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ABSTRACT 
 

IN PLANE VIBRATIONS OF CURVED TIMOSHENKO BEAMS WITH 
VARIABLE CURVATURE 

 
In this study, in-plane vibrations of curved Timoshenko beams with variable 

curvature is studied by Finite Element Method. In the selected method, it is known that 

generalized differential eigenvalue problem are solved by reducing the equations from 

continuous to discrete domain. Catenary form is used as the axis of curved beam. An 

APDL (ANSYS Parametric Design Language) code is developed for the geometric and 

finite element models of the curved beam. The computer code is validated by the data 

available in the literature. After validation of developed computer code, the effects of 

parameters, which are related to shape of the curved beam, on the natural frequencies and 

mode shapes are studied. 
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ÖZET 
 

DEĞIŞKEN EĞRILIKLI EĞRI TIMOŞENKO ÇUBUKLARIN DÜZLEM 
İÇI TITREŞIMLERI 

 
Bu çalışmada, değişken eğrilikli eğri Timoshenko çubukların düzlem içi titreşimleri  

Sonlu Elemanlar Yöntemi ile incelenmiştir. Seçilen yöntem de , eğri çubuğun 

genelleştirilmiş diferansiyel özdeğer problemi, denklemlerin sürekli ortamdan ayrık ortama 

indirgenmesi ile çözülmüştür. Eğri çubuğun ekseni olarak Katenary biçimi kullanılmıştır. 

Eğri çubuğun geometrik ve sonlu eleman modeli APDL (ANSYS Parametrik Tasarim Dili) 

kodu ile geliştirilmiştir. Bilgisayar kodu literatürde mevcut veiler ile doğrulanmıştır. 

Bilgisayar kodunun doğrulanmasından sonra, eğri çubuğun şekli ile ilişkili parametrelerin 

doğal frekans ve doğal titreşim biçimlerine etkileri çalışılmıştır. 
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CHAPTER 1 

 
GENERAL INTRODUCTION 

 
Beam is very crucial structural member due to the common usage in practice. Since 

the objects have elastic behavior in their daily usage, it bends under the lateral loads. 

Bending forms are related with the boundary conditions of the beam. Figure 1.1 shows a 

simply supported beam as unloaded and loaded at midpoint by force F. 

 

 

 

 

 

 

Figure 1.1. Simply supported beam 

 

In 18th century , the first beam theory regarding transverse motion was developed. 

Jacob Bernoulli found curvature-bending moment relationship. His nephew Daniel 

Bernoulli extended this study for vibrations of beams. Later, Leonhard Euler studied on 

displacements of beams under typical loading. Therefore, this first beam theory is called as 

Euler-Bernoulli beam theory. Due to the simplicity and accuracy provided by its 

assumptions, this theory gives reasonable solutions for practical engineering problems. 

This beam theory is also called as classical beam theory. 

The second beam theory appeared in 1877. This theory is known as the Rayleigh 

beam theory and based on the inclusion of the effect of rotation of the cross-section, 

namely rotary inertia. 

Euler-Bernoulli beam theory is extended to Shear beam theory by considering the 

shear force effects in bending. 

Timoshenko proposed a new beam theory by combining the all effect mentioned 

above. Therefore, in this beam theory, classical beam theory is modified by including the 

shear deformation and rotary inertia of the beam. The original figure from the paper of 
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Timoshenko is given in Figure 1.2. In this figure, Ø and γ represent the rotation of the 

cross-section due to the bending moment and shear force, respectively. 

 

 

 

 

 

 

 

Figure 1.2. Beam bending differential element 

(Source: Timoshenko 1921) 

 

Rotatory inertia term given below is added to differential equation. 

