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ABSTRACT

COST AND BENEFIT ANALYSIS OF FEATURES USED IN MACHINE LEARNING
BASED PRE-MIRNA DETECTION

MicroRNAs (miRNAs) are short RNA molecules which play important roles in

the post-trancriptional regulation of gene expression. Their transcription is followed by

two RNA III endonuclease processing steps leading to mature miRNA formation. They

are then incorporated into the RISC-complex which mediates mRNA targeting. Exper-

imental miRNA prediction is difficult since detection relies on many factors therefore,

computational methods have become indispensable. Therefore, machine learning meth-

ods rely on features describing precursor-miRNAs (pre-miRNAs) to be able to differenti-

ate them from other hairpins in a genome. It is important to define feature groups which

are informative, not highly correlated, and don’t incur a large computational cost in or-

der to facilitate accurate miRNA detection. In this study for more than 800 pre-miRNA

features the computational cost and benefit was analyzed. From these analyses five fea-

tures (assl, lsr(%bp), lscm, asal and hpmfe rf I3), (four structural and one structural-

thermodynamic one), which aren’t correlated, informative and are not computationally

expensive are noticeable. Analyses are done with human hairpins, pseudo data; and a

case study using the measles virus and the measles KEGG pathway genes. Overall cal-

culation of human hairpins and measles virus took approximately 2 USD (United States

Dollar) on Amazon web services. Supervised learning and random forest machine learn-

ing for miRNA prediction was applied and to two genes (TAB2 and BCC3) within the

measles KEGG pathway and three hairpins were predicted. They were found to have

human mature miRNA sequences embedded in them and their already annotated targets

helped enlarge the KEGG measles pathway.
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ÖZET

MAKİNE ÖĠRENİMİNE DAYALI ÖNCÜL MİRNA TESPİTİNDE KULLANILAN
ÖZELLİKLERİN FAYDA VE MALİYET ANALİZİ

Gen ifadesinin post-transkripsiyonel regülasyonunda önemli bir rolü olan kısa

RNA moleküller mikroRNAlardır (miRNA). Transkripsionlarını iki RNAIII endonükleaz

işlemi takip eder ve olgun miRNA oluşumuyla RISC-kompleksi mRNA hedeflemesini

başlatır. Deneysel miRNA tahmini zordur çünkü miRNA ifadesni belirleme işlemi birçok

faktöre dayanır bu yüzden bilişimsel metotlar daha umut vericidir. Genomdaki diğer

saç tokası yapılarından (hairpin) ayırt edebilmek ve miRNA tespiti için, miRNAların

karakteristik özellikleri tanımlanmalıdır. Bu sebeple, Veri Madenciliği metodları öncül

miRNA (pre-miRNA) özelliklerini temel alır. Bu çalışmada 800den fazla pre-miRNA

özelliğinin maliyet ve yarar analizi yapılmıştır. Bilgi kazanımı skoru özelliğin ne kadar

ayırt edici olduğunu, Linear Korelasyon katsayısı özelliklerin birbirleriyle nasıl bağlı

olduğunu ve zaman ölçümü de bir özelliğin ne kadar bilişimsel maliyetinin olduğunu

gösterir. Sonuç- lardan yavaş olmayan ve bilgi verici beş özellik (assl, lsr(%bp), lscm,

asal and hpmfe rfI3) (dört yapısal ve bir yapısal-enerjik) seçildi ve birbiriyle korelasyon-

ları olmadığı görüldü. Analizler insan hairpin, sözde (pseudo) veri ve kızamık (measles)

virüsü, Measles İnsan KEGG Patikası genleri ile yapılmıştır. İnsan hairpin ve measles

virüsünün genel hesaplanması Amazon serverında yaklaşık olarak 2 USD (Amerikan

Doları) tutmuştur. Gözetimli öğrenme ve Rastgele Orman karar ağacı Veri Madenciliği

kullanılarak iki measles KEGG patikası geninden (TAB2 and BCC3) üç miRNA tahmin

edilmiştir. Bunlarda olgun miRNA dizlileri gömülü bulunmuştur.
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CHAPTER 1

INTRODUCTION

Eukaryotes possess different small Ribonucleic acid (RNA) molecules which func-

tion to regulate mRNAs by targeting. (Bartel, 2004; He and Hannon, 2004). These

molecules are defined by their length and differentiated according to their generation, re-

lation with Argonaute family proteins (AGO family proteins) biological role etc. (Latch-

man, 2010; Meister, 2013) . In animals they can be grouped as: microRNA (miRNA),

small interfering RNA (siRNA), PIWI-interacting RNA (piRNA) (Latchman, 2010).

1.1. microRNAs

Mature microRNAs (miRNAs) are approximately 22 nucleotide long, small, sin-

gle stranded RNA molecules which are found in many living organisms (Bartel, 2004;

Melo and Melo, 2014)

There are over more than 1900 miRNA coding genes identified in humans and

high prevalence (>50%) are located in protein coding genomic regions (Hinske et al.,

2014; Rodriguez et al., 2004). miRNAs are classified as intragenic and intergenic which

can be subclassified to transcription classes as intronic and exonic (Hinske et al., 2014;

Rodriguez et al., 2004). In human nearly 61% of the miRNAs are intragenic and whereas

the remaning 39% are intergenic (França et al., 2016). Intragenic miRNA shows coordi-

nated expression with their host genes (Baskerville and Bartel, 2005; França et al., 2016;

Hinske et al., 2010).

miRNAs function in post-transcriptional regulation of gene expression, they have

effect on messenger RNA (mRNA) stability by targeting and regulating the rate of trans-

lation and they can lead RNA silencing (Filipowicz et al., 2008; He and Hannon, 2004;

Melo and Melo, 2014). miRNAs are found dominantly in somatic tissues compared to

other small RNAs and furthermore they are defined as important in developmental stages

(Ha and Kim, 2014). The biogenesis of miRNAs is strictly controlled and their distribu-

tion at regulation can lead to cancer and neurodevelopmental diseases in human (Bartel,

2004; Melo and Melo, 2014).

1



1.2. miRNA Biogenesis

In human, RNA polymerase II (PolII) transcription is the factor that initiates

miRNA biogenesis which brings out mature miRNAs (Melo and Melo, 2014). The tran-

scription product is a large, generally over 1 kilobase (kb), transcript, called primary

miRNA (pri-miRNA) (Melo and Melo, 2014). Primary miRNA (pri-miRNA) has the se-

quence of miRNA embedded and the hairpin structure consist of stem and terminal loop

which is formed by base pairing, therefore forming relatively double stranded structure

(Ha and Kim, 2014). Pri-miRNA has single stranded RNA (ssRNA) flanks at both ends; a

5’ end capped-spliced, a 3’ end polyadenylated (Latchman, 2010). When the pri-miRNA

is recognized from its stem and ssRNA flanks by a double stranded RNA (dsRNA) bind-

ing domain protein (dsRDB), DiGeorge syndrome critical region gene 8 (DGCR8) which

forms the microprocessor with a nuclear Rnase III protein Drosha which cuts the stem

loop and an approximately 68 nucleotide long hairpin precursor miRNA (pre-miRNA) is

formed (Ha and Kim, 2014) (Figure 1.1). It is further translocated from nucleus to cy-

toplasm with exportin 5 (EXP5) by nuclear pore complexes and RAN-GTP (Melo and

Melo, 2014). The pre-miRNA is processed to a small RNA duplex upon cleavage of the

terminal loop by Dicer which is like Drosha a RNA III endonuclease. This 22 nt duplex

consists of guide and passenger strands and is loaded to AGO which facilitates the pre-

RNA-induced silencing complex (RISC) formation (Meister, 2013). Upon the removal

of passenger RNA, mature RISC forms which has the mature RNA. Then after the base

pairing of miRNA:mRNA can lead to gene silencing (Ha and Kim, 2014).

1.3. miRNA Identification

In mammals, nearly 30% of protein-coding genes are under miRNA regulation

(Filipowicz et al., 2008), (Naik et al., 2013). Further, in humans, 60% of protein coding

genes have at least one conserved miRNA binding site (Ha and Kim, 2014). As miR-

NAs are key players in translational regulation and mRNA stability, having role in many

diseases; it has been important to study miRNAs and therefore many studies are con-

ducted experimentally and computationally. Although hundreds of miRNAs have been

identified, many of them may remain unknown. In order to identify miRNAs, compu-

tational approaches are more promising than experimental ones as experimental studies
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are depended to biological circumstances like having mRNAs and miRNAs expressed

together so that the influence of miRNA can be observed or many to one relationship

between mRNA and miRNA. However, that doesn’t mean computational approaches are

sufficient, the findings still needs to be confirmed experimentally.

1.4. Computational Methods to Identify miRNAs

Homology based methods or ab initio detection are the computational methods

applied to identify miRNAs. Homology modelling is used for conserved gene clusters

when the genome sequence is known for comparative genomic studies, therefore, it is

not applicable for prediction of novel miRNAs. In order to reveal unknown miRNAs

ab initio methods are more promising as it does not require any database (Yousef and

Allmer, 2012b). To use ab initio computational methods miRNAs have to be differentiated

and unique characteristic features should be defined. As they are not the only hairpins

produced from the genome, specific features of pre-miRNAs should be used for accurate

and beneficial prediction (Bağcı and Allmer, 2016; Saçar and Allmer, 2013; Xue et al.,

2005).

1.5. miRNA Features

In order to come up with specific and commonly understood features, already

existing features are reviewed, the feature meaning is enlarged logically, and has been

enhanced with our own features and a wide list of more than 800 features that iden-

tify pre-miRNAs are collected (Bağcı and Allmer, 2016; Saçar and Allmer, 2013; Yousef

et al., 2016). These features (including published ones and their logical extensions) can be

grouped into four main categories: Sequence based features are for example dinucleotide

frequencies (%NN) (Ng and Mishra, 2007), direct internal repeats (dr) (Bentwich, 2008),

and inverted internal repeat (ir) (Bentwich, 2008). Structural features are for instance

triplet elements (N...) (Xue et al., 2005), hairpin length (hpl) (Bentwich et al., 2005),

hairpin loop length (hll) (Bentwich, 2008), matching base pairs (bpp) (Ng and Mishra,

2007), and maximal bulge size (mbs)(Bentwich, 2008). Thermodynamic-based features

are, among others, ensemble free energy (efe), ensemble frequency (efq), melting tem-
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perature (Tm) (Ding et al., 2010), and enthalpy (dH). Probability-based features can be

derived from any other feature using dinucleotide shuffling (dns) (Jiang et al., 2007)

and some examples used are adjusted base pairing propensity (dns p(bpp)) and adjusted

minimum free energy of folding (dns p(hpmfe rf)). One of our studies is to represent

each feature in a descriptive format so that the feature is understandable and mistakes are

prevented. Below Figure 1.2 is shown as an example created from obtained results.

1.6. Cost and Benefits of pre-miRNA Features

Features described in Section 1.5 and Table A1 are mined from assumed pre-

miRNAs which are found as folded to differentiate between true and false pre-miRNAs.

Supervised learning is applied in machine learning, where the Random Forest Model is

trained by pseudo hairpins (negative class) and miRBase v20 driven human hairpins (posi-

tive class) (Bağcı and Allmer, 2016; Kozomara and Griffiths-Jones, 2014; Ng and Mishra,

2007; Saçar and Allmer, 2013). Thus, computational pre-miRNA prediction costs, takes

calculation time and the model accuracy is highly depended on features (Ding et al.,

2010). However, feature selection is NP hard (Amaldi and Kann, 1998) , especially high

number, 800 features make the selection more complicated. Information gain ratio is a

measure to rank features in machine learning approaches, which is used for selection of

features (Jiang et al., 2007; Khalifa et al., 2016; Xue et al., 2005). The positive and nega-

tive datasets are compared and the features that are more differential are returned as high

scores. Furthermore, some features are correlated with each other, meaning that they give

the same information logically and/ or numerically. Therefore, in some cases it may not

be beneficial to calculate each feature, which causes redundancy. Because of that, the pre-

miRNA based features cost and benefit relation needs to be analysed (Yousef and Allmer,

2012b).

1.7. Tools and Databases

For this study The Konstanz Information Miner (KNIME) is used which is an open

source tool, featuring a visual platform to integrate, process and analyse huge quantity of

different types of data (Berthold et al., 2007). The basic operating unit is a Node and by
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connecting Nodes, data workflows can be created and automated. Orange is another open

source data mining tool, written in Phyton, which is used for analysis and visualization

of data. Rstudio and NetBeans are integrated development environments (IDE) used for

statistical analysis in R and implementation of features and feature calculation methods in

JAVA programming languages, respectively. According to studies conducted on miRNAs,

registries like miRBase v20 database make the published information including sequence

and annotations of the miRNAs via web interface searchable available (Kozomara and

Griffiths-Jones, 2014). In this study, data is obtained from miRBase and Ensembl, fea-

tures are programmed and calculated in JAVA, KNIME is used to handle and analyse

(Linear Correlation, Information Gain, Random Forest Prediction and model creation)

and create a continuous cost and benefit analyses workflow. Orange is used to plot the

distance map of KNIME correlation coefficient values. Predicted hairpin and miRBase

v20 mature miRNA alignments are obtained via BLASTN short mode (Camacho et al.,

2008, 2009) and secondary structures are plotted via VARNA v3-91 (Darty et al., 2009).

