controller

may be aimed. In addition to these, to deal with both uncertain model parameters and

unstructured uncertainties, a neural network compensation term can be fused with the

designed controller.

One of the most important example of sub–class of general systems where non–

symmetry appears in the inertia matrix of the system dynamics is also encountered in un-

manned aerial vehicles. Air balloons that fly on stratospheric levels and known as airships

have inertial non–symmetry in their dynamics. The effect of added mass is encountered

during these flights. This effect is caused from the motion of air. During the motion, it

is considered that this flow is seen as an additional mass that is effective on the airships

at acceleration level. Since the mass of the airships is lighter than air, this situation has a

significant effect on these vehicles. Solving the position and orientation control problem

of these type of vehicles by utilizing the proposed controller in this dissertation can be

considered as a possible future work.

Experimental verification of the designed controller in Chapter 4 and its optimal

version on a dynamically positioned surface vessel and small–scaled unmanned helicopter

can be considered as possible future works.
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