 

)/( 224 txyIterminertiaRotatory ∂∂= µ    (1.1) 

 

where, I is second moment of area of the cross section, ρ is the mass density, y is deflection 

curve, and t is time. Another contribution of this theory is related with the definition of 

deflection which is given by (Timoshenko 1921) 

 

γφ +=
∂
∂
x
y       (1.2) 

 

Moreover, bending moment and shear force are given as follows: 

 

x
EIM

∂
∂

−=
φ       (1.3) 

and 

γκAGQ =       (1.4) 

or 

⎟
⎠
⎞

⎜
⎝
⎛ −
∂
∂

= φκ
x
yAGQ      (1.5) 
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 The aspect ratio of beam is an important parameter for the usage of proper beam 

theory. For thin beams, Euler-Bernoulli beam theory gives acceptable accurate results. 

However, for stubby/thick beam, Timoshenko beam theory provides more accurate results. 

Curved beams are used in lot of applications depending on their shape. They may 

be two or three dimensional curve as shown in Figure 1.3. Moreover, they may have 

tapering cross-section or/and variable curvature. Their geometry is formed by considering 

the functional and esthetical aims. Figure 1.4 and Figure 1.5 show curved beam with 

uniform and tapered cross-section and curved beam having variable radius of curvature, 

respectively. 

 

 

 

 

 

 

 

 

 

Figure 1.3. Two and three dimensional curves 

 

 

 

 

 

 

Figure 1.4. Curved beam with uniform and tapered cross-section 

 

 

 

 

 

 

Figure 1.5. A curved beam having variable radius of curvature 
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Curved beams may have in-plane or out-of plane vibrations: In the first one, it has 

in-plane bending, extensional or axial displacements. Bending and axial motions are 

naturally related, then their differential equations are coupled. For simplification these 

coupled equation can be uncoupled. To uncouple the differential equations, in 

extensionality condition is assumed. According to this assumption, axial strain in neutral 

axis is zero. To discuss this assumption, lots of researches were carried out as 

experimentally and theoretically. So, it is possible to find these discussions in the literature. 

If the curved beam has out-of-plane vibration, it has out-of-plane bending and 

torsional displacements. Again, similar to first case, aforementioned displacements are 

coupled. However, they are not uncoupled. 

There are different curved beam theories based on straight beam theories. The 

oldest and simplest one is based on Bernoulli-Euler beam theory. Relatively new one is 

based on Timoshenko beam Theory. According to this beam theory, as discussed before, 

shear deformation and rotary inertia are considered in the differential equations of the 

motion. While Euler beam can be modeled by only one differential equation, Timoshenko 

beam model have two coupled differential equations. 

It is possible to find numerous studies on vibrations of circular curved beams 

modeled by Bernoulli-Euler and Timoshenko beam theories. However, curved beams 

having variable curvature modeled by Timoshenko beam theory are limited. The selected 

reachable ones are summarized in the order of publication time as follows: 

Den Hartog (1928) derived an expression for the first and second natural 

frequencies of a part of a circular ring, hinged or clamped at both ends. He shown that the 

type of vibration, in which extension of the fibers occurs, under certain conditions may 

have a lower natural frequency than the non-extensional type of vibration. 

Den Hartog’s study (1928) was extended by Volterra and Morell (1960). They used 

Rayleigh-Ritz method to analyze the free vibration of arches with various geometries such 

as circle, cycloid, catenary, and parabola. 

 Tseng et al (1997) provided a systematic approach to solve in-plane free vibrations 

of arches with variable curvature by introducing the concept of dynamic stiffness matrix 

into a series solution for in-plane vibrations of arches with variable curvature. An arch is 

divided into as many elements as needed for accuracy of solution. In each element, a series 

solution is formulated in terms of polynomials, the coefficients of which are related to each 

other through recurrence formulas. In the whole analysis, the effects of rotary inertia and 

shear deformation have been taken into account. 
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Yıldırım (1997) found the natural frequencies of Archimedes-type spirals illustrated 

in Figure 1.6 by using the transfer matrix method. In her study, the shear deformation and 

rotary inertia are taken into account. She used the complementary functions method to 

compute the overall dynamic transfer matrix and concluded that the solution method can 

be applied to any planar bar. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Archimedes-type spiral spring 
(Source: Yıldırım 1997) 

 

Irie et al (1983) calculated frequency parameters of clamped-clamped arcs having 

different opening angles by using Transfer matrix method. They considered two different 

cross-sectioned Timoshenko curved beams: rectangular cross-sectioned and circular cross-

sectioned. 