During feature calculation in JAVA some external tools are used which are RNAhybrid

(2.1.2), RNAfold 2.1.3 (Lorenz et al., 2011), UNAfold 3.8 (Markham and Zuker, 2008),

dustmasker 1.0.0 (Morgulis et al., 2006), RNAeval 2.1.3 (Lorenz et al., 2011) , RNAspec-

tral (Ng and Mishra, 2007). These third-party tools are automated in the JAVA application

in order to parse their outputs to calculate related features.
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Figure 1.1. miRNA Biogenesis. It is shown how the pre-miRNA is processed. a)After
the transcription by RNAII it binds to Drosha upon hairpin loop struc-
ture creation. b)Drosha generated pre-miRNA is translocated to cytoplasm.
d)After binding to Dicer protein the terminal loop is cut. d)dsRNA forms
with one leading strand the mature miRNA and the other one is degraded.
e)polyadenylated RNA (Latchman, 2010).
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Figure 1.2. Structure of hsa-mir-34b is shown. The feature ”number of nucleotides
in symmetrical loops” #nisl h, is shown for the hairpin. The feature has
a distribution with a minimum of 0, an average of 5.85 and a maximum
of 30 result for the human miRNA data; while the values for pseudo data
are larger. The feature is implemented from (Sewer et al., 2005). Fold is
created with RNAfold 2.1.3 (Lorenz et al., 2011) and image is drawn using
VARNA v3-91 (Darty et al., 2009).
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CHAPTER 2

MATERIALS AND METHODS

2.1. Datasets

From miRBase v20 human hairpins which are defined as predicted miR stem-

loop sequences and human mature miRNAs are downloaded in FASTA files. miRBase

data is used as positive data. Pseudo hairpins (randomized inverted repeats) (negative

data) are obtained from Ng and Mishra, 2007. For any case study, in order to predict

pre-miRNA hairpin structure, the desired genes’ human genomic sequences (3’ UTR, 5’

UTR, exon and intron; 500 nt down and upstreams of them) is retrived from Ensemble 84

with biomaRt v2.28.0 package in R. For organisms where the data size was small, it was

downloaded directly from Ensemble 84 web server (http://www.ensembl.org/index.html,

June 2016).

2.2. Feature Extraction and Programming on Java Platform

Features were chosen from the study Yousef et al., 2016. The literature review

is done and all features already published are taken according to the first claimer A1.

This features have been programmed on Java platform as previously described (Bağcı and

Allmer, 2016; Saçar and Allmer, 2013; Yousef et al., 2016). Features have been tested by

JUnit unit testing. Each feature class included common tests like negative test, positive

test, having flanking ends, having loop structure. The classes are built to an executable

jar file which takes a list of hairpin sequences and a list of features to be calculated and

outputs the scores for the given features for every hairpin sequence. This jar file is further

called in KNIME from ”External SSH Tool” node. The calculations are done on Amazon

EC2 m4.large instances.
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2.3. KNIME Platform

KNIME tool version 3.33 is used with default settings as described previously

(Khalifa et al., 2016; Saçar and Allmer, 2013; Yousef and Allmer, 2012b). Additional

nodes are downloaded from http://bioinformatics.iyte.edu.tr/KNIMENodes. KNIME is

used to handle and analyse the data and for statistics. It is mainly used because of its

data mining feature and such analyses as Linear Correlation, Information Gain and Ran-

dom Forest Prediction are made. KNIME enables to create a continuous cost and benefit

analyses workflow.

2.3.1. Feature Calculation

Positive and negative data files are read with File Reader node in KNIME, sep-

arately. With External SSH Tool node, each data file and all features are given as input

to the feature calculation jar file. As output all the scores for all features and the time of

calculation for each feature are stored in separate files for both positive and negative data.

The output files are named as humanFeatureCalculation, pseudoFeatureCalculation and

humanTime; and exported in tab delimited format.

2.3.2. Worflow of Cost and Benefit Analysis

This workflow is created in order to analyse the time (cost) and information gain

joined together and correlation analyses as a distance plot. Therefore, time and informa-

tion score ranks are obtained as described above Section 2.3.1 and joined together in one

table (Figure 2.1).

2.3.2.1. Cost Analysis

humanTime file is read and statistical analysis such as minimum, maximum, mean,

standard deviation, variance, median, overall sum, row count across all numeric columns,

and counts all nominal values together with their occurrences are retrieved and these val-
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Figure 2.1. Worflow of Cost and Benefit Analysis.

ues are used to create plots in further steps. The features are ranked according to time it

took to calculate them.

2.3.2.2. Workflow for Time, Information Gain and Correlation

Analysis

humanFeatureCalculation and pseudoFeatureCalculation files are read separately.

Constant Value Column indicating the class of the tables are added to human and pseudo

data. The tables are then concatenated. The parts explained below are applied distinctly

from each other.
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Time, Information Gain Analysis: After filtering the string values of the con-

catenated table an Information Gain Calculator node is added. The output is ranked and

joined to the time rank table. From the joined table a scatterplot is plotted to visualize the

data distribution.

Correlation Analysis: To the concatenated node a Linear Correlation node and

a Correlation Filter node is added. For the study Pearson’s product-moment coefficient is

applied and -1 shows strong negative correlation and 1 shows strong positive correlation.

The Distance maps for all of the data and separately for selected data are plotted in Orange

(range is unique for each plot).

2.3.3. Model- Random Forest Prediction

humanFeatureCalculation and pseudoFeatureCalculation files are read separately

(Figure 2.2). Constant Value Column indicating the class of the tables are added to hu-

man and pseudo data. For each partitioning random sampling of all rows is applied. As

observed in Figure 2.3, a Start Loop is added and the further steps (ending at the Stop

Loop Node) are repeated for 10 times. Pseudo data is partitioned to an absolute of 4000

rows to one table and 4492 rows to another table (pseudo first partitioning). Then the first

table is partitioned to an absolute of 1828 rows to one table and 2172 rows to another ta-

ble (pseudo second partitioning). Lastly the first table is partitioned 70% relatively, where

this is used for learning and the reaming 30% is used in testing (pseudo third partitioning).

Human table is partitioned 70% relatively, where this is used for learning and the reaming

30% is used for testing. The human partitioning and pseudo third partitioning outputs are

processed as follow: The learning and testing tables are concatenated respectively then

the learning table is given to the Random Forest Learner nodes input and the testing table

is given as input to the first Random Forest Predictor node. The second table of second

pseudo partitioning is given to the second Random Forest Predictor node. The second

table of first pseudo partitioning is given to the third Random Forest Predictor node. The

output model of Random Forest Learner is given as model input to each of Random Forest

Predictor nodes separately. The Random Forest Predictors are linked to Score nodes and

Constant Value Columns indicating the order of the predictors are added as First Predic-

tion Score, Second Prediction Score and Third Prediction Score, respectively. A Loop
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End node is added. The output of the loop is sorted, filtered and a Reference Row Filter is

used where the iteration number of the best model with high accuracy is taken for the case

study prediction model, therefore a Cell to Model node is connected for the conversion

(Figure 2.3). This node is reference model for the case study Random Forest Predictor.

Figure 2.2. Knime Workflow for Model Creation.

Figure 2.3. Knime Workflow Random Forest Prediction for Model creation. Meta
Node from Figure 2.2 is opened.
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2.3.4. KNIME Workflows for Case Studies

This part is saved as a separate workflow from the other ones, since it is used

in case of a case study desired. The case study can be a human gene collection or any

organism data, depending on the aim. The fasta files were downloaded as described in

Section 2.1 is used further for hairpin prediction and time information gain analyses.

2.3.4.1. Sequence Fragmentation

Below steps are done for both virus and gene datasets separately (Figures 2.4

and 2.5). Each separate genomic part files are read with the Fasta2Table nodes. This

node reads fasta files by conserving the fasta properties and parsing to a table. The read

files have the definition line and the sequence related in the table. The tables were then

concatenated. The virus genome was stored in a single file therefore it was read and

handled directly. The nucleotide T is converted to U. Files are processed further and given

to Sequence Fragmenter, in which sequences were fragmented into 250bp long fragments

with 250bp overlaps (Figure 2.6). With KNIME External SSH Tool the fragments are

folded using RNAfold 2.1.3 (Lorenz et al., 2011).

Figure 2.4. Knime Workflow for Virus Sequence Fragmentation.
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Figure 2.5. Knime Workflow for Genes Sequence Fragmentation.

Figure 2.6. After the sequence is retrieved it is fragmented in to overlapping fragments.
For each fragment the fold is revealed and then hairpins are extracted. The
computationally predicted hairpins are further used for pre-miRNA based
feature calculation.

2.3.4.2. Hairpin Extraction

The workflow continues with hairpin extraction. The files are processed further

(columns, names etc) to be an input for the HairpinExtractor node (Figures 2.7 and 2.8).

This is done for both virus and gene dataset. This node takes the sequence fragments and

creates possible hairpin structures. There can be more than one hairpin formed from a

hairpin where no hairpin formation can be observed too (Figure 2.6).
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Figure 2.7. Knime Workflow for Virus Hairpin Extraction.

Figure 2.8. Knime Workflow for Genes Hairpin Extraction.

2.3.4.3. Feature Calculation

As in Section 2.3.1. Virus and gene data files are read with File Reader node in

KNIME, separately. With External SSH Tool node, each data file and all features are

given as input to the feature calculation jar file. As output all the scores for all features

and the time of calculation for each feature (just for virus) are stored in separate files for

both virus and gene data as tab delimited format.
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2.3.4.4. Hairpin Prediction

Input file is read and after Missing Value Handling and Constant Value Column

adding it is connected to a Random Forest Predictor which takes as model input, the one

having the highest accuracy score the one from Section 2.3.3. The output of the Random

Forest Predictor is further linked to Histogram and Boxplot nodes, where in Boxplot node

positive and negative predictions are are handled separately and then plotted distinctly

(Figures 2.9 and 2.10).

Figure 2.9. Knime Workflow for Virus Hairpin Prediction

2.3.4.5. BLASTN and Reactome Analysis

Known human mature miRNAs from miRBase v.20 are aligned against hairpins

predicted from human and virus genes with prediction scores equal to or greater than

0.90 and 0.99, respectively, using BLASTN in blastn-short mode (Camacho et al., 2008,

2009). Alignments with perfect matches (no mismatches or gaps) are filtered and plotted

by VARNA v3-91 (Darty et al., 2009). The mature miRNAs found with perfect alignments

to predicted pre-miRNA sequences are then searched for their targets in mirTARBase and

TarBase. Furthermore, the target genes were uploaded to Reactome (pathway database
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v57) web-server (http://www.reactome.org/) to analyse the pathways that can be regulated

by these miRNAs from the information on already known targets.

Figure 2.10. Knime Workflow for Genes Hairpin Prediction.

2.3.4.6. Workflow for Time, Information Gain Analysis

A Constant Value Column is added as virus to VirusTime table which is then

joined to two nodes, one to human and pseudo information gain result obtained in Section

2.3.2.2. Then appropriate nodes for plotting (box plot and histogram) and output are

connected. Another node is connected to the manipulated VirusTime table to join to the

humanTime. Then appropriate nodes for plotting (box plot and histogram) and output are

connected (Figure 2.11).
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Figure 2.11. Knime Workflow of Virus Time, Information Gain Analysis.
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CHAPTER 3

RESULTS

3.1. pre-miRNA Feature Extraction

The feature Table A1 represents the Java code acronym of each feature, the syn-

onyms used in literature and the feature type.

All features are not included and some feature groups are given compact and the

number of features in that group is present in the ”Count” row. For example, the ”Nu-

cleotide percent” feature consists of 4 features %A, %C, %G and %U but all are shown

in one row as from %A to %U indicating continuity with ”..”. A reference for the fea-

ture implementation in Java is shown as Figure 1.2. The description from the literature is

taken and our understanding of the feature is indicated and further used as understanding

of the feature to implement it in Java. The boxplot shows the distribution of calculation

result in human hairpins and pseduo data. The more informative features have different

distribution range, lower and upper quartile when human and pseudo data are compared.

3.2. Time, Information Gain Analysis

Calculation time of each feature for human hairpins is noted and further compared

with the information gain score (Figure 3.1).

Same procedure is applied for the case study virus data (Figure 3.2).

Information Gain Calculator node requires two different class types, for this case

positive (human hairpins) and negative (pseudo data) classes are used. For each feature

comparing the value in between the classes an information gain score for each feature is

returned. The more distinguishable the feature between the positive and negative classes,

the higher the information score is. The time information gain comparison showed that

some feature are calculated fast; however, they have low informative gain (Figures 3.1

and 3.2, Tables 3.1 and 3.2).
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Figure 3.1. Scatter plot of features’ information gain (x) and human hairpin mean time
(y). Time axis is in logarithmic scale. Results are obtained in Knime. Each
dot represents a feature.

Moreover, the most informative features are the slowest (Figures 3.1 and 3.2, Ta-

bles 3.3 and 3.4)

Top 10 tables are constructed with nearly all same features for human hairpin and

virus data (Tables 3.1, 3.2, 3.3 and 3.4). From the scatter plot Figure 3.2 the features are

highlighted with high information gain score x>0.2 and low mean time y<106 in Table

3.5.