 Kang et al (1995) found the in-plane and out-of plane vibration frequencies of 

circular arches based on the Bresse-Timoshenko beam theory by using the differential 

quadrature method. They verified their results by the results of Irie et al (1983). 

Huang et al (1998) studied on in plane vibration of arches with variable curvature 

as well as cross section, considering the shear deformation and rotary inertia effects. They 

developed an exact solution by using Frobenius method combined with dynamic stiffness 

method, and then provided some non-dimensional frequencies of parabolic arches based on 

the rise to span length, slenderness ratio, and variation of cross section. 

Oh et al. (1999) obtained the governing differential equations for free in-plane 

vibrations of non-circular arches including the rotatory inertia, shear deformation and axial 

deformation effects. Figure 1.7 shows the arch geometry in their study. Figure 1.7 also 
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shows a small element of the arch with internal forces and moments under the external 

effect. They used numerical methods to find the natural frequencies. The lowest four 

natural frequencies are calculated for the non-circular shape such as parabolic, elliptic and 

sinusoidal geometries with hinged-hinged, hinged-clamped, and clamped-clamped end 

conditions. A wide range of arch rise to span length ratios, slenderness ratios, and two 

different values of shear parameter are also considered. Their numerical results are in good 

agreement with results determined by means of finite element method. 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Arch geometry and loads on an arch element 
(Source: Oh et al. 1999) 

 

In this study, in-plane vibrations of curved Timoshenko beams with variable 

curvature is analyzed by numerical methods since the differential equation coefficients are 

not constant. Generalized differential eigenvalue problem of curved beam are solved by 

reducing the equations from continuous to discrete domain. Catenary form is used as the 

axis of curved beam. An APDL (ANSYS Parametric Design Language) code is developed 

for the geometric and finite element models of the curved beam in the study. The computer 

code is validated by the data available in the literature. After validation of developed 

computer code, the effects of curvature parameters on the natural frequencies and mode 

shapes are studies. 
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CHAPTER 2 

 

THEORETICAL VIBRATION ANALYSIS 

 
2.1. Introduction 

 
A non circular curved beam is illustrated in Figure 2.1. In practice, catenary form 

shown in Figure 2.2 is very common. It describes a wire, rope, or chain hanging freely 

from two points. If the curvature is not constant, the equations of motion of the 

Timoshenko curved beam have variable coefficients. Thus, their solution can be obtained 

in numerical methods due to the difficulty in analytical methods. Finite Element Method’s 

the most common one. 

 

 

 

 

 

 

 

 

 

Figure 2.1. Non circular curved beam 

 

 

 

 

 

 

 

 

Figure 2.2. Different catenary forms by hanging chains 

z y 

ρ0(s) 

x 
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2.2. Mathematical Model of Catenary 

 
The mathematical model of catenary can be found generally in the textbook on 

statics as the equilibrium shape of  free-hanging chains. A catenary curve with parameters 

shown in Figure 2.3 given by Yardimoglu (2010) is considered.  