From the scatter plot Figure 3.2, the features which are not normalized, have high

information gain scores x>0.2 and low mean times y<106 are highlighted in Table 3.6.

Each feature from Table 3.6 are defined in Figures A.1, A.2, A.6, A.3 and A.4.

Features having high information gain score and relatively low calculation time is

interesting to be investigated further (Figures 3.1 and 3.2). Furthermore, human hairpins

data time and virus time show correlation as expected (Figures 3.1, 3.2 and 3.3).

For both human and virus data, features are calculated on Amazon EC2 instance.

For human hairpins and virus the calculations costed nearly 2 USD and (Table 3.7).
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Figure 3.2. Scatter plot of features’ information gain (x) and virus mean time (y). Time
axis is in logarithmic scale. Results are obtained in KNIME. Each dot
represents a feature.

3.3. Correlation Analysis

Human hairpins are used for the correlation study and for pseudo data correlation

analysis are done too. Linear Correlation node takes each time a feature and returns the

correlation score with each feature. This is done for all of the features. The data is plotted

in Orange as distance map is shown in Figure 3.4.

If the color is red, it means that the correlation is high having no distance between

the features. Therefore, in the middle is a straight line showing the correlation of the

feature with itself. Features are clustered, therefore, some regions form same colour

distribution because of being correlated. Top 10 of fastest and more informative features

are selected for an additional distance plot (Figure 3.5).

dns features for both P value and Z score are highly correlated with each other.

Another high correlation is observed between assl, assl/hpl and assl/sl features. This is

normal as they are all related with assl feature and are normalization of assl feature to

hpl and stem length (sl). To compare human hairpin and pseudo data correlation results,

no sorting or clustering have been applied to the features meaning the distance map are

plotted with listed feature. Pseudo data correlation result shows a slightly similar colour
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Table 3.1. Time and information gain table of features. Results are obtained in Kn-
ime. 10 features are selected according to their time rank. Human hairpins
are used. Each row represents a feature indicated and its time rank, mean
time in milliseconds, information gain rank and information gain score.
Information about the feature are found in Table A1.

Feature Time Rank Mean Time (ns) Information Gain Rank Information Gain
#A++#A 1 0.004 449 0.017
#A 2 0.008 450 0.017
#C++#A 3 0.012 600 0.007
#C 4 0.017 535 0.011
#AU 5 0.019 524 0.012
#AC 6 0.020 777 0
#AA 7 0.021 481 0.015
#AG 8 0.021 781 0
#A.(. 9 0.021 772 0
#A..( 10 0.022 244 0.037

distribution as human hairpin result (Figures 3.6, 3.7).

For pseudo data high correlation is observed between assl, assl/hpl and assl/sl

features (Figure 3.7). However different from human hairpin data, pseudo sample shows

not direct as high correlation as human hairpins’ in between dns features (Figure 3.7).

assl based features and dns based features show more correlation for pseudo data than

human hairpins data. In human hairpins the dns features represent for the specific feature

calculated, a correlation in between P value and Z score, however this relation is ruined

for some parts of pseudo data, by having for Z score based more correlation with other

features than the P value based dns feature (Figures 3.6 and 3.7).

Moreover, the correlation coefficients have been calculated for features from Ta-

ble 3.6 and the distance map revealed that they are not correlated with each other, are

distanced (Figure 3.8).

3.4. miRNA prediction

The pre-miRNA prediction results are given as boxplots. Accuracy value is given

in y axis indicating how accurate the prediction is made for both the negative and positive

results (Figures 3.9 and 3.10).

The negative predictions have larger interquartile range than the positive ones,

where as the medians presented as a line in the box and lower quartiles are higher for
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Table 3.2. Time and information gain of features. Results are obtained in KNIME. 10
features are selected according to their time rank. Virus data is used. Each
row represents a feature indicated and its time rank, mean time in millisec-
onds, information gain rank and information gain score. Information about
the features can be found in Table A1.

Feature Time Rank Mean Time (ms) Information Gain Rank Information Gain
#A++#A 1 0.007 449 0.018
#C++#A 2 0.013 600 0.007
#C 3 0.015 535 0.012
#AC 4 0.018 777 0.000
#AG 5 0.018 781 0.000
#C++#C 6 0.020 534 0.012
#G++#A 7 0.020 557 0.011
#A(.. 8 0.021 261 0.035
#A.(( 9 0.021 769 0.000
#A.(. 10 0.022 772 0.000

positives (Figures vbox, gbox. Virus genome give rise to 50 negatively and 131 positively

selected computationally predicted pre-miRNA hairpins (Figures 3.9). However only two

hairpin fragments are selected, the top two with high accuracy; 0.90 and 0.94.

Genes give rise to 126613 negatively and 102110 positively selected computation-

ally predicted pre miRNA hairpins (Figures 3.10). As sequences had been colleted from

different genomic parts of the genes, there are overlaps. There had been hairpins created

with same sequence which is used to compare the accuracy values and thus kind of test the

created model. Out of all 46632 sequence is unique. Top predictions with 0.99 accuracy

are selected which are observed as outliers above whisker.

3.5. BLASTN and Reactome

The two hairpin fragments predicted from virus do not show total alignment to a

known human mature miRNA. The fragment with accuracy score 0.94 aligned with ten

match and seven mismatch to hsa-miR-4306 (Figure 3.11).

Two hairpin fragments predicted from genes BLASTN result against known hu-

man mature miRNAs are given as Figure 3.12 for TAB2 gene based fragment and Figures

3.13 and 3.14 for BBC3 based fragment.

This ones are selected as they show total alignment. Computationally predicted

pre-miRNAs show known mature miRNA sequences buried at locations where from pre-
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Table 3.3. Time and information gain table of features. Results are obtained in KN-
IME. 10 features are selected according to their information gain rank.
Human hairpins are used. Each row represents a feature indicated and its
information gain rank, information gain score time rank and mean time in
milliseconds. Information about the features can be found in Table A1.

Feature Information Gain Rank Information Gain Time Rank Mean Time (ns)
assl/hpl 1 0.388 528 0.218
assl/sl 2 0.385 592 0.231
assl 3 0.384 168 0.128534
dns p(efe) 4 0.379 855 202511
hpmfe rf I1 5 0.377 846 270434
dns p(hpmfe rf) 6 0.372 853 202509
dns z(efe) 7 0.351 857 202511
dns z(hpmfe rf) 8 0.346 859 202511
dns z(hpmfe rf/hpl) 9 0.340 861 202514
dns p(hpmfe rf/hpl) 10 0.291 858 202511

Table 3.4. Time and information gain table of features. Results are obtained in KN-
IME. 10 features are selected according to their information gain rank.
Virus data is used. Each row represents a feature indicated and its in-
formation gain rank, information gain score time rank and mean time in
milliseconds. Information about the features can be found in Table A1.

Feature Information Gain Rank Information Gain Time Rank Mean Time (ms)
assl/hpl 1 0.389 558 0.202
assl/sl 2 0.385 557 0.202
assl 3 0.384 403 0.175
dns p(efe) 4 0.380 855 12563.119
hpmfe rf I1 5 0.377 846 19.766
dns p(hpmfe rf) 6 0.373 853 12563.043
dns z(efe) 7 0.351 857 12563.214
dns z(hpmfe rf) 8 0.347 858 12563.343
dns z(hpmfe rf/hpl) 9 0.341 865 12566.250
dns p(hpmfe rf/hpl) 10 0.292 862 12565.696

miRNA give rise to mature miRNAs. Figure 3.12 shows highlighted sequences for hsa-

miR-548ar-5p, hsa-miR-548au-5p, hsa-miR-548ay-5p and Figure 3.13 hsa-miR-3191-3p

and Figure 3.14 for hsa-miR-3191-5p. Fragment from BCC3 has sequences buried of the

the miRNA both 3p and 5p matures. Just hsa-miR-548au-5p has known targets and the

further analysis of those target genes in Reactome showed mostly association with Gene

Expression and Immune System pathways.
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Table 3.5. Information gain and human hairpins-virus time table of features. Results
are obtained in KNIME. Features are taken from Figure 3.2 region x>0.2
y<106. Each row represents a feature indicated and its information gain
rank, human hairpins and virus mean time in milliseconds. Information
about the feature can be found in Table A1.

Feature Information Gain Human Mean Time (ms) Measles Mean Time (ms)
assl/hpl 0.389 0.219 0.202
assl/sl 0.385 0.231 0.202
assl 0.384 0.129 0.175
subu/sl 0.265 0.179 0.151
bpp/sl 0.265 0.234 0.237
subu/hpl 0.254 0.165 0.167
hpmfe rf I1/hpl 0.244 0.216 0.200
lsr(%bp) 0.244 0.118 0.106
hpmfe rf I1/sl 0.242 0.318 0.271
lsr(%bp)/hpl 0.235 0.174 0.155
lsr(%bp)/sl 0.235 0.262 0.229
bpp/hpl 0.225 0.221 0.211
lscm 0.210 0.106 0.135
dG/sl 0.208 0.211 0.195

Table 3.6. Information gain and human hairpins-virus time table of features. Results
are obtained in Knime. Features that are not normalized are taken from
Figure 3.2 region x>0.2 y<106 Each row represents a feature indicated
and its information gain rank, human hairpins and virus mean time in mil-
liseconds. Information about the features can be found in Table A1 and
Figures A.1, A.2, A.6, A.3 and A.4.

Feature Information Gain Human Time (ms) Measles Time (ms)
assl 0.384 0.129 0.175
lsr(%bp) 0.244 0.118 0.106
lscm 0.210 0.106 0.135
asal 0.194 0.115 0.114
hpmfe rf I3 0.189 0.421 0.382

Table 3.7. Amazon EC2 m4.large instance for 12 cent per hour. Human miRBase
hairpins and virus data feature calculation and feature time calculation on
Amazon are given as minute (m) and second (s). The overall calculations
cost 1USD 92 cent.

Human Hairpins Virus
Real Time 492m18s 40m35s
User Time 768m4s 43m19s
System Time 135m32s 14m21s
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Figure 3.3. Scatter plot of features’ log10 normalized mean time scores for human (x)
and virus (y). Results are obtained in Knime. Each dot represents a feature.

Figure 3.4. Human Correlation study of all features are plotted as distance map. Or-
ange is used to handle the data. The features are represented with ordering
leaves clustering. The color red represents the distance 0 and yellow 14.60.
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Figure 3.5. Human Correlation study of selected features are plotted as distance map.
Features are selected from top 10 time rank and top 10 information gain
rank. Orange is used to handle the data. The features are represented with
ordering leaves clustering. The color red represents the distance 0 and
yellow 2.80. Information about the features can be found in Table A1
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Figure 3.6. Human and pseudo Correlation study of all features are plotted as distance
map. Orange is used to handle the data. The features are represented in
alphabetical ordering. The color red represents the distance 0 and yellow
14.60.
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Figure 3.7. Human and pseudo correlation study of selected features are plotted as
distance map. Features are selected from top 10 time rank and top 10
information gain rank. Orange is used to handle the data. The features are
represented as alphabetical ordering. The color red represents the distance
0 and yellow 2.80. Information about the feature are found in Table A1.
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Figure 3.8. Distance map of selected features that are not normalized are taken from
Figure 3.2 region x>0.2 y<106. Feature from Table 3.6 are plotted as dis-
tance map. Orange is used to handle the data. The features are represented
as with ordering leaves clustering. The color red represents the distance 0
and yellow 2.00. Information about the features can be found in Table A1
and Figures A.1, A.2, A.6, A.3 andA.4.

30



Figure 3.9. Measles genome pre-miRNA prediction based on human model. The box-
plots show the distribution of accuracy values of both negative (50 hairpin)
and positive (131 hairpin) results.

Figure 3.10. Measles genome related human genes pre-miRNA prediction based on hu-
man model. The boxplots show the distribution of accuracy values of both
positive (102110) and negative (126613) results. The 46632 of the se-
quences are unique.
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Figure 3.11. Measles virus genome hairpin fragment predicted based on human model
with prediction class accuracy of 0.99 is shown and the BLASTN par-
tially alignment part with mature hsa-miR-4306 is highlighted. Plotted via
VARNA v3-91 (Darty et al., 2009).

Figure 3.12. TAB2 gene hairpin fragment predicted based on human model with predic-
tion class accuracy of 0.99 is shown and the BLASTN alignment with ma-
ture has-miR-548au-5p is highlighted. Plotted via VARNA v3-91 (Darty
et al., 2009).

Figure 3.13. BBC3 gene hairpin fragment predicted based on human model with pre-
diction class accuracy of 0.99 is shown and the BLASTN alignment with
mature hsa-miR-3191-3p is highlighted. Plotted via VARNA v3-91 (Darty
et al., 2009).
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Figure 3.14. BBC3 gene hairpin fragment predicted based on human model with pre-
diction class accuracy of 0.99 is shown and the BLASTN alignment with
mature hsa-miR-3191-5p is highlighted. Plotted via VARNA v3-91 (Darty
et al., 2009).
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CHAPTER 4

DISCUSSION

There are over 800 features used in this study (Table A). The high abundance of

the features affects the calculation time greatly. Studies are pointing out that the computa-

tional power is determined by feature, classifier, algorithm, machine learning approaches

in computational miRNA detection (de ON Lopes et al., 2014; Gudys et al., 2013; Tem-

pel and Tahi, 2012; Tempel et al., 2015). Most of the studies are comparing their own

miRNA prediction algorithm with already existing ones, which may give us a slight idea

about the effects of features used in those studies on calculation time as there are many

factors affecting the computational power. However, there are studies in which the calcu-

lation time of the features are compared by assigning them to different overlapping groups

(de ON Lopes et al., 2014). This study is unique as it has a huge amount of features, the

calculation time of each of the feature is analysed separately which is just dependent on

the feature calculation method, is not effected by machine learning methods.

According to Tables 3.1, 3.4 and A the fastest calculated features are the sequential

type nucleotide count features (Lai et al., 2003) and dinucleotide features (Ng and Mishra,

2007). They are followed by sequential - structural type triplet count features (Xue et al.,

2005). These features are faster as their algorithmic complexity is lower.

The first ranked feature in Tables 3.1 and 3.4, #A++#A is a sequential type fea-

ture which represents the count of A bases in the hairpin summed with itself (Zhang

et al., 2006). The second fastest feature is #A nucleotide count - number of A bases in

the hairpin. The feature #A++#A requires firstly the calculation of #A. When #A++#A

feature needs to be calculated the code checks the value of #A and without calculating

the #A again and retrieves the value already calculated and returns #A++#A. Therefore,

#A++#A is calculated faster than #A. This same effect can be seen for #C++#A and #C

(Table 3.1). There are features normalized to hpl, stem length (sl); features calculated by

basic mathematical operations (addition, substitution, division and proportion). In order

to reduce the overall calculation time of all of these operations, features that are already

calculated are parsed and the value of them are used in the calculation of these features

based on basic mathematical operations. However; further in some studies, the feature
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used to calculate other features by such operations may not be used, such as after feature

selection has been applied. Thus such features may take longer computational times as

they will also require computation of their dependent features, even though the dependent

feature is not used.

Another factor that affects the calculation time of a feature is the external tool

usage, such as RNAfold 2.1.3 (Lorenz et al., 2011) which is used in the creation of sec-

ondary structures for each feature and used for thermodynamic features calculation. There

are other secondary structure predictors; however, in this study RNAfold is used as being

on of the widely accepted ones and used by miRBase v.20 (Kozomara and Griffiths-Jones,

2014; Tempel and Tahi, 2012). The calculation rank of thermodynamic features are lower

than others, however they are among the most discriminative ones (Tables A and 3.3). Ac-

cording to the study of Ding et al., 2010, thermodynamic features are more informative

than sequential and structural ones.

In order to identify the discriminative power, information gain is a widely applied

method (Chen et al., 2016; Khalifa et al., 2016; Uğuz, 2011; Yousef et al., 2016). Accord-

ing to the Table 3.3 a structural feature assl (average size of symmetric bulges) (Sewer

et al., 2005) has the best scores followed with probabilistic features; dinucleotide shuf-

fling method (dns) (Jiang et al., 2007) both with P value (Jiang et al., 2007) and Z score

(Ng and Mishra, 2007) applied to thermodynamic features are the most informative ones.

As thermodynamic ones are already informative, applying dns makes them most discrim-

inative features. The dns features takes the concerned hairpin sequence and shuffles it

1000 times randomly, then the specified feature is calculated for the shuffled ones and the

distance between the concerned sequence and the shuffled is calculated each time, scored

with P value and Z Score, separately (Figure A.5) (Jiang et al., 2007). Our concern was

before the study; dns method would costs 1000 times more than the other features, but is it

worth? de ON Lopes et al., 2014, eliminate the usage of dns features because of their high

computational costs despite finding its predictive power to be high. Moreover, Jiang et al.,

2007 and Chen et al., 2016, found that minimum free energy (structural-thermodynamic,

hpmfe rf (Jiang et al., 2007) and hpmfe rs (Çakir and Allmer, 2010) and P value features

are the most discriminative ones and Xuan et al., 2011, which did not use dns based fea-

tures found that thermodynamic features are the most informative ones. Another study de

ON Lopes et al., 2014, consists selection of features mostly of energy based ones.

The Table A reveals that structural features are more discriminative than sequential

ones. In literature the same observations are seen. van der Burgt et al., 2009, selected
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eighteen features consisting of nine structural features which are more informative than

remaining sequential ones; and Chen et al., 2016, used triplet count features (sequential-

structural (Xue et al., 2005)) and trinucleotide features (sequential (Chen et al., 2016))

and concluded that structural-sequential features are more informative than sequential

ones. However, the findings of Wei et al., 2014, are opposite than stated, they found that

sequential features are more informative than structural features, minimum free energy

feature and P value features. Most recent publication analyses the result of Wei et al.,

2014, and comes to conclusion that their findings are different because of their negative

data and states that the feature is discriminative if it shows variability on positive and

negative dataset (Chen et al., 2016). One study used four triplet structure features A(((,

U(((, G((( and C((( as they are claimed to be more informative than the other remaining 28

(Gudys et al., 2013). In this study A((( and U((( structures triplet count, triplet frequency

(Xue et al., 2005) and their normalizations were more informative than the other ones.

If features are correlated and somehow give the same information it is not much

helpful to use them in miRNA prediction (Yousef and Allmer, 2012b). Therefore, the

correlation analysis is made to see how beneficial the features are. For example in the

stem the bounds can constitute AU bonds (st(A-U), not a soure) and the number of U base

and A base should be correlated. However, as there in the stem can be GU bonds (st(G-

U), not a soure) too, it is not logical to conclude that it would be sufficient to count either

A or U nucleotide in the bounds to come up with AU bounds. However, AU content is an

important discriminator of miRNA from other RNAs and it is thought that AU bonds give

the pre-miRNA fragile structure so that they can be processed easily to mature miRNAs

via RISC complex (Zhang et al., 2006). Further, it is known that in miRNAs A base is less

found than the other ones and U nucleotide has the most common occurrence that may

have a signal role in miRNA biogenesis (Wang, 2013; Zhang et al., 2006). Combining

these two information leads to the idea that surplus of AU bonds over other ones should

be an informative feature. The table A shows that AUsGC, AUsCG, GCsAU, CGsAU,

UAsGC, UAsCG, GCsUA and CGsUA features rank two to three times better compared

to other XYsWZ features van der Burgt et al. (2009), which have information scores out

of first of quartile. According to Figure 3.4 st(A-U) gives high correlation at fifth rank

with AU and UA bonds surplus over other bonds.

Correlation studies are used in order to apply feature selection. In the study van

der Burgt et al., 2009, some informative features are not selected as they were highly

correlated with other features having higher information gain score; minimum free energy
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based P value and Z score features were not further used because of their high correlation

with minimum free energy normalized to hpl and GC content (hpmfe rf I1 (Zhang et al.,

2006)). G+C count is a commonly used pre-miRNA predicting feature because of its

impact on secondary structure (de ON Lopes et al., 2014; Grad et al., 2003; Zhang et al.,

2006). However, by defining the feature hpmfe rf I1 to be the most discriminative one and

using further, van der Burgt et al., 2009, eliminates the feature G+C count as they claim

that its content differs according to taxonomic dataset. Furthermore, this information

make the above given results of XYsWZ feature more important as the remaining bonds

where either GC or CG would be found for WZ in above sample and hence affect the result

of these features. If the feature selection would be done just according to information gain

score and given a cut off rank 100, most of the features having biological meaning would

be lost. Therefore, feature selection should be applied carefully by having biological

meaning in mind and not just considering the numerical values.

For this study Pearson’s product-moment coefficient is used, meaning that two

variables are correlated according to their numeric values. Therefore, the correlation ob-

served among the features is not a biological one, but it is a numerical correlation. There

may be cases like dns features being more correlated within each other as in Figures 3.5

and 3.7, despite a similar correlation not being observed among features given as param-

eters to those dns features. Moreover, the correlation may not bee seen between the dns

feature applied for a feature and the feature. For example, dns(hpl) and hpl have a correla-

tion coefficient of 0.304 (-1 shows strong negative correlation and 1 shows strong positive

correlation).

For the features that are calculated faster than other (the top 10 at least) the infor-

mation gain scores are observed to be low and the features having high information gain

are, in contrary, very slow (Table 3.1, 3.2, 3.3 and 3.4). The features can be calculated

fast; however, may not have much biological meaning, or express high specificity for

positive data and have not much effect to distinctive negative and positive pre-miRNAs.

However, the relation between the time taken to calculate a feature and information gain

of that feature is widely spread so there are features which follow linear distributions too

(Figure 3.1, 3.2). From the scatter plot Figure 3.2, the features which are not normalized,

have high information gain scores (x>0.2) and low mean times (y<106) are highlighted in

Table 3.6. It was aimed to obtain the informative features which take rather less time in a

logical window. Each feature from Table 3.6 are defined in Figures A.1, A.2, A.6, A.3 and

A.4 and four of them are structural and one is structural-thermodynamic feature which is
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a consistent result with the recent findings in the literature (Chen et al., 2016). Moreover,

the boxplots have different numerical ranges and this defines the discriminative power of

a feature, too. Their correlation analyses in Figure 3.8 showed that they are not correlated

with each other which can be concluded that their usage together would be beneficial.

miRNAs can be predicted from different parts of the genome. Therefore, datasets

were retrieved from different genomic parts, separately; and in order to hold the genomic

location for further studies in case usage (Section 2.1). The selection of pseudo data was

important as it effects the information gain score, the discriminative characteristic of the

features defining pre-miRNAs and hairpin prediction accuracy (Chen et al., 2016; Khalifa

et al., 2016; Yousef et al., 2016; Wei et al., 2014). Further, the in balance between positive

and pseudo data effects the machine learning algorithm (on model training, in balance of

classifiers (Ding et al., 2010; Saçar and Allmer, 2013) , however as known pre-miRNAs

are limited with that in miRBase database, at that point nothing could be changed. In this

study two class classification has been applied as it was aimed before the model creation

to define the discriminative power of the features. However, for further studies where

the predictive power of the features are anslysed one class classification is an option too.

Furthermore, the study Khalifa et al., 2016, reveals that one class classification has not

much effect on feature selection compared to two class classification. However, one class

classification is mostly applied when there is no proper negative dataset (Allmer, 2012).

In this study cost has the meaning of calculation time, therefore time measure-

ments are mentioned. However, to take the meaning of cost as money, the results pre-

sented on Table 3.7 can be considered. The overall time for human hairpin data is higher

than virus one as the dataset size is bigger. The time for virus calculation is fast and user

friendly, while the time spent to calculate the human hairpins was slower for 1828 hairpin.

Human hairpins as positive class and pseudo data as negative class are used for

cost and benefit analysis and model creation. However, the two data are not in equal

amounts. As the pseudo data is seven fold more than the human hairpins it is important

to distribute the negative data during model creation. Therefore, in Section 2.3.3, after

equalizing the datasets, negative data was further used to construct more Random Forest

Predictors and a part of the pseudo data was used for testing. As defined by Saçar and

Allmer, 2013, 70% is used for training and 30% for testing the model.
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The case study is shown with measles virus (MeV) which is from Morbillivirus

genus. MeV is a single-stranded negative-sense, non-segmented RNA virus; therefore,

their replication occurs within the cytoplasm. Because of that, the mechanism is assumed

to take place similar to those of mitrons as one RNA encodes more than one protein.

A model is created to predict miRNAs from the MeV genome. The MeV virus KEGG

pathway is checked and gene informations are observed from there. As the genes do

not have miRNA correlated coding information, the genes sequences are predicted on the

model too. The prediction resulted with higher positive compared to negatives (Figures

3.9 and 3.10). A model was created to analyse the case study, that way it was shown that

the proposed features are powerful by pre-miRNA detection as result Figures 3.11, 3.12,

3.13 and 3.14 are obtained which have sequences of known mature miRNAs embedded.

Furthermore, it was interesting that the computationally predicted BCC3 based hairpin

Figure 3.13 has the 3p and Figure 3.14 the 5p mature of the same miRNA and with a shift

of 3p end predicted one towards the hairpin loop was interesting as it is known that from

a pre-miRNA if matures obtained from both two arms, a shift is observed in one to end

because of Drosha and Dicer cleavage cites (Ha and Kim, 2014). Prediction result Figure

3.12 has a mature miRNA sequence buried hsa-miR-548au-5p that target genes which are

related with immune system revealed by Reactome analyses. It may be the case that when

the human is infected by MeV, TAB2 based pre-miRNA targets immune system related

genes, which is normal while disease.
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CHAPTER 5

CONCLUSION

miRNAs are studied as they are key regulators in post-transcriptional regulation of

gene expression. Because biological conditions can make the experimental set-up difficult

and hinder miRNA identification, computational miRNA predictions are more promising.

It is important to set up the features properly so that accurate predictions are made. How-

ever, feature selection is NP hard (Amaldi and Kann, 1998). Therefore, in this study cost

and benefit analyses of the pre-miRNA describing features is studied.

pre-miRNA prediction tools does not relay on one feature, they depend on dif-

ferent feature combinations (Bentwich, 2008). Studies show that when different fea-

ture set applied, different results are obtained and their computational cost differs too

(de ON Lopes et al., 2014; Ding et al., 2010). It come up that features showing differ-

ent weighting and features from different groups and a number of 50 features should be

used together (Bentwich, 2008; de ON Lopes et al., 2014; Ding et al., 2010; Saçar and

Allmer, 2013; Yousef et al., 2016). Therefore, it is important to analyse each feature and

for further feature selection studies different feature groups can be analysed on different

datasets for their predictive power.