 

 

 

 

 

 

 

 

Figure 2.3. Parameters of catenary curve 
(Source: Yardimoglu 2010) 

 

The mathematical function of a catenary curve in y-z plane is expressed as 

 

]1)/[cosh()( 00 −= RyRyz      (2.1) 

 

The slope α is obtained as: 

 

)/sinh(/)(tan 0Rydyydz ==α     (2.2) 

 

It is possible to find yr by using the tip slope αr as 

 

)sinh(tan0 rr arcRy α=      (2.3) 

 

)1cos/1(0 −= rr Rz α       (2.4) 

 

On the other hand, the arc length s from origin 0 to any point (y, z) on the curve is 

 

y 

R0

ρ0 

α

z 

0 

αr (yr, zr) 

sL 
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αtan)/)((1()( 00

2 Rdydyydzys
s

=+= ∫    (2.5) 

 

Thus, Equation 2.5 gives a very useful relationship between s and α. From differential 

calculus, radius of curvature is given as 

 

[ ] )/(cosh
/)(

)/)((1)( 0
2

022

2
32

0 RyR
dyyzd
dyydzy =

+
=ρ   (2.6) 

 

The variable y in Equation 2.6 can be eliminated by using Equation 2.2, then 

 

ααρ 2
00 cos/)( R=       (2.7) 

 
It should be noted that cos α can be expressed in terms of s by using Equation 2.5 
 

22
00 /cos sRR +=α      (2.8) 

 

Finally, radius of curvature is expressed in terms of s as 

0
2

00 /)( RsRs +=ρ          (2.9) 
 

2.3. Equation of Motion of Timoshenko Curved Beam 
 

 There are two main beam theories. The majority of the studies are based on the thin 

beam theory expressed by Euler-Bernoulli beam theory which states that plane cross-

sections remains plane during deformation. Another theory is thick beam theory developed 

by Timoshenko (1921). In this thick beam theory, shear deformation and rotary inertia are 

taken into consideration. For thick curved beam, it is accepted that the ratio of the radius of 

curvature to the in-plane thickness is greater than about 10. (Chidamparam and Leissa, 

1993) 

 Curved beam with co-ordinate system, displacements, internal forces and moments 

shown in Figure 2.4 is considered. The positive senses for all the quantities are as indicated 

in the same figure. The radius of curvature ρ is assumed to be a function of s, i.e., ρ = ρ(s). 

As in Timoshenko beam theory, the total rotation of the centroidal axis (denoted by ω) is 

assumed to be composed of a part due to bending (denoted by ψ) and a part due to 
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transverse shear effects. Using the Newton’s second law, three differential equations are 

found as (Chidamparam and Leissa, 1993) 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Curved beam coordinates and stress resultants for in plane vibration. 
(Source: Chidamparam and Leissa, 1993) 

 

  vA
s

QN z &&µ
ρ

=+
)(

'        (2.10) 

 

  wA
s

NQz &&µ
ρ

=−
)(

'        (2.11) 

 

  ψµ &&xzx IQM =+'        (2.12) 

 

where primes and dots denote derivatives with respect to the arc length s and time, 

respectively. µ  represents density of mass. For small motions, the extensional strain ε and 

the rotation ω of the centroidal axis are given by: 

 

  
)(

'
s

wv
ρ

ε +=         (2.13) 

 

  
)(

'
s

vw
ρ

ω −=         (2.14) 
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  )
)(

'(
s

wvEAEAN
ρ

ε +==       (2.15) 

 

  'ψxx EIM =         (2.16) 

 

where Ix is the second moment of area of the cross section of the curved beam. The shear 

force-shear strain relation is due to Timoshenko beam theory is written as 

 

  )
)(

'()( ψ
ρ

κψωκ −−=−=
s

vwAGAGQz     (2.17) 

 

where κ is the shear coefficient of the cross-section. 

 Substituting Equations (2.15)–(2.17) into Equations (2.10)-(2.12) and assuming a 

uniform cross-section and constant material properties through the curved beam yields 

 

  vA
s

EAww
s

GEA
s

GAv
s

GAEAv &&µ
ρρ

κψ
ρ
κ

ρ
κ

=+
+

+−− ]'
)(

1['
)(

)(
)()(

" 2  (2.18) 

 

  wA
s

GAvv
s

GEAGAw
s

EAGAw &&µ
ρ

κ
ρ

κψκ
ρ

κ =−
+

−−− ]'
)(

1['
)(

)('
)(

" 2  (2.19) 

 

  ψµκ
ρ
κψκψ &&xIGAw

s
GAvGAEI =+−− '

)(
"     (2.20) 

 

Equations (2.18) to (2.20) are the governing equations for in-plane free vibrations of beams 

with variable curvature given by also Tseng et al (1997). 

The boundary conditions are of a curved beam can be written physically as: 

 

Either Mx=0 (pinned or free), or  ψ=0 (clamped)   (2.21) 

 

Either Qz=0 (free),   or w=0 (pinned or clamped)  (2.22) 

 

Either Mx=0 (pinned or free), or  w=0 (pinned or clamped)  (2.23) 
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2.4. Modal Analysis by Finite Element Method 

 
 The governing equation of motion of a continuous system is given in general form 

having operators notation by Yardimoglu (2012) 

 

0)],([)],([ =+ tsvLtsvM &&      (2.24) 

 

where L[ ] and M[ ] are linear differential operators of derivatives with respect to s. 

Equation of motion in continuous domain given by Equation 2.241 is reduced to discrete 

domain by Finite Element Method that is detailed in excellent textbook written by Petyt 

(2010). Therefore, equation of motion of the curved beam is expressed as 

 

0)}(]){[]([)}(]{[ =++ txGKtxM &&     (2.25) 

 

where [M], [K] and [G] are mass matrix, elastic stiffness matrix and geometric stiffness 

matrix, respectively. {x(t)} is displacement vector. It is well-known that Equation 2.24 

gives the eigenvalue problem which is expressed as 

 

}0{}]){[][]([ 2 =−+ ii uMGK ω     (2.26) 

 

where ωi is ith natural frequency and {ui} is the ith vibration mode shape vector. 

 

2.5. Description of Beam188 Finite Element 

 
BEAM188 can be used for analyzing both slender and moderately stubby/thick 

beams. Therefore, it is based on general case for beam theory which is Timoshenko beam 

theory. Linearly tapered beam may be modeled by this finite element. 

BEAM188 has two nodes, I and J, in 3-D as shown in Figure 2.5. Nodal freedoms 

at each node are translations u, v, and w in the x, y, and z directions and rotations θx, θy, and 

θz about the x, y, and z directions, respectively. The shape functions of this element are 

linear due to the two nodes and given as follows (Kohnke 2004): 
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Figure 2.5. Nodes of BEAM188 
(Source: Kohnke 2004) 

 

)]1()1([
2
1 susuu JI ++−=      (2.27) 

 

)]1()1([
2
1 svsvv JI ++−=      (2.28) 

 

)]1()1([
2
1 swsww JI ++−=      (2.29) 

 

)]1()1([
2
1 ss JxIxx ++−= θθθ      (2.30) 

 

)]1()1([
2
1 ss

JyIyy ++−= θθθ     (2.31) 

 

)]1()1([
2
1 ss JzIzz ++−= θθθ      (2.32) 

 

In Equations from (2.27) to (2.32), s shows the distance from the midpoints of the element. 

For more details about this element, the papers of Simo and Vu-Quoc (1986) and 

Ibrahimbegovic (1995) are referred by Kohnke (2004). 

Depending on the KEYOPT, warping can also be considered. Moreover, linear 

analysis and studies on large rotations or large nonlinear strain can be accomplished by this 

element. Additionally, flexural, lateral, and torsional stability problems can be analyzed. 
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Cross-sections for this element can be defined via SECTYPE, SECDATA, 

SECOFFSET, SECWRITE, and SECREAD. Common sections, such as rectangular, 

circular, I, L, T, Z, etc are available. All possible cross-sections are shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Cross Section Subtypes 
(Source: Ansys 2005) 

 

User defined transverse shear stiffness can be entered via SECCONTROLS 

command. Otherwise, default shear coefficient is unity. 