As observed from the results it is not possible to decided sharply how the feature

selection should be done. The information gain, correlation, time analysis show that there

are many factors effecting the selection.

The aim was not do feature selection however to conclude five informative features

are selected that are calculated fast and it come up that they are not correlated with each

other. The features are structural assl, lsr(%bp), lscm, asal and structural-thermodynamic

hpmfe rf I3.
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APPENDIX A

RESULTS

Figure A.1. Structure of hsa-mir-34b (MI0000742) is shown. The feature ”average
size of symmetrical loops” assl, is shown for the hairpin. The feature has
a distribution with a minimum of 4, a mean of 5 and a maximum of 22
result for the human miRNA data; while the pseudo has a distribution with
a minimum of 4, an mean of 6 and a maximum of 30. The feature is
implemented from (Sewer et al., 2005). Fold is created with RNAfold
2.1.3 (Lorenz et al., 2011) and image is drawn using VARNA v3-91 (Darty
et al., 2009).
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Figure A.2. Structure of hsa-mir-34b (MI0000742) is shown. The feature ”bonds in the
longest symmetrical stretch” lsr(%bp), is shown for the hairpin. The fea-
ture has a distribution with a minimum of 3, a mean of 17 and a maximum
of 49 result for the human miRNA data; while the pseudo has a distribu-
tion with a minimum of 2, an mean of 8 and a maximum of 29. The feature
is implemented from (Sewer et al., 2005). Fold is created with RNAfold
2.1.3 (Lorenz et al., 2011) and image is drawn using VARNA v3-91 (Darty
et al., 2009).
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Figure A.3. Structure of hsa-mir-34b (MI0000742) is shown. The feature ”average
size of asymmetrical loops” asal, is shown for the hairpin. The feature has
a distribution with a minimum of 1, an average of 4 and a maximum of
18 result for the human miRNA data; while the pseudo has a distribution
with a minimum of 1, an average of 5 and a maximum of 29. The feature
is implemented from (Sewer et al., 2005). Fold is created with RNAfold
2.1.3 (Lorenz et al., 2011) and image is drawn using VARNA v3-91 (Darty
et al., 2009).
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Figure A.4. Structure of hsa-mir-34b (MI0000742) is shown. The feature ”minimum
free energy index 3” hpmfe rf I3, is shown for the hairpin. The feature
has a distribution with a minimum of -0.98, an average of -0.4 and a max-
imum of -0.07 result for the human miRNA data; while the pseudo has a
distribution with a minimum of -0.07, an average of -0.3 and a maximum
of 0.04. The feature is implemented from . Fold is created with RNAfold
2.1.3 (Lorenz et al., 2011) and image is drawn using VARNA v3-91 (Darty
et al., 2009).
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Figure A.5. ”P value using Dinucleotide Shuffling” dns p(parameter) is shown for
hsa-mir-34b (MI0000742) and hpmfe rf (the minimum free energy) as
dns p(hpmfe rf).The feature has a distribution with a minimum of 0, an
average of 0.05 and a maximum of 0.97 result for the human miRNA data;
while the pseudo has a distribution with a minimum of 0, an average of
0.41 and a maximum of 0.99. The feature is implemented from (Jiang
et al., 2007). Fold is created with RNAfold 2.1.3 (Lorenz et al., 2011) and
image is drawn using VARNA v3-91 (Darty et al., 2009).
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Figure A.6. Structure of hsa-mir-34b (MI0000742) is shown. The feature ”average
size of symmetrical loops” assl, is shown for the hairpin. The feature has a
distribution with a minimum of 0, an average of 5.85 and a maximum of 30
result for the human miRNA data; while the pseudo has a distribution with
a minimum of 0, an average of 5.85 and a maximum of 30. The feature
is implemented from (Sewer et al., 2005). Fold is created with RNAfold
2.1.3 (Lorenz et al., 2011) and image is drawn using VARNA v3-91 (Darty
et al., 2009).
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Table A.1.: pre-miRNA defining features, for each feature Acronym

in the code, Synonyms of the feature from publications, Number (N),

Name, Type and the Study which the feature is implemented from are

stated. The feature implemented new are stated with no source as ”na”

not a source.

Acronym Synonyms N Name Type Study

#A... .. #U((( A... .. U((( 32 Triplet count
Sequential

Structural

(Xue et al.,

2005)

#A .. #U A .. U 4 Nucleotide count Sequential
(Lai et al.,

2003)

#A++#U A+U content 1 A+U content Sequential
(Zhang

et al., 2006)

#AA .. #UU AA - UU 16
Dinucleotide

count
Sequential

(Ng and

Mishra,

2007)

#G++#C G+C content 1 G+C content Sequential
(Zhang

et al., 2006)

%A .. %U %A .. %U 4
Nucleotide

percent
Sequential

(Lai et al.,

2003)

%AA .. %UU %AA .. %UU 16
Dinucleotide

percent
Sequential

(Ng and

Mishra,

2007)

*A... .. *U((( A... .. U((( 32 Triplet frequency
Sequential

Structural

(Xue et al.,

2005)

bpp/sl avg bp stem 1

Base pairing

propensity/ stem

length

Structural
(Ding et al.,

2010)

bpd

D, diversity,

ensemble

diversity, bpd

1
Base pairing

distance

Structural

Thermody-

namic

(Freyhult

et al., 2005)

bpd/hpl D/hpl 1

base pairing

distance/ hairpin

length

Structural

Thermody-

namic

(Freyhult

et al., 2005)

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

bpp bpp, dp 1
Base pairing

propensity
Structural

(Ng and

Mishra,

2007)

bpp/hpl bpp/hpl 1

Base pairing

propensity/

hairpin length

Structural
(Ding et al.,

2010)

bpp/nl dP/n loops 1

Base pairing

propensity/

number of loops

Structural
(Ding et al.,

2010)

bpp/ns bpp/nStem 1

Base pairing

propensity/

number of stem

Structural
(Ding et al.,

2010)

dc dc 1
Degree of

compactness
Structural

(Fera et al.,

2004), (Gan

et al., 2004)

dG dG mf 1 Gibbs free energy
Thermody-

namic

(Ng and

Mishra,

2007)

dG/hpl dG mf/L 1

Gibbs free

energy/ hairpin

length

Thermody-

namic

(Ng and

Mishra,

2007)

dH dH mf 1 Enthalpy
Thermody-

namic

(Batuwita

and Palade,

2009)

dH/hpl dH mf/L 1
Structure

Enthalpy

Thermody-

namic

(Batuwita

and Palade,

2009)

dme diff 1

Difference of

MFE and EFE/

hairpin length

Thermody-

namic

(Batuwita

and Palade,

2009)

dr dr 1 Direct repeat

Sequential

Structural

Thermody-

namic

(Bentwich,

2008)

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

dS dS mf 1 Entropy
Thermody-

namic

(Batuwita

and Palade,

2009)

dS/hpl dS mf/L 1 Structure Entropy
Thermody-

namic

(Batuwita

and Palade,

2009)

ediv

diversity,

ensemble

diversity, D, bpd

1
Ensemble

Diversity

Thermody-

namic

(Batuwita

and Palade,

2009)

efe EFE 1
Ensemble Free

Energy

Thermody-

namic

(Batuwita

and Palade,

2009)

efq Freq 1
Ensemble

frequency

Thermody-

namic

(Batuwita

and Palade,

2009)

#G++#C/hpl GhC,G+C content 1 G+C content Sequential
(Zhang

et al., 2006)

hll HLL 1
Hairpin loop

length
Structural

(Bentwich,

2008)

hpmfe rf/hpl hmfe/hpl, mfe4 1
Hairpin MFE/

hairpin length

Structural

Thermody-

namic

(Bentwich,

2008)

hpmfe rf hpmfe 1 Hairpin MFE

Structural

Thermody-

namic

(Jiang et al.,

2007)

hpmfe rs hpmfe 1 hairpin mfe

Structural

Thermody-

namic

(Çakir and

Allmer,

2010)

hpl hpl 1 Hairpin length Structural
(Bentwich

et al., 2005)

hpl/ns hpl/nStem 1
Hairpin length/

number of stem
Structural na

ir ir 1 Inverted repeat
Sequential

Structural

(Bentwich,

2008)

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

mbs
MBS, largest

bulge
1

Maximum bulge

size
Structural

(Bentwich,

2008)

hpmfe rf I1 MFEI1, MFEahl 1 MFE index 1

Structural

Thermody-

namic

(Zhang

et al., 2006)

hpmfe rf/ns

MFEI2,

mfe/nStems,

mfe/ns

1 MFE index 2

Structural

Thermody-

namic

(Ng and

Mishra,

2007)

hpmfe rf/ns/hpl
MFEI3,

hpmfe rf/hpl/nl
1 MFE index 3

Structural

Thermody-

namic

(Batuwita

and Palade,

2009)

hpmfe rf/hpl
MFEI4,

hpmfe rf/hpl
1 MFE index 4

Structural

Thermody-

namic

(Batuwita

and Palade,

2009)

nl n loops 1 Number of Loops Structural
(Xue et al.,

2005)

ns nStem 1 Number of Stems Structural
(Xue et al.,

2005)

dns p(efe) p(EFEp) 1

P value using

dinucleotide

shuffling for efe

Probabilistic

Thermody-

namic

(Jiang et al.,

2007)

Q Q 1 Shannon entropy

Probabilistic

Thermody-

namic

(Ng and

Mishra,

2007)

Q/hpl Q/hpl 1
Shannon entropy/

hairpin length

Probabilistic

Thermody-

namic

(Ng and

Mishra,

2007)

st(A-U)/ns AUS/nStem 1

AU bonds in

stem / number of

stem

Sequential

Structural
na

st(A-U)/sl AUS/aStl 1

AU bonds in

stem / stem

length

Sequential

Structural
na

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

st(G-C)/ns GCS/nStem 1

GC bonds in

stem / number of

stem

Sequential

Structural
na

st(G-C)/sl GCS/aStl 1

GC bonds in

stem / stem

length

Sequential

Structural
na

st(G-U)/sl GUS/aStl 1

GU bonds in

stem / stem

length

Sequential

Structural
na

sl stem length 1 Stem length Structural
(Lai et al.,

2003)

dns p(bpd) p(Dp) 1

P value using

dinucleotide

shuffling for bpd

Probabilistic

Structural

Thermody-

namic

(Jiang et al.,

2007)

dns p(bpd/hpl) p(D/hplp) 1

P value using

dinucleotide

shuffling for bpd/

hpl

Probabilistic

Structural

Thermody-

namic

(Jiang et al.,

2007)

dns p(bpp) p(bppp) 1

P value using

dinucleotide

shuffling for bpp

Probabilistic

Structural

(Jiang et al.,

2007)

dns p(bpp/hpl) p(bpp/hplp) 1

P value using

dinucleotide

shuffling for bpp/

hpl

Probabilistic

Structural

(Jiang et al.,

2007)

dns p(hpl) P/hpl 1

P value using

dinucleotide

shuffling for hpl

Probabilistic

Structural

(Jiang et al.,

2007)

dns p(hpmfe rf) p(hpmfe rfp) 1

P value using

dinucleotide

shuffling for mfe

Probabilistic

Structural

Thermody-

namic

(Jiang et al.,

2007)

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

dns p(hpmfe rf/

hpl)
p(hpmfe rf/ hplp) 1

P value using

dinucleotide

shuffling for mfe/

hpl

Probabilistic

Structural

Thermody-

namic

(Jiang et al.,

2007)

dns p(Q) p(Qp) 1

P value using

dinucleotide

shuffling for Q

Probabilistic

Thermody-

namic

(Jiang et al.,

2007)

dns p(Q/hpl) p(Q/hplp) 1

P value using

dinucleotide

shuffling for Q/

hpl

Probabilistic

Thermody-

namic

(Jiang et al.,

2007)

dns z(bpd) z(DZ) 1

Z score using

dinucleotide

shuffling for bpd

Probabilistic

Structural

Thermody-

namic

(Ng and

Mishra,

2007)

dns z(bpd/hpl) z(D/hplZ) 1

Z score using

dinucleotide

shuffling for bpd/

hpl

Probabilistic

Structural

Thermody-

namic

(Ng and

Mishra,

2007)

dns z(bpp) z(bppZ) 1

Z score using

dinucleotide

shuffling for bpp

Probabilistic

Structural

(Ng and

Mishra,

2007)

dns z(Q) z(QZ) 1

Z score using

dinucleotide

shuffling for Q

Probabilistic

Thermody-

namic

(Ng and

Mishra,

2007)

dns z(Q/hpl) z(Q/hplZ) 1

Z score using

dinucleotide

shuffling for Q/

hpl

Probabilistic

Thermody-

namic

(Ng and

Mishra,

2007)

st(A-U) 1
AU bonds in

stem
Sequential na

st(G-C) 1
GC bonds in

stem
Sequential na

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

st(G-U) 1
GU bonds in

stem
Sequential na

Tm Tm mf 1
Melting

temperature

Thermody-

namic

(Ding et al.,

2010)

Tm/hpl Tm mf/L 1

Melting

temperature/

hairpin length

Thermody-

namic

(Ding et al.,

2010)

dns z(bpp/hpl) z(bpp/hplZ) 1

Z score using

dinucleotide

shuffling for bpp/

hpl

Probabilistic

Structural

(Ng and

Mishra,

2007)

dns z(efe) z(EFEZ) 1

Z score using

dinucleotide

shuffling for efe

Probabilistic

Thermody-

namic

(Ng and

Mishra,

2007)

dns z(hpmfe rf) z(hpmfe rfZ) 1

Z score using

dinucleotide

shuffling for mfe

Probabilistic

Structural

Thermody-

namic

(Ng and

Mishra,

2007)

dns z(hpmfe rf/

hpl)
z(hpmfe rf/ hplZ) 1

Z score using

dinucleotide

shuffling for mfe/

hpl

Probabilistic

Structural

Thermody-

namic

(Ng and

Mishra,

2007)

#nisl h #nisl h 1

Number of

nucleotides in

symmetric bulges

Structural
(Sewer

et al., 2005)

#nial h #nial h 1

Number of

nucleotides in

asymmetric

bulges

Structural
(Sewer

et al., 2005)

adbil avg dbil 1

Average distance

between internal

loops

Structural
(Sewer

et al., 2005)

assl avg ssl 1
Average size of

symmetric bulges
Structural

(Sewer

et al., 2005)

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

asal avg asl 1

Average size of

asymmetric

bulges

Structural
(Sewer

et al., 2005)

l(lsr) len lsr 1

Length

calculated over

the longest

symmetrical

region (lsr)

Structural
(Sewer

et al., 2005)

dfhl dfhl 1

Distance of lsr

from the hairpin

loop

Structural
(Sewer

et al., 2005)

lsr(%A-U) bp lsr 1
Proportion of AU

bonds in lsr

Sequential

Structural

(Sewer

et al., 2005)

lsr(%G-C) bp lsr 1
Proportion of GC

bonds in lsr

Sequential

Structural

(Sewer

et al., 2005)

lsr(%G-U) bp lsr 1
Proportion of GU

bonds in lsr

Sequential

Structural

(Sewer

et al., 2005)

lsr(%bp) bp lsr 1
Proportion of

bonds in lsr

Sequential

Structural

(Sewer

et al., 2005)

lsr(%A) A lsr 1
Proportion of A

in lsr

Sequential

Structural

(Sewer

et al., 2005)

lsr(%C) C lsr 1
Proportion of C

in lsr

Sequential

Structural

(Sewer

et al., 2005)

lsr(%G) G lsr 1
Proportion of G

in lsr

Sequential

Structural

(Sewer

et al., 2005)

lsr(%U) U lsr 1
Proportion of U

in lsr

Sequential

Structural

(Sewer

et al., 2005)

dns

Shuffling

method,sm, sns,

dns, or rnd

1
Dinucleotide

shuffling
Probabilistic

(Jiang et al.,

2007)

(cont. on next page)

60



Table A.1 (cont.).

Acronym Synonyms N Name Type Study

c#A .. c#N PolyA - polyN 5

The longest

continous

number of

nucleotide X in

the hairpin

Sequential

Structural

(van der

Burgt et al.,

2009)

AsC .. UsG XsurplusY 12 Surplus X over Y Sequential

(van der

Burgt et al.,

2009)

AcsGU .. UgsCA XysurplusWZ 24
Surplus of A and

C over G and U
Sequential

(van der

Burgt et al.,

2009)

%A-U 1

Percentage fo

A-U bonds of all

constituting

bonds.

Sequential

Structural

(van der

Burgt et al.,

2009)

%G-C 1

Percentage fo

G-C bonds of all

constituting

bonds.

Sequential

Structural

(van der

Burgt et al.,

2009)

%G-U 1

Percentage fo

G-U bonds of all

constituting

bonds.

Sequential

Structural

(van der

Burgt et al.,

2009)

mscs SCS-mono 1

Dinucleotide

sequence

complexity score

Sequential

(van der

Burgt et al.,

2009)

dscs SCS-di 1

Mononucleotide

sequence

complexity score

Sequential

(van der

Burgt et al.,

2009)

lscm
longest

matchstretch
1

Longest

continious stretch

of matches in the

hairpin

Structural

(van der

Burgt et al.,

2009)

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

#nial h/sl bulge ratio 1

Number of

nucleotides in

asymmetric

bulges/ sl

Structural

(van der

Burgt et al.,

2009)

#mdn MaxDiBaseCount 1

Count of the two

most occurring

two bases

Sequential

(van der

Burgt et al.,

2009)

#mdn/hpl–c(0.5) MaxDiBaseRatio 1

Count of the

most occurring

two bases/ hpl

Sequential

(van der

Burgt et al.,

2009)

c(#) 1
A constant

number (#)
na

#mnn MinBasecount 1
Minimal base

occurrence
Sequential

(van der

Burgt et al.,

2009)

#mnn/hpl
minimal base

occurrence
1

Minimal base

occurrence
Sequential

(van der

Burgt et al.,

2009)

c#As .. c#Ns
PolyAstem -

polyNstem
5

The longest

continous

number of A in

the stem

Sequential

(van der

Burgt et al.,

2009)

saln 1
Stem alignment

length
Structural

(van der

Burgt et al.,

2009)

bpp/saln
match ratio in

hairpin stem
1

Base pairing

propensity/ saln
Structural

(van der

Burgt et al.,

2009)

#goh gapratio 1
Gap openings in

hairpin alignment
Structural

(van der

Burgt et al.,

2009)

#gih gap open number 1
Total gaps in

alignment
Structural

(van der

Burgt et al.,

2009)

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

#gih/saln gap open ratio 1
Total gaps in

alignment/ saln
Structural

(van der

Burgt et al.,

2009)

adal stem symmetry 1

Absolute length

difference

between both

arms.

Structural

(van der

Burgt et al.,

2009)

adalr stem symmetry 1
Stem length

symmetry
Structural

(van der

Burgt et al.,

2009)

llha
length of longest

helical arm
1

Length of longest

helical arm
Structural

(Lai et al.,

2003)

mfe-lha

free energy of the

longest helical

arm

1

MFE of the

longest helical

arm

Structural

Thermody-

namic

(Lai et al.,

2003)

#bu number of bulges 1
Number of

bulges
Structural

(Ritchie

et al., 2012)

mll loop size 1 Max loop length Structural na

orf orf 1
Open reading

frame
Sequential

(Gudys

et al., 2013)

mwmF max match count 1

Maximum

matche count in

24 positions in

the stem

alignment

Structural

Thermody-

namic

(van der

Burgt et al.,

2009)

#mnnS
minimal base

ratio
1

minimum base

count in stem

Sequential

Structural

(van der

Burgt et al.,

2009)

subu
bulged

nucleotides
1

Nucleotide count

in all bulges
Structural

(Lai et al.,

2003)

%AAs .. %UUs 16
Dinucleotide

percent in stem

Sequential

Structural
na

(cont. on next page)
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Table A.1 (cont.).

Acronym Synonyms N Name Type Study

dns z(hpl) 1

Z score using

dinucleotide

shuffling for hpl

Structural

Thermody-

namic

(Ng and

Mishra,

2007)

nfl
length of flanking

ends
1

Number of

unbound

nucleotides in

flanking ends

Structural

(Çakir and

Allmer,

2010)

#AAs .. #UUs AA .. UU 16
Dinucleotide

count in stem

Sequential

Structural

(Ng and

Mishra,

2007)

#AAA .. #UUU AAA .. UUU 64
Trinucleotide

count
Sequential

(Chen et al.,

2016)

%AAA .. %UUU AAA .. UUU 64
Trinucleotide

percent
Sequential

(Chen et al.,

2016)

#AAAs #UUUs AAA .. UUU 64
Trinucleotide

count in stem

Sequential

Structural

(Chen et al.,

2016)

%AAAs .. %UUUs AAA .. UUU 64
Trinucleotide

percent in stem

Sequential

Structural

(Chen et al.,

2016)
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Table A.2.: Time and information gain table of features. Results are ob-

tained in Knime. Human hairpins are used. Each row represents a feature

indicated and its information gain (IG), mean time (MT) in milliseconds.

Information about the features are found in Table A1.

Feature IG MT Feature IG MT

assl/hpl 0.389 0.219 assl/sl 0.385 0.231

assl 0.384 0.129 subu/sl 0.265 0.179

bpp/sl 0.265 0.234 subu/hpl 0.254 0.165

hpmfe rf I1/hpl 0.244 0.216 lsr(%bp) 0.244 0.118

hpmfe rf I1/sl 0.242 0.318 lsr(%bp)/hpl 0.235 0.174

lsr(%bp)/sl 0.235 0.262 bpp/hpl 0.225 0.221

lscm 0.210 0.106 dG/sl 0.208 0.211

asal/hpl 0.197 0.219 asal/sl 0.196 0.235

dG/hpl 0.196 0.215 hpmfe rf/sl 0.196 0.263

efe/sl 0.195 0.243 asal 0.194 0.115

hpmfe rf I3 0.189 0.421 hpmfe rf I4 0.186 0.332

hpmfe rf/hpl 0.186 0.170 efe/hpl 0.186 0.232

lscm/hpl 0.180 0.162 lscm/sl 0.177 0.255

subu 0.173 0.105 l(lsr) 0.173 0.114

hpmfe rf/ns 0.172 0.178 #gih/hpl 0.169 0.189

#A(((/sl 0.167 0.168 l(lsr)/sl 0.166 0.256

*A((( 0.166 0.111 #gih/sl 0.166 0.311

#A(((/hpl 0.164 0.159 l(lsr)/hpl 0.164 0.167

#A((( 0.161 0.029 #goh/hpl 0.157 0.171

#nial h/sl 0.153 0.300 lsr(%U) 0.153 0.154

lsr(%U)/sl 0.152 0.313 #goh/sl 0.151 0.191

#nial h++#nisl h 0.151 0.053 #nial h/hpl 0.150 0.188

st(A-U)/sl 0.149 0.224 #U(((/sl 0.148 0.213

*U((( 0.148 0.213 lsr(%U)/hpl 0.148 0.209

#gih 0.148 0.067 adbil 0.146 0.122

saln/sl 0.146 0.263 st(A-U)/hpl 0.145 0.221

#U(((/hpl 0.144 0.198 lsr(%A) 0.143 0.154

lsr(%A)/sl 0.141 0.308 Q/hpl 0.140 0.206
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Table A.2 (cont.).

Feature IG MT Feature IG MT

#U((( 0.139 0.060 lsr(%A)/hpl 0.139 0.207

Q/sl 0.138 0.282 st(A-U) 0.135 0.146

#goh 0.135 0.050 adbil/sl 0.134 0.236

mbs/hpl 0.133 0.163 #nial h 0.132 0.050

adbil/hpl 0.132 0.215 mbs/sl 0.130 0.263

*A(((/sl 0.130 0.241 *A(((/hpl 0.129 0.233

ediv/hpl 0.120 0.232 bpd/hpl 0.120 0.219

mbs 0.119 0.121 ediv/sl 0.118 0.244

bpd/sl 0.118 0.266 dH/sl 0.108 0.211

*U(((/sl 0.106 0.307 *U(((/hpl 0.105 0.272

bpp 0.102 0.067 lsr(%G) 0.097 0.155

lsr(%C) 0.096 0.152 dH/hpl 0.094 0.208

lsr(%G)/sl 0.090 0.299 lsr(%C)/sl 0.090 0.354

*C.../sl 0.088 0.259 lsr(%C)/hpl 0.086 0.209

*C... 0.086 0.111 #C.../sl 0.086 0.195

#C.../hpl 0.086 0.207 lsr(%G)/hpl 0.086 0.217

*C.../hpl 0.082 0.233 #A.../hpl 0.082 0.199

*A.../sl 0.082 0.274 *A... 0.082 0.104

*A.../hpl 0.081 0.227 #A.../sl 0.081 0.166

#C... 0.079 0.035 lsr(%G-U) 0.076 0.172

lsr(%A-U) 0.076 0.180 mwmF/sl 0.075 0.290

%A-U 0.075 0.089 #bu 0.075 0.128

#A... 0.073 0.030 dS/sl 0.069 0.219

saln/hpl 0.066 0.166 adal/hpl 0.066 0.216

mwmF/hpl 0.065 0.204 adalr 0.065 0.091

lsr(%G-U)/sl 0.064 0.314 adal/sl 0.063 0.230

#U.../sl 0.063 0.215 *U... 0.062 0.117

*U.../sl 0.061 0.260 #U.../hpl 0.061 0.187

*U.../hpl 0.061 0.257 lsr(%G-U)/hpl 0.060 0.221

adalr/hpl 0.059 0.242 adalr/sl 0.058 0.247

dS/hpl 0.058 0.212 #UA/hpl 0.054 0.202
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Table A.2 (cont.).