The coordinate system, geometry, and locations of nodes I, J, and K to define the 

element for this element in the global coordinate system are shown in Figure 2.7. The 

orientation of the element is provided by node K. 

 

 

 

 

 

 

 

 

 

Figure 2.7. Coordinate system of BEAM188 
(Source: Kohnke 2004) 

 

Gauss integration points along the length of the beam are shown in Figure 2.8. The strains, 

forces and bending moments associated with section are found at Gauss integration points.  
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Figure 2.8. BEAM188 Element Gauss integration points 
(Source: Ansys 2007) 
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CHAPTER 3 

 
NUMERICAL RESULTS AND DISCUSSION 

 
3.1. Introduction 

 
In this chapter, in-plane vibration of a curved beam with variable curvature is 

analyzed by FEM (Finite Element Method). 

APDL (ANSYS Parametric Design Language) is used to develop a code for a 

geometrical and finite element model. BEAM188 is used to model the curved Timoshenko 

beam. 

Timoshenko curved beams having the parameters Ro= {80, 100, 120} mm, sL=200 

mm b= {20, 24, 28, 32} mm, h=20 mm are modeled. The cross-section dimension 

perpendicular curved beam plane is represented by h. One of the curved beam model in 

ANSYS is shown in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The geometrical model of the curved beam with Ro=80 mm 
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3.2. Convergence Studies for Model 
 

To determine the minimum number of element in FEM, Timoshenko curved beam 

having the geometrical parameters b=20 mm, h =20 mm, Ro=80 mm, sL=200 mm is 

modeled. The material properties of the curved beam used throughout the thesis are given 

in Table 3.1. 

 

Table 3.1. Material properties 
 

E (MPa) 208000 

ρ (ton/mm3) 7.85 10-9 

G (MPa) 80000 

ν ( - ) 0.3 

κ ( - ) 0.85 

 
Modal analyses are performed in ANSYS by using different number of elements. 

The first natural frequencies are tabulated in Table 3.2. It is seen from Table 3.2 that the 

minimum number of element N can be selected as 50. Convergence curve of first natural 

frequency is plotted in Figure 3.2 which convergences to selected value. 

 

Table 3.2. Convergence of first natural frequencies 
 

N f1 (Hz) 

20 1303.6 

24 1296.3 

30 1290.4 

40 1285.8 

50 1283.5 

60 1282.6 
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Figure 3.2. Convergence of first natural frequency 
 

3.3. Verification of APDL Code 

 
APDL code based on BEAM188 is tested by the natural frequencies of the 

Timoshenko circular curved beam with rectangular cross-section since there are no 

available results regarding the catenary curved beam model used in this study. As 

presented in Section 2.2, intrinsic equation of catenary is used to model it. Therefore, for 

this purpose, the results of Irie et al (1983) and Kang et al (1993) are used. The present 

results and the results of Irie et al (1983) and Kang et al (1993) in terms of their frequency 

parameter xEIA /24ωρµλ =  and slenderness ratios xx IAs /2ρ= are given in Table 3.3 

for comparisons. In Table 3.3, is opening angle θ0 of the circular curved beam and shown 

in Figure 3.3. 

 

Table 3.3. Comparison of first natural frequency parameters λ  
 

sx θ0 (°) Present Irie et al (1983) Kang et al (1995)

100 60 53.85 52.78 52.80 

100 120 11.84 11.79 11.79 

100 180 4.38 4.37 4.38 
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Figure 3.3. Opening angle θ0 of circular curved beam 

 

3.4. Modal Analysis for Different Models 

 
 The effects of catenary curve parameter Ro and the height of the cross-section h of 

the curved beam on natural frequencies can be seen in a selected range for those 

parameters. The other parameters are h=20 mm, sL=200 mm are taken. The first, second, 

third, and fourth natural frequencies are given in Figures 3.4, 3.5, 3.6, and, 3.7, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Effects of b and Ro on first natural frequencies 
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Figure 3.5. Effects of b and Ro on second natural frequencies 
 
 It can be seen from Figure 3.4 that first natural frequencies increase for all height of 

the beam b, when catenary parameter Ro increases. On the other hand, it can be seen from 

Figure 3. 5 that while the second natural frequencies for b=20 mm and b=24 mm changed 

with respect to catenary parameter Ro slightly, the second natural frequencies for b=28 mm 

and b=32 mm decreases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Effects of b and Ro on third natural frequencies 
 

4300

4400

4500

4600

4700

4800

4900

5000

5100

5200

5300

80 90 100 110 120
Ro (mm)

f 3 (Hz)

b=20 mm
h=24 mm
b=28 mm
b=32 mm

2700

2900

3100

3300

3500

3700

3900

4100

4300

4500

80 90 100 110 120
Ro (mm)

f 2 (Hz)

b=20 mm
b=24 mm
b=28 mm
b=32 mm



 21

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Effects of b and Ro on fourth natural frequencies 
 

 Third natural frequencies shown in Figure 3.6 have the same tendency in the 

considered range of parameters. Figure 3.7 shows that the frequencies for b=20 mm has 

different tendency for fourth natural frequencies and the fourth natural frequencies almost 

equal to each other’s for b = {20, 28, 32} mm and Ro≈93 mm. 

The results shown in Figures 3.4-7 are plotted in Figures 3.8-11 by changing the 

horizontal axis from Ro to b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Effects of Ro and b on first natural frequencies 
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Figure 3.9. Effects of Ro and b on second natural frequencies 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Effects of Ro and b on third natural frequencies 
 

 It can be seen from Figure 3.8 and 3.9 that first and second natural frequencies 

increase for all catenary parameter Ro, when height of the beam b increases, but second 

natural frequencies are closer to each other until b=26 mm. Third natural frequencies 

shown in Figure 3. 10 have peak values for b=28 mm and all catenary parameter Ro. 
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Figure 3.11. Effects of Ro and b on fourth natural frequencies 
 

Similar to third natural frequencies, the fourth natural frequencies shown in Figure 

3. 11 have peak values for b≈24.5 mm and Ro= {80, 100} mm. Inverse to this case, the 

fourth natural frequencies have minimum for b≈8 mm and Ro= {100, 120} mm. 

From the analysis given above, it is possible to say that in the considered range of 

parameters, selecting the value of parameters have two alternatives for third and fourth 

natural frequencies due to the second and third order frequency curves. 

 Natural vibration mode shapes for a catenary curved beam with the parameters 

b=h=20 mm, Ro=80 mm, and sl=200 mm are given in Figures 3.12-3.16. 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. First natural mode shape 
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Figure 3.13. Second natural mode shape 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Third natural mode shape 
 

 

 

 

 

 

 

 

 

 

Figure 3.15. Fourth natural mode shape 
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Figure 3.16. Fifth natural mode shape 
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CHAPTER 4 

 
CONCLUSIONS 

 
In-plane vibration of curved Timoshenko beams with variable curvature is 

described by a generalized differential eigenvalue problem with variable coefficients. 

Therefore, numerical methods are used to determine the eigenvalues which are natural 

frequencies in this problem. To give a variable curvature to curved beam, catenary form is 

selected due to the most common form in the practice. A computer code is developed in 

ANSYS which is APDL (ANSYS Parametric Design Language). It is validated by the 

natural frequencies of Timoshenko circular curved beams with different opening angles 

available in the literature. After validation of developed computer code, the effects of 

catenary and cross-section of curved beam parameters on the natural frequencies and mode 

shapes are studied. Restricting the selected parameter range, it can be concluded that first 

and natural frequencies show plots almost linear form. However, third and fourth natural 

frequency plots are in the form of second and third order polynomial functions, 

respectively. 
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