Feature IG MT Feature IG MT

#A..(/hpl 0.054 0.163 #G.../hpl 0.054 0.210

#UA/sl 0.054 0.212 %UA 0.054 0.070

*G... 0.054 0.115 #G.../sl 0.054 0.199

Tm/sl 0.054 0.208 #U... 0.053 0.062

adal 0.052 0.103 *G.../sl 0.051 0.292

*A..( 0.051 0.101 Tm/hpl 0.051 0.205

#UA 0.050 0.051 %A-U/sl 0.050 0.224

#A..(/sl 0.049 0.179 *G.../hpl 0.049 0.237

%A-U/hpl 0.049 0.214 #G.((/hpl 0.048 0.281

nl/hpl 0.048 0.162 %G++%C 0.047 0.118

%C++%G 0.047 0.164 %U++%A 0.047 0.108

%A++%U 0.047 0.228 #C(../hpl 0.047 0.217

#G... 0.046 0.042 #A(../hpl 0.046 0.154

%G++%C/hpl 0.046 0.266 %C++%G/hpl 0.046 0.207

ns/hpl 0.045 0.157 #U++#A/sl 0.045 0.217

#A++#U/sl 0.045 0.182 UAsGC/sl 0.045 0.220

UAsCG/sl 0.045 0.221 AUsGC/sl 0.045 0.273

AUsCG/sl 0.045 0.273 GCsUA/sl 0.045 0.314

GCsAU/sl 0.045 0.301 CGsUA/sl 0.045 0.317

CGsAU/sl 0.045 0.276 UAsGC 0.045 0.210

UAsCG 0.045 0.229 GCsUA 0.045 0.193

GCsAU 0.045 0.193 CGsUA 0.045 0.191

CGsAU 0.045 0.180 AUsGC 0.045 0.178

AUsCG 0.045 0.218 #G++#C/hpl 0.045 0.182

#C++#G/hpl 0.045 0.177 #U++#A/hpl 0.045 0.196

#A++#U/hpl 0.045 0.166 UAsGC/hpl 0.044 0.215

UAsCG/hpl 0.044 0.221 AUsGC/hpl 0.044 0.252

AUsCG/hpl 0.044 0.283 GCsUA/hpl 0.044 0.274

GCsAU/hpl 0.044 0.273 CGsUA/hpl 0.044 0.271

CGsAU/hpl 0.044 0.265 %CG 0.044 0.058

#CG/hpl 0.044 0.174 %CG/hpl 0.044 0.225
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Table A.2 (cont.).

Feature IG MT Feature IG MT

*A..(/hpl 0.044 0.235 *G.((/hpl 0.044 0.275

*A..(/sl 0.044 0.284 #G.((/sl 0.043 0.196

%G-U 0.043 0.096 *G.(( 0.043 0.106

%UA/sl 0.043 0.236 %CG/sl 0.042 0.228

lsr(%G-C) 0.042 0.162 #G(((/sl 0.042 0.187

#CG/sl 0.042 0.189 *G.((/sl 0.042 0.250

%G++%C/sl 0.042 0.309 %C++%G/sl 0.042 0.283

*C(.. 0.041 0.098 #C(../sl 0.041 0.234

*G((( 0.041 0.154 #A(../sl 0.041 0.180

*A(.. 0.041 0.095 #C((./hpl 0.041 0.208

dme/sl 0.039 0.246 %UAA 0.039 0.199

#G((( 0.039 0.040 #G++#C/sl 0.039 0.195

#C++#G/sl 0.039 0.212 #C(((/sl 0.038 0.188

nl/sl 0.038 0.249 *A(../sl 0.038 0.242

#G.(( 0.038 0.047 #A..( 0.038 0.022

*A(../hpl 0.038 0.288 #CG 0.037 0.029

*C((( 0.037 0.103 *C(../hpl 0.037 0.224

#U++#A 0.036 0.034 #A++#U 0.036 0.082

#G(((/hpl 0.036 0.189 ns/sl 0.036 0.251

#C..(/hpl 0.036 0.238 #C((./sl 0.036 0.194

%UA/hpl 0.036 0.226 *C((. 0.036 0.101

*C(../sl 0.036 0.349 #C((( 0.035 0.032

#A(.. 0.035 0.023 *C((./hpl 0.034 0.277

#C(((/hpl 0.034 0.167 GsA/sl 0.034 0.283

AsG/sl 0.034 0.275 %UUA 0.033 0.170

hpl 0.033 0.072 #UAA 0.033 0.169

*C((./sl 0.033 0.243 #C(.. 0.033 0.042

GsA 0.032 0.144 AsG 0.032 0.117

orf/hpl 0.032 0.166 UsG 0.032 0.198

GsU 0.032 0.171 lsr(%A-U)/sl 0.032 0.316

GsU/sl 0.032 0.294 UsG/sl 0.032 0.214
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Table A.2 (cont.).

Feature IG MT Feature IG MT

lsr(%A-U)/hpl 0.032 0.221 GsA/hpl 0.031 0.274

AsG/hpl 0.031 0.246 #UUA 0.031 0.188

*C..(/sl 0.031 0.250 #C..(/sl 0.031 0.256

*C..( 0.031 0.107 UsC 0.031 0.176

CsU 0.031 0.148 %CUA 0.031 0.167

efq/sl 0.031 0.243 *C..(/hpl 0.030 0.229

*G..( 0.030 0.230 #C((. 0.030 0.037

*G(../sl 0.030 0.256 #G..(/sl 0.030 0.195

sl 0.030 0.084 *G(../hpl 0.030 0.232

*G..(/sl 0.030 0.254 %G++%G/hpl 0.030 0.220

#G(../hpl 0.029 0.175 *G..(/hpl 0.029 0.234

#U++#U/sl 0.029 0.251 #U/sl 0.029 0.214

UsG/hpl 0.029 0.216 GsU/hpl 0.029 0.258

%G/hpl 0.029 0.279 *G(.. 0.029 0.113

#G(../sl 0.029 0.224 UsC/sl 0.029 0.219

CsU/sl 0.029 0.277 #G..(/hpl 0.029 0.213

efq/hpl 0.029 0.225 orf/sl 0.028 0.256

CsU/hpl 0.028 0.268 UsC/hpl 0.028 0.217

#U..(/hpl 0.028 0.184 #G++#C 0.028 0.030

#C++#G 0.028 0.060 #U 0.028 0.036

#U++#U 0.028 0.072 %G++%G/sl 0.027 0.246

dme/hpl 0.027 0.228 %G-C/hpl 0.027 0.222

%C++%C/hpl 0.027 0.239 #U(../hpl 0.026 0.194

%C/hpl 0.026 0.204 %G/sl 0.026 0.255

%U++%U 0.026 0.117 %U 0.026 0.069

#U/hpl 0.026 0.241 #U++#U/hpl 0.026 0.206

#G((./hpl 0.026 0.239 #G(.. 0.026 0.049

orf 0.026 0.200 #C..( 0.025 0.032

*U(.. 0.025 0.119 #U(../sl 0.025 0.248

#U..(/sl 0.025 0.261 *U..( 0.025 0.118

#G..( 0.025 0.045 %C++%C/sl 0.025 0.257
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Table A.2 (cont.).

Feature IG MT Feature IG MT

%C/sl 0.024 0.223 %A++%G 0.024 0.159

%G++%G 0.024 0.118 %G 0.024 0.060

#G/hpl 0.024 0.211 #G++#G/hpl 0.024 0.218

%U++%C 0.024 0.122 %C++%U 0.024 0.187

%G++%A 0.024 0.094 %CCG 0.024 0.186

*C(((/sl 0.024 0.274 %UAG 0.024 0.172

#CUA 0.024 0.165 *C(((/hpl 0.023 0.227

%G-C 0.023 0.139 GAsUC 0.023 0.196

GAsCU 0.023 0.201 AGsUC 0.023 0.165

AGsCU 0.023 0.168 #G++#A/hpl 0.023 0.183

#A++#G/hpl 0.023 0.171 UCsGA 0.023 0.207

UCsAG 0.023 0.215 CUsGA 0.023 0.185

CUsAG 0.023 0.188 #U++#C/hpl 0.023 0.196

#C++#U/hpl 0.023 0.177 %GC/hpl 0.023 0.221

%G-C/sl 0.022 0.237 *G(((/sl 0.022 0.250

#C.((/hpl 0.022 0.211 *U..(/hpl 0.022 0.240

CsA/sl 0.022 0.272 AsC/sl 0.022 0.264

%U++%A/sl 0.022 0.243 %A++%U/sl 0.022 0.259

*U(../sl 0.022 0.306 *U(../hpl 0.022 0.311

AsC 0.022 0.112 CsA 0.022 0.186

%GC 0.022 0.062 #CCG 0.022 0.169

CsA/hpl 0.022 0.250 AsC/hpl 0.022 0.240

#G((./sl 0.021 0.254 AsU 0.021 0.128

UsA 0.021 0.175 %G-U/sl 0.021 0.290

*G(((/hpl 0.021 0.237 nl 0.021 0.085

%GC/sl 0.021 0.233 c#Us/hpl 0.021 0.261

%CGG 0.020 0.185 %C++%C 0.020 0.099

%C 0.020 0.056 #C/hpl 0.020 0.165

#C++#C/hpl 0.020 0.189 #G/sl 0.020 0.182

#G++#G/sl 0.020 0.191 #UUU 0.020 0.176

*U..(/sl 0.020 0.269 %G-U/hpl 0.020 0.211
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Table A.2 (cont.).

Feature IG MT Feature IG MT

#GC/hpl 0.020 0.192 #U..( 0.020 0.057

#GC/sl 0.020 0.205 %UUU 0.020 0.182

lsr(%G-C)/hpl 0.020 0.224 *G((. 0.019 0.115

GAsUC/hpl 0.019 0.271 GAsCU/hpl 0.019 0.276

AGsUC/hpl 0.019 0.286 AGsCU/hpl 0.019 0.244

UCsGA/hpl 0.019 0.215 UCsAG/hpl 0.019 0.219

CUsGA/hpl 0.019 0.264 CUsAG/hpl 0.019 0.267

%AU 0.019 0.065 *G((./hpl 0.019 0.230

c#U/hpl 0.019 0.247 %U++%A/hpl 0.019 0.225

%A++%U/hpl 0.019 0.253 #UU 0.019 0.059

ns 0.019 0.094 *G((./sl 0.019 0.322

#G++#A/sl 0.019 0.204 #A++#G/sl 0.019 0.236

%CCA 0.018 0.198 #G++#G 0.018 0.041

#G 0.018 0.024 #AU/hpl 0.018 0.178

GAsUC/sl 0.018 0.305 GAsCU/sl 0.018 0.293

AGsUC/sl 0.018 0.259 AGsCU/sl 0.018 0.346

UCsGA/sl 0.018 0.227 UCsAG/sl 0.018 0.226

CUsGA/sl 0.018 0.317 CUsAG/sl 0.018 0.278

lsr(%G-C)/sl 0.018 0.352 UsA/hpl 0.018 0.214

AsU/hpl 0.018 0.274 %AAA 0.018 0.181

%U++%U/sl 0.018 0.240 %GGC 0.018 0.176

#UU/sl 0.018 0.208 %UAU 0.018 0.180

#U(.. 0.018 0.052 %UAC 0.018 0.170

#A++#A 0.018 0.004 #A 0.018 0.008

%U/sl 0.018 0.240 UsA/sl 0.018 0.214

AsU/sl 0.018 0.260 %GCC 0.018 0.170

#UAU 0.017 0.182 #CGG 0.017 0.182

#UU/hpl 0.017 0.198 #C.((/sl 0.017 0.186

%UU 0.017 0.072 c#U 0.017 0.101

#C/sl 0.017 0.178 #C++#C/sl 0.017 0.195

#GC 0.017 0.047 *C.(( 0.017 0.151
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Table A.2 (cont.).

Feature IG MT Feature IG MT

%GG/hpl 0.017 0.209 #AAA 0.017 0.144

c#U/sl 0.017 0.322 %CGA 0.016 0.167

#U++#C/sl 0.016 0.209 #C++#U/sl 0.016 0.181

c#Us/sl 0.016 0.277 %AGC 0.016 0.180

#UAG 0.016 0.155 #G((. 0.016 0.041

c#Us 0.016 0.118 st(G-C)/sl 0.016 0.227

%UU/sl 0.016 0.235 #A/sl 0.016 0.164

#A++#A/sl 0.016 0.172 %CAG 0.016 0.168

#AA 0.015 0.022 %GG/sl 0.015 0.239

%A 0.015 0.051 #A/hpl 0.015 0.182

%A++%A 0.015 0.091 #A++#A/hpl 0.015 0.158

%AUA 0.015 0.193 mscs 0.015 0.107

%GCG 0.015 0.183 #AA/sl 0.015 0.198

%U++%U/hpl 0.015 0.238 *C.((/hpl 0.015 0.238

%U/hpl 0.014 0.250 %U++%G/sl 0.014 0.252

%G++%U/sl 0.014 0.234 #AA/hpl 0.014 0.174

%AA 0.014 0.093 dscs/hpl 0.014 0.220

*C.((/sl 0.014 0.252 c#A/hpl 0.014 0.242

%CGC 0.014 0.167 %UU/hpl 0.014 0.221

%CC/sl 0.014 0.219 %AAU 0.014 0.168

st(G-C) 0.014 0.148 #AU/sl 0.014 0.220

#CGA 0.014 0.174 dscs/sl 0.014 0.241

#AAU 0.014 0.164 mscs/sl 0.014 0.255

st(G-C)/hpl 0.013 0.223 #AUA 0.013 0.139

%CC/hpl 0.013 0.214 mscs/hpl 0.013 0.162

%UCG 0.013 0.182 c#A/sl 0.013 0.264

%AUU 0.013 0.180 c#A 0.012 0.094

saln 0.012 0.108 hpl/sl 0.012 0.242

sl/hpl 0.012 0.168 hll/sl 0.012 0.244

hll/hpl 0.012 0.223 #AU 0.012 0.020

#CC/hpl 0.012 0.184 %GCU 0.012 0.187
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Table A.2 (cont.).

Feature IG MT Feature IG MT

%CC 0.012 0.063 #AUU 0.012 0.148

ir 0.012 0.232 c#As/sl 0.012 0.309

#U++#G 0.012 0.051 #G++#U 0.012 0.102

#UGU 0.012 0.171 #C++#C 0.012 0.050

#C 0.012 0.018 #U++#G/sl 0.012 0.242

#G++#U/sl 0.012 0.198 #CGC 0.012 0.170

%CAC 0.011 0.169 c#As/hpl 0.011 0.251

%GG 0.011 0.145 c#As 0.011 0.121

%UGU 0.011 0.162 %AA/sl 0.011 0.219

#GGC 0.011 0.169 %U++%C/sl 0.011 0.250

%C++%U/sl 0.011 0.250 #GUA 0.011 0.171

#GG/hpl 0.011 0.178 #GCG 0.011 0.170

#GG/sl 0.011 0.201 %U++%G/hpl 0.011 0.231

%G++%U/hpl 0.011 0.266 %U++%C/hpl 0.011 0.238

%C++%U/hpl 0.011 0.218 #G++#A 0.011 0.028

#A++#G 0.011 0.080 #C.(( 0.010 0.034

%GUC 0.010 0.191 hll 0.010 0.080

#C(.(/hpl 0.010 0.192 %C++%A/hpl 0.010 0.217

%A++%C/hpl 0.010 0.209 %ACU 0.010 0.174

%GUA 0.010 0.175 %C++%A/sl 0.010 0.230

%A++%C/sl 0.010 0.224 #GCC 0.010 0.161

c#Cs/hpl 0.010 0.259 %UGA 0.009 0.198

%CGU 0.009 0.172 #CC/sl 0.009 0.224

#nisl h/hpl 0.009 0.173 %CA/hpl 0.009 0.296

%CA 0.009 0.064 #CA/hpl 0.009 0.185

#UCG 0.009 0.158 %A++%A/sl 0.009 0.266

#CCA 0.009 0.164 %A/sl 0.009 0.213

#AGC 0.008 0.161 %G++%A/sl 0.008 0.253

%A++%G/sl 0.008 0.225 %AU/hpl 0.008 0.250

%ACG 0.008 0.175 #nisl h/sl 0.008 0.266

%AGU 0.008 0.180 #mnn 0.008 0.112
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Table A.2 (cont.).

Feature IG MT Feature IG MT

%G++%A/hpl 0.008 0.211 %A++%G/hpl 0.008 0.208

#ACU 0.008 0.148 %AA/hpl 0.008 0.227

#U++#C 0.008 0.083 #C++#U 0.008 0.078

GsC/hpl 0.008 0.275 CsG/hpl 0.008 0.258

%UUG 0.007 0.177 mll 0.007 0.104

#C++#A 0.007 0.012 #A++#C 0.007 0.028

UGsCA 0.007 0.230 UGsAC 0.007 0.212

GUsCA 0.007 0.190 GUsAC 0.007 0.191

CAsUG 0.007 0.186 CAsGU 0.007 0.180

ACsUG 0.007 0.176 ACsGU 0.007 0.163

%U++%G 0.007 0.116 %G++%U 0.007 0.236

%C++%A 0.007 0.131 %A++%C 0.007 0.211

#U++#G/hpl 0.007 0.199 #G++#U/hpl 0.007 0.193

#C++#A/hpl 0.007 0.172 #A++#C/hpl 0.007 0.288

%CA/sl 0.007 0.221 GsC/sl 0.007 0.277

CsG/sl 0.007 0.300 %AGG 0.007 0.181

#U((./hpl 0.007 0.187 UGsCA/hpl 0.007 0.216

UGsAC/hpl 0.007 0.219 GUsCA/hpl 0.007 0.273

GUsAC/hpl 0.007 0.275 CAsUG/hpl 0.007 0.264

CAsGU/hpl 0.007 0.266 ACsUG/hpl 0.007 0.275

ACsGU/hpl 0.007 0.240 %A++%A/hpl 0.007 0.251

#N.(./hpl 0.007 0.225 *N.(. 0.007 0.145

#N.(./sl 0.007 0.202 %AUG 0.007 0.156

#GG 0.007 0.039 %AAC 0.007 0.172

#G.(./hpl 0.007 0.177 *N.(./sl 0.007 0.265

c#N/sl 0.007 0.289 *N.(./hpl 0.007 0.242

#GU/sl 0.007 0.249 c#G/hpl 0.007 0.250

UGsCA/sl 0.007 0.224 UGsAC/sl 0.007 0.222

GUsCA/sl 0.007 0.290 GUsAC/sl 0.007 0.282

CAsUG/sl 0.007 0.279 CAsGU/sl 0.007 0.348

ACsUG/sl 0.007 0.260 ACsGU/sl 0.007 0.261
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Table A.2 (cont.).

Feature IG MT Feature IG MT

c#G/sl 0.007 0.270 c#N/hpl 0.007 0.249

GsC 0.007 0.149 CsG 0.007 0.144

#mdn 0.006 0.121 %A/hpl 0.006 0.379

#N.(. 0.006 0.075 #AGU 0.006 0.171

#ACG 0.006 0.148 c#C/hpl 0.006 0.244

#UAC 0.006 0.198 #GU 0.006 0.046

%GU 0.006 0.068 *G.(./hpl 0.006 0.247

*C(.(/sl 0.006 0.284 *G.(./sl 0.006 0.260

#CGU 0.006 0.159 #U((./sl 0.006 0.199

*U((. 0.006 0.115 *G.(. 0.006 0.102

#G.(./sl 0.006 0.260 #CA/sl 0.006 0.184

#CC 0.006 0.027 #nisl h 0.006 0.049

%AU/sl 0.005 0.231 %UCC 0.005 0.170

%UCU 0.005 0.175 %UGG 0.005 0.176

c#Gs/hpl 0.005 0.249 c#Gs/sl 0.005 0.320

%GUU 0.005 0.191 #UCU 0.005 0.173

%AUC 0.005 0.165 #CAG 0.005 0.158

%CUU 0.005 0.171 #G.(. 0.004 0.040

%GGG 0.004 0.185 #C(.(/sl 0.004 0.217

#GU/hpl 0.004 0.189 *C(.( 0.004 0.104

#G(.(/hpl 0.004 0.208 #GUU 0.004 0.169

c#C/sl 0.004 0.315 %GAU 0.004 0.168

c#Ns/sl 0.004 0.264 *G(.(/sl 0.004 0.244

#C(.( 0.004 0.041 %GGA 0.004 0.169

%GCA 0.004 0.169 #CA 0.004 0.036

*C(.(/hpl 0.004 0.236 #GCU 0.004 0.177

*G(.( 0.004 0.102 ir/sl 0.004 0.307

#C.(./hpl 0.004 0.183 *U((./sl 0.004 0.322

*U((./hpl 0.004 0.243 #G(.(/sl 0.004 0.201

*G(.(/hpl 0.004 0.248 #U(.( 0.003 0.056

%CUG 0.003 0.176 c#Cs/sl 0.003 0.272
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Table A.2 (cont.).

Feature IG MT Feature IG MT

%CU/sl 0.003 0.236 *C.(./hpl 0.003 0.251

*C.(. 0.003 0.107 #C.(./sl 0.003 0.207

c#N 0.003 0.508 %ACA 0.003 0.171

#U.((/hpl 0.003 0.189 *C.(./sl 0.003 0.248

%CAU 0.003 0.199 %GU/sl 0.003 0.231

#U.(./hpl 0.003 0.241 *U.((/hpl 0.003 0.277

#UGG 0.003 0.175 #C.(. 0.003 0.042

%AGA 0.003 0.180 c#Ns/hpl 0.002 0.251

#mnn/sl 0.002 0.209 #UUG 0.002 0.166

%CU/hpl 0.002 0.232 *U.(. 0.002 0.116

#U.(./sl 0.002 0.305 *U.((/sl 0.002 0.313

#GA/hpl 0.002 0.192 #ACA 0.002 0.154

*U.(./sl 0.002 0.280 *U.(( 0.002 0.114

%GA 0.002 0.073 #U.((/sl 0.002 0.197

#G(.( 0.002 0.043 %GU/hpl 0.002 0.221

#U(.(/sl 0.002 0.204 *U(.( 0.002 0.111

#CU 0.002 0.029 #CU/sl 0.002 0.195

#U(.(/hpl 0.002 0.196 %UGC 0.002 0.170

%UC 0.002 0.071 #UC/hpl 0.002 0.196

#mdn/hpl 0.002 0.201 #UCC 0.002 0.172

%GAC 0.002 0.169 c#Ns 0.002 0.534

c#G 0.002 0.097 #GUG 0.002 0.171

%GUG 0.002 0.176 #mdn/sl 0.002 0.246

ir/hpl 0.002 0.155 dr/hpl 0.002 0.226

*U.(./hpl 0.002 0.273 st(G-U)/sl 0.000 0.236

st(G-U)/hpl 0.000 0.220 st(G-U) 0.000 0.150

dscs 0.000 0.117 dr/sl 0.000 0.237

c#Gs 0.000 0.115 c#Cs 0.000 0.118

c#C 0.000 0.093 *U(.(/sl 0.000 0.252

*U(.(/hpl 0.000 0.290 *A.(./sl 0.000 0.235

*A.(./hpl 0.000 0.233 *A.(. 0.000 0.098
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Table A.2 (cont.).

Feature IG MT Feature IG MT

*A.((/sl 0.000 0.237 *A.((/hpl 0.000 0.230

*A.(( 0.000 0.095 *A(.(/sl 0.000 0.241

*A(.(/hpl 0.000 0.260 *A(.( 0.000 0.128

*A((./sl 0.000 0.235 *A((./hpl 0.000 0.234

*A((. 0.000 0.102 %UUC 0.000 0.185

%UG/sl 0.000 0.266 %UG/hpl 0.000 0.253

%UG 0.000 0.069 %UCA 0.000 0.178

%UC/sl 0.000 0.245 %UC/hpl 0.000 0.228

%GGU 0.000 0.173 %GAG 0.000 0.179

%GAA 0.000 0.176 %GA/sl 0.000 0.240

%GA/hpl 0.000 0.218 %CUC 0.000 0.185

%CU 0.000 0.069 %CCU 0.000 0.171

%CCC 0.000 0.165 %CAA 0.000 0.177

%AG/sl 0.000 0.223 %AG/hpl 0.000 0.249

%AG 0.000 0.057 %ACC 0.000 0.160

%AC/sl 0.000 0.286 %AC/hpl 0.000 0.211

%AC 0.000 0.056 %AAG 0.000 0.187

#mnn/hpl 0.000 0.197 #UUC 0.000 0.177

#UGC 0.000 0.157 #UGA 0.000 0.196

#UG/sl 0.000 0.255 #UG/hpl 0.000 0.194

#UG 0.000 0.053 #UCA 0.000 0.173

#UC/sl 0.000 0.222 #UC 0.000 0.061

#U.(. 0.000 0.056 #U.(( 0.000 0.059

#U((. 0.000 0.056 #GUC 0.000 0.176

#GGU 0.000 0.164 #GGG 0.000 0.163

#GGA 0.000 0.188 #GCA 0.000 0.174

#GAU 0.000 0.181 #GAG 0.000 0.170

#GAC 0.000 0.185 #GAA 0.000 0.161

#GA/sl 0.000 0.212 #GA 0.000 0.044

#CUU 0.000 0.175 #CUG 0.000 0.190

#CUC 0.000 0.163 #CU/hpl 0.000 0.217
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Table A.2 (cont.).

Feature IG MT Feature IG MT

#CCU 0.000 0.156 #CCC 0.000 0.165

#CAU 0.000 0.152 #CAC 0.000 0.163

#CAA 0.000 0.163 #C++#A/sl 0.000 0.203

#AUG 0.000 0.179 #AUC 0.000 0.161

#AGG 0.000 0.160 #AGA 0.000 0.173

#AG/sl 0.000 0.182 #AG/hpl 0.000 0.207

#AG 0.000 0.022 #ACC 0.000 0.169

#AC/sl 0.000 0.187 #AC/hpl 0.000 0.160

#AC 0.000 0.021 #AAG 0.000 0.149

#AAC 0.000 0.149 #A.(./sl 0.000 0.183

#A.(./hpl 0.000 0.167 #A.(. 0.000 0.022

#A.((/sl 0.000 0.176 #A.((/hpl 0.000 0.171

#A.(( 0.000 0.025 #A++#C/sl 0.000 0.226

#A(.(/sl 0.000 0.174 #A(.(/hpl 0.000 0.154

#A(.( 0.000 0.024 #A((./sl 0.000 0.172

#A((./hpl 0.000 0.158 #A((. 0.000 0.025
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